
The Platform-Aware Compilation Environment 1

Status and Future Directions

June 13, 2012

1The Platform-Aware Compilation Environment project (PACE) is funded by the Defense Advanced Projects
Research Agency (DARPA) through Air Force Research Laboratory (AFRL) Contract FA8650-09-C-7915 with
Rice University. PACE is part of the Architecture-Aware Compilation Environment program (AACE).

The opinions and findings in this document do not necessarily reflect the views of either the United States
Government or Rice University.

ii

Credits

The Platform-Aware Compiler Environment (PACE) project is an inter-institutional collaboration.

Organization Location Principal Contacts

Rice University (lead) Houston, TX, USA Keith D. Cooper, PI
John Mellor-Crummey
Erzsébet Merényi
Krishna Palem
Vivek Sarkar
Linda Torczon

ET International Newark, DE, USA Rishi Khan

Ohio State University Columbus, OH, USA P. Sadayappan

Stanford University Palo Alto, CA, USA Sanjiva Lele

Texas Instruments, Inc. Dallas, TX, USA Reid Tatge

The PACE team includes a large number of additional colleagues and collaborators:

Laksono Adhianto,1 Rajkishore Barik,1 Heba Bevan,1 Milind Chabbi, 1

Jean-Christophe Beyler,2 Zoran Budimlić,1 Michael Burke,1 Vincent Cavé,1 Lakshmi
Chakrapani,1 Phillipe Charles,1 Jack Dennis,2 Sebastien Donadio,2 Mike Fagan,1

Guohua Jin,1 Paul Hahn,1 Timothy Harvey,1 Thomas Henretty,3 Justin Hoelwinski,3,
Zhao Jishen,1 Sam Kaplan,2 Kirk Kelsey,2 Mark Krentel,1 Abid Malik,1 Dung “Zung”
Nguyen,1 Rene Pec̆nik,4 Louis-Noël Pouchet,3 Atanas Rountev,3 Jeffrey Sandoval,1

Arnold Schwaighofer,1 Jun Shirako,1 Ray Simar,1 Brian West,1 Yonghong Yan,1 Anna
Youseffi,1 Jisheng Zhao1

1 Rice University
2 ET International
3 Ohio State University
4 Stanford University
5 Texas Instruments, Incorporated

Technical Contacts: Keith D. Cooper 713-348-6013 keith@rice.edu

Linda Torczon 713-348-5177 linda@rice.edu

Vivek Sarkar 713-348-5304 vsarkar@rice.edu

Design DocumentMaster: Michael Burke 713-348-4476 mgb2@rice.edu

Administrative Contacts: Penny Anderson 713-348-5186 anderson@rice.edu

Lena Sifuentes 713-348-6325 lenas@rice.edu

Web Site: http://pace.rice.edu

Contents

1 Overview of the PACE System 1

1.1 Introduction . 1
1.1.1 Motivation . 1
1.1.2 Document Roadmap . 3

1.2 Structure of the PACE System . 3
1.2.1 Information Flow in the PACE System . 4

1.2.1.1 The Compiler . 4
1.2.1.2 The Runtime System . 5
1.2.1.3 The Characterization Tools . 5
1.2.1.4 Machine Learning Tool . 6

1.2.2 Storing Knowledge in a Distributed Fashion 7
1.3 Adaptation in the PACE Compiler . 7

1.3.1 Characteristic Driven Optimization . 8
1.3.2 Offline Feedback-Driven Optimization . 8
1.3.3 Online Feedback-Driven Optimization . 9
1.3.4 Machine Learning . 10

1.4 Status . 10

2 Resource Characterization in the PACE System 13

2.1 Introduction . 13
2.1.1 Motivation . 13
2.1.2 Approach . 14

2.2 Functionality . 15
2.2.1 Interfaces . 15
2.2.2 Inputs . 15
2.2.3 Output . 17

2.3 Method . 18
2.3.1 Reporting Characteristic Values . 19

2.3.1.1 Interface to Other PACE Tools . 21

3 An Overview of the PACE Compiler 23

3.1 Introduction . 23
3.2 Functionality . 23

3.2.1 Input and Output . 23
3.2.2 Interfaces . 24
3.2.3 The Refactored Program Unit . 25
3.2.4 The Optimization Plan . 25

3.3 Components of the PACE Compiler . 26

iii

iv CONTENTS

3.3.1 Compiler Driver . 26
3.3.2 Platform-Aware Optimizer . 27

3.3.2.1 Polyhedral Analysis and Transformation Tools 27
3.3.3 PAO→TAO IR Translator . 27
3.3.4 Target-Aware Optimizer . 27

3.4 Paths Through the PACE Compiler . 28
3.5 Optimization in the PACE Compiler . 28
3.6 Software Base for the PACE Compiler . 30

4 PACE Platform-Aware Optimizer Overview 31

4.1 Introduction . 31
4.2 Functionality . 31

4.2.1 Input . 31
4.2.2 Output . 31

4.3 Method . 33
4.3.1 Front end . 33
4.3.2 Program Analyses . 34
4.3.3 Legality Analysis . 34
4.3.4 Cost Analysis: Memory Hierarchy . 35
4.3.5 Cost Analysis: PAO-TAO Query Interface . 36
4.3.6 Transcription . 37
4.3.7 The Optimization Plan . 38
4.3.8 PAO Parameters for Runtime System . 38
4.3.9 Guidance from Runtime System . 38

5 PolyOpt � The Polyhedral Optimization Framework 39

5.1 Introduction . 39
5.1.1 Motivation . 39
5.1.2 Background . 40

5.2 Functionality . 40
5.2.1 Static Control Part (SCoP) Code Fragments 41
5.2.2 SCoP Detection and Extraction of Polyhedra 41
5.2.3 Polyhedral Dependence Analysis with Candl 42
5.2.4 Pluto Transformation Generator . 43
5.2.5 Polyhedral Code Generation with CLooG . 43
5.2.6 Parametric Tiling with PTile . 43
5.2.7 Translation to Sage ASTs . 43

5.3 Method . 44
5.3.1 SCoP Detection and Extraction of Polyhedra 44
5.3.2 Polyhedral Dependence Analysis with Candl 44
5.3.3 Pluto Transformation Generator . 45
5.3.4 Polyhedral Code Generation with CLooG . 47
5.3.5 Translation to Sage ASTs . 47
5.3.6 Parametric Tiling with PTile . 48

6 AST-based Transformations in the Platform-Aware Optimizer 51

6.1 Introduction and Motivation . 51
6.2 Functionality . 52

6.2.1 Input . 52
6.2.2 Output . 52

CONTENTS v

6.3 Method . 52

6.3.1 Pattern-driven Idiom Recognition . 53

6.3.2 AST-based Loop Tiling . 54

6.3.3 Selection of Tile Size . 55

6.3.3.1 DL Model . 55

6.3.3.2 ML Model . 56

6.3.3.3 Bounding Search Space and Selecting Initial Tile Size 56

6.3.4 Loop Interchange . 57

6.3.5 Unrolling of Nested Loops . 57

6.3.5.1 Cost Driven Loop Unroll-and-Jam 58

6.3.5.2 Pruning the Search Space . 59

6.3.6 Scalar Replacement . 59

6.3.7 Incremental Reanalysis . 59

7 The Rose to LLVM Translator 63

7.1 Introduction . 63

7.1.1 Motivation . 63

7.2 Functionality . 63

7.2.1 Input . 63

7.2.2 Output . 64

7.3 Method . 64

7.4 Example . 65

8 The PACE Target-Aware Optimizer 67

8.1 Introduction . 67

8.1.1 Motivation . 67

8.2 Functionality . 68

8.2.1 Interfaces . 68

8.3 Method . 69

8.3.1 Optimization in LLVM . 69

8.3.2 Examples of Implemented Optimizations . 71

8.3.3 Vectorization . 72

8.3.4 Selecting Optimization Sequences . 72

8.3.5 Producing Answers to PAO Queries . 73

9 The PACE Runtime System 75

9.1 Introduction . 75

9.1.1 Motivation . 75

9.2 Functionality . 76

9.2.1 Interfaces . 77

9.2.2 Input . 77

9.2.3 Output . 77

9.3 Methods . 78

9.3.1 Measurement . 78

9.3.2 Profile Analysis . 80

9.3.3 Analyzing Measurements to Guide Feedback-directed Optimization 81

9.3.4 Runtime Feedback-directed Parameter Selection 81

vi CONTENTS

10 Machine Learning in PACE 83

10.1 Introduction - Machine Learning for Compiler Optimization 83
10.1.1 Motivation . 83
10.1.2 Prior Work . 84

10.1.2.1 Machine learning for compiler optimization 84
10.1.2.2 Machine learning to characterize platform interactions 84
10.1.2.3 The need for further development 85

10.2 Functionality . 85
10.2.1 What Machine Learning Will Accomplish . 85
10.2.2 Optimization Tasks Identified for Machine Learning 86

10.2.2.1 Determine tile size to maximize performance of a nested loop . . . 89
10.2.2.2 Determine selection of compiler flag settings for good performance

of a program . 91
10.2.2.3 Predict program performance based on program characteristics . . 92
10.2.2.4 Determine a good sequence of compiler optimizations for good

performance of a program . 92
10.3 Methodology . 93

10.3.1 Abstraction of PACE Problems For Machine Learning 93
10.3.2 Challenges From a Machine Learning Point Of View 94

10.3.2.1 The impact of training data on machine learning 95
10.3.2.2 Alternative to supervised machine learning: clustering 95

10.3.3 Candidate Machine Learning Approaches 96
10.3.3.1 Neural networks . 96
10.3.3.2 Genetic algorithms . 98
10.3.3.3 Other possibilities . 98

10.3.4 Productivity metric for Machine Learning . 98
10.3.4.1 Quantifying the improvement in program performance 98
10.3.4.2 Quantifying the decrease in time needed to achieve optimizations 99

10.3.5 Infrastructure . 99
10.4 Conclusions . 100

A Microbenchmarks Used in Resource Characterization 101

Data Cache Capacity . 102
Data Cache Line Size . 103
Data Cache Associativity . 104
Data Cache Latency . 105
TLB Capacity . 106
Operations in Flight . 107
Instruction Latencies . 108
Compute-Bound Threads . 109
Memory-Bound Threads . 110
Simultaneous Live Ranges . 111

B Automatic Vectorization in the PACE Compiler 113

B.1 Overview . 113
B.2 Functionality . 114

B.2.1 Input . 115
B.2.2 Output . 116

B.3 Method . 117
B.3.1 Dynamic Programming . 117

CONTENTS vii

Acronyms Used in This Document

AACE The DARPA Architecture-Aware Compilation Environment Program, which funds the PACE

Project

PACE The Platform-Aware Compilation Environment Project, one of four efforts that form AACE;
this document describes the design of the PACE environment.

API Application Programming Interface

AST Abstract Syntax Tree

CFG Control-Flow Graph

DARPA Defense Advanced Research Projects Agency

gcc Gnu Compiler Collection, a widely-used open-source compiler infrastructure

HIR High-Level Intermediate Representation

ILP Instruction-Level Parallelism

IR Intermediate Representation

ISA Instruction-Set Architecture

LLVM An open-source compiler that is used as the code base for the PACE TAO

LLVM IR The low-level, SSA-based IR used in LLVM and the TAO

ML The PACE Machine Learning subproject and tools

OPENMP A standard API for programming shared-memory parallel computers

PAO The Platform-Aware Optimizer, a component of the PACE compiler

PAO→TAO The translator from the SAGE III IR to the LLVM IR, a component of the PACE compiler; also
called the Rose-to-LLVM translator

POSIX An international standard API for operating system functionality

RC The PACE Resource Characterization subproject and tools

RISC Reduced Instruction-Set Computer

RTS The PACE Runtime System subproject and tools

RPU Refactored Program Unit

SAGE III IR The IR used in Rose, an open source compiler that is the code base for the PACE PAO

SCoP Static Control Part, a sequence of loop nests that is amenable to polyhedral transformations

SSA Static Single-Assignment form

TAO The PACE Target-Aware Optimizer, a component of the PACE compiler

TLB Translation Lookaside Buffer, a structure in the memory hierarchy that caches information
on virtual to physical page mapping

viii CONTENTS

Chapter 1

Overview of the PACE System

The Platform-Aware Compilation Environment (PACE) is an ambitious attempt to con-
struct a portable compiler that produces code capable of achieving high levels of per-
formance on new architectures. The key strategies in PACE are the design and devel-
opment of an optimizer and runtime system that are parameterized by system char-
acteristics, the automatic measurement of those characteristics, the extensive use of
measured performance data to help drive optimization, and the use of machine learn-
ing to improve the long-term effectiveness of the compiler and runtime system.

1.1 Introduction

The Platform-Aware Compilation Environment (PACE) project is developing tools and techniques
to automate the process of retargeting an optimizing compiler to a new system. The basic approach
is to recast code optimization so that both the individual optimizations and the overall optimiza-
tion strategy are parameterized by target system characteristics, to automate the measurement of
those characteristics, and to provide both immediate runtime support and longer term intelligent
support (through machine learning) for the parameter-driven optimization.

The PACE project was part of a larger effort, the DARPA-sponsored Architecture-Aware Com-
piler Environment (AACE) program.1 Because the DARPA-sponsored AACE program was cancelled,
the PACE system was not completed under DARPA AACE funding as originally envisioned. Research
on aspects of the PACE system continues under funding from a variety of other sources. The im-
plementation status of the design described in this document, as of November 2011, is outlined in
§ 1.4.

1.1.1 Motivation

Over the last twenty years, the average time to develop a high-quality compiler for a new system
has ranged between three and five years. Given the rapid evolution of modern computer systems,
and the correspondingly short lifetimes of those systems, the result is that quality compilers appear
for a new system only at the end of its useful lifetime, or later.

Several factors contribute to the lag time between appearance of a new computer system and
the availability of high-quality compilation support for it. The compiler may need to deal with
new features in the target system’s instruction set architecture (ISA). Existing optimizations must
be retargeted to the new system;2 those optimizations may not expose the right set of parameters

Principal Contacts For This Chapter: Keith Cooper, keith@rice.edu
1The PACE project is funded by the Defense Advanced Projects Research Agency (DARPA) through Air Force Research Lab-
oratory (AFRL) Contract FA8650-09-C-7915 with Rice University. The opinions and findings in this document do not neces-
sarily reflect the views of either the United States Government or Rice University.
2Datta et al. showed that variations in target machine architecture necessitate different optimization strategies for stencil

1

2 CHAPTER 1. OVERVIEWOF THE PACE SYSTEM

�
�

�
�

PACE
Characterization

Tools

-

6

-

�
�
�
PACE

Compiler

?�
�

�
PACE Runtime

System

�

6

�
�

�
PACE Machine

Learning Tools

-

-
�

C Code
with OPENMP

?

Config
File

-

?

Figure 1.1: Major Components of the PACE Systems

to simplify retargeting. Finally, the new system may present system-level features that are not well
addressed by existing optimizations, such as the DMA interfaces on the IBM CELL processor. In such
cases, the retargeting effort may require invention and implementation of new transformations to
address system-specific innovations.

The PACE system attacks the first two problems.

• The PACE compiler is built on Rose and LLVM. For code generation, the PACE compiler relies
on either LLVM native backends or native C compilers for code generation—that is, to emit the
appropriate assembly language code. Since both Rose and LLVM are capable of producing
C from their intermediate representations, the PACE compiler can generate C code for the
native C compiler when an LLVM native backend is not available for a particular architecture.

• PACE will include a suite of transformations that are parameterized by target-system char-
acteristics, both hardware and software. These transformations will use specific, measured
characteristics to model the target system and will reshape the code accordingly. These
transformations will be retargeted by changing the values of the system characteristics that
they use as parameters. The behavior of the compiler will change with the values of the sys-
tem characteristics.

PACE does not address the final problem, inventing new optimizations for radical new features. It
will, however, free the compiler writer to focus on new transformations that address new architec-
tural features.

Thus, PACE transforms the problem of tuning the optimizer for a new system into the problem
of deriving values for key system characteristics. PACE includes a set of portable tools that measure
those characteristics. Thus to retarget the optimizer, an installer runs the characterization tools
and installs the compiler.

Finally, because the values of some important characteristics cannot be determined accurately
until runtime, PACE includes a runtime system that can adjust optimization parameters in compiler-
generated code. The runtime system makes specific and precise measurements of runtime perfor-
mance. It is capable of identifying rate-limiting resources by code region. It can report the results
of these analyses to either the end user or to the other components in the PACE system.

computations [34]. Equally important, follow-on analysis showed that code tailored for any machine in their study per-
formed poorly on any other machine [59].

1.2. STRUCTURE OF THE PACE SYSTEM 3

Component Chapter

PACE Resource Characterization Tools
Microbenchmarks 2
Interface to other tools 2

PACE Compiler
Compiler Overview 3
Platform-Aware Optimizer (PAO) 4

Polyhedral Framework 5
AST-based Transformations in the PAO 6

Rose-to-LLVM Translator 7
Target-Aware Optimizer (TAO) 8

PACE Runtime System 9

PACE Machine Learning Tools 10

Table 1.1: Document Organization

1.1.2 Document Roadmap

This chapter provides a survey of the structure and functionality of the PACE system, along with dis-
cussion of system-wide design decisions. Section 1.2 provides a description of the major software
components of the PACE system, shown in Figure 1.1. The later chapters of this document describe
those components in more detail. Table 1.1 shows how the remaining chapters of this document
map into the software components of the PACE system.

1.2 Structure of the PACE System

The PACE system has three major components: the PACE Compiler, the PACE Runtime System,
and the PACE Resource Characterization tools. The PACE system is designed to support a fourth
component: a PACE Machine Learning tool. Figure 1.1 shows the major components of the PACE

system.

• The PACE Compiler is an optimizing compiler that tailors application code for efficient exe-
cution on the target system. It accepts as input parallel programs written in C with OPENMP
calls. It produces, as output, either a C program or native code for the target machine. In ei-
ther case, the resulting program has been tailored to the system’s measured characteristics.

• The PACE Runtime System provides support for program execution. It measures applica-
tion performance and can report those results to both the user and other PACE tools. It can
work in concert with the PACE Compiler to provide runtime tuning of specific optimization
parameters, such as tile sizes for blocking.

• The PACE Resource Characterization Tools measure the performance-sensitive character-
istics of the target system that are of interest to the PACE Compiler and the PACE Runtime
System. The tools measure the resources available to a C program, which may differ from the
documented limits of the underlying hardware.

• A PACEMachine Learning Tool could be included to perform offline analysis of application
performance, using data from the runtime system, and of compiler behavior. The tool could
develop recommendations for specific components of the compiler and the runtime system.
The tool could also play a role in analyzing the impact of sharing on available resources.

4 CHAPTER 1. OVERVIEWOF THE PACE SYSTEM

�

�
	Platform-Aware

Optimizer (PAO)

?

PAO→TAO
Query Interface?

6

?

�

�
	PAO→TAO IR

Translator

?�

�
	Target-Aware

Optimizer (TAO)

@
@

@R?

Optimized
IR

Optimized
C Code

�

�
	PACE Runtime System

�
�
�
�Runtime

parameter
selection

�

�
	Native

Compiler

�

�
	Native

Compiler

�

�
	LLVM

Backend

? ? ?

�

�
	Application

Characterization

�

�

�

�
	Performance

Tools
-

6

C Code with
OPENMP

?

?

�

�
	Machine

Learning

?

-

6

-

Config
File

6

?

��

�
	Resource

Characterization
q

-

-

�

�
	Compiler

Characterization

-

-

�

�
	Compiler

Driver

?

q

q

�

Legend:

Code -
Information -

Color indicates source

Figure 1.2: The PACE System

To configure an installation of the PACE system on a new computer, the system manager installs
the software, produces a configuration file, and invokes the characterization tools. The character-
ization tools produce the data used by the other components in PACE to tailor the system and its
behavior to the target system.

The configuration file contains base information about the target system and its software.

1.2.1 Information Flow in the PACE System

Figure 1.2 expands on Figure 1.1 to show the tools that make up the major PACE components and
to show the interfaces between the various tools. Thick black lines represent the flow of code. Thin
lines represent the flow of information other than code; they are colored to match the tool that
generates the information. (Double-ended lines are colored to match one of the two tools they
join.) The chapters that describe the individual components (see Table 1.1) provide detail on how
each of these interfaces work.

1.2.1.1 The Compiler

To compile an application using the PACE tools, the programmer creates a directory that contains
the source code for the application and any libraries that are to be optimized with it. If future
versions of PACE were to include a machine learning tool, PACE could create, within the application
directory, a directory to hold its work products that support machine learning and optimization
(e.g., annotations, performance results, and records of prior compilations). This directory could
become part of the PACE system’s distributed repository.

To compile code, the programmer invokes the compiler driver in the application directory. The

1.2. STRUCTURE OF THE PACE SYSTEM 5

compiler driver then sequences the individual components of the PACE Compiler to optimize the
application and to produce executable code for it (see § 3.3). Depending on the application and its
optimization plan (see § 1.2.2), the compiler driver may use the Platform-Aware Optimizer (PAO),
the PAO→TAO IR Translator, the Target-Aware Optimizer (TAO), and the native compiler to create
one of three distinct compilation paths.

• The compiler driver may follow the full compilation path, using all of the PACE tools to opti-
mize the application and generate transformed C source code, which it then compiles with
the native C compiler.

• If the native compiler has strong optimization capabilities, the compiler driver may follow
a short compilation path, in which it relies on the native compiler to perform some of the
optimization. This path uses a subset of the PACE Compiler components.

• If the target system is one for which the PACE Compiler provides backend support,3 the com-
piler driver may use PACE Compiler components to optimize the code and to generate native
code for the application.

In each of these scenarios, the compiler driver also invokes the linker to create the actual exe-
cutable code. During compilation, the PAO may invoke the TAO to obtain low-level, detailed infor-
mation about the expected performance of alternate code sequences (see § 8.3.5).

1.2.1.2 The Runtime System

The Runtime System (RTS) provides performance monitoring and runtime parameter tuning. The
PACE Compiler prepares an executable for the RTS by including the runtime hooks necessary to
initialize the RTS, and by constructing a measurement script that sets environment variables and
flags that control and direct the measurement system. The user invokes the executable through a
measurement script.4

When invoked, the RTS would interpose itself between the application and the operating sys-
tem to intercept events such as program launch and termination, thread creation and destruction,
signal handler setup, signal delivery, and loading and unloading of dynamic libraries. It would
monitor the application’s behavior using a variety of mechanisms (see § 9.3.1), and record the re-
sults.

The runtime system also provides an interface for runtime selection of optimization param-
eters. The compiler rewrites the code region into an optimized, parameterized form and builds
the various data structures and support routines that could provide the RTS harness for online
feedback-directed optimization (see § 9.3.4).

1.2.1.3 The Characterization Tools

The PACE resource characterization (RC) tools are a stand-alone package designed to measure the
performance characteristics of a new system that are important to the rest of the PACE system, and
to provide a simple consistent interface to that information for the other PACE tools. The RC tools
are written in a portable style in the C programming language; they rely on entry points from the
standard C libraries and the POSIX operating system interface. The specific characteristics included
in the PACE resource characterization software release are described in § 2.2.3 and Appendix A.

3Since the PACE Target-Aware Optimizer is built on top of the open-source LLVM system, this option exists on systems that
have a native LLVM backend. LLVM already supports several backends.
4It is possible to invoke a PACE-compiled executable without invoking the RTS. The preferred mechanism to achieve that
goal is to invoke it through the measurement script, with the appropriate parameter settings to disable runtime performance
monitoring.

6 CHAPTER 1. OVERVIEWOF THE PACE SYSTEM

Measured versus Absolute Numbers In many cases, the RC tools capture an effective number for
the parameter, rather than the actual number provided by the underlying hardware. The effective
quantity is, in general, defined as the amount of that resource available to a C program. For exam-
ple, an application may not be able to rely on using the full capacity of the processor’s level-two
cache memory; it may, instead see a smaller available capacity. Many factors can cause the appli-
cations to see a smaller effective capacity. The L2 cache may be shared among multiple cores on
the same processor; in that case, competition from activity on other cores may reduce the capacity
available to the application. Some factors apply even in a unicore L2 cache. The L2 cache may con-
tain the images of both the L1 data cache and the L1 code cache, reducing its effective size for data.
The L2 cache may be mapped using physical addresses, which introduces a degree of randomness
into the mapping and complicates any attempt to use the full cache capacity. The L2 cache may
contain portions of the operating system’s page table, locked into place for use by hardware lookup
methods; again, this reduces the capacity available for application data. In the best of scenarios,
the application probably sees smaller effective cache sizes than the hardware documents would
suggest, at least at cache level two and higher.5

In some cases, a hardware characteristic may not be discernible from a C program. In those
cases, the PACE Compiler cannot rely upon that characteristic in optimization, since the C code
cannot control the behavior. Associativity in the memory hierarchy is a good example of this prob-
lem. If the L2 cache on a processor is physically mapped, the mapping between a source-level data
structure, such as a large array, and its cache locations depends on the mapping of virtual mem-
ory pages to physical page frames, and the tools cannot measure the cache associativity with any
certainty.

Methodology In general, the PACE RC tools provide one or more microbenchmarks to measure
a given characteristic. A microbenchmark is a small code kernel designed to provoke a specific
response, coupled with code to analyze the kernel’s behavior. Typically, that response is a change
in the time that the kernel requires to perform a fixed number of operations. Automatic analysis
of the kernel’s behavior can be complex; effects that a human can read easily from a graph can be
difficult to isolate numerically.

The RC tools produce information that can be accessed through two distinct interfaces: one
designed for the grading tools built by the AACE Task 2 teams and the other designed for internal
use in the PACE system. The grading interface is a flat ASCII file in an XML schema designed by
the Task 2 teams. The internal interface is a procedural interface that PACE tools can call to obtain
individual values. The PACE RC tools also produce a human-readable report based on the XML

schema.

1.2.1.4 Machine Learning Tool

The PACEdesign included a PACE Machine Learning (ML) tool that could augment specific decision
making processes within the PACE system, through analysis of past experience and behavior. The
goal would be to improve the behavior of the other PACE tools over time. A modern compilation
environment, such as PACE, can produce reams of data about the application itself, the process
used to compile it, and its behavior at runtime. Unfortunately, the application’s runtime perfor-
mance can depend in subtle ways on an unknown subset of that information, and neither humans
nor algorithmic programs are particularly good at discerning those relationships.

In the PACE design, the ML tool would be tied closely to specific components in the PACE system,

5An interesting example occurs on the IBM Power 7 architecture. It supports a shared 32 MB level three cache. However,
the cache is organized so that each of the eight cores has faster access to a 4 MB portion of the L3 cache and slower access to
the remaining 28 MB. Our RC tools analyze this cache structure and classify it as a small (3 to 4 MB) L3 cache and a larger (20
to 25 MB) L4 cache. They detect the NUMA nature of the cache and describe it as two caches. From the code optimization
perspective, the RC tools’ description may be more useful than characterizing it as a single larger cache.

1.3. ADAPTATION IN THE PACE COMPILER 7

where they could provide additional input, in the form of directives, refined input parameters, or
changes to optimization plans (see Figure 10.1 on page 86). The ML tool would draw its inputs from
the other PACE tools, as shown in Figure 1.2. The ML tool would have its own private repository
where it could store context, data, and results.

To facilitate offline learning, the PACE system could invoke the offline portions of the ML tools
on a regular basis. Problems that are solved online could invoke the appropriate ML tools directly.

1.2.2 Storing Knowledge in a Distributed Fashion

The PACE system was designed to store its knowledge about an application with the application’s
source code. This strategy would allow information and annotations generated by the PACE tools to
be stored in multiple locations. These locations would form a distributed, rather than a centralized,
repository.

Consider, for example, the collection of information that governs how the PACE Compiler opti-
mizes and translates an application. In a traditional compiler, that control information is encoded
in a series of command-line flags to the compiler. While such flags are useful, their very form limits
their ability to express complex control information. In the PACE system, each application would
have an associated optimization plan that specifies how the compiler should optimize the code.
The optimization plan would be a persistent document that specifies both the compilation path
and the optimizations that the compiler should use. It might also include parameters to individual
optimizations, suggested application orders for those optimizations, or commands to control the
individual components.

Since each of the compiler components would consult the optimization plan, the various com-
ponents could modify each other’s behavior by making changes to the optimization plan. This
simple mechanism would facilitate feedback-driven adaptive compilation, by allowing an adap-
tive controller to explore and evaluate the space of possible optimization strategies over multiple
compile-execute cycles. It would also allow one phase of compilation to change the behavior of
another. The next section describes the design for adaptation. Section 3.2.4 discusses the role of
the optimization plan in more detail.

To ensure that all the PACE tools have easy access to the information that they need, the PACE

Compiler could inject critical information into each executable that it produces. For example, it
could record both the location of the application directory and its optimization plan in an initial-
ized static data item in each executable. At runtime, the RTS could retrieve that information and
record it directly with the performance data, to link the necessary information in a simple and ex-
plicit way. This scheme eliminates the need for the executable and the RTS to access a centralized
knowledge base;6 instead, the information that they need is encapsulated in the executable.

1.3 Adaptation in the PACE Compiler

Adaptation is a key strategy embodied in the PACE compiler. Adaptation in the PACE Compiler falls
into two categories: short-term adaptation that tailors the behavior of one executable and long-
term learning that changes the behavior of the compiler. Four different mechanisms can be used
to achieve adaptation: (1) characterization-driven adaptation, (2) offline feedback-driven adapta-
tion, (3) online feedback-driven optimization, and (4) long-term machine learning. The mecha-
nisms are summarized in Table 1.2 and described in the following sections.

In combination, these four mechanisms can provide the compiler with the ability to adapt its
behavior to the target system, the application, and the runtime situation. These mechanisms would

6A centralized knowledge base can create the situation where the user either cannot run an executable unless it has network
access to the knowledge base or the user loses all feedback information from such runs. Neither is a good scenario.

8 CHAPTER 1. OVERVIEWOF THE PACE SYSTEM

Characteristic Offline Online Machine

Driven Feedback-Driven Feedback-Driven Learning

Kind of Long-term
learning

Short-term
adaptation

Short-term
adaptation

Long-term
learningAdaptation

Time
Frame

Install time Across compiles Runtime Across compiles

Affects All applications One application One application All applications

Adapts to System
System
Application

System System
Application Application
Data PACE

Initiated by RC tools various PAO ML tools
Changes
Behavior of

PAO, TAO PAO, TAO RTS PAO, TAO

Persistence Until next run Short-term Records results Long-term
of RC tools for ML and PAO

Table 1.2: Kinds of Adaptation in the PACE Compiler

allow the PACE system to be flexible in its pursuit of runtime performance. We anticipate that in-
teractions between these mechanisms would produce complex optimization behavior.

1.3.1 Characteristic Driven Optimization

The concept of characterization-driven optimization forms the core of the PACE system. In the
PACE Compiler, for example, the non-polyhedral loop optimizations can use the measured param-
eters of the memory hierarchy to choose tile sizes, while the tool that regenerates C source code can
tailor the number of concurrently live values to the number of such values that the target system’s
compiler can maintain in registers. 7

Characterization-driven adaptation is a simple form of long-term learning. It relies on algo-
rithmic adaptation to pre-determined parameters. The compiler writers identify parameters that
the RC tools should measure. They implement the transformations that use the results from the RC

tools. This process automatically adapts the transformation to the target system; it does not take
into account any properties of the application or its data set.

Characterization-driven optimization makes its adaptation at installation time, when the RC

tools run. The adaptation can be repeated by running the RC tools to generate a new target-system
characterization. The results of this adaptation are persistent; they last until the RC tools are re-run.

1.3.2 Offline Feedback-Driven Optimization

The second strategy for adaptation in the PACE compiler is the use of offline feedback-driven opti-
mization. This strategy produces a short-term adaptation. The actual mechanism for implement-
ing feedback-directed optimization in PACE is simple. The PAO and TAO each consult the applica-
tion’s optimization plan before they transform the code (see § 3.2.4). Changes to the optimization
plan cause changes in the behavior of these components. This design simplifies the implementa-
tion and operation of an adaptive compiler. It does not, however, provide a clear picture of how
PACE will perform offline, feedback-driven adaptation.

In principle, any component in the PACE system can change the optimization plan for the cur-

7The polyhedral optimizations generate code that is parameterized by tile sizes; the mechanism that selects values for those
parameters can use the results generated by the RC tools.

1.3. ADAPTATION IN THE PACE COMPILER 9

rent compilation of an application. In practice, one can explore three strategies for controlling
offline feedback-driven adaptation.

• The compiler driver may use an external adaptive controller to change the optimization plan
across multiple compile-execute cycles. We anticipate that this mechanism would modify
gross properties of optimization, such as the specific transformations applied and their rela-
tive order or the compilation path (full, short, or LLVM backend).

• Any phase of the compiler may contain an optimization pass that performs self-adaptation.
For example, the non-polyhedral loop optimization in the PAO might consider several trans-
formation strategies; to choose among them, it can generate each alternative version of the
loop nest and invoke the PAO–TAO query mechanism to have the TAO estimate some aspects
of performance. In a similar way, the TAO might consider multiple strategies for algebraic
reassociation and choose between them based on an estimate of execution efficiency from
the instruction scheduler.

• One phase of the compiler may change the optimization plan for another phase, based on
the code that it generates. We envision this facility as serving two different needs. It allows
one phase to disable transformations that might reduce the impact of a transformation that
it has applied. For example, the PAO might disable loop unrolling in the TAO to prevent the
TAO from de-optimizing a carefully tiled loop nest. This adaptation occurs within a single
compilation.

Alternatively, one phase might provide feedback to another phase in the next compilation.
For example, if the TAO discovers that the code needs many more registers than the target
system (hardware + compiler) can supply, it might tell the PAO to reduce its unroll factors.

While these offline feedback-driven adaptations can produce complex behavior and subtle adap-
tations, their primary impact is short term; they affect the current compilation (or, perhaps, the
next one). They do not build predictive models for later use, so they are not learning techniques.8

1.3.3 Online Feedback-Driven Optimization

A third potential strategy for adaptation in the PACE system is the use of online feedback-driven
optimization. Because the performance of optimized code can depend on the runtime state of the
system on which it executes, even well-planned and executed transformations may not produce
the desired performance. Issues such as resource sharing with other cores and other processors
and interference from the runtime behavior of other applications can degrade actual performance.

To cope with such dynamic effects, PACE could include a mechanism that lets the compiler set
up a region of code for runtime tuning. The PAO establishes runtime parameters to control the
aspects of the code that it wants the runtime to adjust. It generates a version of the code for that re-
gion that uses these control parameters to govern the code’s behavior. Finally, it creates a package
of information that the RTS could use to perform the runtime tuning (see § 9.3.4). The RTS could
use that information to find, at runtime, settings for the control parameters that produce good per-
formance. The result would be an execution that tunes itself to the actual runtime conditions.

As an example, consider blocking loops to improve locality in the memory hierarchy. The com-
piler could assume that it completely understood memory behavior and use fixed tile sizes. Alter-
natively, it could recognize that interference from other threads and other applications can impact
optimal tile size, and thus it could generate code that read tile dimensions from a designated place

8In the ACME system, we coupled this kind of adaptation with a persistent memoization capability and randomized restart.
The result was a longer-term search incrementalized across multiple compilation steps [29].

10 CHAPTER 1. OVERVIEWOF THE PACE SYSTEM

in memory. In this latter scheme, the runtime system could use performance counter information,
such as the L2 cache miss rate, to judge performance and vary the tile size accordingly.

The PACE RTS both defines and implements an API for online, feedback-driven optimization
(see § 9.3.4). The API lets the compiler register tunable parameters and suggested initial values,
and provides a runtime search routine (an adaptive controller) that the RTS could use to vary those
parameters. The RTS could collect the data needed by the runtime search routine and ensure that
it is invoked periodically to reconsider the parameter values.

Online feedback-directed optimization could produce a short-term adaptation of the applica-
tion’s behavior to the runtime situation—the dynamic state of the system and the input data set.
The technique, by itself, does not lead to any long-term change in the behavior of either the PACE

system or the application. However, the RTS could record the final parameter values along with its
record of the the application’s performance history. Other components in PACE could use these
final parameter values as inputs to long-term learning.

1.3.4 Machine Learning

A potential fourth strategy for adaptation in the PACE system is to apply machine learning tech-
niques to discover relationships among target system characteristics, application characteristics,
compiler optimization plans, and variations in the runtime environment. Machine learning is, by
definition, a long-term strategy for adaptation. A PACE ML tool could derive models that predict
appropriate optimization decisions and parameters. We have identified several specific problems
to attack with ML techniques (see § 10.2.2).

A central activity in the design of a machine-learning framework for each of these problems is
the design of a feature vector for the problem—the set of facts that are input to the learned model.
The PACE system provides an information-rich environment in which to perform learning; an ML

tool has the opportunity to draw features from any other part of the environment—the RC tools,
the compiler tools, and the RTS tools. The determination of what features are necessary to build
good predictive models for various compiler optimizations is an open question and a significant
research issue.

The application of machine learning has the potential to create a process that will automatically
improve the PACE system’s behavior over time. Offline learning tools could examine records of
source code properties, optimization plans, and runtime performance to derive data on optimiza-
tion effectiveness, and to correlate source-code properties with effective strategies. This knowledge
will inform later compilations and executions.

The PACE compiler could use ML-derived models directly in its decision processes. As ML mod-
els mature, the compiler could replace some static decision processes and some short-term adap-
tive strategies with a simpler implementation that relies on predictions from ML-derived models.

1.4 Status

Components of the following tools are available in source or binary form:

• RC tool: A source release of the PACE RC tool is available on the PACE web site. The release
includes code to produce the characteristics described in Table 2.2.

• PAO: A subset of the PAO design described in this document has been implemented thus far.
It includes a complete polyhedral loop transformation framework, as well as non-polyhedral
AST-based transformations for loop tiling and loop unrolling. The AST-based transforma-
tions include the use of cost information from TAO to guide the selection of loop unroll fac-
tors, as well as an interface to use array dependence analysis information from the polyhedral
framework to aid in legality testing of transformations.

1.4. STATUS 11

• Rose-to-LLVM translator: The translator has been fully implemented, as described in § 7.

• TAO: A subset of the TAO design described in this document has been implemented. LLVM

passes for performing operator strength reduction, linear function test replacement, and
register allocation (including rematerialization and biasing) are complete (§ 8.3.2). Source
code for these passes is available under the LLVM license on the PACE web site. LLVM passes
for generating short SIMD vector code (§ 8.3.3) and computing cost information for the PAO

(§ 8.3.5) are complete. All of the completed optimization passes will be available in the final
binary release of the of the PACE compiler, built from the source code in the Rice repository.

• RTS: The RTS and the compiler have not yet been integrated. The measurement infrastruc-
ture for PACE has been implemented in the context of the HPCToolkit performance tools [66].
HPCToolkit is capable of measuring and attributing costs for dynamic calling contexts, pro-
cedures, and loops. To date, we have not computed rate limiting factors for individual pro-
gram contexts, though the PerfExpert team at the University of Texas at Austin has built
such a capability on top of HPCToolkit; they introduce the concept of Local CPI for that pur-
pose [20]. Work on automated runtime selection of parameters has been deferred.

The RC tool, polyhedral analysis in Rose, the Rose-to-LLVM translator, several TAO LLVM passes,
and the RTS performance tools are also available in source from either Rose or other channels.

Other tools and underlying structures described in this document are still in the preliminary
exploration and design stage, and have not been implemented. In particular, the ML tool and the
structure to support adaptation over multiple compile cycles, such as the distributed repository
and high-level optimization plan, are not implemented. In that the distributed repository has not
been implemented, it has not been necessary to implement the application directory. Currently
the compiler driver takes a list of files to compile, as gcc would do.

12 CHAPTER 1. OVERVIEWOF THE PACE SYSTEM

Chapter 2

Resource Characterization in the

PACE System

Resource characterization plays a critical role in the PACE project’s strategy for building
an optimizing compiler that adapts itself and tunes itself to new systems. The PACE

compiler and the PACE runtime system need access to measurements of a variety of
performance-related characteristics of the target computing system. The goal of the
PACE Resource Characterization subproject is to produce those measured values.

2.1 Introduction

The ability to derive system performance characteristics using portable tools lies at the heart of the
AACE program’s vision and the PACE project’s strategy for implementing that vision. The Resource
Characterization (RC) subproject of PACE is building tools, written in a portable style in the C lan-
guage, to measure the specific performance characteristics that are of interest to the PACE compiler
(both the PAO and the TAO) and the PACE runtime system (RTS).

2.1.1 Motivation

The PACE compiler and RTS rely on the values of a number of performance-related system param-
eters, or characteristics, to guide the optimization of an application program. The RC subproject is
developing tools that produce those specific values in reliable, portable ways.

The design of the PACE compiler and RTS both limits and focuses the RC subproject. The PACE

compiler is designed to be capable of generating native code for a limited set of target processors. It
is also designed to be capable of generating a transformed program as a C program, a strategy that
ensures portability across a broader set of architectures. This strategy also prevents the PACE com-
piler from applying some optimizations, such as instruction scheduling, to transformed programs
that will be generated as C programs.

The RC subproject is focused on characteristics that the PACE compiler and the other PACE tools
can effectively use in this scenario. (Table 2.2 provides a full list of characteristics that were mea-
sured in Phase 1 of the AACE program and that were included in the PACE RC software release.)
As an example, consider the information needs of the PAO’s non-polyhedral loop transformations.
The transformations need to know the geometry of the cache hierarchy—that is, for each level of
the hierarchy, the size, the associativity, and the granularity (line size or page size) of that level. The
RC tools derive those numbers.

Why not obtain the numbers from reading the manufacturer’s documentation? The AACE pro-
gram depends on a strategy of deriving these characteristics rather than supplying them in a con-

Principal Contacts For This Chapter: Keith Cooper, keith@rice.edu

13

14 CHAPTER 2. RESOURCE CHARACTERIZATION IN THE PACE SYSTEM

figuration file. This strategy is critical for several reasons.

1. The compiler needs to understand the characteristics as they can be seen from a C source
program. For example, the documentation on a multicore processor may list the level two
data cache size as 512 kilobytes.1 The amount of level two cache available to the program,
however, will depend on a number of factors, such as the size of the page tables and whether
or not they are locked into the level two cache, the number of processors sharing that level
two cache, and the sharing relationship between the instruction and data cache hierarchies.
In short, the number in the documentation would mislead the compiler into blocking for a
larger cache than it can see.

2. The documentation, even from the largest manufacturers, is often incomplete or inaccurate.
Documentation on the memory hierarchy focuses on the capacity of the largest level; it rarely
describes the delay of a level one cache or TLB miss. Equally problematic, the documents pro-
vide inconsistent information; for example, one processor manual studied provides multiple
conflicting latencies for the integer divide operation, none of which match the numbers that
the carefully constructed PACE microbenchmark measures.

3. The characteristics themselves can be composite effects that result from the interaction of
multiple factors. For example, the PAO might want to understand the rough cost of a func-
tion call for use in the decision algorithms that guide both inlining and outlining. The cost
of a function call depends, however, on specific details of the target system’s calling con-
vention, the manner in which the native compiler generates code for the call, the number of
parameters and their source-language types, and the presence or absence of optimizations
for recursive calls and leaf-procedure calls in the native compiler. The amalgamation of all
these factors makes it difficult, if not impossible, to derive reasonably accurate numbers from
reading the manufacturer’s manuals.

In addition, the PACE system is intended to adapt itself to both current and future architectures.
From this perspective, the design of the RC system should minimize its reliance on idiosyncratic
knowledge of current systems and current interfaces. The AACE program assumes that future sys-
tems will support the POSIX standard interfaces. Thus, the RC tools rely on POSIX for interfaces,
such as a runtime clock for timing, and for information about operating system parameters, such
as the page size in the virtual memory system.2 They cannot, however, assume the presence of
other runtime interfaces to provide the effective numbers for system characteristics that the PACE

compiler and RTS need. Thus, the PACE project derives numbers for most of the characteristics
currently used by the PACE compiler and RTS.

2.1.2 Approach

To measure the system characteristics needed by the PACE compiler and RTS, the RC project uses
a series of microbenchmarks—small programs designed to expose specific characteristics. Each
microbenchmark focuses on eliciting a specific characteristic from the system—from the cost of an
integer addition through memory hierarchy characteristics. This approach produces a library of
microbenchmark codes, along with a harness that installs and runs those codes.

The individual microbenchmarks produced by the PACE project include both a code designed
to elicit the effect and a code that analyzes the results and reduces them to one or more charac-
teristic values. Developing the PACE microbenchmarks was challenging. Designing a code to elicit

1Many manufacturers provide an interface that exposes model-dependent system parameters, such as the size and struc-
ture of the levels in the memory hierarchy. For example, Intel processors support its cpuinfo protocol. Unfortunately, such
facilities vary widely in their syntax and the set of characteristics that they support. PACE cannot rely on their presence.
2Page size and line size are measurements where the effective size and the actual size are, in our experience, identical.

2.2. FUNCTIONALITY 15

�
�

�
�

PACE Resource
Characterization Tools

�
�
�
�
�
�>

-

Z
Z
Z
Z
Z
Z~

Config
File

?

�

�
	PACE Runtime

System

�
�

�
PACE Compiler

�

�
	PACE Machine

Learning Tools

Figure 2.1: Interfaces to the PACE Resource Characterization Tools

the desired effect (and only that effect) required, in every case, multiple iterations of the design-
implement-test cycle. In many cases, it required the invention of new measurement techniques.
The analysis of results can be equally challenging. The experimental results that expose a given
effect contain noise. They often expose interference from other effects. The data analysis problems
are, in some cases, harder than the problem of exposing the effect.

The result of this effort is a library of microbenchmarks that both elicit system behavior and an-
alyze it. Those codes, written in a portable style of C, rely on the POSIX interface to system resources
and on a handful of common POSIX tools, such as the make utility. They provide the compiler with
a sharp picture of the resources available on a new system.

2.2 Functionality

2.2.1 Interfaces

The primary task of the RC tools is to produce data used by the other major components of the PACE

system: the PACE compiler, the PACE RTS, and the PACE Machine Learning tools (ML). As shown
in Figure 2.1, the RC tools take as their primary input a system configuration file. The tools use
the native C compiler, system calls supported in the POSIX standard, and some additional software
tools, as specified in Table 2.1.

Item Description

C compiler Native compiler, as specified in the configuration file; must be able
to produce an assembly-code listing

OPENMP library Standard-conforming OPENMP library, with location and linker flags
specified in configuration file

Utilities Standard Linux commands, including autoconf, automake, awk,
grep, make, sed, wc, and the bash shell

Table 2.1: Software Requirements for the PACE RC Tools

2.2.2 Inputs

The primary input to the RC tools is the configuration file for the target system. This file has a simple
format of space-separated name/value pairs: one per line. The pairs are read in and then exported

16 CHAPTER 2. RESOURCE CHARACTERIZATION IN THE PACE SYSTEM

Category Name Units Page Notes

Cache

Capacity / Size Bytes 102 Effective size

Line Size Bytes 103

Associativity Integer 104 Only reported for L1 cache

Value of zero implies full associa-
tivity

Latency Cycles 105 Assumes int32 add takes one cycle

TLB
Capacity / Size Bytes 106 Total footprint of TLB

Page Size Bytes From Posix sysconf()

Operations

Ops in Flight Integer 107 +, -, *, /, for int32, int64, float, dou-
ble
Maximum number of operations
in progress by type

Op Latencies Cycles 108 +, -, *, /, for int32, int64, float, dou-
ble
Assume int32 add takes one cycle

System
Compute Bound Threads Integer 109 Test must run standalone

Memory Bound Threads Integer 110 Test must run standalone

Compiler
Live Ranges Integer 111 int32, int64, float, double

Number of simultaneous live
ranges that native compiler can
maintain without spilling

Table 2.2: PACE Characteristics Included in the PACE Resource Characterization Software Release

as environment variables, so that the individual tools have access to them without the need for
each one to know where the file is stored. The RC tools need this information to include at least:

1. The location, name, and invocation sequence for the native compiler and linker. The RC

tools need syntax to invoke the native compiler, link against standard libraries, create an
executable image, run that image, and connect disk files to input and output streams. (Under
POSIX systems with the bash shell and the standard C libraries, much of this knowledge is
standard across systems.)

2. A specific command set to compile and link for vectorization, if it is supported by the native
compiler. This command set must be distinct from the default command set.

3. A set of optimization flags to use with the native compiler during resource characterization.
These flags are provided by the system installer in the configuration file. These flags must
include the options necessary to produce the appropriate behavior from each microbench-
mark. In gcc terms, the flag -O2 appears to be sufficient.

2.2. FUNCTIONALITY 17

Value Tool Use

DCache Capacity
PAO Tiling memory hierarchy 1DCache Line Size

DCache Associativity

TLB Capacity
PAO Tiling memory hierarchy 1

TLB Page Size

Operations in Flight TAO Compute critical path length for PAO queries
PAO, TAO Estimate & adjust ILP

TAO Instruction scheduling 2

Operation Latency TAO Algebraic reassociation of expressions
TAO Operator strength reduction
TAO Compute critical path lengths for PAO queries
RC Compute throughput

Compute-bound Threads
PAO Adjusting parallelism

Memory-bound Threads

Live Values TAO Answering PAO queries

1 Both polyhedral transformations (see § 5) and AST-based transformations (see § 6)
2 We may modify the scheduler in the native TAO backend, to use derived latencies as a way to improve portability. The
TAO’s query backend (see § 8.3.5) may also perform instruction scheduling to estimate execution costs.

Table 2.3: Optimizations That Can UseMeasured Characteristics

4. Basic information on the target system including microprocessors and their components;
number of cores; clock rate(s) of the processors; memory architecture on a processor; mem-
ory architecture on a node or system; number of chips (memory and processors) per node;
interconnection of nodes; and composition of the processing system.

2.2.3 Output

The PACE RC tools produce, as output, a set of measured characteristic values. Those values are
available in two forms: a human-readable report of the values measured, and an internal format
used by the interface that the RC tools provide for the PACE compiler, RTS, and ML tools. § 2.2.1
provides more detail on these interfaces.

Table 2.2 shows the characteristic values measured by the PACE RC tools included in the PACE
RC tools software release3. These characteristics range from broad measurements of target sys-
tem performance, such as the number of compute-bound threads that the processor can sustain,
through microarchitectural detail, such as the latency of an integer divide operation. Each charac-
teristic can be used elsewhere in the PACE system. Table 2.3 gives a partial list of those potential
uses.

Note that the PACE RC tools do not report units of time. Varying timer precision on different
systems and the possibility of varying runtime clock speeds make it difficult for the tools to report
time accurately. So, latencies are reported in terms of the ratio between the operation’s latency and
that of integer addition.

3This set of RC tools was also submitted for the end-of-phase trials in Phase 1 of the PACE project.

18 CHAPTER 2. RESOURCE CHARACTERIZATION IN THE PACE SYSTEM

��- r10 op r11 −→ r12
r11 op r12 −→ r13 �����- r12 op r13 −→ r14
r13 op r14 −→ r15 ���output r15

(a) Stream 1

��- r20 op r21 −→ r22
r21 op r22 −→ r23 �����- r22 op r23 −→ r24
r23 op r24 −→ r25 ���output r25

(b) Stream 2

�
�-

r10 op r11 −→ r12�
�-

r20 op r21 −→ r22
r11 op r12 −→ r13 �

��r21 op r22 −→ r23 �
���

�-
r12 op r13 −→ r14�
�-

r22 op r23 −→ r24
r13 op r14 −→ r15 �

��r23 op r24 −→ r25 �
��output r15

output r25

(c) The Two Streams Interlaced

Figure 2.2: Example of Combining Streams to Expose Parallelism

2.3 Method

Conceptually, each microbenchmark consists of two distinct pieces: a code designed to expose the
characteristic and a code that analyzes the resulting data to derive a value for the characteristic.
The complexity of these codes varies from characteristic to characteristic, but they largely rely on
some variation of a stream code construct. A stream is a sequence of code that is designed to run
exactly as specified; that is, code that cannot be altered (rearranged, simplified, etc.) by an optimiz-
ing compiler. Each specific characterization pass will have its own flavor of one or more streams,
but the methodology is similar across all PACE applications:

1. Construct a stream and measure its behavior.

2. Modify the stream in a controlled fashion and measure the new stream’s behavior.

3. Repeat Step 2 until a significant change in behavior is detected.

Consider two examples that show the use of streams and their variations. The first example is
a micobenchmark that measures instruction parallelism, in essence determining the number of
functional units of a particular type that the architecture has. This microbenchmark starts with
a single stream of instructions as shown in Figure 2.2(a). The arrows in the figure represent data
dependences that inhibit reordering by a compiler. The microbenchmark measures the time re-
quired to run the single stream and uses this measurement as the base case against which all
other tests will be compared. Next, the microbenchmark adds a second, independent stream (Fig-
ure 2.2(b)), which is interlaced with the first stream as shown in Figure 2.2(c). This step results in a
piece of code in which any pair of successive instructions has no data dependence, which should
allow the compiler to schedule the instructions simultaneously if sufficient resources exist and the

2.3. METHOD 19

compiler is sophisticated enough to allow it. The microbenchmark measures the runtime of the
two-stream version and, if it is close to the runtime of the single-stream version, concludes that
the architecture can run at least two streams in parallel. The microbenchmark continues adding
streams in this manner while the runtime of successive tests is close to the base case measurement,
constructing and measuring the runtime of a series of three independent instructions, then four,
and so on. When the code produced by the microbenchmark saturates the architecture, larger
streams will produce greater runtimes than the base case, and the microbenchmark halts and re-
ports the observed limit.

The second example is a microbenchmark that uses a single stream to determine the number of
available registers on an architecture. The goal is to control register pressure, the number of values
that are active at any point in the program. As shown in Figure 2.3, the base-case stream is the
same as shown in Figure 2.2(a). Also notice that, at each point in the program, there are only two
values active. At each step, the microbenchmark increases the register pressure by pushing the use
of each defined value further down the stream, which means that more values are active at each
instruction. While there are sufficient registers to hold all the active values, the code generated by
the compiler will not change much from test to test. When there are not enough available registers
to hold all of the active values, the compiler will have to insert spill code, which can be detected by
timing the execution of each stream. However, there is a simpler solution: While the compiler has
sufficient registers to allocate, each compiled stream will have the same number of assembly-code
instructions. When the compiler runs out of registers, the length of the code will increase due to
the additional number of spill instructions added. Thus, the microbenchmark can measure the
length of the assembly code for each stream to determine when the number of available registers
on a particular architecture has been exceeded and use this information to determine the number
of available registers on that architecture.

These two examples use streams differently, but the key characteristics of the stream approach
include:

• The linear sequence of instructions must execute in a controlled fashion.

• As the stream changes from test to test, any significant change in behavior should be at-
tributable to only one cause.

• The stream needs to be long enough to:

� Give stable measurements. For example, when measuring runtimes, each execution
should produce a runtime well above the granularity of the architecture’s timer.

� Cause a significant, obvious, detectable change in the measurements at the point of
interest.

Technical details related to individual microbenchmarks listed in Table 2.2 can be found in
Appendix A on the page indicated in the fourth column of Table 2.2.

2.3.1 Reporting Characteristic Values

The AACE Program testing teams defined an XML schema for reporting results to their testing pro-
grams. The PACE RC tools use the resultant hierarchical naming scheme for the values reported
by the microbenchmarks. The microbenchmarks record their values in a flat text file. Values are
recorded, one per line, as a pair:

name, value

20 CHAPTER 2. RESOURCE CHARACTERIZATION IN THE PACE SYSTEM

Code Live Values
...

...
add r101 r102 => r103 r102, r101
add r102 r103 => r104 r103, r102
add r103 r104 => r105 r104, r103
add r104 r105 => r106 r105, r104

...
...

Base-Case Streamwith Register Pressure of Two

Code Live Values
...

...
add r100 r102 => r103 r102, r101, r100
add r101 r103 => r104 r103, r102, r101
add r102 r104 => r105 r104, r103, r102
add r103 r105 => r106 r105, r104, r103

...
...

Streamwith Register Pressure of Three

Code Live Values
...

...
add r102−N r102 => r103 r102, r101, · · · , r102−N

add r103−N r103 => r104 r103, r102, · · · , r103−N

add r104−N r104 => r105 r104, r103, · · · , r104−N

add r105−N r105 => r106 r105, r104, · · · , r105−N

...
...

Streamwith Register Pressure of N

Figure 2.3: Using Names to Control Register Pressure in a Stream

2.3. METHOD 21

where name is a fully qualified name for the characteristic and value is the measured value. When
all of the microbenchmark tools have been run, information from the resulting text file is used
to produce a C interface in the form of an include file that describes the access functions into a
database of these value pairs, and a linkable object file that holds the database itself. Informa-
tion from the text file is also used to produce a human-readable report that can be found in the
microbenchmarks directory.

2.3.1.1 Interface to Other PACE Tools

The database interface will consist of the following procedures:

Management Functions

int rc init() Initializes the RC interface. Returns 1 if successful or a negative
number as an error code.

void rc final() Closes the RC interface and deallocates its data structures. Sub-
sequent queries will fail.

Queries

void *rc query(char *s) s is a string that identifies the characteristic value. The call re-
turns a structure that contains the measured value or an error
code if there is some problem (i.e., the value is unreliable, the
query string does not match any entries in the database, etc.).

22 CHAPTER 2. RESOURCE CHARACTERIZATION IN THE PACE SYSTEM

Chapter 3

An Overview of the PACE Compiler

The PACE compiler lies at the heart of the project’s strategy to provide high-quality,
characterization-driven optimization. The compiler uses a series of analyses and trans-
formations to rewrite the input application in a way that provides better performance
on the target system. The compiler supports feedback-driven optimization. It works
with the RTS to implement runtime variation of optimization parameters. It has a mech-
anism to incorporate new optimization strategies derived by the ML tools.

3.1 Introduction

The PACE Compiler is a source-to-source optimizing compiler that tailors application code for ef-
ficient execution on a specific target system. It accepts as input parallel programs written in C with
OPENMP calls. It produces, as output, a C program that has been tailored for efficient execution on
the target system.

As shown in Figure 1.2, the PACE Compiler is as a series of tools that work together to create
the optimized version of the application. Each of these tools is a complex system; each is discussed
in its own chapter of the design document (see Table 1.1). This chapter serves as an introduction
to the separate tools in the PACE Compiler and their interactions; § 3.3 discusses each of the com-
ponents. Subsequent chapters provide more detail. This chapter also addresses the high-level,
cross-cutting design issues that arise in the PACE Compiler.

3.2 Functionality

While the PACE Compiler is a collection of tools, it presents the end user with functionality that
is similar to the functionality of a traditional compiler. The user invokes the PACE Compiler on
an input application and the compiler produces executable code. To perform its translation and
optimization, the PACE Compiler draws on resources provided by the rest of the PACE system, as
shown in Figure 3.1. Because most of these interfaces are internal and most of the components are
automatically controlled, the internal complexity of the PACE Compiler is largely hidden from the
end user.

3.2.1 Input and Output

The PACE Compiler accepts, as input, an application written in C with calls to OPENMP libraries.
The compiler assumes that the input program is a parallel program; while the compiler will dis-
cover some opportunities to exploit parallelism, detection of all available parallelism is not the
focus of the PACE project.

Principal Contacts For This Chapter: Keith Cooper, keith@rice.edu, Vivek Sarkar, vsarkar@rice.edu, and Linda
Torczon, linda@rice.edu

23

24 CHAPTER 3. AN OVERVIEWOF THE PACE COMPILER

�
�

�
�PACE Compiler

?

Source
Code

?

Executable
Code

PACE Runtime
System
�������)

PACE Machine
Learning Tools

PPPPPPPq

PACE Characterization
Tools

-

Optimization
Plan
XXXXXXXXXXXXz

Config
File

�

Figure 3.1: Interfaces to the PACE Compiler

The PACE Compiler produces, as output, an executable version of the input application, trans-
formed to improve its performance on the target computer system. The compiler has several ways
to generate executable code for the application. It can generate transformed C code and use the
vendor-supplied native compiler to perform code generation. For some systems, it can use the
LLVM backend to generate code (see § 3.4). The choice of code generators will depend on the qual-
ity of the native compiler and the availability of an LLVM backend for the system.

3.2.2 Interfaces

Figure 3.1 shows the primary interfaces between the PACE Compiler and the rest of the PACE sys-
tem. The PACE Compiler uses information from several sources.

• Characterization: The PACE RC tools measure performance characteristics of the combined
hardware/software stack of the target system. The PACE Compiler uses those characteristic
values, both to drive optimizing transformations and to estimate the performance of alterna-
tive optimization strategies on the target system.

• Machine Learning: A PACE ML tool could provide suggestions to the compiler to guide the
optimization process. Such a tool could communicate those suggestions by modifying the
optimization plan for a given application or, perhaps, one of the default optimization plans.

• Runtime System: The PACE RTS could provide the compiler with measured performance
data from application executions. This data would include detailed profile information. The
Runtime System could pinpoint resource constraints that create performance bottlenecks.

• Optimization Plan: The PACE Compiler will coordinate its internal components, in part, by
using an explicit optimization plan. The optimization plan is discussed in § 3.2.4.

• Configuration File: The configuration file is provided as part of system installation. It con-
tains critical facts about the target system and its software configuration (see § 3.3.1).

The compiler could embed, in the executable code, information of use to the Runtime System,
such as a concise representation of the optimization plan and data structures and calls to support
runtime tuning of optimization parameters (see § 4.3.8 and 9.3.4). By embedding this information
directly in the executable code, PACE could provide a simple solution to the storage of informa-
tion needed for feedback-driven optimization and for the application of machine learning to the
selection of optimization plans. This would avoid the need for a centralized store, like the central

3.2. FUNCTIONALITY 25

�

�
	Platform-Aware

Optimizer (PAO)

?

PAO→TAO
Query Interface?

6

?

�

�
	PAO→TAO IR

Translator

?�

�
	Target-Aware

Optimizer (TAO)

@
@

@R?

Optimized
IR

Optimized
C Code�

�
	Native

Compiler

�

�
	Native

Compiler

�

�
	LLVM

Backend

Source
Code

?�

�
	Compiler

Driver
-

� -

� -

Legend:

Code -
Information -

Figure 3.2: Structure of the PACE Compiler

repository in theRn system of the mid-1980s. It would avoid the complication of creating a unique
name for each compilation, recording those in some central repository, and ensuring that each
execution can contact the central repository.

3.2.3 The Refactored ProgramUnit

The source code for an entire application can be refactored into refactored program units (RPUs)
based on results from previous compilations, from previous executions, and from analysis in the
current compilation. The refactoring has two primary goals:

1. To limit the size of any single compilation unit so that the rest of the compiler can do an
effective job of optimization;1 and

2. To group together procedures into program pieces that have similar performance profiles
and rate-limiting resources so that they can be compiled using the same optimization plan.

The default RPU is a C compilation unit, i.e., a C main input file, along with elements on which
the main file depends, defined in imported header files.

3.2.4 The Optimization Plan

To provide the flexibility that the PACE Compiler needs in order to respond to different applications
and different target systems, the compiler needs a mechanism for expressing and recording opti-
mization plans. The primary mechanism for changing the PACE Compiler’s behavior is to suggest
an alternate optimization plan. An optimization plan is a concrete representation of the transfor-
mations applied during a compilation. An optimization plan must specify, at least, the following
items:

1. The location, i.e., the file system path, to the application directory;

1Evidence, over many years, suggests that code quality suffers as procedure sizes grow and as compilation unit sizes grow.

26 CHAPTER 3. AN OVERVIEWOF THE PACE COMPILER

For each RPU:

2. The compilation path taken (e.g., full compilation path, short compilation path, or LLVM

backend path);

3. The transformations that should be applied by the PAO and the TAO (see Figure 3.3), along
with any parameters or commands that control those transformations;

4. The suggested order (if any) of those transformations;

5. Additional inputs, if any, to the PAO, PAO→TAO IR translator, TAO, and native compiler.

When the user invokes the compiler driver to prepare an application, the compiler driver provides
a default optimization plan for the first compile. The executable is prepared using that default
plan, the code is executed on user-provided representative data, and the RTS gathers performance
statistics on that execution.

On the second compile, performance measurements from the RTS can be used to guide refac-
toring the code into RPUs; for example, context-sensitive profile information can play a role in de-
cisions about both inline substitution and partitioning the code into RPUs.

The compiler driver then initializes the optimization plan for each RPU. It uses the rate-limiting
resource information from each RPU to identify an initial plan for the RPU, drawn from a set of pre-
fabricated plans. Possible rate-limiting resources include cache locality, ILP, multicore parallelism,
and register pressure. Whenever the partition of the application into RPUs changes, the optimiza-
tion plans for the RPU will be re-initialized.

The optimization plan guides the compiler components as they translate and transform the
individual RPUs, in the second and subsequent compilations. The mechanism to change the be-
havior of those components is to change the optimization plan. In principle, any component of the
compiler can change the optimization plan and affect the behavior of other components. In PACE,
we will focus our attention on the kinds of changes described in § 1.3.2.

The definitive representation of an optimization plan resides in a file in the application direc-
tory. To simplify the handling of information in the PACE tools, the compiler will insert a concise
representation of the optimization plan as data into the object code produced by any specific com-
pilation.

The optimization plan as described in this section has not been implemented. As currently im-
plemented, the user can specify the transformations to be applied by the PAO and the TAO through
use of an optimization path option. There are four different options that can be specified. These
are described §4.3.7.

3.3 Components of the PACE Compiler

The PACE Compiler has a number of major components, shown in Figure 3.2.

3.3.1 Compiler Driver

The compiler driver provides application programmers with their interface to the PACE Compiler.
To compile a program, the programmer creates a directory that contains the source code for the
application and for any libraries that are to be optimized with it. Next, the programmer invokes the
compiler driver on that directory.

The compiler driver has the responsibility of managing the compilation process. It could create
a location for the results of this compilation in a distributed repository. We will defer discussion of
the first task until the other components have been described (see § 3.4).

3.3. COMPONENTS OF THE PACE COMPILER 27

The PACE Compiler could store its work products, such as annotations, the optimization plan,
intermediate files, and analysis results, in the application directory. Within the application direc-
tory, the compiler driver could create a subdirectory for each compilation; it could pass the location
of this directory to each of the other components that it invokes and ensure that the location is em-
bedded in the final executable code where the RTS could find it. This subdirectory could become
part of the distributed repository, containing the records of both compilation and execution for this
application.

Application refactoring could change the number of implementations for any given procedure
using either inline substitution or procedure cloning.2 It could group together into an RPU pro-
cedures that have an affinity—either the same rate limiting resource as identified by the RTS or a
frequent caller/callee relationship. It could pad, align, and reorder data structures.

3.3.2 Platform-Aware Optimizer

The compiler driver iterates through the RPUs. Each RPU serves as a compilation unit. The driver
invokes the Platform-Aware Optimizer (PAO) for each RPU, passing the location of the application
directory to it. The PAO applies analyses and transformations intended to tailor the application’s
code to platform-wide, or system-wide, concerns. Of particular concern are efficiency in the use of
the memory hierarchy and the use of thread-level parallelism. The PAO operates on the code at a
level of abstraction that is close to the original C source code.

The PAO could find the optimization plan for the application in the application directory. The
PAO could modify the optimization plan executed by the PAO and TAO components. It could gen-
erate commands that instruct and constrain the TAO in its code transformations. PAO transforma-
tions could include loop tiling, loop interchange, unrolling of nested loops, and scalar replacement
(see § 6). The PAO chooses transformation parameters, for example choosing unroll factors for each
loop in a multidimensional loop nest, based on the results of querying the TAO through the PAO–
TAO query interface (see § 4.3.5).

3.3.2.1 Polyhedral Analysis and Transformation Tools

The PAO includes a subsystem that uses polyhedral analysis and transformations to reorganize loop
nests for efficient memory access (see § 5). The polyhedral transformations use parameters of the
memory hierarchy, derived by the PACE RC tools, and the results of detailed polyhedral analysis to
rewrite entire loop nests.

3.3.3 PAO→TAO IR Translator

Because the PAO and the TAO operate at different levels of abstraction, the PACE Compiler must
translate the IR used in the PAO into the IR used in the TAO. The PAO uses the abstract syntax trees
in the SAGE III IR. The TAO uses the low-level linear SSA code defined by LLVM.

The translator lowers the level of abstraction of PAO IR, converts it into SSA form, and rewrites it
in TAO IR. Along the way, it must map analysis results and annotations created in the PAO into the
TAO IR form of the code. The compiler driver invokes the translator for each RPU, and passes it any
information that it needs.

3.3.4 Target-Aware Optimizer

The Target-Aware Optimizer (TAO) takes code in IR form that has been tailored by the PAO for the
platform-wide performance characteristics and maps it onto the architectural resources of the in-
dividual processing elements. The TAO adjusts the code to reflect the specific measured capacities

2Specifically, it should clone procedures based on values from forward propagation of interprocedural constants in the last
compilation. Out-of-date information may cause under-optimization; it will not cause a correctness problem [19].

28 CHAPTER 3. AN OVERVIEWOF THE PACE COMPILER

of the individual processors. It also provides optimizations that may be missing in the native com-
piler, such as operator strength reduction, algebraic reassociation, or software pipelining.

The TAO can provide three distinct kinds of backend.

• On machines where the underlying LLVM compiler has a native backend, such as the X86 ISA,
the TAO can generate assembly code for the target processor.

• A C backend for the TAO can generate a source language program in C. The C backend will
adjust the code for the measured strengths and weaknesses of the native compiler.

• A query backend for the TAO answers queries from the PAO. This backend uses a generic ISA,
with latencies and capacities established by measured system characteristics.

The TAO is invoked on a specific optimized RPU. One of its input parameters specifies which back-
end it should use in the current compilation step. Different paths through the PACE Compiler in-
voke the TAO. The compiler driver can invoke the TAO to produce either native assembly code,
using an LLVM backend, or tailored C source code. The PAO invokes the TAO directly with the query
backend to obtain answers to specific queries (see § 8.3.5).

The TAO can consult the optimization plan, stored in the application directory, to guide its ac-
tions. The specific actions taken by the TAO in a given invocation can depend heavily on (1) the
choice of backend, specified by the tool that invokes it; (2) the context of prior optimization, recorded
from the PAO, and prior compilations; and (3) results from the PACE RC tools.

3.4 Paths Through the PACE Compiler

The compiler driver can put together the components of the PACE Compiler in different ways. The
thick lines in Figure 3.2 show the three major paths that code takes through the PACE Compiler.

Full Compilation Path The compiler driver can invoke, in sequence, the PAO, PAO→TAO IR trans-
lator, TAO, and native compiler. This path corresponds to the centerline of the figure. The
compiler driver invokes all of the tools in the PACE Compiler and directs the TAO to generate
tailored C source code as output.

Short Compilation Path If the target system has a strong native compiler, as determined by the RC

tools, the compiler driver may bypass the TAO. (The compiler driver directs the PAO to emit
C source code.) This sequence relies on the native compiler for target-specific optimization.

LLVM Backend Path If an LLVM backend is available on the target machine, the compiler driver
can invoke a sequence that uses the LLVM backend to generate native code, bypassing the
native compiler. In this scenario, it invokes, in sequence, the PAO, PAO→TAO IR translator,
and TAO. The compiler driver tells the TAO to use the LLVM backend.

In any of these paths, the PAO can invoke the TAO through the PAO–TAO query interface.

3.5 Optimization in the PACE Compiler

To avoid redundant effort, the PACE Compiler should avoid implementing and applying the same
optimization at multiple levels of abstraction, unless a clear technical rationale suggests otherwise.
Thus the PAO and the TAO each have their own set of transformations; most of the transformations
occur in just one tool.

3.5. OPTIMIZATION IN THE PACE COMPILER 29

Platform-Aware Target-Aware

Optimizer Optimizer

Dead code elimination1 Dead code elimination1

Inlining Superblock cloning
Outlining Tail call elimination
Procedure cloning SW branch prediction

Interprocedural constant propagation Local constant propagation
Intraprocedural constant propagation Intraprocedural constant propagation2

Partial redundancy elimination Partial redundancy elimination
Enhanced scalar replacement3 Enhanced scalar replacement3

Algebraic reassociation3 Algebraic reassociation3

Idiom recognition Algebraic simplification4

Synchronization reduction Operator strength reduction

If conversion Tree-height balancing
Scalar expansion Regeneration of SIMD loops5

Scalar replacement6

PDG-based code motion Lazy code motion

Polyhedral transformations Prefetch insertion
Loop transformations7 Loop unrolling

Array padding
Reorder structure nesting
Array & loop linearization

1 Include multiple forms of “dead” code and multiple transformations.
2 May be redundant in the TAO.
3 Placement in PAO or TAO will depend on experimentation.
4 Includes application of algebraic identities, simplification of predicate expressions, and peephole optimization.
5 Generation of SIMD loops in C source form is tricky.
6 Expanded to include pointer-based values.
7 Will consider unroll, unswitch, fuse, distribute, permute, skew, align, reverse, tile, and shackling. Some combinations
obviate need for others. Some overlap with polyhedral transformations.

Figure 3.3: Optimizations Considered for the PACE Compiler

Figure 3.3 shows the set of optimizations considered for implementation in the PACE Compiler,
along with a division of those transformations between the PAO and the TAO.3 This division was
driven by the specific mission of each optimizer, by the level of abstraction at which that optimizer
represents the application code, and by the kinds of analysis performed at that level of optimiza-
tion. Overlap between their effects will make some of them redundant. Others may address effects
that cannot be seen in the limited source-to-source context of the PACE Compiler.

The canonical counterexample to this separation of concerns is dead code elimination—specif-
ically, elimination of useless code and elimination of unreachable code. Experience shows that
routine application of these transformations at various times and levels of abstractions both re-
duces compile times and simplifies the implementation of other optimizations. Thus, in the table,
they appear in both the PAO and the TAO.

3Because the DARPA-sponsored AACE program was cancelled, only a subset of the envisioned transformations have been
implemented.

30 CHAPTER 3. AN OVERVIEWOF THE PACE COMPILER

Some optimizations require collaboration among the various tools in the PACE Compiler. Con-
sider, for example, vectorization. The PAO may identify a loop nest that is an appropriate candidate
for vectorization—that is, (1) the loop nest can execute correctly in parallel; (2) the loop executes
enough iterations to cover the overhead of vector startup; (3) the PACE RC tools have shown that
such a loop can run profitably in vector form; and (4) the configuration file contains the necessary
compiler options and commands to allow the PACE Compiler to generate code that will vectorize.
When the PAO finds such a loop, it must encode the loop in a form where the remainder of the tools
will actually produce vector code for the loop.

In the full compilation path, the PAO annotates the loop nest to indicate that it can run in vector
mode. The PAO→TAO IR translator encodes the SIMD operations into the LLVM IR’s vector opera-
tions. The TAO generates appropriate code, using either the C backend or the native backend. To
ensure that the TAO can generate vector code for these operations, the PAO may need to disable
specific TAO optimizations, such as software pipelining, block cloning, tree-height-balancing, and
loop unrolling. To do so, the PAO would modify the optimization plan seen by the TAO. Finally,
using the vectorization annotations for the vendor compiler provided in the system configuration
file, the C backend could mark the vectorizable loops with appropriate annotations to inform the
vendor compiler that they should be vectorized (e.g., IVDEP).

In the LLVM backend path, optimization proceeds as above, except that responsibility for gener-
ating vector operations lies in the LLVM backend. Again, the PAO may disable some TAO optimiza-
tions to prevent the TAO from introducing unneeded dependences that prevent vector execution.

In the short compilation path, the PAO annotates the loop nest, as in the full compilation path.
In this case, however, the consumer of that annotation is the PAO pass that regenerates C code;
it will mark the loop nest with appropriate annotations for the vendor compiler, as found in the
system configuration file.

Appendix B provides more detail on our plans for handling vectorization in the PACE Compiler.

3.6 Software Base for the PACE Compiler

The PACE Compiler builds on existing open source infrastructure. The following table shows the
systems used in each of the components of the PACE Compiler.

Infrastructure Used in the PACE Compiler

PAO EDG front end†, Rose, Candl, Pluto, CLooG
TAO LLVM

In the PAO and TAO, the actual PACE tools are built as extensions of the open source tools.

† Licensed software

Chapter 4

PACE Platform-Aware Optimizer

Overview

4.1 Introduction

Figure 1.2 provides a high-level overview of the PACE Compiler design. This chapter provides an
overview of the design for the Platform-Aware Optimizer (PAO). The PAO component performs
transformations and optimizations on a high-level, or near-source, representation of the code,
which we will refer to as a high-level intermediate representation (HIR). The HIR enables a com-
prehensive set of analyses and transformations on both code and data. Because the Rose system
serves as the primary infrastructure on which the PAO is build, the SAGE III IR from Rose serves as
the HIR for PAO. The motivation for having separate Platform-Aware and Target-Aware Optimizers
is to support both transformations that must be performed at the near-source level and transfor-
mations that might be better performed at a much lower level of abstraction.

4.2 Functionality

The PAO takes as input refactored program units (RPUs). It generates as output transformed ver-
sions of the RPU. The transformed versions have been optimized for measured characteristics of
the target platform, identified by the Resource Characterization (RC) component, as well as by the
configuration file for the target platform. Figure 4.1 illustrates the ways that PAO interacts with other
parts of the system.

4.2.1 Input

The primary input for a single invocation of the PAO is C source code for an RPU. Additional inputs
(as shown in Figure 4.1) include compiler directives from the compiler driver, resource character-
istics for the target platform, profile information with calling-context-based profile information for
the source application, and TAO cost analysis feedback (Path 3 in Figure 4.2).

4.2.2 Output

As its output, the PAO produces a transformed HIR for the input RPU. The transformed code can be
translated into either C source code or into the IR used in the Target-Aware Optimizer (TAO). This
latter case uses the PAO→TAO IR translator, described in § 7; the translator is also used to translate
from the SAGE III IR to the LLVM IR in the PAO–TAO query mechanism, as shown in Figure 4.2.

As described in § 3.3.1, the compiler driver invokes the PAO, passing the location of the applica-
tion directory. The PAO consults the optimization plan for the application, and can modify its own

Principal Contacts For This Chapter: Vivek Sarkar, vsarkar@rice.edu

31

32 CHAPTER 4. PACE PLATFORM-AWARE OPTIMIZER OVERVIEW

Pla$orm-‐Aware	 Op/mizer	

(Polyhedral	 and	 AST-‐based	
Transforma/ons)	

Resource	 Characteris/cs	

Profile	 Info	 PAO	 cost	 query	

PAO-‐TAO	
Translator	

PAO	 IR	

Refactored	 Program	 Units	 (RPUs)	

Cost	 query	 results	

Op/mized	
C	 code	

Na/ve	
Compiler	 TAO	

TAO	 IR	

Op/mized	
C	 code	

Figure 4.1: Platform-Aware Optimizer Interfaces

optimization plan to determine how it should process the RPU (see § 3.2.4). It can also modify the
optimization plan for the TAO within a single compilation, to instruct and constrain the TAO in its
code transformations.

The two primary compilation paths through the PAO are shown as Path 1 and Path 2 in Fig-
ure 4.2.

Path 1 of of Figure 4.2 shows how the PAO implements its part of both the full compilation path
and the LLVM backend compilation path, as described in § 3.4. Along with optimized user code
in SAGE III IR, the PAO produces auxiliary IR information, including profiling, aliasing, and depen-
dence information. It may also amend the application’s optimization plan, which determines the
code transformations performed by the PAO and TAO for this RPU. Next, the compiler driver invokes
the PAO→TAO IR translator to convert the SAGE III IR into the LLVM IR used in the TAO. The trans-
lator associates the auxiliary information from the SAGE III IR with the new LLVM IR for the RPU.
Finally, the compiler driver invokes the TAO, which uses the LLVM IR, the auxiliary information as-
sociated with it, and the optimization plan; the TAO performs further optimization and produces
executable code for the RPU.

Path 2 of Figure 4.2, shows the flow of information when the PAO queries the TAO for cost esti-
mates to guide its high-level transformations. To perform a TAO query, the PAO constructs a syn-
thetic function for a specific code region. The synthetic function contains a transformed version of
the application’s original code for which the PAO needs a cost estimate. The PAO uses the PAO→TAO

IR translator to convert the synthetic function into LLVM IR and it invokes the TAO with a directive
to use the query backend. Note that, on this path, the PAO directly invokes both the PAO→TAO IR

translator and the TAO, rather than relying on the compiler driver to invoke those tools.

During compilation, the PAO may determine that certain parameters might benefit from run-
time optimization. The PAO then prepares the inputs needed by the API for runtime feedback-

4.3. METHOD 33

Compiler	
	 Driver	

PAO	

ROSE	 IR	 	 LLVM	 IR	
Translator	

TAO	

2	
3	

1	

1	

1.  User	 code	 +	 direcCves	
2.  Synthesized	 code	 +	 queries	
3.  Query	 replies	

User	 code	
LLVM	 IR	

data	
queries/direcCves	
control	

Code	 characterisCcs	

Synthesized	 code	
ROSE	 IR	

User	 code	
ROSE	 IR	

Synthesized	 code	
LLVM	 IR	

ROSE	

LLVM	

Figure 4.2: Overview of PAO-TAO Interfaces

directed parameter selection presented by the RTS (see § 9.3.4).

4.3 Method

In this section, we include design details for the PAO component of the PACE compiler. These de-
tails follow from a basic design decision to use the Edison Design Group (EDG) front end for trans-
lating C source code, and the Rose transformation system with the SAGE III IR for performing high
level transformations.

After the SAGE III IR is created by the front end (§ 4.3.1), the passes described below in Sec-
tions 4.3.2 – 4.3.5 are repeated until no further transformation is performed (a fixed point is reached)
or until a predefined maximum number of iterations is reached. At that point, a transcription phase
produces either transformed C source code or LLVM IR bitcode (see § 4.3.6).

The PACE design enforces a strict separation of concerns among three aspects of performing
each transformation: 1) Legality analysis, 2) Cost analysis, and 3) IR update. This design makes
it possible to modify, replace, or consider multiple variants of any one aspect of a transformation
without affecting the others. As described in § 5 and 6, there are two main modes of implement-
ing transformations in the PAO. Section§ 5 summarizes the use of a polyhedral transformation
framework that is capable of selecting a combination of transformations in a single unified step.
Section§ 6 summarizes the classical transformations that the PAO can apply directly to the SAGE III

IR. These two modes complement each other since neither one subsumes the other.

4.3.1 Front end

The PAO relies on the EDG front end to parse the input C source code and to translate the program
to a SAGE III IR. The PACE Project will not modify the EDG front end; instead, we plan to include

34 CHAPTER 4. PACE PLATFORM-AWARE OPTIMIZER OVERVIEW

pre-compiled binaries of the EDG front-end in the PACE distribution.

4.3.2 Program Analyses

Before the PAO begins to explore a wide space of transformations to optimize the input program, it
needs to perform some canonical programanalyses to broaden the applicability of transformations
as much as possible. Examples of analyses that could be implemented include:

• Global Value Numbering identifies equivalent values.

• Constant Propagation identifies compile-time constants.

• Induction Variable Analysis identifies induction variables; it builds the two prior analyses.

• Unreachable Code Elimination identifies code that has no feasible execution path—that is,
no path from procedure entry reaches the code.

• Dead Code Elimination identifies code that creates values that are never used.

The PAO includes an extensive framework for polyhedral analysis and transformation, described
in § 5. That framework depends in critical ways on the fact that the code has already been subjected
to the canonical analyses outlined above. In many cases, a loop nest as expressed in the input ap-
plication may not a priori satisfy the constraints to be a Static Control Part (SCoP) in the polyhedral
framework (§ 5.2.1). Often, the canonical analyses transform such loop nests into a form where
they satisfy the constraints needed for application of the polyhedral techniques.

Though the canonical analyses that could be implemented in PAO all well understood in their
scalar versions, their implementation in the PAO poses new research challenges for four reasons.
First, the analyses in the PAO must handle both array and pointer accesses whereas previous imple-
mentations of the example analyses listed above have typically restricted their attention to scalar
variables and their values. Second, the PAO must analyze code that is already in parallel form
(OPENMP extensions to C) whereas prior work assumes sequential code. Third, the PAO could
attempt to combine these analyses to the fullest extent possible. Prior work has shown that com-
bining analyses can produce better results than computing them independently. Finally, the PAO

could build analyses that can be incrementally updated after each transformation is performed, so
as to reduce the overall cost of the analyses.

The polyhedral framework also plays a role in the process of identifying, transforming, and ex-
pressing loops that can execute in vector form. The polyhedral framework identifies such loops in
a natural way. It computes data dependence information for the memory accesses in the loop and
its surrounding code and identifies consecutive memory accesses. This information, created in the
PAO’s polyhedral analysis framework, is passed to the TAO as annotations to the IR by the PAO→TAO

IR translator. The TAO uses the information to generate vector code. Appendix B provides a system-
wide view of vectorization in the PACE Compiler.

4.3.3 Legality Analysis

A necessary precondition before a compiler can perform a code transformation is to check the le-
gality of the transformation. Legality conditions for a number of well-known transformations have
been summarized in past work e.g., [2, 69]. We summarize below the legality conditions for many
of the transformations that could be performed by the PAO. While much of the research literature
focuses on the data dependence tests for legality, it is also necessary to check control dependence
and loop bound conditions to ensure correctness of loop transformations. The following list sum-
marizes the legality conditions for the transformations described in § 6.

4.3. METHOD 35

• Loop interchange: no resulting negative dependence vector, counted loop with no prema-
ture exit, loop-invariant or linear loop bounds with constant stride (or loop invariant-loop
bounds with loop-invariant stride for loops being interchanged)

• Loop tiling: same conditions as loop interchange for all loops being permuted

• Unroll-and-jam: same data dependence conditions as loop tiling, but loop bounds must be
invariant

• Loop reversal: no resulting negative dependence vector, counted loop with no premature
exit, arbitrary loop bounds and stride

• Unimodular loop transformation (includes loop skewing): counted loop with no premature
exit, no loop-carried control dependence, loop-invariant or linear loop bounds with constant
stride

• Loop parallelization: no resulting negative dependence vector, counted loop with no prema-
ture exit, arbitrary loop bounds and stride

• Loop distribution: no control + data dependence cycle among statements being distributed
into separate loops

• Loop fusion: no loop-independent dependence that prevents code motion to make fused
loops adjacent, and no loop-carried fusion-preventing dependence

• Scalar replacement: no interfering aliased locations

• Constant replacement: variable must have propagated constant value on all paths

• Scalar renaming, scalar expansion, scalar privatization: no true dependences across renamed
locations

• Unreachable code elimination: no feasible control path to code

• Useless (dead) code elimination: no uses of defs being eliminated

• Polyhedral transformation: input loop nest must form a “Static Control Part” (SCoP); see
§ 5.2.1 for more details

4.3.4 Cost Analysis: Memory Hierarchy

The other precondition that the compiler must satisfy before it performs some code transformation
is to check the profitability of that transformation via cost analysis. Cost analysis will play a more
central role in the PACE Compiler than in many earlier compilers, because the compiler has better
knowledge of the performance characteristics of the target machine, as measured by the RC tools.
One particular challenge is to perform effective and accurate memory cost analysis on an HIR such
as the SAGE III IR.

Consider the lowest (level 1) levels of a cache and TLB. The job of memory cost analysis is to
estimate the number of distinct cache lines and distinct pages accessed by a (hypothetical) tile
of t1 × . . .× th iterations, which we define as DLtotal(t1 , . . . , th) and DPtotal(t1 , . . . , th), respec-
tively. Assume that the tile sizes are chosen so that DLtotal and DPtotal are small enough so that no
collision and capacity misses occur within a tile i.e., DLtotal(t1 , . . . , th) ≤ effective cache size and
DPtotal(t1 , . . . , th) ≤ effective TLB size.

An upper bound on the memory cost can then estimated be as follows:

COSTtotal = (cache miss penalty)×DLtotal + (TLB miss penalty)×DPtotal

36 CHAPTER 4. PACE PLATFORM-AWARE OPTIMIZER OVERVIEW

Our objective is to minimize the memory cost per iteration, COSTtotal/(t1 × . . .× th). This ap-
proach can be extended to multiple levels of the memory hierarchy.

An upper bound on the memory cost typically leads to selection of tile sizes that may be conser-
vatively smaller than empirically observed optimal values. Therefore, we will also pursue a lower
bound estimation of memory costs in the PACE project, based on the idea of establishing a lower
bound ML, the minimum cache size needed to achieve any intra-tile reuse. In contrast to DL, the
use of ML leads to tile sizes that may be larger than empirically observed optimal values. The avail-
ability of both bounds provides a limited space for empirical search and auto-tuning as opposed to
a brute-force exhaustive search over all possible tile sizes.

4.3.5 Cost Analysis: PAO-TAOQuery Interface

The HIR used in the PAO simplifies both high-level transformations and analysis of costs in the
memory hierarchy. There are, however, other costs in execution that can only be understood at a
lower level of abstraction. Examples include register pressure (in terms of both MAXLIVE and spill-
cost, see § 8.3.5), instruction-level parallelism, simdization, critical-path length, and instruction-
cache pressure. To address these costs, the PACE Compiler includes a PAO-TAO query mechanism
that lets the TAO estimate various costs on specific code fragments. The PAO passes the particular
cost estimates it needs to the TAO through a query data structure. The PAO uses the results of such
queries to guide the selection of various parameters for the high-level transformations.

To perform a query, the PAO creates a synthetic function that encapsulates the transformed
code from the region of interest and passes it, along with auxiliary information and a query, to the
TAO.

There are three approaches for generating the synthetic function in the PAO:

1. Cloning of the entire function containing the specific user code region. This will include
full intraprocedural context for the code region. This approach would yield the most precise
query results, but there still will be some pollution of cost information by other code regions
in the function. This is the first approach to be implemented in the PACE compiler.

2. Cloning of the user code region of interest along with its control and data slice from the func-
tion. This will include full intraprocedural context for the slice of the code region. This ap-
proach would produce more precise query results, but there will be some pollution of cost
information by other code regions in function due to conservative slicing.

3. Cloning only of the user code region of interest as a separate function. This will require local
variables from surrounding context to be passed as reference parameters. The advantage of
this approach is that there will be minimal code duplication, the disadvantage is that it will
lead to a less precise analysis of cost results due to the absence of the exact context for local
variables.

The auxiliary information includes information on aliases, data structure alignment, and run-
time profile information from the RTS. It passes this information to the TAO, along with a directive to
use the query backend rather than a code-generating backend. For simplicity, each query includes
a single function. If the PAO needs to submit multiple queries, they can be submitted separately as
a sequence of independent single queries.

For each query, the query backend of the TAO (invoked in-core1 with PAO) uses the optimized
low-level code and values from the RC tools to produce cost estimates for the input synthetic func-
tion. The TAO records its estimates in the query data structure and passes it back (Path 3 on Fig-
ure 4.2) to the PAO.

1The TAO shares a process and an address space with the PAO to facilitate TAO access to PAO generated annotations and
data structures. This arrangement should reduce the cost of making a PAO–TAO query.

4.3. METHOD 37

There are three query interfaces implemented in the PAO:

1. Live Variable Query (MAXLIVE): the maximum number of live variables (integer variables and
floating point variables);

2. Critical Path Query: the critical-path length;

3. Machine Code Query:

(a) SPILLCOST: the number of stack load and store operations generated for the given syn-
thetic function;

(b) CODESIZE: the number of the machine instruction generated for the given synthetic
function;

(c) SIMD: the cost of SIMDizing the synthetic function.

Figure 4.3 gives the detail of PAO/TAO query process. The query starts from the cost driven
transformation, which passes the input function’s Sage IR code through Rose-to-LLVM translator
to generate LLVM IR for TAO cost estimation. In TAO level, there are two types of cost estimation: ar-
chitecture independent (MAXLIVE, critical path length) and architecture dependent (spilling cost,
instruction size) (more detail is discussed in Section 8.3.5). Before the invocation of these cost es-
timation, the architecture independent/dependent transformations are applied respectively to get
the optimized code for precise cost estimation.

To get cost value from TAO, the PAO and TAO share a common data structure named feedback
value repository, the cost value retrieved from TAO is written into the feedback value repository.
PAO can access the cost value through query interfaces that read value from feedback value repos-
itory. By interpreting the query results generated by TAO, PAO is able to choose optimal trans-
formation parameters that benefit program performance. For example, the feedback driven loop
unroll-and-jam uses TAO feedback to decide the best unroll factor during compilation time.

Rose2LLVMCost Driven
Transformations SAGE IR LLVM IR

Architecture
Independent

Transformations

MaxLive Analysis &
Critical Path Analysis

Architecture
Dependent

Transformations

Spilling Cost Analysis
& Code Size Analysis

Cost Value
Repository

TAO

PAO/TAO
Query Interface

PAO

Figure 4.3: TheWorkflow of Cost Estimation and Query

4.3.6 Transcription

When the PAO has finalized its selection of transformations, the SAGE III IR is updated to finalize all
transformations. At that point, a transcription phase uses the SAGE III IR to either generate source

38 CHAPTER 4. PACE PLATFORM-AWARE OPTIMIZER OVERVIEW

code or LLVM IR. The compiler driver then uses the PAO→TAO IR translator to generate LLVM bit-
code as input to the Target-Aware Optimizer (TAO).

4.3.7 The Optimization Plan

The PAO uses the application’s optimization plan both to obtain guidance in its own operation and
to affect the processing of code in other parts of the PACE Compiler. The initial optimization plan
is generated by the compiler driver (see § 3.2.4). It may be modified by other components of the
PACE system, including the PACE Machine Learning tools.

The PAO could modify the optimization plan within a compilation to guide the application of
transformations in the TAO. For example, if analysis in the PAO and the PAO–TAO query interface
shows that some loop nest has unsupportable demand for registers and that loop nest was pro-
duced by inline substitution, the PAO may direct that inlining be avoided in that function or that
RPU. Similarly, on a loop that the PAO identifies as vectorizable, the PAO may direct the TAO not
to apply transformations, such as tree-height balancing, that might change the code structure and
prevent vector execution.

The optimization plan as described in this section has not been implemented. As currently im-
plemented, the user can specify the transformations to be applied by the PAO and the TAO through
use of an optimization path option. There are four different options that can be specified. One
option invokes the non-polyhedral AST-based transformations for parametric loop tiling and the
loop unroll and jam module. A second option invokes the polyhedral loop transformation module.
A third option invokes the LLVM vectorizer (including the necessary analysis and transformations
in the polyhedral module) and the unroll and jam module. A fourth option invokes polyhedral loop
transformation, the LLVM vectorizer and the unroll and jam module. If no option is specified then
a default compile path is applied: the input code just goes through the rose to LLVM translator.

4.3.8 PAO Parameters for Runtime System

The PAO might determine that certain parameters can most likely benefit from runtime optimiza-
tion. During compilation, the PAO sets certain parameters and passes them to the RTS. The PAO

could also present the RTS with a closure that contains an initial parameter tuple, a specification
of the bounds of the parameter tuple space, a generator function for exploring the parameter tu-
ple space, and a parameterized version of the user’s function to invoke with the closure containing
the parameter tuple and other state. Additional detail about the RTS interface for online feedback-
directed parameter selection can be found elsewhere (§9.3.4).

To illustrate how the PAO could exploit RTS support for online feedback-directed parameter se-
lection, consider the problem of Parametric Tiling described in § 5.3.6. Here, the PAO recognizes
the need to block the code to improve performance in the memory hierarchy, but it cannot deter-
mine the optimal tile size at compile time. In this case, the PAO could prepare the loop nest for
runtime tuning by constructing the inputs for the RTS online feedback-directed parameter selec-
tion API and rewriting the code to use that facility.

4.3.9 Guidance from Runtime System

If the application has already been profiled, the RTS could provide the PAO with high-level quan-
titative and qualitative guidance about runtime behavior. This information may include data on
resource consumption, on execution time costs, and on specific inefficiencies in the code (see
§ 9.2.3). The PAO could use this information to determine where to focus its efforts and how to
alter the optimization plan to improve overall optimization effectiveness.

Chapter 5

PolyOpt � The Polyhedral

Optimization Framework

The Polyhedral Optimization (PolyOpt) subsystem of PAO (Platform Aware Optimizer)
is developed to perform transformations such as fusion, distribution, interchange, skew-
ing, shifting, tiling, etc. on affine loop nests. The polyhedral transformation approach
is based on the Pluto system that has shown good promise for transformation of a num-
ber of affine computational kernels. PolyOpt is implemented as a Sage AST to Sage AST

transformer integrated with Rose.

5.1 Introduction

The Polyhedral Optimization (PolyOpt) subsystem of PACE is a component of the PAO (Platform
Aware Optimizer). It enables data dependence analysis and complex loop transformations such
as fusion, distribution, interchange, skewing, shifting, tiling, etc. to be applied to affine loop nests
in a program optimized by PACE. PolyOpt is integrated with Rose. It takes as input the Sage AST

representation for the source code to be optimized by PolyOpt, identifies subtrees of the AST that
represent affine computations, transforms those AST subtrees to a polyhedral representation, per-
forms loop transformations using the polyhedral representation, and finally converts the polyhe-
dral representation back to Sage AST. The Sage AST transformations performed by PolyOpt will be
preceded and followed by other (non-polyhedral) transformations described in § 6. The polyhedral
transformation approach implemented is based on the Tiling Hyperplane method [14, 15] that has
shown great promise for transformation of a number of affine computational kernels.

5.1.1 Motivation

The polyhedral model [38] provides a powerful abstraction to reason about transformations on col-
lections of loop nests by viewing a dynamic instance (iteration) of each assignment statement as
an integer point in a well-defined space called the statement’s polyhedron. With such a represen-
tation for each assignment statement and a precise characterization of inter- and intra-statement
dependences, it is possible to reason about the correctness of complex loop transformations. With
the conventional abstractions for data dependences used in most optimizing compilers (includ-
ing gcc and vendor compilers), it is very difficult to effectively perform integrated model-driven
optimization using key loop transformations such as permutation, skewing, tiling, unrolling, and
fusion across multiple loop nests. One major challenge with AST-based loop transformation sys-
tems is the case of imperfectly nested loops; this is seamlessly handled in a polyhedral compiler

Principal Contacts For This Chapter: Atanas Rountev, rountev@cse.ohio-state.edu, and P. Sadayappan,
saday@cse.ohio-state.edu

39

40 CHAPTER 5. POLYOPT – THE POLYHEDRAL OPTIMIZATION FRAMEWORK

transformation framework.

5.1.2 Background

The input to a transformation system based on the polyhedral model is a region of code containing
a sequence of loop nests. Variables that are invariant in the region (e.g., array sizes) are referred
to as parameters. The main constraints imposed on the region of code are as follows (see § 5.2.1
for a complete list of constraints). Loop bounds are affine functions (i.e., c1i1 + . . .+ cnin + cn+1;
ck are compile-time constants) of loop iteration variables and parameters; this includes imper-
fectly nested and non-rectangular loops. Array index expressions are also affine functions of itera-
tion variables and parameters. Such program regions are typically the most computation-intensive
components of scientific and engineering applications, and they appear often in important scien-
tific applications [11].

A statement s surrounded by m loops is represented by an m-dimensional polyhedron1 re-
ferred to as an iteration space polyhedron. The coordinates of a point in this polyhedron (referred
to as an iteration vector) correspond to the values of the loop indices of the surrounding loops. The
polyhedron can be defined by a system of affine inequalities derived from the bounds of the loops
surrounding s; each point in the polyhedron corresponds to a run-time instance of s.

A significant advantage of using a polyhedral abstraction of statements and dependences is that
compositions of loop transformations have a uniform algebraic representation that facilitates inte-
grated global optimization of multi-statement programs. In particular, it is possible to represent
arbitrary compositions of loop transformations in a compact and uniform manner, and to reason
about their cumulative effects through well-defined algebraic cost functions. In contrast, with the
traditional model of data dependence that is used in most optimizing compilers, it is very difficult
to model the effect of a sequence of loop transformations. Previous work using unimodular trans-
formations and iteration-reordering transformations (see for instance [6, 78, 70]) were limited to
modeling the effect of sequences of iteration-reordering transformations. However, they could not
accommodate transformations that changed a loop body such as distribution and fusion, or trans-
formations on imperfect loop nests.

Further, global optimization across multiple statements is not easily accomplished (e.g., trans-
formation of imperfectly nested loops is a challenge). Phase ordering effects as well as rigid and
less powerful optimization strategies are all factors that make syntax-based transformations of loop
nests less powerful than polyhedral-based ones for optimizing affine loop nests [41].

5.2 Functionality

The polyhedral transformation framework in PACE takes as input the Sage ASTs for all functions in
an input program. In each AST, it identifies code fragments (i.e., AST subtrees) that can be targets
of polyhedral analyses and optimizations. Each such fragment is referred to as a Static Control Part
(SCoP). Each SCoP is analyzed and transformed; the result is a new subtree which is then inserted
in the place of the original subtree in the function’s AST. Polyhedral data dependence analysis is
exposed to subsequent passes of the PACE compiler, through annotations of the Sage nodes with
dependence information computed during the polyhedral analysis.

1A hyperplane is an n − 1 dimensional affine subspace of an n-dimensional space. A half-space consists of all points of
an n-dimensional space that lie on one side of a hyperplane (including the hyperplane); it can be represented by an affine
inequality. A polyhedron is the intersection of finitely many half-spaces.

5.2. FUNCTIONALITY 41

5.2.1 Static Control Part (SCoP) Code Fragments

A SCoP is an AST subtree with a particular structure which allows powerful polyhedral analyses and
optimizations. A conceptual grammar for a SCoP can be defined as follows2

〈SCoP〉 ::= 〈ElementList〉
〈ElementList〉 ::= 〈Element〉 | 〈Element〉 〈ElementList〉
〈Element〉 ::= 〈Statement〉 | 〈Loop〉 | 〈If 〉
〈Loop〉 ::= for 〈IteratorVariable〉 =

〈LowerBound〉 , 〈UpperBound〉 { 〈ElementList〉 }
〈If 〉 ::= if 〈Expression〉 comp op 〈Expression〉

{ 〈ElementList〉 } else { 〈ElementList〉 }

Expressions and statements Each loop bound must be an affine expression c1i1 + . . . + cnin +
cn+1 where ck are compile-time constants. The two expressions compared in operator comp op

in an if-statement must also be affine. Inside an statement, each index expression ek in an array
access expression a[e1] . . . [ed] (where a is a d-dimensional array) must be an affine expression.3

For every statement, each expression which denotes a memory location must be a scalar vari-
able x or an array access expression a[e1] . . . [ed]. No pointer dereferences *p or accesses to struc-
ture fields s.f or p->f are supported. Conservatively, function calls are also disallowed in a state-
ment. It is possible to relax this last constraint by allowing calls to side-effect-free functions, as-
suming that such function names are provided by external sources. Currently, function names
matching the prototypes defined in math.h header can optionally be accepted by PolyOpt.

Iterators, parameters, and affine expressions All scalar variables that appear anywhere in the
SCoP can be classified into three disjoint categories:

• Loop iterators; there must not be any reference to a loop iterator which is a write, beside the
for loop increment

• Parameters: not iterators; there must not be any reference to a parameter which is a write

• Modified variables: all variables referenced in the scop that are not loop iterators nor param-
eters

Expressions in loop bounds, if-statements, and array access expressions must be affine forms
of the SCoP parameters and the iterators of surrounding loops in the SCoP. Checking that an expres-
sion is of the form c1i1 + . . . + cnin + cn+1 (where ck are compile-time constants) is not enough;
variables ik need to be SCoP parameters or iterators of surrounding SCoP loops.

5.2.2 SCoP Detection and Extraction of Polyhedra

A high-level diagram of framework components and their interactions is shown in Figure 5.1. The
first component, described in this subsection, takes as input the Sage ASTs for all functions in the
input program. Each function-level AST is analyzed to identify subtrees that satisfy the definition of
SCoP described above. In addition to the subtree, the SCoP detection also identifies SCoP parame-
ters and iterators. Once a proper subtree is identified, it is traversed to extract its polyhedral repre-
sentation. This representation contains a set of statements (each one corresponding to 〈Statement〉
from the conceptual grammar), a set of parameter names, and a set of array names. This represen-
tation is the output of the SCoP Detection / Extraction stage.

2This is an abstract description of the structure of the code; an actual SCoP will, of course, respect the grammar of the C

language
3The PACE implementation handles general affine expressions in C code — e.g., 3*i - i*13 + (-5)*j + (-(-4)). In
all such expressions, variables and constants must be of C integer types [21, §6.2.5].

42 CHAPTER 5. POLYOPT – THE POLYHEDRAL OPTIMIZATION FRAMEWORK

Figure 5.1: Overview of the polyhedral transformation framework.

In the polyhedral representation of a SCoP, each statement is associated with a set of iterator
names, a matrix encoding the polyhedron that is the statement’s iteration space, a matrix repre-
senting the array elements that are read by the statement, and a matrix representing the array ele-
ments that are written by the statement. Scalar variables are treated as a special type of array with
a single element.

5.2.3 Polyhedral Dependence Analysis with Candl

A central concept of program optimization is to preserve the semantics of the original program
through the optimization steps. Obviously, not all transformations, and hence not all affine sched-
ules (i.e., orderings of statement instances), preserve the semantics for all programs. To compute
a legal transformation, we resort to first extracting the data dependences expressed in a polyhedral
representation [37]. This information is later used in two ways. First, the polyhedral optimizers
uses data dependence information to constrain the schedules to ensure that they respect the se-
mantics of the original program. Second, the generated Sage AST is annotated with relaxed data
dependence information in the form of Dependence Distance Vectors (DDV) computed from the
dependence polyhedra, such that other components of PACE can access this information. Typ-
ically AST-based transformations and vectorization passes use DDVs to retrieve which loops are
permutable, parallel, etc.

The polyhedral dependence analysis stage takes as an input the polyhedral representation of
a SCoP, and extends its content with data dependence information. Candl, the Chunky ANalyzer
for Dependences in Loops, is an open-source tool for data dependence analysis of static control
parts [22]. To capture all program dependences, Candl builds a set of dependence polyhedra, one
for each pair of array references accessing the same array cell (scalars being a particular case of
array), thus possibly building several dependence polyhedra per pair of statements. A point in
a dependence polyhedron encodes a pair of iteration vectors for which the dependence may be
occur. Given the polyhedral representation of the input program, Candl outputs the polyhedral
dependence graph. It is a multi-graph with one node per statement, and an edge eR→S labeled with
a dependence polyhedronDR,S , for each dependence.

5.2. FUNCTIONALITY 43

5.2.4 Pluto Transformation Generator

The polyhedral representation allows the expression of arbitrarily complex sequences of loop trans-
formations. The downside of this expressiveness is the difficulty of selecting an efficient optimiza-
tion that includes tiling together with fusion, distribution, interchange, skewing, permutation and
shifting, and is still the subject of numerous recent research works [41, 61, 62, 63]. The Pluto trans-
formation stage implements an effective approach to solving the optimization selection problem
[15]. This stage takes as an input the polyhedral representation enriched with dependence infor-
mation, and outputs a modified polyhedral representation where the original statement schedules
have been replaced by those computed by Pluto.

Pluto is an automatic transformation selection tool that operates directly on the polyhedral rep-
resentation [60]. It outputs schedules (combinations of transformations) to be later applied by the
code generator. Pluto performs transformations for coarse-grained parallelism and locality simul-
taneously. The core transformation framework mainly works by finding affine transformations
for efficient tiling and fusion, but is not limited to it. OPENMP-like parallel code for multicores
can be automatically generated from sequential code. Outer, inner, or pipelined parallelization
is achieved, besides register tiling and exposing inner parallel loops for subsequent vectorization
(see Appendix B for details about code vectorization).

5.2.5 Polyhedral Code Generation with CLooG

Code generation is the final step of polyhedral optimization. This stage takes as an input the poly-
hedral representation of SCoP enriched with the schedules computed by Pluto, and outputs a code
fragment in CLooG’s internal syntactic representation, CLAST. The open-source CLooG code gen-
erator [9, 25] applies the transformations specified by the affine schedules, and generates a CLAST
abstract syntax tree corresponding to the transformed code. This tree is then converted in a slightly
more expressive syntax tree representation named PAST, for subsequent processing by PTile.

5.2.6 Parametric Tiling with PTile

Tiling is a crucial transformation for achieving high performance, especially with deep multi-level
memory hierarchies. The tiling phase takes place inside the code generation stage, and subse-
quently processes the output of CLooG. It takes as an input a PAST tree being the result of the
transformations embodied in the schedules, and produces a PAST tree being a parametrically tiled
version of the input PAST tree. PAST supports non-affine expressions as generated by the paramet-
ric tiling algorithm [8], that the CLAST representation does not support.

Tiling is a well known technique for improving data locality and register reuse. It has received
a lot of attention in the compiler community. However, the majority of work only addresses the
tiling of perfectly nested loops. The few systems that can automatically generate tiled code for
imperfectly nested loops require that tile sizes be compile-time constants. The PolyOpt system
incorporates parametric tiling capability, where tile sizes do not have to be compile-time constants.
Parametric tiled code is passed by the PAO to the RTS (as discussed in Sec. 4.3.8) to determine the
best tile sizes for the target platform.

5.2.7 Translation to Sage ASTs

The final stage of PolyOpt consists in translating the PAST representation into a Sage AST, and rein-
serting this Sage AST in the program in place of the original Sage subtree for the SCoP. The result
of the code generation of CLooG is converted from the CLooG IR to the PAST IR, which provides
enough information to generate an equivalent Sage AST subtree. The resulting modified Sage AST is
indistinguishable from the “normal” ASTs generated by Rose’s front end, and can be used as input
to other components of the PAO system.

44 CHAPTER 5. POLYOPT – THE POLYHEDRAL OPTIMIZATION FRAMEWORK

5.3 Method

5.3.1 SCoP Detection and Extraction of Polyhedra

Given a Sage AST, a bottom-up traversal is used to identify AST subtrees that correspond to SCoPs.
Since SCoPs cannot be nested, as soon as a node breaks the SCoP definition then none of its ances-
tor can be in a SCoP. During the traversal, when several sibling subtrees satisfy the SCoP definition,
an attempt is made to create a larger SCoP encompassing these subtrees. At the end of this process,
there may be several disjoint SCoP detected. Each one is independently subjected to the process-
ing steps described in this section.

For each top-level element of the SCoP, a bottom-up traversal is performed for the Sage AST

rooted at that node. During the traversal, information about upper/lower loop bounds is collected
(represented as vectors that encode the affine constraints). Similarly, vectors encoding the read-
/write accesses of array elements are constructed. When all children of a node have been traversed,
their data is combined as necessary, based on the context of the node. When the root node of the
subtree is reached, all necessary information for each statement appearing in the subtree has been
collected.

5.3.2 Polyhedral Dependence Analysis with Candl

Data dependence representation Two executed statement instances are in a dependence rela-
tion if they access the same memory cell and at least one of these accesses is a write operation. For
a program transformation to be correct, it is necessary to preserve the original execution order of
such statement instances and thus to know precisely the instance pairs in the dependence relation.
In the algebraic program representation described earlier, it is possible to characterize exactly the
set of instances in dependence relation in a synthetic way.

Three conditions have to be satisfied to state that an instance ~xR of a statement R depends
on an instance ~xS of a statement S. (1) They must refer to the same memory cell, which can be
expressed by equating the subscript functions of a pair of references to the same array. (2) They
must be actually executed, i.e. ~xS and ~xR have to belong to their corresponding iteration domains.
(3) ~xS is executed before ~xR in the original program.

Each of these three conditions may be expressed using affine inequalities. As a result, exact sets
of instances in dependence relation can be represented using affine inequality systems. The exact
matrix construction of the affine constraints of the dependence polyhedron used in PolyOpt was
formalized by Feautrier and Bastoul [37, 12].

for (i = 0; i <= n; i++) {

s[i] = 0; // statement R

for (j = 0; j <= n; j++)

s[i] = s[i] + a[i][j] * x[j]; // statement S

}

Figure 5.2: matvect kernel

For instance, if we consider the matvect kernel in Figure 5.2, dependence analysis gives two
dependence relations: δR,S for instances of statement S depending on instances of statement R
(e.g.,R produces values used by S), and similarly, δS,S .

For Figure 5.2, dependence relation δR,S does not mean that all instances of R and S are in
dependence—that is, the dependence does not necessarily occur for all possible pairs of ~xR and
~xS . Let ~xR = (iR) and ~xS = (iS , jS). There is a dependence from R to S only when iR = iS . We
can then define a dependence polyhedron, being a subset of the Cartesian product of the iteration

5.3. METHOD 45

domains, containing all values of iR, iS and jS for which the dependence exists. We can write this
polyhedron in matrix representation: the first line represents the equality iR = iS , the next two
encode the constraint that vector (iR) must belong to the iteration domain of R and similarly, the
last four state that vector (iS , jS) belongs to the iteration domain of S:

DR,S :

1 −1 0 0 0
1 0 0 0 0
−1 0 0 1 0

0 1 0 0 0
0 −1 0 1 0
0 0 1 0 0
0 0 −1 1 0

.

iR
iS
jS
n

1

= 0
≥ ~0

To capture all program dependences we build a set of dependence polyhedra, one for each pair
of array references accessing the same array cell (scalars being a particular case of array), thus pos-
sibly building several dependence polyhedra per pair of statements. The polyhedral dependence
graph is a multi-graph with one node per statement. An edge eR→S is labeled with a dependence
polyhedronDR,S , for all dependence polyhedra.

A dependence polyhedron is the most refined granularity to represent a dependence. However,
for the cases where this precision is not needed it is easy to rebuild a more abstract and less detailed
dependence information from the polyhedral dependence graph. For instance, one can generate
a simple graph of dependent memory references, or rebuild the dependence distance vectors by
extracting some properties of the dependence polyhedra.

Dependence analysis inCandl The Candl software was written by Bastoul and Pouchet. It imple-
ments the construction of the complete polyhedral dependence graph of a given static control part.
The algorithm to compute all polyhedral dependences simply constructs the dependence polyhe-
dron for each pairs of references to the same array, for all program statements. The polyhedron is
then checked for emptiness. If it is empty then there is no dependence between the two considered
references. Otherwise there is a (possibly self) dependence between the two references.

5.3.3 Pluto Transformation Generator

The tiling hyperplane method [14, 15] is a model-driven technique that seeks to optimize a SCoP
through transformations encompassing complex compositions of multi-dimensional tiling, fusion,
skewing, interchange, shifting, and peeling.

Representing optimizations A transformation in the polyhedral framework captures in a single
step what may typically correspond to a sequence of numerous textbook loop transformations.
It takes the form of a carefully crafted affine multidimensional schedule, together with iteration
domain and/or array subscript transformations.

In the tiling hyperplane method, a given loop nest optimization is defined by a multidimen-
sional affine schedule. Given a statement S, we use an affine form on the surrounding loop itera-
tors ~xS . It can be written as

ΦS(~xS) = CS

(
~xS

1

)
where CS is a matrix of non-negative integer constants. The instance of S defined by iteration
vector ~xS is scheduled at multidimensional date ΦS(~xS). Multidimensional dates can be seen as
logical clocks: the first dimension corresponds to days (most significant), next one is hours (less
significant), the third to minutes, and so on. Note that every static control program has a mul-
tidimensional affine schedule [38], and that any loop transformation can be represented in the
polyhedral representation [78].

46 CHAPTER 5. POLYOPT – THE POLYHEDRAL OPTIMIZATION FRAMEWORK

Let φS
i be the ith row of CS . A row is an affine hyperplane on the iteration domain of S. For S

withmS surrounding loop iterators, let

φS
i = [cS1 c

S
2 . . . cSmS

cS0]

Here cSi are integer constants; cS0 is the coefficient attached to the scalar dimension.

The tiling hyperplanemethod Intuitively, the tiling hyperplane method computes an affine mul-
tidimensional schedule [38] for the SCoP such that parallel loops are at the outer levels, and loops
with dependences are pushed inside [14, 15], and at the same time, maximizing the number of di-
mensions that can be tiled. The method proceeds by computing the schedule level by level, from
the outermost to the innermost. Specifically, affine hyperplanes with special properties are com-
puted, one for each row of the scheduling matrix. Such specific hyperplanes are called tiling hy-
perplanes.

Computing valid tiling hyperplanes Let S = {S1, S2, . . . , Sn} be the set of statements of the
SCoP. LetG = (V,E) be the data dependence graph for the original SCoP.G is a multi-graph with
V = S andE being the set of data dependence edges. Notation eSi→Sj ∈ E denotes an edge from
Si to Sj , but we will often drop the superscript on e for readability. For every edge e ∈ E from Si to
Sj ,DSi,Sj

is the corresponding dependence polyhedron.
Tiling along a set of dimensions is legal if it is legal to proceed in fixed block sizes along those

dimensions. This requires dependences to not be backward along those dimensions [46, 65, 14].
{φS1 , φS2 , . . . , φSk

} is a legal (statement-wise) tiling hyperplane if and only if the following holds
true for each dependence edge eSi→Sj ∈ E:

φSj

(
~xSj

)
− φSi (~xSi) ≥ 0,

〈
~xSi , ~xSj

〉
∈ DSi,Sj (5.1)

Cost model for computing the tiling hyperplanes There are infinitely many hyperplanes that
may satisfy the above criterion. An approach that has proved to be simple, practical, and powerful
has been to find those directions that have the shortest dependence components along them [14].
For polyhedral code, the distance between dependent iterations can always be bounded by an
affine function of the SCoP parameters (represented as a p-dimensional vector ~n).

∀
〈
~xSi

, ~xSj

〉
∈ DSi,Sj

,

δe
(
~xSi

, ~xSj

)
= φSj

(
~xSj

)
− φSi

(~xSi
)

∀ 〈~xSi , ~xSj 〉 ∈ DSi,Sj ,∀e ∈ E, ~u ∈ Np, w ∈ N,
u.~n+ w − δe

(
~xSi

, ~xSj

)
≥ 0 (5.2)

The legality and bounding function constraints from (5.1) and (5.2) respectively are cast into a for-
mulation involving only the coefficients of φ’s and those of the bounding function by application of
the Farkas Lemma [38]. Coordinates of the bounding function are then used as the minimization
objective to obtain the unknown φ’s coefficients.

minimize≺ (u, w, . . . , ci, . . .) (5.3)

This cost function is geared towards maximal fusion. This allows to minimize communica-
tion and maximize locality on the given set of statements. The resulting transformation is a com-
plex composition of multidimensional loop fusion, distribution, interchange, skewing, shifting and
peeling. Finally, multidimensional tiling can be applied on all permutable bands.

Enabling vectorization Due to the nature of the optimization algorithm, even within a local tile
(L1) that is executed sequentially, the intra-tile loops that are actually parallel do not end up being

5.3. METHOD 47

outer in the tile: this goes against vectorization of the transformed source for which we rely on the
native compiler. Also, the polyhedral tiled code is often complex for a compiler to further analyze
and say, permute and vectorize. Hence, as part of a post-process in the transformation framework,
a parallel loop is moved innermost within a tile, and annotations are used to mark the loop as
vectorizable (see Appendix B for details about code vectorization). Similar reordering is possible
to improve spatial locality that is not considered by our cost function due to the latter being fully
dependence-driven. Note that the tile shapes or the schedule in the tile space is not altered by such
post-processing.

5.3.4 Polyhedral Code Generation with CLooG

The code generation stage generates a scanning code of the iteration domains of each statement
with the lexicographic order imposed by the schedule. Statement instances that share the same
date are typically executed under the same loop, resulting in loop fusion. Scanning code is typically
an intermediate, AST-based representation that can be translated to an imperative language such
as C or FORTRAN.

For many years this stage has been considered to be one one of the major bottlenecks of poly-
hedral optimization, due to the lack of scalability of the code generation algorithms. Eventually
the problem was addressed by the work of Bastoul [9, 10] who proposed an extended version of
Quilleré’s algorithm [64] that significantly outperformed previously implemented techniques such
as the ones by Kelly et al. in the Omega framework [48] or by Griebl in the Loopo framework [42].
The only constraints imposed by the CLooG code generator are (1) to represent iteration domains
with a union of polyhedra, and (2) to represent scheduling functions as affine forms of the iteration
domain dimensions. This general setting removes previous limitations such as schedule invertibil-
ity [5].

Code generation time is a function of the number of statement domains and the depth of the
loop structure to be generated. Polyhedral tiling can be performed directly with CLooG when us-
ing constant (i.e., scalar) tile sizes, by extending the dimensionality of the iteration domains. This
approach significantly increases code generation time, because of the higher number of domain
dimensions. In PolyOpt this problem is avoided by the parametric tiling approach: the domain
dimension is not extended before using CLooG, but instead after the polyhedral code generation.
Preliminary results demonstrating the strong scalability gain for code generation time can be found
in [44].

The CLooG code generator is unanimously considered the state-of-the-art polyhedral code
generator, as it implements the latest and most scalable algorithm for code generation [9]. Given
the polyhedral representation of the SCoP together with the schedules computed by Pluto, it out-
puts a CLooG AST in an internal representation referred to as CLAST. This representation is then
translated into an extended version of CLAST called PAST, that supports non-affine loop bounds
(as parametric tiling can generate such non-affine bounds). The constructed PAST AST is then
translated back into a Sage AST.

5.3.5 Translation to Sage ASTs

The translation of a PAST AST to a Sage AST is based on a bottom-up traversal of the PAST IR, which
involves

• re-mapping of control structures and expressions

• mapping back to symbols that existed in the original program (e.g., names of arrays and pa-
rameters)

• introduction of new symbols in symbol tables (e.g., new iterators)

48 CHAPTER 5. POLYOPT – THE POLYHEDRAL OPTIMIZATION FRAMEWORK

• rewriting of array index expressions and loop bounds in terms of the new iterators

5.3.6 Parametric Tiling with PTile

Tiling is a key transformation in optimizing for parallelism and data locality. Tiling for locality in-
volves grouping points in an iteration space into smaller blocks (tiles) allowing reuse in multiple
directions when the block fits in a faster level of the memory hierarchy (registers, L1, or L2 cache).
Tiling for coarse-grained parallelism partitions the iteration space into tiles that may be executed
concurrently on different processors with a reduced frequency and volume of inter-processor com-
munication: a tile is atomically executed on a processor with communication required only before
and after execution. The first effective approach for tiling of imperfectly nested affine loops was de-
veloped in the Pluto polyhedral transformation framework [15]. However, Pluto can only generate
tiled code where the tile sizes are fixed at compile-time. In the PACE infrastructure, tile sizes can be
adapted at run-time, as a function of the machine parameters and the problem size to be used. It is
unpractical to re-compile the program for each of its execution, and it is highly desirable to be able
to specify the tile sizes as run-time parameters in the code instead of compile-time parameters.
This is parametric tiling code generation [44, 8].

Overview of the method In the case of a program with single statement, the loop structure is a
perfect loop nest. Generating aligned tiled code involves syntactic processing of the loop bounds
in addition to generating the tile loops. The tile loops are generated as perfectly nested loops that
enumerate the tiles as tile numbers in the tile space. Figure 5.3 illustrates an example for generating
aligned tiled code for a single statement program.

In the case of a program with multiple statements, the loop structure is an imperfectly nested
loop. Generating aligned tiled code in this case involves additional processing to generate perfectly
nested tile loops. The convex hull of the union of the domains of all statements is found and used
to generate the loop structure of the tile loops [8].

f o r (i =M; i <=N ; i ++)
f o r (j =b1+a1∗ i ; j <=min (b2−a2∗ i , b3+a3∗ i) ; j ++)

S (i , j) ;

(a) Original loop structure

/∗ I n t e r t i l e l o o p s i t , j t ∗/
f o r (i t = f l o o r (M/ T i) ; i t <= f l o o r (N/ T i) ; i t ++)

f o r (j t = f l o o r ((a1 ∗ (i t ∗T i)+ b1) / T j) ;
j t <= f l o o r ((min (b2−a2 ∗ (i t ∗T i) ,

a3 ∗ (i t ∗T i + Ti−1)+b3)) / T j) ;
j t ++)

/∗ I n t r a t i l e l o o p s i , j ∗/
f o r (i =max (M, i t ∗T i) ; i <=min (N, i t ∗T i + Ti −1); i ++)

f o r (j =max (a1∗ i +b1 , j t ∗T j) ;
j <=min (min (b2−a2∗ i , b3+a3∗ i) , j t ∗T j + Tj −1);
j ++)

S (i , j) ;

(b) Tiled loop structure

(c) Tiled iteration space (shown with region
of active tiles)

Figure 5.3: Parametric tiling of a single statement domain in PTile

5.3. METHOD 49

Generation of parallel tiled code When the tile sizes are parametric, it is problematic to generate
parallel code using the polyhedral framework since nonlinear expressions arise in the specification
of constraints and objective functions. Hence for an arbitrary parametric tiled code, it is non-trivial
to extract parallelism. PolyOpt implements the method from Baskaran et al. [8] to address this
problem.

After tiling as depicted above, if any of the tiling loops is parallel (i.e. has no loop carried de-
pendences), coarse-grained parallel tiled execution is directly possible. However, even if none
of the tiling loops is parallel, wavefront parallelism is always feasible among the tiles. But in-
stead of viewing wavefront-parallel tile execution as involving a unimodular transformation from
one n-dimensional space (nesting order t1, t2, . . . , tn of sequential tiled execution) to another n-
dimensional space (nesting orderw, t1, t2, . . . , tn−1), it is viewed in terms of a sparse n+ 1 dimen-
sional space with nesting orderw, t1, t2, . . . , tn. While this might seem very wasteful, by optimizing
the scanning of this higher dimensional space, parameterized parallel tiled execution is achieved
with negligible overhead of scanning empty tiles. The primary problem of generating loop bounds
for the outermost w loop via Symbolic Fourier Motzkin elimination is eliminated by generating
the lowest and highest numbered wavefronts in the untiled form of the loops and then generating
bounds for the lowest and highest numbered tiled wavefront loop. No explicit “skewing” of the tile
space is done; the t1, t2, . . . , tn loops are executed in original lexicographic order but constrained
to include only those tiles that actually belong in the current tile wavefront w. The n + 1 dimen-
sional loop nestw, t1, t2, . . . , tn is optimized by addition of constraints derived from the wavefront
inequalities.

50 CHAPTER 5. POLYOPT – THE POLYHEDRAL OPTIMIZATION FRAMEWORK

Chapter 6

AST-based Transformations in the

Platform-Aware Optimizer

6.1 Introduction andMotivation

This chapter summarizes the design of AST-based transformations in the Platform-Aware Opti-
mizer (PAO). As discussed in § 4, each of these transformations could be followed by incremen-
tal re-analysis. These transformations complement the polyhedral transformation framework de-
scribed in § 5, both by performing transformations on regions of code that are ineligible for polyhe-
dral transformation (non-SCoP regions) and by performing transformations that are not included
in the polyhedral framework (such as data transformations, idiom recognition, scalar replacement,
and loop-invariant redundancy elimination). AST-based transformations contribute to the overall
goal of the PAO to automate selection of an appropriate set of high level transformations for a given
platform as viewed through the lens of the platform-specific resource characteristics derived by the
PACE RC tools.

Most of the non-polyhedral transformations in the PAO are extensions of classical high-level
loop and data transformations introduced in previous work [79, 2, 68]. However, there has been
relatively little attention paid in past work to the question of which transformations should be auto-
matically selected for optimizing performance, especially for the wide set of transformations avail-
able in the PAO’s arsenal. Automatic selection of transformations is a critical issue for the PACE

Compiler because the developers of the PACE Compiler do not know a priori the performance
characteristics of the target platform. In PACE, the compiler must adapt to new platforms using
measured values for performance-critical system characteristics, where a vendor compiler can be
carefully tailored to match a known processor release.

An important aspect of high level transformations in the PAO that distinguishes them from
many lower-level transformations in the TAO is that most high level transformations are reversible
and, if improperly selected, can degrade performance just as effectively as they improve perfor-
mance. For example, loop interchange can improve the cache locality of a loop nest with a poor
loop ordering, but it can also degrade the performance of a well-tuned loop nest. In contrast,
while the performance improvement obtained by traditional lower-level optimizations (e.g., op-
erator strength reduction) can vary depending on the source program and target platform, such
optimizations typically do not significantly degrade performance.

Our overall approach to address this issue is to leverage the separation of concerns mentioned
in § 4 among Legality Analysis, Profitability Analysis, and IR Transformation, and to use a a quan-
titative approach to profitability analysis. The problem of selecting high level transformations is
decomposed into different optimization problems that address the utilization of different classes

Principal Contacts For This Chapter: Vivek Sarkar, vsarkar@rice.edu

51

52 CHAPTER 6. AST-BASED TRANSFORMATIONS IN THE PLATFORM-AWARE OPTIMIZER

of hardware resources (e.g., memory hierarchy, inter-core parallelism, intra-core parallelism). The
formulations of the optimization problems are based on quantitative cost models, which are built
on measured characteristics of the target system and application characteristics that include mea-
sured context-sensitive profiles. Multiple transformations may be used to optimize a single class of
hardware resources (e.g., loop interchange, tiling and fusion may all be used in tandem to improve
memory hierarchy locality), and a single transformation may be employed multiple times for dif-
ferent resource optimizations (e.g., the use of loop unrolling to improve both register locality and
instruction-level parallelism).

6.2 Functionality

As described in § 4.2, the PAO takes as input refactored program units (RPUs), and generates as
output transformed versions of each RPU using a combination of polyhedral and AST-based trans-
formations.

6.2.1 Input

The primary input for a single invocation of the AST-based transformer is the HIR (SAGE III IR) for
an RPU. Additional inputs (as shown in Figure 4.1) include compiler directives from the optimiza-
tion plan, resource characteristics for the target platform, profile information with calling-context-
based profile information for the source application, and TAO cost analysis feedback (Path 3 in
Figure 4.2).

6.2.2 Output

As its output, the AST-based transformer produces a transformed HIR for the input RPU. The trans-
formed code can be translated into either C source code or into the IR used in the Target-Aware
Optimizer (TAO). This latter case uses the PAO→TAO IR translator, described in § 7; the translator is
also used in the PAO–TAO query mechanism, as shown in Figure 4.2.

6.3 Method

The proposed structure of AST-based transformations in the PAO for a single function is as follows.
Though not listed explicitly, the incremental program reanalysis described in § 6.3.7 is assumed to
be performed after each transformation listed below. The transformations described below could
be performed on all functions within the RPU, starting with entry functions (functions called from
other RPU’s), and transitively traversing the call graph within the RPU. Transformations that have
already been implemented will be explicitly noted as such.

1. Perform function inlining and path duplication within an RPU. This step is driven by context-
sensitive and path-sensitive execution profiles obtained by the PACE Runtime System.

2. Perform canonical programanalyses. As indicated in § 4, these analyses include Global Value
Numbering, Constant Propagation, and Induction Variable Analysis. This analysis informa-
tion could be updated incrementally, whenever a transformation is performed by a later step.

3. Perform preprocessing transformations. The purpose of this step is to increase opportunities
for subsequent polyhedral and non-polyhedral transformations. It could start with a clean-
up phase that includes Unreachable Code Elimination, Dead Code Elimination, and to sepa-
rate SCoP-compliant and non-SCoP-compliant statements into separate loop nests as far as
possible. (SCoP stands for “Static Control Part”, and represents a loop nest that is amenable
to polyhedral transformations. See § 5.2.1.) It could also attempt to maximize the number of
enclosing perfectly nested loops for each statement.

6.3. METHOD 53

4. Identify SCoPs in each function, and invoke the PolyOpt component separately for each
SCoP. This identification and invocation have been implemented. As described in § 5, the
PolyOpt component has already been implemented and performs a number of loop trans-
formations on each SCoP including fusion, distribution, interchange, skewing, permutation,
shifting and tiling, in addition to identifying vectorizable loops that are marked as such and
passed to TAO for vectorization described in Appendix B.

5. Perform the following steps for each maximal non-SCoP loop nest in the IR 1

(a) Pattern-driven Idiom Recognition — if the loop nest is found to match a known library
kernel (or can be adapted to make the match), then replace the loop nest with the ap-
propriate library call. This transformation can be applied even to the SCoP-compliant
loop nests, and it may even lead to a better code than polyhedral transformations. We
could evaluate both alternatives. More details are given in § 6.3.1.

(b) Loop Privatization — create private per-iteration copies of scalar and array variables,
when legal to do so.

(c) Locality optimization — use the measured characteristics of the target machine’s mem-
ory hierarchy (from the PACE RC tools) to select a set of interchange, tiling and fusion
transformations to optimize locality (with support from other iteration-reordering loop
transformations as needed, such as loop reversal and loop skewing). Cost-driven para-
metric tiling and fusion transformations have already been implemented for this step,
and are applicable to non-SCoP loops.

(d) Parallelization of outermost loop nests — if the loop nest does not already have explicit
OPENMP parallelism, use OPENMP to automatically create parallel loops at the outer-
most level, with loop coalescing for efficiency.

(e) Unrolling of innermost loop nests — use iterative feedback from the TAO (guided by
measured processor characteristics) to select unroll factors for each innermost loop
nest. This transformation can be applied even to the loops produced by the PolyOpt
component. This technique has been implemented and details are provided in § 6.3.5.

(f) Scalar replacement — perform loop-carried and loop-independent scalar replacement
of array and pointer accesses within the loop nest. More details are provided in § 6.3.6

(g) Commit all transformations and perform incremental reanalysis.

6. Return the updated SAGE III IR to the compiler driver so that it can invoke the later steps
of compilation, including the PAO→TAO IR translator. This has (of necessity) been imple-
mented.

6.3.1 Pattern-driven Idiom Recognition

In some cases, a computational kernel in the input application may be implemented by a platform-
specific library such as BLAS call. If so, it is usually beneficial to replace the user-written kernel
by call to the platform-specific library. However, in addition to recognizing opportunities for this
transformation, it is important to factor in the cost of adaptation (e.g., additional copies).

For example, consider the code fragment in Figure 6.1. On one platform, the PAO might select
a combination of tiling, interchange, unrolling, and scalar replacement as usual. Tile sizes are ini-
tialized using analytical cost model and updated by runtime, while the unroll factors are proposed
by cost model and refined by feedback from TAO.

1Transformations in the list will be applied to the non-SCoP loop nest. The PolyOpt framework applies some of these same
transformations, such as loop tiling, to the SCoP loop nests.

54 CHAPTER 6. AST-BASED TRANSFORMATIONS IN THE PLATFORM-AWARE OPTIMIZER

for(i = 0; i < n; i++){

for (j = 0; j < n; j++){

a[i,j] = 0;

for (k = 0; k < n; k++){

a[i,j] = a[i,j] + b[j,k] * c[k,i];

}

}

}

Figure 6.1: Matrix multiplication and transpose

However, on a different platform, the PAO might recognize that the computation above can be
implemented with two library calls (matrix multiply and transpose) that are available in optimized
form on that platform. The PAO could still explore transformations as in the previous case (using
system characterization values for this particular platform), but it may conclude that the cost of
using library routines will be lower than the compiler-optimized version for values of n greater
than some threshold.

6.3.2 AST-based Loop Tiling

Loop tiling is a critical optimization for effectively using the memory hierarchy on the target ma-
chine. As described in Section 6.3, the AST-based transformation framework in PAO could apply
parametric loop tiling to the non-SCoP loop nests that is not eligible for the PolyOpt framework.
The AST-based tiling is applied to the loop nests that satisfy the following conditions.

• The loops are innermost perfectly nested.

• There is no conditional branch to jump outside the loop body.

• Loop indexes have invariant iteration space.

• Data dependence vectors don’t contain negative elements (the loop nest is fully permutable)

• Each loop index carries temporal and/or spatial locality on the accessed arrays.

Conditions 1 to 4 are evaluated by classical compiler analyses. As described in Section 4.3.4, the
AST-based transformation framework employs the DL model to compute the memory cost and es-
timate data locality carried by each loop index (condition 5).

for(i2 = 0; i2 < n; i2 += B){

for(j2 = 0; j2 < n; j2 += B){

for(k = 0; k < n; k++){

for(i1 = i2; i1 < min(i2 + B - 1, n); i1++){

for(j1 = j2; j2 < min(j2 + B - 1, n); j1++){

a[i1,j1] = a[i1,j1] + b[j1,k] * c[k,i1];

}

}

}

}

}

Figure 6.2: Matrix multiplication and transpose, tiled with a BxB tile size

6.3. METHOD 55

Figure 6.2 shows the example from Figure 6.1, tiled with a BxB tile size across the i and j di-
mensions, as might be done to prepare for online tuning by the RTS. Note that the initialization
statement is split as a different loop nest so as to enable loop tiling.

6.3.3 Selection of Tile Size

In order to maximize cache usage, PAO will have to select the right combination of the tile size,
unroll factor, and loops to interchange. Tile size will naturally depend on the measured values for
cache size and associativity of the target platform from the PACE RC tools. PAO will employ two
analytical models to optimize tile size of parameterized tiling loop nests generated by both Poly-
Opt and AST-based frameworks, 1) DL model: an existing conservative model, based on the data
footprint of a tile, which ignores intra-tile cache block replacement, and 2) ML model: an aggres-
sive new model that assumes optimal cache block replacement within a tile. These two models
are used to determine the initial tile size and theoretical lower and upper bounds for the optimal
tile size. The initial tile size could, in turn, be tuned at runtime using the online feedback-directed
parameter selection facility of the PACE RTS (§ 9.3.4), where the search space of runtime tile size
tuning is bounded by the above theoretical boundaries. The code for the parameterized version of
the loop could be packaged for runtime tuning using the approach described in § 4.3.8.

6.3.3.1 DLModel

The DL (Distinct Lines) model was designed to estimate the number of distinct cache lines ac-
cessed in a loop-nest [39, 68]. Consider a reference to an m-dimensional array variable (called A,
say), enclosed in n perfectly nested loops with index variables i1, · · · , in:
A[fm(i1, · · · , in)] · · · [f1(i1, · · · , in)] where fj(i1, · · · , in) is an affine function. An exact analysis to
compute DL is only performed for array references in which all coefficients are compile-time con-
stants (affine). An upper bound for the number of distinct lines accessed by a single array reference
[39] with one-dimensional subscript expression f(i1, · · · , in) is

DL(f) ≤ min
(

(fhi−f lo)
g + 1,

⌈
(fhi−f lo)

L

⌉
+ 1
)
,

where g is the greatest common divisor of the coefficients of the enclosing loop indices in f , and
L is the cache line size in units of array element size. fhi and f lo are the maximum and minimum
values taken by subscript expression f across the entire loop nest. For the special case whenL = 1,
DL(f) = (fhi − f lo)/g + 1 becomes an estimate of the number of distinct accesses made by the
array reference. In practice, the relative error of this estimation is small when, as is usually the case,
the size of the (fhi − f lo) range is much larger than the size of the individual coefficient of f . For
a multidimensional array reference, A (f1, · · · , fm), the upper bound estimate given in [39] is as
follows:

DL(f1, · · · , fm) = DL(f1)×
∏m

j=2

(
(fhi

j −f lo
j)

gj
+ 1
)
.

It was also shown in past work how this model can be extended to account for multiple array ac-
cesses in a loop nest [39, 68].

This bound provides a reasonable estimate when the stride of second dimension is larger than
L. These DL definitions for an entire loop nest are also applicable to a tile, whose loop boundaries
are expressed with tile sizes. In such a case, the DL definition is a symbolic function of tile sizes
t1, · · · , tn denoted byDL(t1, · · · , tn) [68].

The DL definition is also applicable to any level of cache or TLB by selecting its cache line size
or page size as L. Unfortunately, the DL model ignores possible replacement of cache lines and
therefore provides conservative over-estimation for the number of cache lines needed.

56 CHAPTER 6. AST-BASED TRANSFORMATIONS IN THE PLATFORM-AWARE OPTIMIZER

0

100

200

300

400

500

10 110 210 310 410
T_

2
T_3

Region within DL/ML

Figure 6.3: Search Space for Matrix Multiplication for T1 = 30

6.3.3.2 MLModel

ML (Minimum working set Lines), which is based on the cache capacity required for a tile when
intra-tile reuse patterns are taken into account, is a new analytical cost model introduced in the
PACE project. The essential idea behind the ML model is to develop an estimate of the minimal
cache capacity needed to execute a tile without incurring any capacity misses, if the pattern of
intra-tile data reuse is optimally exploited as described below. Consider a memory access trace of
the execution of a single tile, run through an idealized simulation of a fully associative cache. The
cache is idealized in that it has unbounded size and an optimal replacement policy where a line in
cache is marked for replacement as soon as the last reference to data on that line has been issued
(through an oracle that can scan the tile’s entire future references). Before each memory access,
the simulator fetches the desired line into the idealized cache if needed. After each memory access,
the simulator evicts the cache line if it is the last access (according to the oracle). ML corresponds
to the maximum number of lines (high water mark) held in this idealized cache during execution
of the entire trace (tile).

The PAO will compute ML for a tile by first constructing a special sub-tile based on analysis
of reuse characteristics and then computing the DL value for that sub-tile. Although we mainly
discuss cache capacity in this section, the idea and definition is directly applicable to TLBs by re-
placing the cache line size by the page size.

6.3.3.3 Bounding Search Space and Selecting Initial Tile Size

DL and ML models give the theoretical lower and upper bounds for the tile size search space. ML
is used for optimistic cache and TLB capacity constraints for intra-tile data reuse and gives the
upper boundaries for estimated tile sizes. In contrast, DL is used for conservative constraints, and
gives the lower boundaries. These lower and upper boundaries drastically reduce the search space.
Furthermore, DL model gives the average memory cost for given tile sizes, and a tile size with min-
imum memory cost is selected as the initial tile size for the runtime auto-tuning in the PACE RTS.

In PAO, ML and DL are represented as the functions of tile sizes T1, T2, ..., Tn for n-th nested
tiling loops. CS1 represents the number of cache lines or TLB entries at level-1 cache or TLB mem-
ory. All tile sizes within the lower boundaries due to DL and upper boundaries due to ML satisfy
the following constraints.

DL(T1, T2, · · · , Tn) ≥ CS1

6.3. METHOD 57

for(i2 = 0; i2 < n; i2 += B){

for(j2 = 0; j2 < n; j2 += B){

for(k = 0; k < n; k++){

for(j1 = j2; j1 < min(j2 + B - 1, n); j1++){

for(i1 = i2; i1 < min(i2 + B - 1, n); i2++){

a[i1,j1] = a[i1,j1] + b[j1,k] * c[k,i1];

}

}

}

}

}

Figure 6.4: Matrix multiplication and transpose, tiled with a BxB tile size, with i1 and j1 loops in-
terchanged

ML(T2, T3, · · · , Tn) ≤ CS1

We have two bounded regions according to cache and TLB. In our approach, we consider the union
of both regions as candidates for optimal tile sizes, and give higher search priority to the intersec-
tion of both regions.

For example, DL and ML boundary constraints for a single-level tiling example of Matrix Mul-
tiplication is calculated as follows. We assume the experimental platform has 32 Kb L1 cache with
64 Byte line size (total 512 lines), and program size N = 3000 with array element size 8 Bytes.

DL = T1

⌈
T2
8

⌉
+ T1

⌈
T3
8

⌉
+ T3

⌈
T2
8

⌉
≥ 512

ML = 1 +
⌈

T3
8

⌉
+ T3

⌈
T2
8

⌉
≤ 512

Figure 6.3 shows the bounded search space for (T2, T3) when T1 is 30. These regions bounded by
DL/ML constraints are much smaller than the original 2-D search space 30002.

6.3.4 Loop Interchange

Loop interchange is another important compiler transformation that can significantly improve the
performance through improving locality and increasing the effect of loop tiling described above.

For example, in the tiled matrix multiplication and transpose example on Figure 6.2, the el-
ements of a tile are accessed in a row-major order, while the arrays are stored in column-major
order in Fortran. If the whole tile fits in cache and the arrays are lined up properly to avoid conflict
misses, then the code on figure 6.2 should perform equally well regardless of the order of the i1

and j1 loops. If not, the performance can be improved by interchanging the two inner loops, as
shown on Figure 6.4.

6.3.5 Unrolling of Nested Loops

Loop unrolling can significantly improve code performance by reducing the loop iteration over-
head and increasing the size of the loop body, making further optimizations of the loop body more
effective. Loop unroll-and-jam can improve the efficiency of pipelined functional unit. However,
excessive loop unrolling can create additional register pressure, which can have detrimental effect
on performance if the register allocator is forced to spill some values to memory.

In PACE compilation framework, a cost driven mechanism is employed to perform multi-level
loop unroll-and-jam with the most optimal unroll-and-jam factors identified by compile time cost
estimation module. The definition of multi-level loop unroll-and-jam is: given a n-level loop nest2,
apply loop unrolling for the innermost loop (level 1) and apply n − 1 times loop unroll-and-jam

2The level of innermost loop is marked as 1, and outermost loop is marked as n.

58 CHAPTER 6. AST-BASED TRANSFORMATIONS IN THE PLATFORM-AWARE OPTIMIZER

from the level 2 loop to outermost loop (level n) respectively. The unroll-and-jam factor is a tuple:
(f0, f1, ... fn), each element is the unroll factor for the corresponding loop level, e.g. fi is the unroll
factor for the i level loop in the given loop nest.

6.3.5.1 Cost Driven Loop Unroll-and-Jam

The basic workflow of cost driven loop unroll-and-jam contains such steps:

1. Identify the loop nest that can be transformed by unroll-and-jam;

2. setup the search space;

3. for each configuration in the search space:

(a) perform unroll-and-jam on the target loop nest and generate synthetic function;

(b) perform TAO query to get the estimated cost of the synthetic function;

(c) check if current synthetic function is the optimal one that has minimal cost.

4. return the optimal synthetic function.

Step 1 is the legality check. As it may not be able to apply unroll-and-jam among the whole
loop nest regarding data dependency, the legality check should identify the highest loop level for
applying unroll-and-jam. The loop level here is the level of loop nest starts from the innermost
loop. The legality of unroll-and-jam is determined by the data dependency, so the selection of
loop level is based on checking data dependence vectors (DDV). In PACE compiler, the PolyOpt
module is used to perform the dependence vector analysis and produce DDV set for a given loop
nest.

Before analyzing the DDV, there are 3 constraints for the target loop nest.

1. The loop nest is canonical for-loop nest, if not, only the innermost loop can be unrolled;

2. The loop body does not contain continue statement, if not, this loop nest can not be un-
rolled;

3. The loop body does not contain break and return statement, if not, only the innermost loop
can be unrolled;

The definition of canonical loop follows such rules: 1) the loop nest should be perfect loop nest; 2)
the stride values of the loop nest must be either constant value or invariance of the loop nest; 3) the
iterator changing operator must be either increment or decrement; 4) the iteration boundary must
be either constant value or invariance of the loop nest; 5) boundary comparison operator must fall
in there 4 types: greater, greater equal, less or less equal.

If these 3 constraints are satisfied, next step is to go through DDVs and identify the highest loop
level L that can be applied with unroll-and-jam. By applying data dependence analysis on a given
loop nest, we get a list of DDVs: ddv0, ddv1, .. ddvn. For each element ddvi, get the highest loop
level li base on the constraint that the dependence distance of all of the loops whose loop level is
less equal than li is not > (i.e.positive value). After the list l0, l1, ... ln was built, L is identified by
min(l0, l1, ... ln).

The step 2 is to build the search space for identifying the optimal unroll-and-jam factor re-
garding the TAO cost estimation. Given a n level loop nest that is selected for unroll-and-jam, the
number of possible configuration (i.e. unroll-and-jam factor) is (Bupper −Blower)n. Blower is the
lower bound of unrolling factor for each loop level andBupper is the upper bound 3.

3The Bupper and Blower are configurable parameters that are retrieved from PACE compiler input, and both of them
should be larger than 0.

6.3. METHOD 59

for (i = 0; i < 100; i ++)

for (j = 0; j < 100; j ++)

for (k = 0; k < 100; k ++) {

A[i][j][k] = A[i+2][j][k] + 0.1;

}

Figure 6.5: Loop Nest example for Unroll-and-Jam

The last step is applying multi-level loop unroll-and-jam for each unroll-and-jam factor and
selecting the optimal solution based on TAO cost estimation. The mechanism of multi-level loop
unroll-and-jam has been mentioned in previous paragraphs. Here gives an example, Figure 6.5 is
the input loop nest, the dependence distance is (>, =, =) and the level 1 and 2 can be applied with
unroll-and-jam. Figure 6.6 gives the transformed code by applying factor (1, 2, 2).

To query the cost value from TAO cost estimation module, the PAO generate synthetic func-
tion for each unroll-and-jam factors and pass through the PAO-TAO query interface (described in
§ 4.3.5). TAO’s answers to PAO’s queries (§ 8.3.5) will be then analyzed by PAO to select the best
unroll-and-jam factor that produces the minimal cost. In current implementation, the CODESIZE

is used as the major metric for evaluation.

6.3.5.2 Pruning the Search Space

To reduce compile-time overheads, the PAO could prune this search space using an analytical cost
model to compute the infeasible unroll configurations based on the register pressure of the un-
rolled loop and the measured number of registers available on the target platform. PAO could only
evaluate the feasible unroll configurations.

Figure 6.7 shows an example of a search space for unroll configurations for the middle and out-
ermost loops in a triple nested loop from Figure 6.1, on a hypothetical platform with 16 registers.
Instead of searching the whole space of 380 unroll configurations, PAO could only evaluate 44 fea-
sible unroll configurations.

6.3.6 Scalar Replacement

Scalar replacement is another classical optimization that could have a large impact on the perfor-
mance of the code generated by the PAO. Scalar replacement reduces memory access, by rewriting
the code so that the compiler can store a reused value in a register instead of in memory. Unfortu-
nately, this rewrite can both increase register pressure and reduce available parallelism. Thus, the
PAO will need to strike the right balance between the potential for improvement and the potential
for degradation by choosing carefully those array elements to be rewritten as scalar variables. This
choice must work well within the tile size and unroll factors that the PAO has selected for the loop,
as discussed earlier.

Figure 6.8 shows the code from Figure 6.1 where the array element a[i,j] has been replaced
with a scalar sum.

6.3.7 Incremental Reanalysis

Incremental reanalysis in the PAO could be supported by maintaining auxiliary structures for pro-
gram regions. The partitioning of the input program into regions can be tailored to optimizations of
interest. A common partitioning is to place each loop in a separate region (as in the Loop Structure
Tree [68]) but other partitions are possible.

60 CHAPTER 6. AST-BASED TRANSFORMATIONS IN THE PLATFORM-AWARE OPTIMIZER

for (i = 0; i < 100; i++) {

int _j_fringe_1 = (100 % 2 == 0 ? 0 : 2);

for (j = 0; j <= 99 - _j_fringe_1; j += 2) {

int _k_fringe_3 = (100 % 2 == 0 ? 0 : 2);

for (k = 0; k <= 99 - _k_fringe_3; k += 2) {

A[i][j][k] = A[i + 2][j][k] + 0.1;

A[i][j + 1][k + 0] = A[i + 2][j + 1][k + 0] + 0.1;

A[i][j + 0][k + 1] = A[i + 2][j + 0][k + 1] + 0.1;

A[i][j + 1][k + 1] = A[i + 2][j + 1][k + 1] + 0.1;

}

for (; k <= 99; k += 1) {

A[i][j][k] = A[i + 2][j])[k] + 0.1;

A[i][j + 1][k] = A[i + 2][j + 1][k] + 0.1;

}

}

for (; j <= 99; j += 1) {

int _k_fringe_2 = (100 % 2 == 0 ? 0 : 2);

for (k = 0; k <= 99 - _k_fringe_2; k += 2) {

A[i][j][k] = A[i + 2][j][k] + 0.1;

A[i])[j][k + 1] = A[i + 2][j][k + 1] + 0.1;

}

for (; k <= 99; k += 1) {

A[i])[j][k] = A[i + 2][j][k] + 0.1;

}

}

}

}

Figure 6.6: Loop Nest example after applying Unroll-and-Jamwith factor (1, 2, 2)

6.3. METHOD 61

Pruned 
search 
space 

|

0

|

1

|

2

|

3

|

4

|

5

|

6

|

7

|

8

|

9

|

10

|

11

|

12

|

13

|

14

|

15

|

16

|

17

|

18

|

19

|

2

|0

|1

|2

|3

|4

|5

|6

|7

|8

|9

|10

|11

|12

|13

|14

|15

|16

|17

|18

|19

|20

 u1, unroll factor for outermost loop

 u
2
,
u
n
ro

ll
 f

ac
to

r
fo

r
m

id
d
le

 l
o
o
p

Infeasible boundary

Feasible region

(44 points)

Infeasible region

(346 points)

PAO explores pruned subset of 
search space for unroll factors 
and repeatedly invokes TAO for 
each data point to evaluate code 
that will be generated for each 

unroll configura=on 

Feasibility and infeasibility are 
computed  with respect to 

register pressure of unrolled loop 
rela=ve to number of registers 
available in target pla@orm 

Figure 6.7: Search Space for Loop Unrolling Configurations

for (i = 0; i < n; i++){

for (j = 0; j < n; j++){

sum = 0;

for (k = 0; k < n; k++){

sum = sum + b[j,k] * c[k,i];

}

a[i,j] = sum;

}

}

Figure 6.8: Matrix multiplication and transpose with scalar replacement of the a[i,j] element

62 CHAPTER 6. AST-BASED TRANSFORMATIONS IN THE PLATFORM-AWARE OPTIMIZER

Chapter 7

The Rose to LLVM Translator

The Platform-Aware Optimizer is implemented on top of the Rose infrastructure, while
the Target-Aware Optimizer is implemented on top of the LLVM infrastructure. Thus,
PACE needs a translator from the SAGE III IR used in the PAO to the LLVM IR used in the
TAO. This chapter describes PACE-cc, the tool that implements this translation.

7.1 Introduction

Figure 1.2 provides a high-level overview of the PACE system design. This chapter focuses on the
design of PACE-cc, a translator from the SAGE III IR to the LLVM IR. The SAGE III IR is an abstract
syntax tree (AST) representation produced by the Rose compiler and used by the Platform-Aware
Optimizer for transformations. The Target-Aware Optimizer operates on the LLVM IR, a linear code
in static single-assignment form (SSA).

7.1.1 Motivation

The Platform-Aware Optimizer is implemented on top of the Rose infrastructure, while the Target-
Aware Optimizer is implemented on top of the LLVM infrastructure. Thus, PACE needs a translator
from the Sage III IR used in Rose to LLVM’s IR. PACE-cc is the Sage→LLVM translator used to gener-
ate LLVM’s bitcode, which is fed as an input to the Target-Aware Optimizer.

A critical aspect of the PAO/TAO interaction is the PAO’s use of the TAO as an oracle for feedback
on the performance of potential code transformations. The PAO produces Sage IR for synthetic
functions, which represent transformed versions of selected user code fragments for which the
PAO needs cost estimates (see 4.3.5). Here too a translation to LLVM’s IR is needed by the TAO. The
PACE-cc translator also implements this translation (Path 2 in Figure 4.2).

7.2 Functionality

7.2.1 Input

The translator is invoked in two distinct situations: as part of the full compilation path or the LLVM

backend path (see § 3.4), and as part of a PAO-to-TAO query. In the first case, illustrated by Path 1
in Figure 4.2, the compiler driver invokes the translator, after the driver has invoked the PAO and
before it invokes the TAO. The input to the translator along Path 1 is an AST in SAGE III IR with
auxiliary information, and compiler directives passed by the compiler driver. These directives in-
clude optimization directives, some of which are generated by the PAO and instruct and constrain
the TAO in its code transformations (see 4.2.2). The auxiliary information includes profile data,
and information about aliases and dependences. To aid in vectorization, the auxiliary information

Principal Contacts For This Chapter: Philippe Charles, pgc1@rice.edu, and Michael Burke, mbg2@rice.edu

63

64 CHAPTER 7. THE ROSE TO LLVM TRANSLATOR

may include alignment information and sets of memory accesses (bundles). See Appendix B for a
detailed description of the auxiliary information needed for vectorization.

In the second case, illustrated by Path 2 in Figure 4.2, the PAO invokes the translator and pro-
vides it with an AST in SAGE III IR form for the synthetic function that it has created for the query.
Auxiliary information accompanies the AST, as in the first case. On this path, the PAO invokes the
translator and the TAO.

7.2.2 Output

PACE-cc produces as output, along Path 1, the LLVM IR that corresponds to the input AST, along
with LLVM metadata that provides links to the SAGE III IR auxiliary information described above. In
that the PAO and the TAO will share a single address space, PACE-cc will give the TAO access to the
SAGE III IR auxiliary information by constructing a global table of pointers to it and passing table
indices to the TAO by means of the LLVM metadata facility.

PACE-cc produces as output, along Path 2, the LLVM IR that corresponds to the input AST for
the synthetic function, along with LLVM metadata that provides links to the SAGE III IR auxiliary
information described above. Once again, the communication between the PAO and the TAO will
be facilitated by constructing a global table of pointers to the SAGE III IR auxiliary information and
passing table indices to the TAO by means of the LLVM metadata facility.

7.3 Method

To perform a translation, PACE-cc makes two passes over the SAGE III IR with Pre/Post-order visitor
patterns provided by Rose.

In the first pass, the translator generates attributes, associated with AST nodes, as part of the
analysis necessary for mapping C constructs into LLVM constructs. Attributes are added to the
AST to process global declarations and constants; map the C types into corresponding LLVM types;
process local declarations; generate temporaries and labels.

In the second pass, LLVM code is generated. Each RPU is mapped into an LLVM module. First,
global variables are processed, followed by aggregate types and function headers. Finally, code is
generated for each function body in turn.

Due to incomplete (and in some cases, incorrect) semantic processing in the Rose compiler
or semantic differences between C and LLVM, additional semantic analyses must be performed in
PACE-cc. LLVM, unlike C, is strongly typed. All these semantic issues are resolved in the first pass of
the translator using the SAGE III IR persistent attribute mechanism, without transforming the AST.

For example, instead of supporting a type for Boolean values, C uses the integer type to repre-
sent them. Boolean values often occur in a SAGE III IR representation, for example, as the result of
an intermediate comparison operation. In the SAGE III IR, these Boolean values are represented as
integers. LLVM has a bit type to represent Boolean values. The translator has to extend the SAGE III

IR AST (with attributes) to include the proper casting between integer and bit values.
The Rose compiler’s semantic processing of pointer subtraction is incorrect. The subtraction

of two pointers yields a pointer value instead of an integer value. The translator corrects this error
with the persistent attribute mechanism. Other issues of type include:

• The sizeof operator, whose value is not always correctly computed in the Rose compiler and
not provided at all for structure types.

• Structure storage mapping.

• Integer (integral) promotion/demotion is not performed for op= operation on integer types.

For a given RPU input file, the SAGE III IR AST constructed by Rose is a complete representation
of the file after preprocessing expansion. To avoid code bloat, including code duplication, we do

7.4. EXAMPLE 65

not generate code for extraneous program fragments that are imported from header files by the C

preprocessor but are not relevant to the file being translated.
Thus, translation requires more than a simple pass over the AST. However, the SAGE III IR sup-

ports two traversal modes, both of which use the Pre/Post-order visitor pattern. Using these two
traversals, PACE-cc can achieve the desired effect. We start with a complete traversal of the main
input files. A function traverseInputFiles(SgProject *) traverses only AST components whose def-
inition originated from a main (.c) input source file. While processing the elements in the main
input files, we record the external elements, defined in imported header files, on which they de-
pend. A function traverse(SgNode *) is given an arbitrary starting node in the AST and will traverse
the subtree rooted at the node in question. After traversal of the main input files, we traverse the
recorded external elements, and record the imported elements on which they depend. This pro-
cess continues until there are no remaining imported elements.

Hence, a pass over the SAGE III IR AST consists of an initial call to traverseInputFiles(SgProject
*) to process the elements in each main input file, followed by invocations to traverse(SgNode *)
to import the needed elements defined in imported header files. These are the elements that the
main file depends on, directly or indirectly.

To further avoid traversing duplicate AST representations emitted by the Rose compiler for cer-
tain features, we add a facility for short-circuiting a traversal at a given node during a visit.

7.4 Example

Consider the following C program:

int add(int x, int y) { return x + y; }

int main(int argc, char *argv[]) {

int x = 5,

y = 6,

z = add(x, y);

printf("z = %i\n", z);

}

This program consists of a main program and a local function add. In addition to some basic
declarations and initializations, the main program contains a call to add and accesses two global
entities: the external function printf and the string constant "z = %i\n". PACE-cc begins the
translation of this C file with the following LLVM declarations for the global entities:

@"\01LC0" = internal constant [8 x i8] c"z = %i\0A\00"

declare i32 @printf(...)

66 CHAPTER 7. THE ROSE TO LLVM TRANSLATOR

The LLVM code generated by PACE-cc for the add function is:

define i32 @add(i32 %x, i32 %y) nounwind {

.entry:

%.retval = alloca i32, align 4 ; storage for return value

%x.addr = alloca i32, align 4 ; parameter x

%y.addr = alloca i32, align 4 ; parameter y

store i32 %x, i32* %x.addr ; store value of parm x in mutable copy of x

store i32 %y, i32* %y.addr ; store value of parm y in mutable copy of y

%.tmp0 = load i32* %x.addr ; load x

%.tmp1 = load i32* %y.addr ; load y

%.add2 = add i32 %.tmp0, %.tmp1 ; x + y

store i32 %.add2, i32* %.retval ; store (x + y) in the return value

%.tmp8 = load i32* %.retval ; load return value

ret i32 %.tmp8 ; return the return value

}

The LLVM code generated by PACE-cc for the main function is:

define i32 @main(i32 %argc, i8** %argv) nounwind {

.entry:

%.retval = alloca i32, align 4 ; storage for return value

%argc.addr = alloca i32, align 4 ; parameter argc

%argv.addr = alloca i8**, align 4 ; parameter argv

%x = alloca i32, align 4 ; int x

%y = alloca i32, align 4 ; int y

%z = alloca i32, align 4 ; int z

store i32 %argc, i32* %argc.addr ; store value of argc in mutable copy of argc

store i8** %argv, i8*** %argv.addr ; store value of argv in mutable copy of argv

store i32 5, i32* %x ; initialize x to 5

store i32 6, i32* %y ; initialize y to 6

%.tmp3 = load i32* %x ; load x

%.tmp4 = load i32* %y ; load y

%.call5 = call i32 (i32, i32)* @add(i32 %.tmp3, i32 %.tmp4) ; add(x, y)

store i32 %.call5, i32* %z ; z = add(x, y)

%.tmp6 = load i32* %z ; load z

%.call7 = call i32 (...)* ; call printf(..., z)

@printf(i8 * getelementptr ([8 x i8]* @"\01LC0", i32 0, i32 0), i32 %.tmp6)

store i32 0, i32* %.retval ; store return value of 0

%.tmp9 = load i32* %.retval ; load return value;

ret i32 %.tmp9 ; return the return value

}

Note that the code generated for these two functions has a similar structure: a header statement
similar to the C header statement; a variable declaration to hold the return value of the function (if
needed); declarations of mutable local variables for the formal parameters (if any); declarations
for user-declared local variables (if any); code generated to initialize the local variables associated
with the parameters (if any); initialization code generated for user-defined local variables (if any);
code generated for each executable statement in the body of the function.

Chapter 8

The PACE Target-Aware Optimizer

The Target-Aware Optimizer (TAO) is a major component of the PACE compiler. The
TAO has two primary functions: performing target-aware optimization and providing
feedback to the Platform-Aware Optimizer (PAO) . When performing target-aware op-
timization, the TAO optimizes the input code to better match the microarchitectural
details of the target system’s processors, as revealed by the PACE system’s resource-
characterization tools. When providing feedback to the PAO, the TAO returns informa-
tion about how a specific segment of code will translate onto the target processor.

8.1 Introduction

The PACE compiler includes two major optimization tools: the Platform-Aware Optimizer (PAO)
and the Target-Aware Optimizer (TAO). Figure 1.2 describes the relationships between these tools
as well as the relationships between the TAO and other parts of the PACE system, such as the Re-
source Characterization tool (RC), the Runtime System (RTS), and the Machine Learning tool (ML).
This chapter describes the functionality and design of the TAO, along with its interfaces to the rest
of the tools in the PACE system. The TAO builds upon the open-source LLVM compilation system.

8.1.1 Motivation

Target-aware optimization sits between the PAO and the underlying hardware system on both the
full compilation path and the LLVM backend compilation path. The TAO generates versions of
the PAO-transformed application source code tailored to individual processors. To accomplish
this task, the TAO must consider performance at a near-assembly level of abstraction, perform
resource-aware optimization, and then either map the results of that optimization back into source
code for vendor compilers or invoke an LLVM backend. Key aspects of the TAO include:

Resource-specific Tailoring The TAO uses knowledge from resource characterization to tailor
the code for specific targets. For example, the RC might discover the relative costs of a variety of
operations, including addition, multiplication, division, load, store, and multiply-add. The TAO

can use that information when performing optimizations that make decisions based on the relative
costs of operations.

Novel Optimizations The TAO provides a location for inserting new optimizations into the tool-
chain without modifying vendor compilers that are invoked on the full compilation path. For ex-
ample, the tree-height restructuring pass that we completed reorders chains of arithmetic oper-
ations to expose additional ILP [32]. Inserting this optimization into the TAO made it uniformly
available across all PACE supported targets through both the full compilation path and the LLVM

Principal Contacts For This Chapter: Linda Torczon, linda@rice.edu

67

68 CHAPTER 8. THE PACE TARGET-AWARE OPTIMIZER

Resource
Characteristics

-

Optimization
Directives

HHH
HHH

HHj

Other
Auxiliary

Information
Z
Z
Z
ZZ~

LLVM IR

?

PAO–TAO query
mechanism
�

�
�
�	�
�
�
��

�

�

�

�
Target-Aware Optimizer

�
�
�
�	

C code
@
@
@
@R

Optimized

LLVM IR�
�
�
Native

Compiler

�
�
�
LLVM

Backend

Figure 8.1: Target-Aware Optimizer Interfaces

backend compilation path.

Evaluation for the PAO The TAO lowers the code to a near-assembly level, where the mapping
between specific code segments and the target hardware (as seen through the vendor compiler)
is more visible. Thus, the TAO has a clearer picture of the match or mismatch between decisions
made in the PAO and the target hardware. For example, the TAO can provide direct feedback to the
PAO on register pressure or available ILP based on either introspective measurement of optimiza-
tion effectiveness or evaluation of a model. That feedback should improve the PAO’s ability to tailor
its transformations to the target hardware.

8.2 Functionality

The TAO takes as input an optimized, annotated code fragment represented in the LLVM interme-
diate representation (LLVM IR), which is produced by the PAO and the ROSE-to-LLVM translator;
characterization information and configuration information provided by the PACE RC; optimiza-
tion directives provided by the PAO and the ML; and queries from the PAO. The TAO operates in
two distinct modes: it is invoked by the compiler driver to produce optimized code from the output
of the PAO, and it is invoked by the PAO as an oracle to obtain information about various proper-
ties of transformed code fragments produced by the PAO. As shown in Figure 3.2 and described in
the “Target-Aware Optimizer” section on page 27, the TAO supports three distinct execution paths:
an LLVM IR to assembly code translation on machines where the underlying LLVM compiler has a
native backend, an LLVM IR to C translation, and a PAO query and response path.

8.2.1 Interfaces

Figure 8.1 shows the interfaces supported by the TAO. The TAO takes, as its primary input, a code
fragment represented in the LLVM intermediate representation (LLVM IR). Auxiliary information
may be tied to that LLVM IR fragment, including analysis results from the PAO and runtime perfor-
mance information from the RTS. When invoked by the compiler driver, the TAO receives as input:
the LLVM IR, metadata associated with the IR, and optimization directives produced by the PAO

8.3. METHOD 69

and/or the ML components. In this mode it operates as a compiler and produces, as its primary
output, a translated version of the LLVM IR code fragment. The code fragment can be expressed in
either C code1, which can be then compiled using a native C compiler, or as optimized LLVM IR for
an LLVM backend. When invoked by the PAO, the TAO operates as an oracle and produces, as its
primary output, a data structure containing responses to PAO queries. More detailed descriptions
of the PAO–TAO query interface can be found in § 4.3.5 and § 8.3.5.

The TAO consumes resource characterization information produced by the PACE RC. It uses
resource characteristics, defined as performance-related properties of the target system, to change
the behavior of optimizations that it applies to the code being compiled. The TAO also relies on
information from the configuration file for the target platform, which is provided by the system
installer. (See § 3.2.2 for details.) The interface for information provided by the RC is described in
§ 2.3.1.

8.3 Method

The following sections describe the PACE approach to aspects of the TAO design and implementa-
tion: optimization in LLVM, vectorization, examples of implemented optimizations, selecting opti-
mization sequences, and producing answers to PAO queries.

8.3.1 Optimization in LLVM

When invoked by the compiler driver, the TAO is presented with user code expressed as one or
more LLVM IR procedures; when invoked by the PAO, the TAO is presented with a fragment of en-
capsulated synthetic code expressed in the LLVM IR. Under both scenarios, the TAO will apply a
sequence of optimizations to the IR form of the code; the sequence may consist of both existing op-
timizations from the LLVM framework and new optimization passes developed for the LLVM/TAO

framework as part of PACE. The specific optimizations (and possibly their order) is dictated by con-
crete optimization directives contained in the optimization plan; the TAO takes these optimization
directives as one of its inputs. When invoked by the compiler driver, the TAO either generates na-
tive code using an LLVM backend or generates C code. When invoked by the PAO, the TAO returns
optimization information to the PAO.

Optimization Directives When the PAO and/or the ML components provide optimization direc-
tives, the TAO uses those optimization directives to determine the sequence of LLVM optimizations
to use (§ 4.3.7). If no optimization directives are provided, the TAO will use a generic optimization
plan as its default. In extreme cases, the end user might provide distinct optimization directives to
exert direct control over the TAO’s behavior.

The TAO bases its processing of the application’s code on the content of the optimization direc-
tives. Optimization directives may express both specific sequences of optimization, as in perform
algebraic reassociation followed by operator strength reduction, and high-level goals, such as op-
timize to minimize code and data space. Directives might come from the ML as the distillation of
prior experience or from the PAO as a result of the PAO’s analysis of the code.

Thus, the optimization directives play a critical role in adapting the compiler’s behavior to a
specific application and, to a lesser extent, to a specific target system.2 For this scheme to work,
PACE must correlate information about specific optimization plans, applications, and their result-
ing performance. To simplify this process, the TAO will embed a concrete representation of its
optimization plan in the code that it produces. For more detail, see § 3.2.2.

1To produce C code, the TAO uses the C backend interface in LLVM (/lib/Target/CBackend), which was produced by the
LLVM open source development team.
2Most of the application-independent target adaptation should occur as a result of resource characterization and the use
of characterization-driven optimizations.

70 CHAPTER 8. THE PACE TARGET-AWARE OPTIMIZER

Processor Characteristics

Operations in Flight Computation of ILP for feedback to PAO, as well as input to
the query backend for scheduling

Operation Latencies Algebraic reassociation, operator strength reduction, as well
as input to the query backend for scheduling

Memory System Related Characteristics

I-Cache Size Comparison against code size for feedback to loop unrolling

Live values Input to the query backend for register allocation and
scheduling.

Figure 8.2: PACE Characteristics Used by the TAO

Transformations The open-source LLVM compiler system already includes a large set of opti-
mization passes that implement a substantial set of transformations. The TAO both builds on the
existing LLVM code base and uses pre-existing passes from LLVM.

1. Some LLVM passes are used without change. For example, LLVM includes a set of passes that
eliminate “dead” code or data. While unified algorithms are available that would reduce the
internal complexity of dead code elimination in LLVM, the existing passes are functional and
effective. Since neither target-system characteristics nor application characteristics factor
into dead code and data elimination, PACE uses those passes without modification.

2. Some LLVM passes use data produced by other components in the PACE system. PACE pro-
duces three major kinds of information that are of interest to the TAO: characterization in-
formation produced by the PACE RC tool, auxiliary information passed into the TAO from the
PAO, and optimization directives as described earlier in this section.

Using Characterization Data: Figure 8.2 shows characteristics measured by the RC that the
TAO uses. Figure 8.2 also lists some of the applications for that data in the TAO’s transforma-
tions.

Using IR Auxiliary Information: In PACE, the TAO always runs after the PAO. This enforced
order means that the TAO can rely on results from analyses performed in the PAO that are
relevant to the TAO. The PAO passes analysis results to the TAO as auxiliary information to the
LLVM IR; the ROSE-to-LLVM translator maps the auxiliary information to the LLVM IR while
translating the ROSE IR to LLVM IR. This auxiliary information may include aliasing infor-
mation, dependence information, and runtime profile information (derived by the RTS and
mapped onto the code by the PAO). See § 4.2.2 for a description of the auxiliary information
produced by the PAO and § 7.2.2 for a description of the mapping process.

3. Some LLVM passes may be modified to improve their effectiveness. We have completed
preliminary studies of the effectiveness of optimization in LLVM with the goal of identifying
weaknesses in specific optimization passes in the existing LLVM code base and modifying the
transformations to address those measured weaknesses, whether they are implementation
issues or algorithmic issues. In addition, the construction of the query backend (see § 8.3.5)
may necessitate extensive modification to the register allocator and instruction scheduler.

To understand optimization effectiveness in LLVM, we used the NULLSTONE compiler bench-
mark suite3 to compare LLVM’s performance against other compilers, such as gcc and icc.

3NULLSTONE is a registered trademark of the Nullstone Corporation. The NULLSTONE compiler performance suite is a

8.3. METHOD 71

The NULLSTONE analysis identified several weak spots. We have also studied the perfor-
mance of a variety of other benchmarks as part of our testing process.

4. We have implemented transformations in LLVM. The implemented transformations target
either specific opportunities identified by our analysis of LLVM’s effectiveness, or opportuni-
ties created by the transformations used in the PAO.4

This activity involves a combination of implementing known algorithms from the literature
and inventing new algorithms, with a focus on finding effective solutions to the underlying
performance problems. We have built a tree-height restructuring pass that reorders chains
of arithmetic operations to expose additional ILP [32]. We have also implemented operator
strength reduction and linear function test replacement passes as well as a vectorization pass.
(See § 8.3.2 and § 8.3.3 respectively for details.) Implementations of additional optimizations
are in progress.

8.3.2 Examples of Implemented Optimizations

Brief descriptions of selected PACE LLVM transformations follow.

Operator Strength Reduction Strength reduction is a well known compiler optimization dating
back to the very first production compilers. The basic premise is that time expensive instructions
are replaced by those of lesser cost. This optimization can be seen in the address calculation in-
structions for an array within a loop. This address calculation can contain a multiplication. The
strength reduction optimization will replace the multiplication with an addition using a new loop
induction variable. Thus, the expensive multiplication will get replaced by an addition.

Operator strength reduction (OSR) [31] was developed as a replacement for the traditional strength
reduction optimization [1], which was both hard to understand and hard to implement. OSR dis-
covers induction variables in the program by finding loops in the Static Single Assignment (SSA) [33]
graph. OSR next finds uses of the induction variable that participate in address calculations, creates
a new induction variable, and uses the new induction variable in the address calculation, poten-
tially replacing a multiplication with an addition.

The OSR optimization was added to LLVM as a stand alone optimization, which can be condi-
tionally run per each LLVM invocation [77].

Linear Function Test Replacement After the OSR optimization has completed, the original in-
duction variables might only have a single use in the loop ending test. An additional optimization,
Linear Function Test Replacement (LFTR) [31], can be performed which replaces the loop test with
a test using an induction variable that strength reduction added. Once the loop test is replaced,
the code that initializes and increments the original induction variable becomes useless and can
be deleted.

The LFTR optimization was included within the stand alone LLVM OSR optimization [77].

Register Allocation The PACE register allocator, an implementation of the Chaitin-Briggs graph
coloring register allocator [16, 18], is based upon prior work at Rice University that resulted in an
implementation for LLVM version 1.3 [27]. Subsequent effort by the PACE team produced an LLVM

version 2.7 register allocator that was part of the generic LLVM code generator, which supported the
PAO-TAO query interface. A later PACE effort on register allocation implemented a fully functional

proprietary product that we are using as part of our design process to assess compiler strengths and weaknesses. We intend
to use the suite as part of our internal regression testing, as well. The NULLSTONE code is not part of PACE nor is it required
to install or use the final system.
4In practice, many optimization algorithms contain implicit assumptions about the properties of the code being compiled.
The PAO transformations create code that contains optimization opportunities that appear rarely, if ever, in code written by
humans.

72 CHAPTER 8. THE PACE TARGET-AWARE OPTIMIZER

Chaitin-Briggs graph coloring register allocator for the LLVM x86-64 code generator. This work built
on the PACE LLVM version 2.7 register allocator and targeted LLVM version 3.0. The spill code cost
and spill code insertion functionality was rewritten to reflect more closely Briggs’s original work.
Rematerialization functionality was also added [17]. Currently, LLVM 3.0 with this register allocator
can cleanly compile and execute the LLVM test suite.

8.3.3 Vectorization

When the PAO invokes the TAO for generating short SIMD vector code, the PAO passes the TAO the
LLVM IR of a function, data dependence information, alignment information, and bundle informa-
tion, which describes memory accesses to consecutive memory locations, as hints. The LLVM IR of
the function contains metadata that indicates the innermost loop body that needs to be vectorized
in the TAO. This innermost loop body is made amenable to vectorization in the PAO by the Poly-
opt subsystem using loop transformations in the polyhedral framework. Polyopt also provides data
dependence information, alignment information, and information to build bundles. After Polyopt
has processed the loop, the PAO unrolls the loop adding bundle and alignment annotations using
the information obtained from Polyopt.

The TAO performs vectorization before any other standard compiler transformation is applied.
It builds a dependence graph for each basic block of the annotated innermost loop nest using the
dependence information from the PAO. If there is no dependence information available the TAO

uses LLVM’s alias analysis information to add memory dependence edges to the graph. After build-
ing the graph, the TAO performs dynamic-programming-based vector code generation using the
bundle and alignment information to generate correct memory accesses. The dynamic program-
ming selects between the usage of vector and scalar instructions using a cost-based model to de-
termine optimal vector code for the input LLVM IR.

The details of how the PAO invokes the TAO and the vectorization algorithm are provided in
Appendix B.

8.3.4 Selecting Optimization Sequences

Choosing which optimizations to apply is a critical part of the design process for any optimizing
compiler. In PACE, the selection of specific transformations has several components. First, the PAO

and the TAO address different concerns; this separation of concerns leads to some division in the
set of transformations that the various tools will implement. (See § 3.5 for the division of transfor-
mations between the PAO and the TAO.) Second, the PAO and ML may suggest specific optimization
directives for a given compilation. Third, the RTS will provide the compiler with information about
application performance that can inform and guide optimization decisions in the TAO.

External Guidance The TAO accepts external guidance on optimization in the form of optimiza-
tion directives. The TAO is responsible for the optimization plan mechanism and the implemen-
tation, but not for the generation of optimization directives. Directives may be generated by the
PAO and/or the ML. In an extreme case, an end user might create a custom optimization plan to
precisely control the process. In the absence of optimization directives from the PAO, the ML, or
the user, the TAO relies on a default optimization plan.

The TAO may also receive external guidance in the form of performance information from the
RTS, passed into the TAO from the PAO as auxiliary information to the LLVM IR form of the code. Per-
formance information can influence optimization, ranging from decisions about path frequencies
and code motion through the placement of advisory prefetch operations.

8.3. METHOD 73

8.3.5 Producing Answers to PAO Queries

When the PAO invokes the TAO as an oracle, the PAO passes the TAO a synthetic code fragment
encapsulated in a function; standard PAO–TAO auxiliary information, including profile and alias
information; and a query data structure requesting particular information. The synthetic function
will consist of a code region that contains a single loop nest, a loop body, or an entire function (see
§ 4.3.5).

The TAO produces, as its primary output, an updated query data structure (feedback value
repository) containing metric information on the synthetic code that it would have compiled. Ex-
amples of PAO queries include requests for an estimate of register pressure or critical-path length
in a code region. Details related to the types of queries that the PAO will generate can be found in
§ 4.3.5. Details related to TAO responses are included below.

When responding to queries from the PAO, the TAO can provide additional feedback to the PAO

on the effectiveness of the transformed code produced by the PAO. For example, If the TAO finds
that register pressure is too high in a loop, it can inform the PAO so that the PAO will know to trans-
form the code in a way that reduces the demand for registers.

The prototype version of the PAO/TAO query interface computes the following low-cost esti-
mates for each synthetic function:

1. MAXLIVE to estimate register pressure,

2. SPILLCOST of the generated code,

3. critical-path (CP) length to estimate the amount of instruction-level parallelism,

4. machine code size of the generated code, and

5. cost of SIMDizing the synthetic function.

Register Pressure and Spill Cost The MAXLIVE information is combined with the RC character-
istics for the register file of the underlying architecture to determine the spillcost of the generated
code using a simple register allocation algorithm such as linear scan or graph coloring. Another
approach to estimating SPILLCOST is to invoke the machine dependent transformation passes and
retrieve the number of spill operations after the register allocation phase.

Critical-Path Length The critical-path (CP) length estimate is an indication of the amount of
instruction-level parallelism available in the synthetic function. For straight-line and acyclic code
regions in the synthetic function, CP is determined using a dependency graph of the LLVM IR in-
structions. Each instruction is associated with a cost available from the RC. A simple depth-first
traversal of the dependency graph yields the critical-path length estimate of the synthetic function.
For code regions with multiple control flow paths, we can use either of the following approaches:
(1) compute critical path length for each control flow path and weight them based on profile infor-
mation or (2) use a control-dependence-based critical path length estimate. Approach (1) needs
accurate profile information to limit the combinatorial explosion of the number of control flow
paths.5

Machine Code Size The machine code size is the number of machine instructions generated for
the synthetic function. This is an architecture dependent metric and retrieved after the invoca-
tion of machine dependent transformations in TAO, including instruction scheduling and register
allocation. The PAO cost driven transformations can use this metric as a precise guide for estimat-
ing the performance of the transformed code. For example, the cost driven loop unroll-and-jam
module uses the machine code size to evaluate and select the best factor for unrolling (see § 6.3.5).

5We are still deciding on the technique to use for dealing with cyclic code regions and software pipelining.

74 CHAPTER 8. THE PACE TARGET-AWARE OPTIMIZER

Cost of SIMDization SIMDization is an important optimization performed in the PAO. The PAO

would like to know the cost of current high-level SIMDization performed for the synthetic function
and, if possible, would like to get feedback on any improved SIMDization using code shaping and
SIMD code selection. This analysis in the TAO requires cost estimates for various vector instruc-
tions and the length of the vector unit from the RC. Our approach in the TAO is to build the data
dependence graph and perform a vector code selection algorithm based on these costs.

The above described estimates are computed in an efficient manner in terms of time and space.
The results are accumulated in a shared data structure and fed back to PAO when the TAO is invoked
in-core for a synthetic function.

In future versions of the TAO, more architecture dependent metrics may be introduced. For
example, if the TAO scheduler detects that there is too little ILP in the PAO-provided synthetic code
fragment, the TAO will inform the PAO that there is insufficient ILP when it responds to the PAO’s
original query. If the TAO identifies a loop that would benefit from software pipelining, it will inform
the PAO; the PAO may remove control flow to support the decision to software pipeline the loop.

Chapter 9

The PACE Runtime System

The principal role of the PACE Runtime System (RTS) is to gather performance mea-
surements of a program execution to support compile-time feedback-directed opti-
mization and online selection of parameters, such as tile sizes and scheduling policies.
At a minimum, the RTS uses an interval timer to measure time consumed in various
parts of a program. By identifying costly regions in a program, the RTS can direct the
PACE Compiler where to focus optimization. If hardware performance counters are
available, RTS uses them to gather additional information about resource consump-
tion and inefficiency; such information provides detailed insight into opportunities for
improving performance on a target platform. This information can help the PACE Com-
piler identify appropriate optimizations needed to improve performance.

9.1 Introduction

The purpose of the PACE Runtime System (RTS) is to measure the performance of program execu-
tions with three aims: to help identify important program regions worthy of intensive optimization,
to provide data to support feedback directed optimization, and to provide a harness that supports
measurement-driven online parameter selection. Here, we describe the functionality and design
of RTS, along with its interfaces to other components in the PACE system. The performance moni-
toring infrastructure of RTS builds upon Rice’s HPCTOOLKIT performance tools [66]—open-source
software for measurement and analysis of application performance.

9.1.1 Motivation

With each generation, microprocessor-based computer systems have become increasingly sophis-
ticated with the aim of delivering higher performance. With this sophistication comes behavioral
complexity. Today, nodes in microprocessor-based systems are typically equipped with one or
more multicore microprocessors. Individual processor cores support additional levels of paral-
lelism typically including pipelined execution of multiple instructions, short vector operations, and
simultaneous multithreading. In addition, microprocessors rely on deep multi-level memory hier-
archies for reducing latency and improving data bandwidth to processor cores. At the same time,
sharing at various levels in the memory hierarchy makes the behavior of that hierarchy less pre-
dictable at compile time.

As the complexity of microprocessor-based systems has increased, it has become harder for
applications to achieve a significant fraction of peak performance. Attaining high performance
requires careful management of resources at all levels. To date, the rapidly increasing complex-
ity of microprocessor-based systems has outstripped the capability of compilers to map applica-
tions onto them effectively. In addition, the memory subsystems in microprocessor-based sys-

Principal Contacts For This Chapter: John Mellor-Crummey, johnmc@rice.edu

75

76 CHAPTER 9. THE PACE RUNTIME SYSTEM

Executable
• annotated with optimization plan
• augmented with closures for online

feedback-directed parameter tuning

PACE Runtime System

Execution with online
parameter tuning ML PAO

Profile
information

Characteristics
to measure

Figure 9.1: PACE Runtime System inputs and outputs.

tems are ill suited to data-intensive computations that voraciously consume data without signif-
icant spatial or temporal locality. Achieving high performance with data-intensive applications
on microprocessor-based systems is particularly difficult and often requires careful tailoring of an
application to reduce the impedance mismatch between the application’s needs and the target
platform’s capabilities.

To improve the ability of the PACE Compiler to map applications onto modern microprocessor-
based systems, the PACE RTS will collect detailed performance measurements of program execu-
tions to determine both where optimization is needed and what problems are the most important
targets for optimization. With detailed insight into an application’s performance shortcomings, the
PACE Compiler will be better equipped to select and employ optimizations that address them.

9.2 Functionality

Figure 1.2 shows the major components of the PACE system and the interfaces between them; in
that figure, the RTS components appear in blue. Figure 9.1 shows the inputs and outputs of the
PACE RTS. The RTS will provide support for guiding online and offline optimization. This support
comes in several forms:

• Runtime monitoring of metrics that can be measured using timers and/or hardware perfor-
mance counters.

• Attribution of metrics to static and dynamic program contexts.

• A framework for providing performance profile information to (1) the AAP IS GONE to sup-
port application partitioning, and (2) the machine learning tools and the PAO to support of-
fline feedback-directed optimization.

• A framework for runtime parameter selection based on measured metrics.

The measurement subsystem of the RTS monitors the performance of an executable in
machine-code form. There are two ways in which the measurement subsystem can be used: it
can be statically linked into an executable at program build time, or for dynamically-linked exe-
cutables, it can be pre-loaded into the application’s address space at launch time. In either case,
when the program is launched, the measurement subsystem is initialized, environment variables
set by a measurement script are read to determine what to monitor, and then execution begins with
monitoring enabled.

9.2. FUNCTIONALITY 77

9.2.1 Interfaces

There are several interfaces between the RTS and the rest of the PACE system.

• An RTS measurement script will drive application characterization by the measurement sub-
system. The script will repeatedly execute an application to survey performance metrics that
will be used to guide compilation.

• The RTS measurement subsystem will interpose itself between the application and the oper-
ating system on the target platform to intercept program launch and termination, creation
and destruction of threads and processes, setup of signal handlers, signal delivery, loading
and unloading of dynamic libraries, and MPI initialization/finalization.

• A profiler associated with the measurement subsystem could analyze binary measurement
data recorded by the measurement system and produce call tree profiles in XML form that
will be read by the PAO.

• A performance analyzer associated with the PACE RTS could digest performance profile data
in XML format and provide an XML file that contains high-level quantitative and qualitative
guidance to the Platform-Aware Optimizer about resource consumption, costs, and ineffi-
ciencies.

9.2.2 Input

The components of the PACE RTS receive several kinds of inputs from other parts of the PACE sys-
tem.

Measurement script. An RTS measurement script will drive application characterization by re-
peatedly executing an application under control of the measurement subsystem to survey perfor-
mance metrics that will be used to guide compilation. Inputs to the measurement script are an
application in machine code form and a specification of a test input for the program (arguments,
input files, etc.). What characteristics to measure will be derived from the hardware counters avail-
able on the target platform. If a characteristic is to be measured using asynchronous sampling, the
RTS will choose an appropriate period for sampling the characteristic. The compiler driver provides
a default measurement script in the application directory.

Runtime feedback-directed optimizer. During compilation, the Platform-Aware Optimizer
(PAO) could determine that certain parameters may benefit from runtime optimization (Sec-
tion 4.3.8). The PAO could present the RTS with a closure that contains an initial parameter tuple, a
specification of the bounds of the parameter tuple space, a generator function for exploring the pa-
rameter tuple space, and a parameterized version of the user’s function to invoke with the closure
containing the parameter tuple and other state. The selection of tile sizes for parametrically tiled
code is an example.

9.2.3 Output

The RTS measurement subsystem will produce a raw profile XML document that will associate static
and/or dynamic contexts (which can include call paths, procedures, loops, and line numbers in
source files) annotated with measured values of performance metrics, including call counts. It
stores the raw profile document in an appropriate subdirectory of the application directory. The
RTS performance analysis subsystem will augment the raw profile XML document with derived met-
rics that provide high-level quantitative and qualitative guidance about resource consumption,
costs, and inefficiencies.

78 CHAPTER 9. THE PACE RUNTIME SYSTEM

The RTS performance analysis subsystem will register the name of the executable, the time of a
run, and the location of the performance information produced by the RTS with the PACE Compiler
and the PACE Machine Learning tools using callbacks provided by each of these subsystems. RTS

performance profiles can be used by the and PAO (§ 4.3.9) to support feedback-directed changes to
the application’s optimization to improve memory hierarchy utilization by adjusting data layouts
(e.g. adding inter-variable or intra-variable padding; transposing arrays) and adjusting the code
shape as necessary.

9.3 Methods

9.3.1 Measurement

The PACE Runtime System must accurately measure and attribute the performance of fully op-
timized applications. It is important to have an accurate measurement approach that simulta-
neously exposes low-level execution details while avoiding systematic measurement error, either
through large overheads or through systematic dilation of execution. For this reason, the PACE

RTS will build upon Rice’s HPCTOOLKIT performance tools [66] as the basis of its measurement
subsystem. The measurement subsystem will record profiles in a collection of files in a compact
binary form that associates metric values with the static and/or dynamic contexts (identified by
machine-code addresses) where the metrics were measured. No support is needed from the PAO

or the TAO to support this profiling. Below, we outline the methods used for measuring application
performance.

Asynchronous sampling. HPCTOOLKIT primarily uses asynchronous sampling rather than in-
strumentation to measure performance. Asynchronous sampling uses a recurring event trigger
to send signals to the program being profiled. When the event trigger occurs, a signal is sent to
the program. A signal handler then records the context where the sample occurred. The recur-
ring nature of the event trigger means that the program counter is sampled many times, resulting
in a histogram of program contexts. Asynchronous sampling can measure and attribute detailed
performance information at a fine grain accurately as long as (1) code segments are executed re-
peatedly, (2) the execution is sufficiently long to collect a large number of samples, and (3) the
sampling frequency is uncorrelated with a thread’s behavior. Under these conditions, the distribu-
tion of samples is expected to approximate the true distribution of the costs that the event triggers
are intended to measure.

Event triggers. Different kinds of event triggers measure different aspects of program perfor-
mance. Event triggers can be either asynchronous or synchronous. Asynchronous triggers are
not initiated by direct program action. HPCTOOLKIT initiates asynchronous samples using either
an interval timer or hardware performance counter events. Hardware performance counters en-
able HPCTOOLKIT to statistically profile events such as cache misses and issue-stall cycles. Syn-
chronous triggers, on the other hand, are generated via direct program action. One example of an
interesting event for synchronous profiling is lock acquisition; one can measure the time per call
to look for lock contention.

Call path profiling. Experience has shown that comprehensive performance analysis of modern
modular software requires information about the full calling context in which costs are incurred.
The calling context for a sample event is the set of procedure frames active on the call stack at the
time the event trigger fires. We refer to the process of monitoring an execution to record the calling
contexts in which event triggers fire as call path profiling.

When synchronous or asynchronous events occur, the measurement subsystem records the
full calling context for each event. A calling context is a list of instruction pointers, one for each

9.3. METHODS 79

procedure frame active at the time the event occurred. The first instruction pointer in the list is
the program address at which the event occurred. The rest of the list contains the return address
for each active procedure frame. Rather than storing the call path independently for each sample
event, we represent all of the call paths for events as a calling context tree (CCT) [4]. In a calling
context tree, the path from the root of the tree to a node corresponds to a distinct call path observed
during execution; a count at each node in the tree indicates the number of times that the path to
that node was sampled.

Exposing calling patterns. Besides knowing the full calling context for each sample event, it is
useful to know how many unique calls are represented by the samples recorded in a calling context
tree. This information enables a developer interpreting a profile to determine whether a procedure
in which many samples were taken was doing a lot of work in a few calls or a little work in each of
many calls. This knowledge in turn determines where optimizations should be sought: in a func-
tion itself or its call chain. To collect edge frequency counts, we increment an edge traversal count
as the program returns from each stack frame active when a sample event occurred. We do this by
having the trampoline function increment a ”return count” for the procedure frame marked by the
sentinel as it returns. A detailed description of this strategy can be found in our prior work [40].

Copingwith fully optimized binaries. Collecting a call path profile requires capturing the calling
context for each sample event. To capture the calling context for a sample event, the measurement
must be able to unwind the call stack at any point in a program’s execution. Obtaining the return
address for a procedure frame that does not use a frame pointer is challenging since the frame may
dynamically grow (space is reserved for the caller’s registers and local variables; the frame is ex-
tended with calls to alloca; arguments to called procedures are pushed) and shrink (space for the
aforementioned purposes is deallocated) as the procedure executes. To cope with this situation,
we developed a fast, on-the-fly binary analyzer that examines a routine’s machine instructions and
computes how to unwind a stack frame for the procedure [73]. For each address in the routine,
there must be a recipe for how to unwind the call stack. Different recipes may be needed for differ-
ent intervals of addresses within the routine. Each interval ends in an instruction that changes the
state of the routine’s stack frame. Each recipe describes (1) where to find the current frame’s re-
turn address, (2) how to recover the value of the stack pointer for the caller’s frame, and (3) how to
recover the value that the base pointer register had in the caller’s frame. Once we compute unwind
recipes for all intervals in a routine, we memorize them for later reuse.

To apply our binary analysis to compute unwind recipes, we must know where each routine
starts and ends. When working with applications, one often encounters partially stripped libraries
or executables that are missing information about function boundaries. To address this prob-
lem, we developed a binary analyzer that infers routine boundaries by noting instructions that are
reached by call instructions or instructions following unconditional control transfers (jumps and
returns) that are not reachable by conditional control flow.

HPCTOOLKIT ’s use of binary analysis for call stack unwinding has proven to be very effective,
even for fully optimized code [73]. At present, HPCTOOLKIT provides binary analysis for stack un-
winding on the x86 64, Power, and MIPS architectures. On architectures for which HPCTOOLKIT

lacks a binary analyzer for call stack unwinding, where available we will use libunwind [58], a
multi-platform unwinder that uses information recorded by compilers to unwind the call stack.
libunwind currently supports ARM, IA64, x86, x86 64, MIPS, and PowerPC architectures.

Flat profiling. On some platforms, support for call stack unwinding might not be available. On
these platforms, the measurement subsystem could use simpler profiling strategy and collect only
program counter histograms without any information about calling context. This form of profiling
is referred to as flat profiling. Even such simple profiling can quantitatively associate costs with

80 CHAPTER 9. THE PACE RUNTIME SYSTEM

program regions, which can serve to guide a compiler as to where optimization is most important.

Maintaining control over parallel applications. To manage profiling of an executable, HPC-
TOOLKIT intercepts certain process control routines including those used to coordinate thread-
/process creation and destruction, signal handling, and dynamic loading. To support measure-
ment of unmodified, dynamically linked, optimized application binaries, HPCTOOLKIT uses the li-
brary preloading feature of modern dynamic loaders to preload a profiling library as an application
is launched. With library preloading, process control routines defined by HPCTOOLKIT are called
instead of their default implementations. For statically linked executables, HPCTOOLKIT provides
a script that arranges to intercept process control routines at link time by using linker wrapping—a
strategy supported by modern linkers.

Handling dynamic loading. Modern operating systems such as Linux enable programs to load
and unload shared libraries at run time, a process known as dynamic loading. Dynamic loading
presents the possibility that multiple functions may be mapped to the same address at different
times during a program’s execution. During execution, the measurement subsystem could ensure
that all measurements are attributed to the proper routine in such cases by dividing an execution
into intervals during which no two load modules map to overlapping regions of the address space.

9.3.2 Profile Analysis

For measurements to be useful, they must be correlated with important source code abstractions.
Profiles collected by the measurement subsystem will be digested by hpcprof, a tool that will cor-
relates measured metrics with static and dynamic contexts at the source code level. hpcprof pro-
duces a profile XML document that associates static and/or dynamic contexts (which can include
call chains, procedures, loops, and line numbers in source files) annotated with measured metric
values. Here, we briefly outline the methods used by hpcprof to correlate profile data with static
and dynamic application contexts.

Correlating performancemetrics with optimized code Measurements are made with reference
to instruction addresses in executables and shared libraries; it is necessary to map measurements
back to the program source for them to be of much use. To associate sample-based performance
measurements with the static structure of fully optimized binaries, we need a mapping between
object code and its associated source code structure. HPCTOOLKIT’s hpcstruct constructs this
mapping using binary analysis; we call this process recovering program structure.

hpcstruct focuses its efforts on recovering procedures and loop nests, the most important el-
ements of source code structure. To recover program structure, hpcstruct parses a load mod-
ule’s machine instructions, reconstructs a control flow graph, combines line map information with
interval analysis on the control flow graph in a way that enables it to identify transformations to
procedures such as inlining and account for transformations to loops [73].1

Several benefits naturally accrue from this approach. First, HPCTOOLKIT can expose the struc-
ture of and assign metrics to what is actually executed, even if source code is unavailable. For
example, hpcstruct’s program structure naturally reveals transformations such as loop fusion
and scalarized loops implementing Fortran 90 array notation. Similarly, it exposes calls to com-
piler support routines and wait loops in communication libraries of which one would otherwise
be unaware. hpcstruct’s function discovery heuristics expose distinct logical procedures within
stripped binaries.

1Without line map information, hpcstruct can still identify procedures and loops, but is not able to account for inlining or
loop transformations.

9.3. METHODS 81

Identifying scalability bottlenecks inparallel programs By using differential analysis of call path
profiles collected by the measurement subsystem, the RTS will pinpoint and quantify scalabil-
ity bottlenecks in parallel programs [26, 75]. Using a technique we call blame shifting, one can
attribute precise measures of lock contention, parallel idleness, and parallel overhead in mul-
tithreaded programs [72, 74]. Combining call path profiles with program structure information,
HPCTOOLKIT can quantify these losses and attribute them to the full calling context in which they
occur.

9.3.3 AnalyzingMeasurements to Guide Feedback-directed Optimization

Identifying performance problems, rate-limiting resources, and opportunities for tuning often re-
quires synthesizing performance metrics from two or more hardware performance counters. In
general, our plan is to calculate and attribute wasted cycles associated with various features in a
program.

We can measure or estimate exposed memory latency from hardware performance counters.
Using instruction-based sampling support in AMD Opterons [35], one can measure the memory
latency observed by an instruction directly. On systems that support only event-based sampling,
we plan to estimate memory latency by multiplying numbers of cache misses at each level by their
measured latency. When hardware counters permit, we plan to estimate exposed memory latency
by combining measurements of total latency with measures of memory parallelism made with
other hardware counters. We plan to measure and attribute the cost of pipeline stalls due to integer
operations, floating point operations, and mispredicted branches. We will estimate total delay due
to mispredicted branches in each context by multiplying the number of mispredicted branches by
the delay each one causes. We will also compute instruction balance measures that will show the
ratios of memory accesses, integer operations, branches, and floating point operations.

These metrics will highlight opportunities for improving efficiency that can be targeted by
feedback-directed optimization in the PACE Platform-Aware Optimizer.

9.3.4 Runtime Feedback-directed Parameter Selection

The RTS could provide a harness to be used for runtime feedback-directed parameter selection.
This harness could be used to select parameter settings for tilings and select among code variants.
As input to this harness, the PACE PAO would provide a closure (§4.3.8) that would include the
following information:

• A function that represents a parameterized region of application code. This code takes as
input the closure.

• A parameter tuple that represents the current parameter setting. Initially, this tuple will con-
tain the PAO’s best estimate of the optimal parameter settings.

• The bounds of the parameter tuple space that needs to be searched.

• A generator function that takes as inputs (1) the current parameter tuple, (2) a map from
parameter tuples to a vector of metrics that represent observed performance, and (3) the
bounds of the parameter tuple space. The generator function will return the next parameter
tuple, which may be the same as the current parameter tuple.

• A set of performance metrics that will be used to assess the goodness of a particular param-
eterization of a code region. Metrics may include time and perhaps hardware performance
counter measures.

• Inputs other than the parameter tuple needed by the region of parameterized code.

82 CHAPTER 9. THE PACE RUNTIME SYSTEM

• A flag that indicating whether or not this is the first use of this closure.

• A map between parameter tuples and runtime performance metrics. This map may be ini-
tially empty, or it may be partially filled in with information from the knowledge base.

The RTS could provide a harness for online feedback-directed optimization that uses this clo-
sure in the following way. If this is not the first invocation of the harness, the generator function
would be invoked with the current parameter tuple and a map from tuples to a vector of measured
metrics. The generator function would determine the next parameter tuple to try if the current pa-
rameter tuple is not satisfactory. The harness would arrange to measure the performance metrics
specified. The harness would then call the parameterized application code using the current pa-
rameter tuple. The measured performance metrics for this tuple would be added to a map of tuples
to metric vectors.

We could code a standard library of generator functions. Some generator functions could be as
simple as an exhaustive search of the parameter space. Others could perform a sophisticated ex-
ploration of the parameter space using algorithms such as direct search, hill climbing, or other op-
timization techniques. The bound information from PAO, e.g., theoretical lower and upper bound-
aries according to DL/ML model in Section 6.3.3, also limits the parameter search space. In our de-
sign, the nature of the generator functions and the representation for a parameter tuple would be
of no consequence to the RTS harness, which would merely need to be able to invoke the provided
components in the aforementioned manner. For that reason, we would use the same harness to
perform runtime feedback-directed optimization for a multiplicity of purposes, including selection
of tiling and scheduling parameters.

Results of the online feedback-directed optimization can be recorded in the application direc-
tory, where they would be accessible by a PACE Machine Learning tool to help improve both the
initial parameter tuple and the parameter spaces suggested by the PAO, and accessible by the com-
piler to improve its subsequent optimizations of the same code.

The measurement subsystem can collect performance profiles for timer and hardware perfor-
mance counter events. hpcprof digests profiles from the measurement subsystem and assembles
them into a profile XML document.

Chapter 10

Machine Learning in PACE

10.1 Introduction - Machine Learning for Compiler Optimization

10.1.1 Motivation

The Machine Learning component of the PACE project developed research infrastructure to sup-
port the central objective of the PACE project: to provide portable performance across a wide range
of new and old systems, and to reduce the time required to produce high-quality compilers for new
computer systems. Because the AACE program was cancelled, the PACE system was not completed
under DARPA AACE funding as originally envisioned, and the ML tool has not been implemented,
except for isolated learning engines.

Consider a problem in the PACE context: Given a program, a target system and a compiler,
predict a good compiler configuration, such as a list of compiler flag settings which yields fast exe-
cution for the program. We shall refer to this problem as the “flag-setting problem”. The selection
of optimizations is part of the PACE compiler optimization plan; in particular, the generation of op-
timization directives (§ 3.2.4). The selection of optimizations that yields fast execution (optimum
performance, in general) depends on the characteristics of the target system, the characteristics of
the program being compiled, and the characteristics of the compiler. The relationship between the
flag settings and the performance can be viewed as a relationship among points in a multidimen-
sional space, spanned by the variables which characterize the program being compiled, the target
system, the compiler flag settings and the performance.

To address this problem, a human designer uses past experience by remembering and apply-
ing a list of compiler flag settings used for similar programs encountered before; or by constructing
a good list of settings based on trial runs of the program of interest. Thus the success of the de-
signer depends on the ability to remember past experience, on the ability to distill, abstract, and
generalize knowledge from past experience, and on the ability to spot patterns in the complex mul-
tidimensional space of non-linear interactions. This, in itself, is a formidable task. Furthermore, all
this experience and knowledge might become irrelevant if the target system changes, and it would
involve massive effort to re-acquire the relevant knowledge to be able to use the compiler effec-
tively in a new target system. This is the central problem that the PACE project seeks to remedy.
To remedy this problem, automation is needed to effectively and efficiently characterize the plat-
form interactions: the interactions between programs, target systems, and compilers and use this
characterization to optimize these interactions.

Machine learning aims to develop models of such complex relationships by learning from avail-
able data (past experience or from controlled experiments). The learned models facilitate discov-
ery of complex patterns and recognition of patterns of known characteristics, in huge, unorganized
high-dimensional parameter spaces, thereby making optimization tasks tractable and aiding in in-

Principal Contacts For This Chapter: Erzsébet Merényi, erzsebet@rice.edu, and Krishna V. Palem, palem@rice.edu

83

84 CHAPTER 10. MACHINE LEARNING IN PACE

telligent decision making.

The machine learning group of the PACE effort is concerned with developing techniques to
learn from the complex multidimensional data spaces that characterize the often non-linear inter-
actions between programs, target system, and compiler optimizations. The result of the learning—
the knowledge, captured in learned models of relevant optimization scenarios—can then be de-
ployed and used in a variety of PACE related tasks such as compile-time program optimization (for
speed, for memory usage, etc.), or for resource characterization. Moreover, with certain machine
learning techniques, the models deployed after initial satisfactory off-line training could learn con-
tinuously in a run-time environment. This not only enables their use as oracles but allows ongoing
improvement of their knowledge based on run-time feedback about optimization success.

10.1.2 PriorWork

Machine learning for compiler optimization is a relatively new area, with much unexplored ter-
ritory. The following is a summary of what has been accomplished as of November 2011. Some
demonstrable but not dramatic performance improvements have been accomplished. This leaves
significant opportunities for further advances in this area. Prior work can roughly be divided into
two categories, machine learning for optimization and machine learning to characterize platform
interactions.

10.1.2.1 Machine learning for compiler optimization

Stephenson et al. use genetic programming (genetic algorithms applied specifically to programs)
to determine priority functions used in compiler optimizations [71]. Priority functions are used ex-
tensively in compiler optimization heuristics. For example, in instruction scheduling algorithms,
priority functions are used to assign priorities to instructions which in turn determine the instruc-
tion schedule (in general, the order of resource allocation.) When compared to hand-tuned priority
functions used in the Trimaran compiler, a program-specific priority function for hyperblock for-
mation yields an average improvement of about 25% in running time for the SpecInt, SpecFP, and
Mediabench benchmark suites. A program agnostic priority function yields about 9% improve-
ment on the average. Further discussion on the applicability of genetic algorithms to compiler op-
timization can be found in § 10.3.3.2. Cavazos et al. have used logistic regression, which is a tech-
nique to compute statistical correlation, to determine method-specific optimization settings [24] in
Jikes RVM for a set of benchmarks drawn from SPECjvm, SPECjbb and DaCapo suites. The authors
report improvements in execution time ranging from an average of 4% over−O0 optimization level
with a corresponding improvement of 5% in total running time (the sum of the program execution
time and the JVM), to a 29% (and 0%) improvement over−O2.

A similar approach has been used for the SPEC 95 FP, SPEC 2000 FP and INT, Polyhedron 2005,
and MiBench benchmarks in the EKOPath compiler [23]. Average improvement of 17% in running
time over all benchmarks over -Ofast setting (the highest optimization setting in the EKOPath com-
piler) has been reported. Agakov et al. construct Markov models to predict the effectiveness of op-
timizations and use this to inform an iterative search to determine good optimization sequences.
This approach yields about 33% improvement in running time on a TI processor, after 5 rounds
of searching whereas random search yields only about 32% improvement even after 50 rounds of
searching.

10.1.2.2 Machine learning to characterize platform interactions

Cooper et al. and Almagor et al. [28, 3] characterized the space of compiler optimizations and its
impact on the performance. The authors report that randomly evaluating 4 neighbors (the 4 most
similar sequences) of a given optimization sequence yields more than 75% probability of finding a

10.2. FUNCTIONALITY 85

better optimization sequence. Furthermore, 13% of local minima are within 2% of the best possi-
ble performance and about 80% of local minima are between 2% and 2.6% of the best possible per-
formance, making descent algorithms with random restarts an ideal candidate to search for good
optimization sequences. Joshi et al. attempt to use target system independent metrics to group
similar programs from a benchmark suite [47]. The aim is to determine a representative subset of
programs.

The reader is referred to “Survey of Machine Learning for Compilers” by the PACE machine
learning group in the Rice PACE repository for a more thorough survey and comments on the
strengths and weaknesses of each of these works.

10.1.2.3 The need for further development

This surveyed body of work demonstrates that machine learning can be successfully used to spe-
cialize compilers to new architectures (by tuning priority functions, for example). Though perfor-
mance improvements have been reported, the effectiveness of machine learning itself has not been
documented in most cases. For example, in the context of compiler optimization [23], it is not clear
whether performance improvements arise from good decisions made by effective learning or from
choosing randomly from a list of pre-filtered flag settings known to yield good performance. Joshi
et al. achieve poor results in platform characterization. For example, representative programs (as
determined by their technique) have an average cache miss rate which is about 40% more than
the average cache miss rate of the entire benchmark suite. Thus further development is needed
to (1) separate and quantify the effectiveness of the learning process itself and (2) to adopt more
sophisticated machine learning techniques with the aim of effecting more dramatic performance
increase in compiler optimizations.

10.2 Functionality

10.2.1 What Machine LearningWill Accomplish

Machine learning will be used to effectively and efficiently characterize the complex interaction be-
tween program characteristics, target system characteristics and compiler characteristics. This will
be useful for solving problems encountered in several PACE tasks. As shown in Figure 10.1, which is
an annotated overview of the PACE system presented in Figure 1.2 (§ 1.2.1), machine learning (ML)
engines (marked ML1, ML2, ML3, ML4 and MLxx in rectangular boxes) are envisioned to help with
the tasks in the Platform Aware optimizer (PAO), the Target Aware Optimizer (TAO) and the Run
Time System (RTS). These engines correspond to the four PACE tasks identified in § 10.2.2 as likely
to benefit from machine learning. From the point of view of the Run Time System the relevant ML

engines will supplement the generator function (described in § 9.2.2) to help with the tasks of the
RTS such as online feedback-directed parameter selection (described in § 9.3.4).

These ML engines will be provided data about the target system characteristics 1©, program
characteristics 2© and compiler characteristics 3©, by the subsystems where these circled numbers
are indicated. Thus each of the circled numbers correspond to an arrow from the corresponding
PACE subsystem to the ML subsystem

Machine learning is data driven therefore, the availability of known instances is essential. For
example, revisiting the flag setting problem, machine learning can be used to learn the relation-
ship between the program being compiled, the target system, the compiler flag settings and the
performance from known instances. Briefly, as shown in Figure 10.2, a mapping Y = f(X) exists
from elements of an input spaceX (the program, compiler and target system characteristics) to el-
ements of an output space Y (the compiler flag settings), where f is unknown. The role of machine
learning is to construct a model based on known instances (known input-output pairs or labeled
training data), which approximates the mapping f as well as possible, based on the quality of the

86 CHAPTER 10. MACHINE LEARNING IN PACE

�

�
	Platform-Aware

Optimizer (PAO)

?

PAO→TAO
Query Interface?

6

?

�

�
	PAO→TAO IR

Translator

?�

�
	Target-Aware

Optimizer (TAO)

@
@

@R?

Optimized
IR

Optimized
C Code

�

�
	PACE Runtime System

�
�
�
�Runtime

parameter
selection

�

�
	Native

Compiler

�

�
	Native

Compiler

�

�
	LLVM

Backend

? ? ?

�

�
	Application

Characterization

�

�

�

�
	Performance

Tools
-

6

C Code with
OPENMP

?

?

�

�
	Machine

Learning

?

-

6

-

Config
File

6

?

��

�
	Resource

Characterization
q

-

-

�

�
	Compiler

Characterization

-

-

�

�
	Compiler

Driver

?

q

q

�

Legend:

Code -
Information -

Color indicates source

yi1 yi2

yi2

yi3

yi3

MLLML1

MLLML2

MLLML3

ML2
ML4

MLxx

ML2
ML4

MLxx

ML1
ML3
MLxx

ML1
ML3
MLxx

Figure 10.1: An overview of the PACE system

training instances. In the context of supervised learning, assuming the availability of a set X labeled

of known input-output pairs, elements from a subset X labeled
training ⊂ X labeled are used by the machine

learning system to construct a model by adjusting model parameters so that a good approximation
of the actual mapping f is learned. A good learning process results in good generalization of the
learned model, i.e., the model will make good predictions for patterns which were not part of the
training set X labeled

training. The learned model is then used for predicting a list of compiler flag settings
for good performance for new programs that will be encountered by the PACE system.

10.2.2 Optimization Tasks Identified for Machine Learning

Four tasks have been identified as likely candidates to benefit from machine learning. The corre-
sponding envisioned machine learning engines are indicated in Figure 10.1 in rectangular boxes
labeled ML1 through ML4. In the context of compiler optimization, we use the term “good perfor-
mance” to mean performance, in terms of execution time, code size or some other metric, which
is reasonably close to the optimal performance or is a dramatic improvement over the baseline
(unoptimized) performance.

1. Determination of tile size to optimize performance of a nested loop (ML1 in Figure 10.1)

2. Determination of compiler flag settings for good performance of a program (ML2 in Fig-
ure 10.1)

3. Prediction of program performance based on program characteristics (ML3 in Figure 10.1)

4. Determination of a good sequence of compiler optimizations for good performance of a pro-
gram (ML4 in Figure 10.1)

10.2. FUNCTIONALITY 87

Learning with a Teacher (Supervised Learning)

Unknown mapping:
Y = f(X)

(model, behavior)

Many iterations …
good learning …

Input training
patterns

(Input feature vectors):
Representative

instances x_i X

Output training
patterns (labels)

(Output feature vectors):
Representative

instances y_i Y
corresponding to x_i

Sampling

Constructs the mapping

Ŷ ≈ Y = f(X)

Machine Learner Ŷ_i

Adjust model parameters to decrease error

error= d(ŷ_i,y_i)

Machine Learning 1

Input space X Rn

Ex: Characteristics of
program, compiler,

target system,
[performance]

Output space Y Rm

Ex: Compiler flag
settings for good

performance

Figure 10.2: Schematics of supervised machine learning

For each of these tasks, the input variables (input features that make up the input feature vec-
tors) will include descriptors of the target system, descriptors of the program, and the compiler,
while output variables (output features) may be program performance indicators, compiler flag
settings, or optimization sequences, as dictated by the particular ML task. The input and output
variables can and will vary across different versions of models - typically models of progressive
levels of complexity - for a task. For example, an initial, simple version of ML Task 1 (prediction
of good tile sizes) may be designed for a single hardware platform in order to establish data need
and baseline success without the complication of multiple platforms. In this case system char-
acteristics need not be described in the input feature vector since they would be the same for all
inputs. Once a simple model is shown to make acceptable predictions, we can proceed to set up
a more complex model by including system characteristics such as cache sizes, line sizes, associa-
tivity, etc., in the input feature vector. The previously studied simple model will also help estimate
data need for training a more complex model. Another reason for varying input and output fea-
tures through different models for the same ML Task is to test the descriptive power of different
sets of variables which may characterize the same properties. (For example, both the number of
cache misses and the number of stall cycles can characterize the same aspect of the memory sub-
system performance.) Selection of variables is guided by the accumulated experience of compiler
experts, both within and outside the PACE teams, and may require separate models to work with
non-overlapping sets of variables recommended by different expert groups. For these reasons, in
this design document we are providing sets of typical variables that will likely be used, in various
combinations, throughout a number of models that we will develop for each of the ML1 - ML4
Tasks. The specific set of variables for each model will be decided at the time a particular model
is considered, and will often depend on the outcome of experiments with a previous model. We
are including one specific feature set, as an example, for our first concrete model for Task ML1,
at the end of § 10.2.2.1. Working lists of relevant variables, determined by PACE team members as
well as adopted from literature, are maintained in the PACE Owl space in PACE Resources/Machine
Learning/Data Source/Variables for ML.xlsx file and will be revised as we accumulate experience.

88 CHAPTER 10. MACHINE LEARNING IN PACE

Machine Learning

Resource Characterization
(RC)

1

Platform Aware Optimizer
(PAO)

2
ML1

Run Time System
(RT)

2

ML1
ML3

MLxx

Target Aware Optimizer
(TAO)

3

ML2
ML4
MLxx

Application Characterization
(AC)

ML3

ML2 3

Native Compiler
(NC)

Figure 10.3: A machine learning centric view of the PACE system

Variables which capture the relevant target system characteristics will be obtained from the
resource characterization (RC) subsystem of the PACE system. The target system characteristics,
indicated as 1© in Figures 10.1 and 10.3, for which measurement methodologies have been built
so far are listed in § 2.2.3. Program characteristics indicated as 2© in Figures 10.1 and 10.3 will be
obtained from the PAO subsystem and the RTS. Compiler characteristics, indicated as 3© in Figures
10.1 and 10.3, will be obtained from the TAO subsystem and the Native Compiler (NC).

On a more general level we should point out that selection of appropriate input and output
variables that describe causes and consequences needs to be done in two contexts. The first is a
determination and listing of variables that potentially carry important information for the given
problem. Such variables must be provided by compiler experts based on their understanding of
how to represent relevant properties of programs, target systems, etc., and on their experience
with program optimization. ML experiments should start with using as complete subsets of these
expert-recommended variables as possible, and as appropriate for models of progressively increas-
ing levels of complexity.

Once satisfactory prediction performance is achieved with ML for a given (version of a) task, we
have a baseline of how well a model can perform when using all possible expert-recommended
variables (pertinent to the given version of a task). The number of these variables, however, can be
very large even if we do not count alternative variables for the description of similar causes (e.g.,
program properties). This is the second context in which variable selection should be considered,
now as a subselection from the set of variables that were used to obtain the baseline results. Ob-
viously, elimination of variables must not result in decline of prediction quality. Deselection of
variables can be done with various dimensionality reduction approaches. Dimensionality reduc-
tion approaches that involve a transformation of the feature space, such as Principle Components
Analysis (PCA), make it difficult or impossible to relate the transformed variables to the known
meaningful quantities described by the original variables. Therefore, approaches that can assess
the relative importances of the dimensions (variables) in the original feature space are much more
advantageous. Approaches for the assessment of the relative importances of variables can be di-
vided into two groups also from another point of view. The majority of available techniques make
a determination with no regard to a known analysis objective. For example, in view of a known
classification goal the important variables may be vastly different from those determined without

10.2. FUNCTIONALITY 89

taking this goal into account. PCA, for example, would eliminate data based on statistical signifi-
cance (as derived from the magnitude of the eigenvalues). However, this may eliminate the infor-
mation needed to separate small classes, or to separate classes with slight differences, meaningful
for the given problem. Furthermore, linear techniques, and techniques that use low-order statis-
tics only, may miss relevant variations in the data. For all these reasons, non-linear techniques
that can also take classification goals into account should be preferred for the determination of rel-
evant variables, in the case of complicated data such as we have in PACE. One recent technique is
relevance learning, published originally as GRLVQ (Generalized Relevance Learning Vector Quan-
tization, [43]) and further developed specifically for high-dimensional data (GRLVQ Improved,
[51]). These are two of very few available methods that jointly optimize a classification goal and
the relevance weighting of the variables (see overview in [51]). GRLVQ(I) are non-linear machine
learning approaches. We now describe the four machine learning tasks in greater detail.

10.2.2.1 Determine tile size tomaximize performance of a nested loop

Given a nested loop in a program, the tile size that minimizes the average cost of memory access
for data accesses from the loop, yields the best possible performance for the loop. Thus tile sizes
that yield good performance can be determined by predicting the average cost of memory access
corresponding to several instances of tile sizes and selecting a good instance. The selection of good
tile sizes by the machine learning engine illustrated in Figures 10.1 and 10.3 and marked “ML1”,
would be helpful in program optimization tasks in the PAO as well as in the RTS where run time
decisions on tile sizes in parametrized tiled code could be performed.

The average cost of memory access is the result of complex interaction between the memory
hierarchy of the target system and the loop that uses a specific tile size. To illustrate key variables
and their complex interaction, we use a vastly simplified example, but we emphasize that machine
learning can be used for much more complex cases. (In fact, the whole point of machine learning
is to be able to derive, from known examples, such complicated models of input / output relation-
ships that cannot be given by closed formulae or easy-to-describe rules)

Consider a nested loop in Code Fragment A that accesses elements from a matrix of sizeN×N .

A.1. For i = 1 to N

A.2. For k = 1 to M

A.3. For j = 1 to N

A.4. = Matrix[i,j]

A.5. End For

A.6. End For

A.7. End For

Code Fragment A: Untiled Loop Nest

This loop can be made efficient if the elements Matrix[i,j] accessed in line A.4 can be cached
and reused. However, traversing the entire length of the matrix before reusing the elements of a
row might be inefficient, since the entire row of the matrix might not fit into the cache. Hence, one
method of making the code efficient could be to transform the code to process the matrix “tile by
tile” such that each tile fits into the cache and is completely processed before moving to the next
tile. The corresponding code might look like this:

90 CHAPTER 10. MACHINE LEARNING IN PACE

B.1. For Length = 0 to N/tile_length - 1

B.2. For Breadth = 0 to N/tile_breadth - 1

B.3. For k = 1 to M

B.4. For i = Length * tile_length + 1 to Length * tile_length + tile_length

B.5. For j = Breadth * tile_breadth + 1 to Breadth*tile_breadth + tile_breadth

B.6. = Matrix[i,j]

B.7. End For

B.8. End For

B.9. End For

B.10. End For

B.11.End For

Code Fragment B: Parametrically Tiled Loop Nest

In the equivalent code in Code Fragment B, the iteration space of the loop is divided into “tiles”.
Lines B.1 and B.2 loop over the first tile, second tile, third tile, ..., T th tile. Lines B.4 and B.5 visit
the points in the iteration space of a given tile. A tile size that is too small would lead to poor
performance, since the loop body may not benefit from prefetching. A tile which accesses a piece
of the matrix that is too big to fit into the cache, may cause misses in the cache adding memory
overhead to the loop code.

• Target system characteristics (for each level of the memory hierarchy) such as

1. The size of the cache, L1 cache size for the L1 cache

2. The size of a cache line, L1 line size for the L1 cache

3. The associativity of the cache, L1 associativity for the L1 cache

4. The replacement policy of the cache, L1 replacement for the L1 cache

• Program characteristics such as

6. The size of array(s) along each dimension, sizei,j for the jth dimension of arrayi

7. The index expression for each dimension j of the arrayi, expri,j
8. The loop iteration range of loopi, rangei

9. The size of padding for each dimension j of the arrayi, paddingi,j

10. The number of loop nesting levels, n-nesting

• Compiler characteristics such as

6. For every loop level i the tile size, tile sizei

7. Row or Column major layout, layout

Given these variables as input and corresponding execution time (as proxy for cost of memory
access) for known instances in parameter regions which do not yield poor performances in an obvi-
ous manner, the machine learning system will build (learn) models that characterize this complex
interaction. Thus, the learned model can be used for rapid search through the parameter space
of (reasonable and not obviously disadvantageous) tile sizes to predict the execution time without
having to run the program.

It may seem surprising that we predict execution time corresponding to an input tile size and
post process rather than the intuitive approach of predicting good tile sizes directly. This is be-
cause several tiles might yield the same execution time and therefore the mapping from execution
time to tile size, which is a one-to-many mapping would be difficult, if not impossible to learn in a
supervised learning framework (as depicted in Figure 10.2). In contrast the many to one mapping
of tile sizes to execution time can be learned. We describe this design decision again in § 10.3.1 and
the more general philosophy.

Finally, we give a concrete example of a specific version of the model for ML1 task along with
the specific variables we use in the training of that model. This model is the first and simplest

10.2. FUNCTIONALITY 91

version of the ML1 task where the target system is kept constant and therefore we do not need
variables to characterize the target system. To describe program characteristics in this case we
chose tile size (tile sizei) the number of accesses and misses in the first and second levels of the
data cache respectively (L1CDA, L1DCM, L2DCA, L2DCM), the number of accesses and misses
in the TLB (TLBDA, TLBDM), and the number of vector instructions which have been executed
(VECINS) as elements of the input feature vector to predict execution time. The use of execution
time as proxy is based on expert opinion that the execution time is a linear function of the average
cost of memory access. Likewise, ignoring the effects of vectorization, instruction-level parallelism,
out of order execution etc. is based on expert opinion that these aspects do not affect the process
of learning the mapping between tile sizes and execution time. Based on the understanding of the
descriptive power of the variables included in this simple model, more variables may be considered
in a subsequent more complex model. Concretely, the subsequent model we plan will include
variables which characterize the effectiveness of hardware prefetch strategy. We think that this will
improve the accuracy of predictions and will help generalize our model across loop bodies and
across target systems. The added variables would be the average number of memory references (in
a single iteration of the innermost loop) that could and could not be prefetched by the target system
(n PF, n NPF). The reason for developing our model in an incremental fashion is to separate and
understand the various aspects of the interaction between the program and the target system as
well as to get a good grasp on the amount of training data required for good model building.

10.2.2.2 Determine selection of compiler flag settings for good performance of a program

Typically a compiler has several flags which turn optimizations on or off, set parameters for various
optimizations, and so forth. For example, the flag -finline-functions-called-once, requests the gcc
compiler to inline all functions which are called only once. Given a program, a target system and
a compiler, one problem is to determine a list of flag settings which produces compiled code with
good performance. In the PACE context, the setting of such flags and parameters is part of the
generation of optimization directives and parameters for the optimization plan (§ 3.2.4).

The number of choices given k flags is typically exponential in k. The metric of the quality of
the compiled code could be the execution time of the code or the size of the compiled code. In
PACE, such flags are passed from the PAO to the TAO as directives (4.2.2). The machine learning
engine marked as “ML2” in the Figures 10.1 and 10.3 will assist the PAO in selecting flags for good
application performance.

The complexity of this problem arises from the fact that typical compilers have tens to hun-
dreds of flags with an ever larger number of combinations of these flag settings. Furthermore, the
effectiveness of specific optimizations depends on the interaction between the characteristics of
the program, the target machine and other optimizations performed by the compiler. For exam-
ple, function inlining may be beneficial, harmful or have no impact on the performance depending
on

1. The effect on the instruction cache

2. The effect on the register pressure

3. The effect on other optimizations like constant propagation, common sub expression elimi-
nation etc.

Thus the optimal list of compiler flag settings is influenced by

• Target system characteristics such as

1. The characteristics of the memory hierarchy of the target system described above

2. The size of each type of register file, for example, int reg size for the integer register file
size, float reg size for the floating point register file size and so on

92 CHAPTER 10. MACHINE LEARNING IN PACE

3. The number of each type of functional unit, FPmul num for the number of floating point
multipliers, for example

4. The length of the pipeline, pipeline length

5. The penalty for branch misprediction, miss predict penalty in number of cycles

6. · · ·

• Program characteristics such as

6. The dynamic instruction ratio for each type of instruction i, dynamic inst ratioi

7. The static instruction ratio for each type of instruction i, static inst ratioi

8. The ratio of backward branches to total number of branches, forward branch ratio

9. The average rate of branch mispredictions, branch mispredict ratio

10. · · ·

• Compiler characteristics such as

6. Callee vs. caller saved registers, calling convention

7. · · ·

By learning from known instances of the mapping between the list of variables which corre-
spond to the characteristics enumerated above and the list of desired flag settings, the desired list
of flag settings for a new program will be determined by machine learning. The desired list of flag
setting is that list which achieves performance reasonably close to the optimal performance of the
compiled code.

10.2.2.3 Predict program performance based on program characteristics

Consider the following scenario where there are two target systemsA andB whose characteristics
are known. For a set S of programs, the execution characteristics are known for each of the pro-
grams in S on the target system A. For a subset S′ ⊂ S of programs, the execution characteristics
are known for the execution on the target systemB. By learning from the execution characteristics
of all programs onA and the execution characteristics of some of the programs onB, the machine
learning system will be used to predict the performance of a programP ∈ S\S′ whenP is executed
on the target system B. This engine, ML3 in Figures 10.1 and 10.3 will aid the application charac-
terization task of the PACE system where predicted application performance (and performance of
parts of applications such as procedures and loop bodies) serve as an indicator of application bot-
tlenecks. This engine will also aid the RTS system where predicted application performance can
serve as a basis for decisions regarding where and when to apply run time optimizations.

10.2.2.4 Determine a good sequence of compiler optimizations for good performance of a pro-

gram

In typical compilers, not only can optimizations be turned on or off, the order in which various
optimizations are applied and the number of times they are applied can be controlled as well. For
example, optimizations such as dead code removal, common sub-expression elimination, con-
stant propagation and inlining may be performed in an arbitrary order for an arbitrary number of
times. Thus one frequently encountered problem is to determine the sequence of compiler opti-
mizations to perform to yield good performance, where each optimization may be applied zero or
more times. In the PACE context, this problem corresponds to item 5 in the optimization plan (
§ 3.2.4).

We distinguish between the task described in § 10.2.2.2 (ML2) and the task described here
(ML4) as follows: In ML2, the task is to determine a selection of flag settings with no implied or-
der of optimizations while in ML4 the problem is to determine a sequence of optimizations which

10.3. METHODOLOGY 93

yields good performance. These sequences can be of arbitrary length with possible repetition of
optimizations. The corresponding learning engine is marked as “ML4” in Figures 10.1 and 10.3. Of
the four tasks that have been identified in this section, this task is the least defined and least under-
stood due to issues elaborated in § 10.3.2. Consequently the accomplishment of this task carries
higher uncertainty than that of the other tasks.

The issues involved in effective learning, different machine learning approaches and the chal-
lenges associated with applying machine learning in the PACE context are discussed in the next
section.

10.3 Methodology

10.3.1 Abstraction of PACE Problems ForMachine Learning

We developed a framework for expressing compiler optimization problems as machine learning
tasks. This is illustrated by the schematics in Figure 10.4 for the specific problem of tile size deter-
mination, described under § 10.2.2.1. The input and output feature spaces, shown for the general
case in Figure 10.2, are determined by what feature(s) we want to learn from what other features.
This is explained below through the specific example of determination of optimum tile size for a
given loop.

The optimal tile size depends on several characteristics of the target system, the program, and
the compiler, such as the number of distinct references made to the elements of the matrix and the
spatial relationship of these references and their interaction with target system characteristics (as
discussed in § 5.3.6).

Thus the input feature space which describes the multi-dimensional space of these variables
could include the variables listed on page 90. The performance of a loop body with a particular
tile size may be quantified using the average cost of memory access in cycles for each of the memory
access in the loop body. In this case, this is the (single) dependent variable (a single output feature)
that we want to be able to predict. This set of input and output variables span the multidimensional
space which is the feature space for this task. Vectors in this feature space are called feature vectors
and instances of known corresponding input - output feature vectors form the input-output pairs
which will be used to train a supervised machine learning algorithm (as shown in Figure 10.2).

The total execution time of a loop body is a linear function of the average cost of memory access
in most circumstances known to us. Therefore, we can use the execution time as a proxy in ML

predictions. Specifically, we assume that the following factors do not distort the linear relationship1

1. Instruction-level parallelism

2. Out of order execution

3. Branch prediction accuracy

4. Compiler optimizations such as constant propagation and strength reduction

5. Other target system artifacts such as accuracy of prefetching

We note that it would seem more intuitive for this particular example to predict the tile size (use
tile size as the output feature) and include the execution time in the inputs, but the execution time
(and average cost of memory access of the loop body) has a one-to-many mapping to tile sizes,
which is hard if not impossible to learn. The many-to-one mapping from tile sizes to the execution
time (and the average cost of memory access of the loop body) can be learned. From predicted
performances the favorable set of tile sizes can be filtered quickly by simple post-processing.

1Factors such as vectorization will have an impact on execution time, though the impact will most likely be the same across
different tile sizes. This ensures that the linear relationship between the average cost of memory access and the total exe-
cution time across tile sizes is not distorted. There will be corner cases, such as one of the dimension of the tile size being 1,
where vectorization might have a dramatically less effect on performance but we ignore or filter out such corner cases.

94 CHAPTER 10. MACHINE LEARNING IN PACEScheme for ML1: Finding Optimal Tile Size to Maximize Performance of a Loop

Output feature vector

P f I di t

Input feature vector

T t t P C il

exec

Supervised
MLarray

array
…index
index
…rang
rang
…L1D

C
L1D

C
L1D

T
… layou
tile s
tile s
tile s
…L1 ca
L1 lin
L1 as
L1 re
…

Performance IndicatorTarget system
Characteristics

Program
Characteristics

Compiler
Characteristics

c tim
e

y size
1,1

y size
1,2

x expr1,1,1
x expr1,1,2

ge
1

ge
2

C
A

C
M

TLB
A

ut
size

1
size

2
size

3

ache size
ne size
ssociativity
eplacem

ent

data from RC RTS PAO PAO,NC RTS
sample

Typical attributes of the feature space, and envisioned ML setup

Q: Why not predict tile size directly, i.e., use tile size as output feature and include the exec time as an input feature?

A: Exec time (proxy for cost of memory access) has a one-to-many mapping to tile sizes, hard (if not impossible) to learn.
The many-to-one mapping from tile sizes to exec time can be learned

Machine Learning 11

The many-to-one mapping from tile sizes to exec time can be learned.

The favorable range of tile sizes can be filtered quickly by simple ranking of predicted performances in post-processing.

Figure 10.4: Machine learning schematics for the tile size optimization problem

The design of a feature space is a significant effort. It may require multiple phases beyond
the initial abstraction exercise. For example, it should be ensured that variables relevant to the
problem are captured in the input feature vector, else machine learning (and any learning) will
be ineffective. Given a feature space, instances of the feature vector for which the target output
features are known - labeled samples - should be generated or acquired. These constitute the train-
ing data from which the machine learner learns a model of the relationship between target system
characteristics, program characteristics, compiler characteristics, and performance. The relevant
features may not always be known in advance. If the learned model performs poorly one reason
can be that some important feature has not been taken into account, which may warrant revision
of the feature space, which in turn will necessitate a repeat of the learning experiments.

10.3.2 Challenges From aMachine Learning Point Of View

Compiler optimization involves a large number of variables in the input space (several dozens
at least), and often also in the output space (dozens to over a hundred compiler flags, for exam-
ple). The variety of complex interactions among the features results in a large number of patterns
of behavior each of which requires a different optimization sequence to increase performance.
This creates a learning task to map multi-variate inputs to multi-variate outputs, both potentially
high-dimensional, and to delineate many classes (or precisely distinguish many degrees of some
quantity such as execution time or tile size). The number of machine learning paradigms capa-
ble of dealing with such complexity of learning, is limited, and even the capable ones may not
have been demonstrated on quite as ambitious tasks as those envisioned in PACE. Our experience
from prior work [56, 76, 67, 53, 80, 81] with excellent machine learning performance on data that
represent some of these or similar challenges (in a different application domain) will be utilized
in this project. An additional challenge is that the variables in the PACE feature spaces are often
mixed (disparate) types. This makes it hard to express or assess their relative importance, which in
turn brings in issues of scaling and measures, both important for the success of machine learning.
We are bringing considerable experience to PACE on this subject as well (e.g., [51] and references
therein).

The specific ML technique for a particular ML task will depend on the nature of the task (regres-
sion, classification, clustering), the required resolution / precision of the prediction, the expected
complexity of the mapping from input to output feature space, the dimensionality of the feature
space, the amount and quality of training data available, the prediction capabilities of the given ML

technique, and the computational expense.
Both supervised and unsupervised learning schemes will be used: supervised learning for re-

gression (function approximation, prediction of continuous variables), or for classification, and
unsupervised learning for clustering. Candidate learning approaches are discussed in some detail

10.3. METHODOLOGY 95

under §10.3.3.

10.3.2.1 The impact of training data onmachine learning

For learning complicated relationships among features, typically a large number of labeled pat-
terns is needed for training, which may not exist or may be hard to acquire. A careful design of
training data is critical, in any case, to ensure sufficient number of labeled samples and appropri-
ate coverage and distribution over the problem space, for adequate representation. The availability
and the time needed to generate training data is also an important aspect to be considered.

To test the performance of the learned model test samples are used. Test samples are labeled
samples which are known to the model developers but not used for the training of the model, and
which are set aside for the evaluation of the model’s performance on data that the model has not
learned from. The extent to which a learned model can make good predictions for unseen sam-
ples (samples outside the training set) is called the generalization capability. Producing models
with good generalization capability is the main objective of machine learning. Sampling theories
prescribe the number of test samples necessary for statistically significant assessment of the gen-
eralization capability. The requisite number can be very high for problems involving many classes
and high-dimensional feature vectors.

The quality of the training data is also important. Noise and mislabeling are frequent adverse
effects. Noisy data may require more samples to learn well, especially where classes are close in
the feature space. Incorrect labeling can confuse the learner and decrease its performance. Care-
ful evaluation of the noise situation, and verification of truth labels is imperative, and may take a
few iterations, since the combined effect of noise and class proximities are usually not known; and
incorrect labeling sometimes is only discovered from the learning itself. The above may necessi-
tate revision of the training data and repeating of the learning experiment a few times in order to
converge on an effective learned model.

10.3.2.2 Alternative to supervisedmachine learning: clustering

Clustering, a major type of unsupervised machine learning (Figure 10.5) is of fundamental impor-
tance, for two reasons. One is that good manifold learning that precisely maps the structure of
the feature space enables discoveries of pattern groupings, and relationships among them. For ex-
ample, we may discover previously not known program or compiler behaviors, or interactions be-
tween them. Another reason is that knowledge of the cluster structure can greatly assist in achiev-
ing subsequent accurate supervised classification and regression, by enabling fine discrimination
of classes with subtle (but consistent) differences. Examples of these in earlier work (from a differ-
ent application domain), where the feature space comprised hundreds of input features and up to
several dozens of classes, include [53, 56, 67, 53, 80, 81].

Another use of clustering that will very likely have a significant role in PACE tasks, is the follow-
ing. When labeled training data are scarce, we can cluster the feature vectors, take some summary
descriptors (such as the averages) of the clusters as the typical behavior of the members of the clus-
ters, and develop expert treatment for these cluster representatives. Then the members of each
cluster can be expected to benefit from the same treatment. New feature vectors (at run time, for
example) can be assigned to existing clusters by the trained model thereby indicating what treat-
ment should be applied. This is illustrated in Figure 10.6, where the input feature vectors consist of
descriptors of the target system, the program to be compiled, and the performance of the program
with default compiler settings, and the resulting clusters represent categories of program behav-
iors. Through the (off-line) post processing indicated by the black rectangles the clusters can be
labeled for treatment with appropriate optimization sequences developed for the discovered clus-
ters. Bundled together, the clustering engine and the canned optimization sequences can serve as
a run-time oracle-and-optimization unit.

96 CHAPTER 10. MACHINE LEARNING IN PACE

Unsupervised
Learner

Input training
patterns

(Input feature vectors):
Representative

instances x_i ∈ X

Model of the
input space

Output training
patterns

(Output feature vectors):
Representative

instances of y_i ∈ Y
corresponding to x_i

An unsupervised (self-organized) learner captures
some internal characteristics of the data space.
• Ex: structure (clusters)
• Ex: principal components
• Ex: independent components

Figure 10.5: Schematics of unsupervised machine learning

10.3.3 Candidate Machine Learning Approaches

10.3.3.1 Neural networks

The methods we will be applying are all non-linear techniques, as–with perhaps a few exceptions–
based on prior knowledge we anticipate problem spaces with complex, convoluted relationships
among variables, and non-linearly separable classes.

Based on past experience with data sets and problems similar in their nature to those expected
in the PACE context, neural computation is high on our candidate list. Neural approaches have
demonstrably performed better on learning from such data than a number of other, well known,
machine learning algorithms [13, 52, 45]. One of us (EM) has been developing neural modules un-
der NASA funding for clustering (unsupervised learning) and classification (supervised learning)
of high-dimensional (hyperpsectral) imagery, which has similarities with PACE data in dimension-
ality, considerable number of classes, scarce training samples, complex class/cluster structure. We
also have experience with using neural computation for function approximation where the domain
has hundreds of dimensions [80, 81].

We want to point out here that by “neural network” we do not imply “Back Propagation Neural
Network (BPNN)”. While our models may include, in simple cases, BPNNs, for complex cases
we anticipate using more sophisticated and more robust neural architectures that were developed
specifically for complicated high-dimensional data as mentioned above.

In a nutshell, these more robust approaches involve learning the structure of the data manifold
first, in an unsupervised manner, and storing that knowledge in the form of a neural map (Self-
Organizing Map, SOM) and related descriptors derived from the neural map. SOMs are adaptive
vector quantizers (VQs) that place prototype vectors in the data space for optimal matching of the
data distribution. SOMs have a unique property among VQs: they also represent the topology of
the input data space by organizing (indexing) the quantization prototypes according to the simi-
larity relations of the data. SOMs mimic the biological neural maps observed in various areas of
the cerebral cortex. Neural maps form in response to input stimuli (data) and organize the stimuli
on the 2-dimensional surface of the cortex while preserving the topological relations (the mani-
fold structure of the input data). This facilitates fast and precise retrieval of patterns. Since SOM
learning is unsupervised, the entire available data set can be used for its training, thus the SOM can

10.3. METHODOLOGY 97
Scheme for ML2: Finding Good Compiler Flag Settings – with Scarce Labeled Data

Input feature vector

dyn
dyn
…sta
sta
for
bra
…int
floa
L1
L1
L1
…

Unsupervised
ML

exe
…C
ac

…

Target system Program Performance indicators

Clusters of
behavior

nam
ic inst ratio

nam
ic inst ratio

atic inst ratio
1

atic inst ratio
2

rw
ard branch r

anch m
ispredict

reg
size

at reg
size

 cache size
 line size
 associativity

ec tim
e

che m
iss ratio

Cluster centers:
Behavior types
Label exists?

Input to AAP

o
1

o
2

ratio
t

ratio

Label exists?

Expert designs optimization
for behavior types;

U l b l d i t d t (ll il bl d t)

Automatic labeling
using library of

No Yes

apply to cluster membersUnlabeled input data (all available data)
g y

optimizations

Library

Machine Learning 13

Figure 10.6: Unsupervised machine learning scheme for compiler flag optimization

form its own view of all available details of the manifold structure. A trained SOM can subsequently
be snapped into a feed-forward, fully connected supervised network as its hidden layer, where the
output layer is trained using the outputs of the SOM as inputs, and using a simple Delta rule (rather
than the complicated BPNN rule). During supervised learning by this “SOM-hybrid network, the
hidden SOM layer pre-screens the input patterns by indicating where they belong on the manifold.
This helps the output layer learn to categorize the patterns into classes based on training labels
- fast and precisely. Applications of this network architecture are described in a number of our
previous works. An overview with references is given in [54].

This SOM-hybrid neural network is much easier to train than a BPNN network (is not prone to
getting stuck in local minima). It has several other advantages over a BPNN network, as well as over
other learning algorithms. The knowledge of the underlying SOM about the manifold structure -
which is independent of the users knowledge, provided for supervised training as a set of training
labels - makes it resistant to learning inconsistent labels. The topology preserving ptorotype based
representation of the manifold by the SOM hidden layer allows good quality supervised learning
from smaller number of training labels, and enables very precise discrimination of classes whose
feature vectors may have slight but meaningful differences for the given application. The price
to pay for all these advantages is in the training and interpretation of a high quality SOM. Issues
relevant to this have been studied extensively, and tools developed, by the Merényi group. A recent
book chapter summarizing related details is [57].

Neural networks have special significance in classification of feature vectors with disparate vari-
ables because (supervised) neural networks may be the only way to automatically derive - as part
of the learning - appropriate scaling for the mixed types of variables.

Neural computing has also been used, successfully, for assessing the relative importance of the
input features, for the purpose of eliminating non-contributing features. While this is quite difficult
to do with traditional statistical approaches [13] some supervised neural network methods can
naturally produce the weighting based on the training samples. Further, learning of the relevances
of the features can be done in a joint optimization for a given classification goal [43, 51].

However, the extremely high number of flag settings (output features, or classes), for example,

98 CHAPTER 10. MACHINE LEARNING IN PACE

exceeds previous experience, presents “firsts” and unknowns, which make compiler optimization
and uncharted territory, to be approached with cautious optimism and with a commitment to fur-
ther research.

10.3.3.2 Genetic algorithms

Genetic Algorithms are the natural choice for some PACE tasks, as earlier work by PACE investiga-
tors [30] (and other groups) demonstrated. In particular, the task of finding good order of (good)
compiler flag settings involves (potentially) variable length feature vectors, which would be han-
dled poorly by most other machine learners. Genetic Algorithms could also be used to do a fine-
grained search in the vicinity of a solution proposed by a different ML algorithm (on a finer grid
than the training data for the other ML algorithm was generated), to explore whether significantly
better solution may exist. The drawback of Genetic Algorithms is, however, that they do not have
a memory (do not build a model), therefore they cannot exploit experience gained from past in-
stances (they have to evaluate each instance through a new search).

10.3.3.3 Other possibilities

Markov Models and Hidden Markov Models have already been applied successfully by us (LC and
KP) in earlier research for the prediction of pre-fetching [49]. This software is already part of our
arsenal and will be used in the Run-Time subsystem of PACE (box MLxx in Figures 10.1 and 10.3).

10.3.4 Productivity metric for Machine Learning

The performance of Machine Learning for PACE should be assessed on two levels. On the higher
level, the overall effectiveness of ML will be measured by the quality of advice the ML models will give
to the various subsystems (as shown in Figure 10.1) for their decision making. The exact way (or
ways) to best characterize this effectiveness will be determined in the course of the development of
the PACE system. However, the metric of overall effectiveness should be some combination of (1)
the improvement in program performance and (2) decrease in the time needed to achieve the op-
timization. The ingredients for creating a meaningful metric, in any case, will come from run-time
recording of performance improvements in program executions (or in optimization effort) a result
of ML advice to the PACE compiler. Below we discuss some details of how these measurements can
be done.

10.3.4.1 Quantifying the improvement in program performance

First, we discuss how the improvement in program performance may be quantified. This can be
characterized with two different baselines: (a) the performance of the optimized program (running
time, code size, memory footprint etc.) with the performance of the unoptimized program as the
baseline. (b) the performance of the optimized program with the best possible performance of the
program as the baseline. The improvement of the performance of the optimized program over the
unoptimized program can be quantified in a relatively straightforward manner by measuring the
performance of the unoptimized and optimized versions of the program. Since the performance
of the unoptimized program would have been measured in any case to help drive decision making
and adaptation in the various subsystems of the PACEcompiler, we do not expect this comparison
to incur significant additional resources (time, instrumentation effort etc).

When the performance of the optimized program is compared with the best possible perfor-
mance of the program as the baseline, it characterizes the amount of optimization opportunity dis-
covered by the ML subsystem. For small program regions and for a small set of optimizations, the
baseline can be determined by searching the set of all possible optimization decisions. However,
for most practical scenarios involving large programs and a large set of possible optimizations,

10.3. METHODOLOGY 99

determining the baseline could prove difficult. In this case, several alternative strategies may be
adopted such as

1. Comparing the decisions of the ML engine with those of a human expert. This has several
advantages-in particular, not only can the performance of the human expert-optimized and
ML-optimized programs be compared, but thenature of decisions such as the flags that are set
by the human expert and the ML engine, could yield valuable insights for the human expert
as well as for the design of the ML models.

2. Generating synthetic program regions with known optimal (and therefore known baseline)
performance. For example, a program with a synthetically generated sequence of instruc-
tions whose critical path length and instruction latencies are known, may be used to study
the effectiveness of an instruction scheduler.

3. Using search strategies which either build on the ML decisions or are independent of the ML

decisions to determine if program performance can be improved dramatically. For example,
genetic algorithms could be used to search the neighborhood of the decisions made by a
different ML approach to determine if better solutions exist

10.3.4.2 Quantifying the decrease in time needed to achieve optimizations

The decrease in time needed to achieve optimization can be quantified under two categories. The
first is the reduction in the time needed to perform optimization decisions when the time needed
for non-ML (but automated) approach is the baseline. For example, the time taken for the task of
determining good tile sizes by (the non-ML approach of) searching, can be compared to the time
taken by a trained ML engine to perform the same task. The second is the reduction in time needed
when the time needed by a human expert to adapt the compiler to a new computer system and/or
to perform optimization decisions is taken as the baseline. In both these comparisons, the time
needed for the initial one-time training of the ML engine should be considered in some amortized
manner.

Before evaluating the overall effectiveness of ML models for PACE, we must, however, mea-
sure their performance on a lower level first. The purpose of this is to ensure that the ML engines
are well trained for the particular tasks, with the available data. As with any machine learning
technique, a supervised model’s prediction capability needs to be assessed by both a) verification
of the learning success on the training data; and b) evaluation of the prediction accuracy on test
data (data not used for the training of the model but drawn from the same data distribution),
as described in §2.1. Moreover, the reliability (consistency) of the model must be evaluated by
building a number of separate models through “jackknifing” (or cross-validation). This means that
training and test data sets for each model are obtained through repeated shuffling of the available
labeled data and splitting randomly into training and test data sets. The variance of the prediction
of the resulting models on the respective test data sets should be small for the result to be credible.
Only when trained models are found excellent in their generalization capability (i.e., in their
prediction on test data) can one assume that an ML technique is providing advice based on what
it derived, by learning, about the relationship between input and output variables. Consequently,
only in this case can we attribute any observed improvement in program or compiler performance
to Machine Learning.

10.3.5 Infrastructure

One of us (EM) has been developing neural learning modules under funding from the Applied
Information Systems Research program of NASA’s Science Mission Directorate for clustering and
classification of high-dimensional (hyperpsectral) data, which have similarities with PACE data in

100 CHAPTER 10. MACHINE LEARNING IN PACE

dimensionality, large number of classes, scarce training samples, complex class/cluster structure.
These learning and data visualization engines have been used to support science investigations
in earth and space science, as well as in medicine [55, 67, 36]. The software developed for these
applications could be modified and augmented appropriately to interface with PACE data and used
for experiments implementing the machine learning tasks outlined in § 10.2.2.

10.4 Conclusions

In consultation with the Resource Characterization, Platform Aware Optimization, and Run-Time
groups, we have defined an abstract framework for the connection points, input and output vari-
ables (the feature space) and the types of learning engines for machine learning tasks that are most
likely to benefit the PACE system.

We developed the design of training data and the data collection plan for the first problem we
want to target with machine learning, the tile size optimization to be used in the PAO (§ 10.2.2.1).
We collected simulator data within the RCacheSim simulator to represent 78 different memory
structures of the X86 family. While data collection still continues for this task, we have produced
initial neural and other models of the size vs. execution time.

Machine learning for compiler optimization is in its infancy, with much unexplored potential -
and potentially with some hard surprises that could require development of new approaches. From
what we have researched, combined with our previous experience, we are cautiously optimistic
that several effective machine learning components could be developed for the PACE system.

Appendix A

Microbenchmarks Used in Resource

Characterization

This appendix contains descriptions of the designs of the resource-characteristic microbench-
marks listed in Table 2.2 on page 16.

Principal Contacts For This Chapter: Keith Cooper, keith@rice.edu

101

102 APPENDIX A. MICROBENCHMARKS USED IN RESOURCE CHARACTERIZATION

Data Cache Capacity

Description This microbenchmark measures the capacity of the discernible levels of the data
cache hierarchy.

Method The microbenchmark uses a series of arrays of increasing size and steps through
each array in an access pattern designed to maximize cache misses and minimize
TLB misses. The number of accesses is held constant for each test. When succes-
sive arrays fit within a given level of cache, the time to perform all the accesses
should remain constant (within timer error).

The microbenchmark starts testing at a small size, say 4096, and doubles that
number up to a large size, say 32 MB. The initial and final sizes must be integral
powers of two. Between each power of two, we sample a set of three equally-
spaced points, to create a series of points that grow in a roughly logarithmic
fashion.

The access pattern that reveals cache sizes treats the array as a two-dimensional
array, with the rows of length page size, obtained from the POSIX system call
sysconf(). The pattern accesses a subset of the elements in each row. It makes
all of its accesses within a page before switching pages, to minimize TLB misses.
The order of access within a row, and the order in which the rows are accessed,
are both shuffled into a random order.

Analysis The microbenchmark produces an execution time, in microseconds, for each size
tested. The analysis treats this result as a series of points

((size1, time1), (size2, time2), (size3, time3), · · · (sizen, timen))

that define a piecewise linear function (PLF). It looks for inflection points in that
PLF using a number of numerical tests.

The transition caused by the L1 cache is particularly sharp; the analysis locates it
using a simple test that detects a sharp rise in the PLF. Subsequent levels of cache
are more subtle. The analysis uses transitions in the slope of the PLF to identify
suspected cache boundaries. It then examines the neighborhood surrounding
each suspect at a different scale to confirm or reject the point.

Difficulties Variations in timing: On a real system, the timing results returned by these tests
include significant variation. To minimize this effect, the microbenchmark makes
multiple runs at each size and keeps the smallest time. It sweeps over the sizes
from smallest to largest, then repeats that sweep to decrease the likelihood that an
external event disrupts all of the tests at a given size.

Analysis: Noisy data produces PLFs with inflection points that do not correspond
to cache boundaries. We have pursued several techniques to smooth the data, to
detect inflection points, and to confirm the suspect points.

Effective vs. Real Boundaries: Sharing between instruction and data caches and
between cores can radically reduce the effective size of a level. Choosing the
effective boundary may involve some arbitrary threshold value.

Citation

103

Data Cache Line Size

Description This microbenchmark measures the number of bytes in a line for each level of the
data cache.

Method In a manner similar to the method used to measure the size of the data cache,
the data cache line size microbenchmark iterates through an array with a pattern
encoded in the array itself. The difference is that this microbenchmark encodes
two different, equal-sized patterns in the same array. Each pattern accesses
enough memory to fill up the level of cache being tested.

The microbenchmark starts by dividing the array into “stripes” of length two. Each
pattern accesses one element in alternating stripes, so the first pattern accesses
the first element in odd-numbered stripes, while the second pattern accesses the
first element in even-numbered stripes. The stripes correspond to an estimate of
the line length: if the length of a stripe exactly matches the length of a cache line,
the execution time should change.

Thus, the microbenchmark starts with a stripe of length two and increases that
length until a change in behavior is observed. In a test, we alternate running
through the first pattern and running through the second pattern. Running
through the first pattern will load all of those values into the cache. Running
through the second pattern will cause conflicts with values loaded by the first
pattern, except when the stripes fit exactly on the cache line. Then, each pattern
will be accessing alternating lines of the cache.

Analysis Each stripe length is timed and that value is compared against the version with
the stripe length set to two. As we increase the length of the stripes, the number
of locality hits decreases until the stripe length equals the cache’s line length. At
that point, there is no spatial locality, but no inter-pattern conflicts, either, and the
measured time will drop below the baseline.

Difficulties To handle the fact that physically mapped caches do not allow control of the
placement of arrays in memory, patterns are split across multiple pages. Each
pattern gets exactly half of each page allocated to the array, and the patterns
completely traverse a given page before traversing another page of memory.

Citation

104 APPENDIX A. MICROBENCHMARKS USED IN RESOURCE CHARACTERIZATION

Data Cache Associativity

Description This microbenchmark measures the associativity of a given level in the data cache
hierarchy. Because it takes the size of that level as input, it must run after the data
cache capacity microbenchmark.

Method Given a data-cache level of size N words, the words at indices 0, N, 2·N, · · · , i·N
must all map to the same way. This microbenchmark constructs a series of access
patterns using these locations, for two ways (the words at 0 and N), for four ways
(0, N, 2·N,3·N), and so on, out to thirty-two ways. It runs each permutation for the
k accesses, where k is chosen to ensure at least 1,000 ticks on the timer.

When the number of locations in the permutation exceeds the cache associativity,
the time to run the pattern will increase due to the high cost of a cache miss
relative to the cost of a cache hit. If all the permutations have the same cost, the
cache is assumed to be fully associative.

Analysis The microbenchmark uses the “sharp rise test” developed for the data cache
capacity benchmark. If it detects no “sharp rise” in the permutations from two
ways to thirty-two ways, it reports that the cache is fully associative.

Difficulties Memory Size: The microbenchmark assumes that no microprocessor will have
associativity greater than thirty two. It will report any number larger than thirty
two as a fully associative cache.

In principle, testing for larger associativity is simple; in practice, the microbench-
mark needs an array with 32·N words of memory, which may limit its use on larger
associativities of larger caches. In practice, a thirty-two way, set associative cache
approximates a fully associative cache well enough for most optimizations.

Physically-mapped Caches: The microbenchmark assumes that adjacent pages in
virtual memory map into adjacent cache locations. In a physically-mapped cache,
this assumption need not hold. The microbenchmark may have problems with
physically-mapped caches; of course, the compiler cannot rely on associativity in
optimizing for a physically-mapped cache.

Citation

105

Data Cache Latency

Description This microbenchmark measures the time that it takes to load a value from each
level of cache.

Method To generate data, this microbenchmark uses the method described in the section
on finding data cache capacity (page 102). The methods differ in their analysis of
the data. The data cache capacity microbenchmark analysis looks for significant
upticks in the per-access time. By contrast, the data cache latency microbench-
mark analysis looks for periods of little change in the per-access time. The times
during periods of little change correspond to the latency for that level of cache.
When the access array fits into the cache, all accesses require a uniform amount
of time. When the per-access time between two tests is the same, it indicates that
each test’s array fits into that level of cache and that the latency is precisely that
shared measurement.

Analysis This microbenchmark relies on knowing the size of each level of cache. It then
forms a histogram of the times measured for each set of arrays with sizes that
fall between the cache sizes of two adjacent levels of cache. The most frequent
per-access time measurement is the reported latency for the higher of the two
cache levels. For example, if the microbenchmark builds a histogram of the
per-access time measurements for arrays with sizes that fall between two cache
sizes, Ln and Ln+1, the most frequent per-access time measurement is reported
as the latency of Ln+1.

Difficulties The difficulties encountered by this microbenchmark are identical to the diffi-
culties described in the section on finding data cache capacity (page 102). In a
perfect system, the per-access time for any individual test that falls between two
cache sizes could be reported as the latency for the higher of the two levels of
cache. However, because of the variability in timing, the most frequently observed
per-access time for tests on arrays that fall between two cache sizes is reported
for the higher level of cache, effectively discarding per-access time measurements
that are probably inaccurate.

Citation

106 APPENDIX A. MICROBENCHMARKS USED IN RESOURCE CHARACTERIZATION

TLB Capacity

Description This microbenchmark measures the capacity of the discernible levels of the
translation look-aside buffer (TLB) hierarchy.

Method The microbenchmark uses a series of arrays, of increasing size, and steps through
each array in an access pattern designed to maximize TLB misses and mini-
mize cache misses. The mechanism is the analogue of the data-cache capacity
tests (Appendix A, page 102). The difference is that, while the data-cache ca-
pacity microbenchmark maximizes the number of data accesses per page in
order to minimize the number of misses in the TLB, this benchmark accesses a
single data element per page to maximize the number of entries needed in the TLB.

Analysis Like the data-cache capacity experiments (Appendix A, page 102), the mi-
crobenchmark produces an execution time, in microseconds, for each size tested,
and the data is examined for significant changes.

Difficulties Variations in timing: On a real system, the timing results returned by these
tests include significant variation. To minimize this effect, the microbenchmark
conducts multiple runs at each size and keeps the smallest time.

Citation

107

Operations in Flight

Description This microbenchmark measures the number of simultaneous arithmetic opera-
tions that can run on the architecture.

Method The microbenchmark uses a series of interlaced streams as shown in Figure 2.2
(page 18) to measure the number of parallel operations that can execute simulta-
neously. This is a series of tests, one for each of the four arithmetic types: addition,
subtraction, multiplication, and division. For each arithmetic type, we test for four
data types: 32-bit integers, 64-bit integers, single-precision floating point, and
double-precision floating point.

Each interlaced stream is as long as the first stream. So, if the architecture can
support, say, two addition operations per cycle, the two-stream executable should
run as fast as the single-stream version.

Analysis Separate tests are run for each <arithmetic operator, data type> pair. The
microbenchmark produces an execution time, in microseconds, for each test.
For example, the test for 32-bit integer addition is a series of executables with
an increasing number of interlaced streams. The runtime for each executable in
the test is compared against the single-stream runtime for that test. The runtime
doubles when the test exceeds the architecture’s resources.

Difficulties This microbenchmark is subject to the same timing challenges as the other mi-
crobenchmarks. This difficulty is moderated by the large time increase observed
when the test exceeds the architecture’s resources. Because long streams are used
to ensure a noticeable increase, as the number of interlaced streams grows, each
executable can take a long time to compile and execute.

Citation

108 APPENDIX A. MICROBENCHMARKS USED IN RESOURCE CHARACTERIZATION

Instruction Latencies

Description The goal of this test is to determine the execution latency of a set of commonly
executed instructions. The test reports latency relative to 32-bit integer addition.
If the latency of 32-bit integer addition is one cycle, the reported latency can be
interpreted as cycles.

Method This microbenchmark measures the latency of the main four arithmetic opera-
tions (addition, subtraction, multiplication, and division) for the four main data
types (32-bit integers, 64-bit integers, 32-bit floating point, and 64-bit floating-
point). All times are reported as the ratio against the time to perform 32-bit
addition, as this is usually the simplest, fastest instruction on most architectures.

The execution time of an executable made up of a stream of 32-bit integer opera-
tions as shown in Figure 2.2 (page 18) serves as the base case. the execution times
of streams of the same length with different instructions are compared against this
base case.

On certain platforms, the latency of an instruction depends on the value of the
arguments. The execution unit exits the computation early if it encounters input
values of a certain form. For example, integer multiplication exits early if one
of the operands is zero. To prevent this from happening, the input values to
instructions must be controlled. However, the only values that can be controlled
are the two initial values in the instruction stream. All subsequent values are
determined by the previous results in the stream.

On the PowerPC G4, for example, the latency of an integer multiply instruction is
reduced by one if the 15 most significant bits of the operands are all zeros or ones.
The integer-multiplication test prevents the operands from getting a value that
has all bits set or unset by carefully choosing the initial arguments. Because an
even starting value results in the stream’s value quickly going to zero, the value 3
is employed for both values in tests. After four integer multiplications, the result
of multiplying the previous two values has the desired bit pattern; subsequent
results in the stream maintain the property that some bits are set and some are
not set in the 15 most significant bits.

The same issue holds true for floating-point and integer division on many modern
processor architectures like the Intel x86, Intel64, AMD64 and Power 6. The
execution unit exits early when performing division with certain input values.

For double-precision division, using initial values of 9.218868E+18 and
4.607182E+18 results in a repeating bit pattern that produces measurements
close to the maximum latency on many architectures.

Analysis Due to the variable accuracy of each architecture’s timing mechanism, each
stream is run multiple times and its lowest measured execution time is compared
against the lowest time for the same-length stream of 32-bit integer additions.

Difficulties The values used in each stream were determined experimentally, and there may
be values that produce even longer times for each arithmetic operation.

Citation

109

Compute-Bound Threads

Description This test determines the number of compute-bound (vs. memory-bound) threads
that can run in parallel before performance degrades.

Method The test starts with a single compute intensive-thread as a base case and increases
the number of threads. It measures the time for each set of threads to finish. The
test is repeated until the runtime of N threads is at least two times the runtime
of a test with only one thread. A compute-intensive thread contains a loop that
repeatedly calls a compute-intensive kernel. The microbenchmark runs tests on
streams of additions, multiplications, and divisions for both 32-bit and 64-bit in-
tegers, as well as for 32-bit and 64-bit floating-point values. The microbenchmark
also runs a test on a loop with a mixture of all of the above instructions.

The streams used are described in Section 2.2 (page 18). Using the different
kernels, the microbenchmark detects whether certain functional units that imple-
ment the above mentioned instructions are shared among hardware computing
contexts, which is the case, for example, on the Sun Niagara Processor. The Sun
Niagara Processor shares a floating-point unit among all computing contexts, so
the performance of the floating-point tests degrades earlier (two threads) than the
performance of the integer tests (eight threads).

All threads synchronize using a barrier. The timing is started in the main (first)
thread when the first barrier is reached, and the timing is stopped after the second
barrier is reached. The microbenchmark uses a dissemination barrier [50]. A
dissemination barrier does not require native memory synchronization opera-
tions (as, for example, test&set or compare&swap), which means that the code is
portable, performance is good on a variety of platforms, and implement is easy.

The test adaptively determines the number of loop iterations that are required to
run integer additions for at least one second for the single-thread case.

Analysis The microbenchmark runs successively more threads, timing each version.
When a time that is more than fifteen-percent higher than the single-thread
time is detected, the microbenchmark reports the number of threads used in the
immediately preceding test.

Difficulties This microbenchmark is subject to timing challenges similar to other benchmarks.

The microbenchmark reports the results along a continuum because the degra-
dation on different architectures can sometimes be gradual and sometimes be
abrupt. This method of reporting the results gives a better picture to the compiler
of the architecture’s behavior.

Some systems do not provide a POSIX thread barrier, in which case this benchmark
will not work and will produce no output.

Citation

110 APPENDIX A. MICROBENCHMARKS USED IN RESOURCE CHARACTERIZATION

Memory-Bound Threads

Description This test determines the number of memory-bound (vs. compute-bound) threads
that can run in parallel before performance degrades.

Method In a manner similar to the method used to measure the size of the data cache
(Appendix A, page 102), the memory-bound threads microbenchmark iterates
through arrays of memory. The microbenchmark distributes these arrays to an
increasing number of threads until performance degrades noticeably.

This microbenchmark measures throughput—defined as the number of memory
accesses divided by the total time—instead of simply measuring time. This
strategy yields a search along two dimensions: memory size and number of
threads. For each of a number of data sizes, we find the number of threads
that maximizes performance. The value reported is the number of threads that
maximized throughput.

Analysis The main body of the code executes the two-dimensional search, timing each set
of iterations. Each iteration is compared against the base case of a single iteration,
allowing for a variance of about fifteen percent before concluding that degradation
has occurred. The code also has a threshold for saturation; the search is halted at
a memory size when the time measurement, within the margin of error, has been
the same for too many iterations.

Difficulties This microbenchmark works best on a system that allows thread binding. On a
system where the threads can migrate during execution, measurements are less
accurate because the cost of the execution includes refilling the cache for moving
threads. The value in this case is conservative.

Citation

111

Simultaneous Live Ranges

Description This microbenchmark measures the maximum number of simultaneous live
ranges supported by the architecture, which is essentially the number of registers
allocatable by the compiler on the architecture.

Method The microbenchmark uses a single stream as shown in Figure 2.3 (page 20) to
find the number of registers that the compiler will allocate on the architecture.
At each step, the register pressure at each instruction is increased by moving
the use of each definition to successively more-distant instructions. When the
register pressure at each instruction exceeds the number of available registers,
the compiler inserts spill code. The microbenchmark compiles each version of
the stream to assembly code and then compares the number of assembly-code
instructions generated for different versions.

Many architectures and operating systems reserve at least one register, so the
number of registers returned by this microbenchmark represents the number of
registers available for allocation, rather than the total number of registers on the
architecture.

Analysis The code produced by this microbenchmark is never executed, so the usual
limitations of the architecture’s timing mechanisms do not apply. Instead, the wc

program is invoked to get a line count of the assembly code produced for each
stream. Each version of the stream is the same length, so the line count remains
the same until the allocator inserts spill code. The current version tests streams
with up to 256 live ranges, which is sufficient to detect the number of simultaneous
live ranges supported by current architectures.

Although the stream is as simple as possible, the compiler’s register allocator may
not produce the most efficient allocation for this simple stream. While the results
of this microbenchmark are dependent on the quality of the native allocator, the
answer will always be conservative: the reported result will always be less than or
equal to the number of available registers.

Difficulties The native allocator must be able to produce a textual form of assembly code
that is amenable to line counting. Every compiler we have encountered has this
capability.

Comments that the compiler inserts into the assembly code can be problematic
because the number of comments as a ratio to the total number of instructions
can be very high, causing the effect of spill code to be lost in the noise. To make
the results more reliable, an awk script is invoked to filter out the comments. This
requires the system administrator to record the comment character(s) that the
compiler uses in its assembly code, prior to running this microbenchmark. The
awk script handles two comment structures. The first comment structure is similar
to the structure of C++ comments, which start with one or more opening comment
characters and continue to the end of the line. The second comment structure is
similar to the structure of C comments, which start with one or more comment
characters and continue until some closing set of comment characters.

Citation

112 APPENDIX A. MICROBENCHMARKS USED IN RESOURCE CHARACTERIZATION

Appendix B

Automatic Vectorization in the PACE

Compiler

The Platform-Aware Optimizer (PAO) analyzes loops for their vectorizabilility. If the
PAO determines that a loop is vectorizable, it marks this loop as such and performs
analysis and transformations to enable vectorization. The Rose to LLVM translator
transfers this information to LLVM IR. The vectorization pass in the TAO uses the anal-
ysis information supplied by the PAO to replace scalar LLVM operations by LLVM vector
operations, where a cost model determines if it is beneficial to do so. This document
describes the interfaces between the components involved and the TAO pass responsi-
ble for vectorization.

B.1 Overview

Vectorization in the PACE compiler is performed as a cooperative effort between the PAO and the
TAO. The PAO analyzes whether loops are amenable for vectorization, optionally performs trans-
formations to enable vectorization, and analyzes the code to generate information that is needed
by the TAO’s vectorization pass. The TAO’s vectorization pass requires the following types of infor-
mation:

• Alignment information describes which memory accesses (loads, stores) are aligned with re-
spect to the vector unit alignment requirement.

• Bundles describe memory accesses to consecutive memory locations, produced by unrolling
the loop.

• Memory dependence information describes dependences between loads and stores. The
PAO builds a dependence graph and passes the information to the vectorizer as dependence
edges between memory instructions. Alternatively, the TAO vectorizer can use LLVM’s alias
analysis pass to build memory dependence edges.

The PAO annotates SAGE III IR with pointers to the above information data structures. For ex-
ample, when the PAO performs the alignment analysis pass, it annotates each SAGE III IR array load
with a pointer to the node representing the alignment information.

The Rose to LLVM translator takes the annotated SAGE III IR as input and translates the anno-
tated SAGE III IR to LLVM IR, transforming the pointer information into LLVM metadata. The vec-
torization pass in the TAO uses alignment, bundle, and dependence information and transforms

Principal Contacts For This Chapter: Jisheng Zhao, Jisheng.Zhao@rice.edu, and Vivek Sarkar, vsarkar@rice.edu

113

114 APPENDIX B. AUTOMATIC VECTORIZATION IN THE PACE COMPILER

!"#$ %&'()**+,$ -"#$
./0($
1%$

23456($"6704$
8(9:$
;</9=$

+(>?&<7@(5$
**+,$1%$

**+,$
1%$

23456($"6704$
8(9:$
A50('$

Figure B.1: Vectorization interplay between PAO, Rose-to-LLVM Translator, and TAO

scalar LLVM instructions to vector LLVM instructions by performing a cost model-based instruction
selection algorithm that chooses between scalar and vector instructions.

Figure B.1 illustrates the interplay between the three components.

B.2 Functionality

The PAO recognizes loops that are amenable to vectorization, either because they have statements
that can be unrolled and then replaced by vector instructions, or because the loop body contains
instructions that can be vectorized. The PAO submodule PolyOpt marks vectorizable loops as such
in the SAGE III IR.

The vectorization pass in the TAO operates on straight line code. The PAO tries to generate
a longer block of straight line code using the PAO’s loop unrolling component. Before unrolling,
the PAO uses the PolyOpt submodule to obtain array subscript and dependence information. The
loop unrolling component marks accesses to consecutive memory locations, which have been
replicated by unrolling, as bundles. For example consider the statement a[i] = in a loop body,
which, after the loop unroller has unrolled it one time, results in two memory accesses a[i] = and
a[i+1] =. The loop unroller stores the two stores as a bundle.

The loop unrolling component uses the data dependence information to add dependence edge
information among the unrolled memory accesses in the loop body. The TAO vectorizer operates
on straight line code and, as such, only needs to know which memory access has to happen before
which other dependent memory access. The loop unroller translates the dependence graph infor-
mation, which has dependence edges with a dependence distance, to has-to-happen-before edges
in the unrolled loop.

The PolyOpt submodule marks memory accesses with their subscript expressions. The loop
unroller uses this information to compute the alignment information of unrolled memory accesses.
During unrolling, the PAO annotates the SAGE III IR with links to the analysis data (including the
dependence edges and bundles). The process of vectorization in the PAO is illustrated in figure B.2.

During translation of SAGE III IR to LLVM IR, the Rose to LLVM translator converts pointers to the
analysis information in the SAGE III IR to information attached as metadata to LLVM’s instructions.

Next, the TAO runs its vectorization pass, which examines the loops marked as vectorizable and
performs straight line vectorization on them. The vectorization pass uses the analysis information
provided by the PAO to guide the instruction selection algorithm that replaces some scalar LLVM

instructions by vector instructions. It incorporates instruction cost information provided by the
RC. In addition to costs for scalar operations, the cost of vector instructions is also needed. We
estimate the cost of a vector instruction by using the cost of its scalar equivalent.

The following two sections describe the input to the TAO’s vectorization pass and the output it
generates.

B.2. FUNCTIONALITY 115

!"#$

#%&'()*&+,-$!+./#%0$ 1++%$2,3+..43$

5+-4$65$ 74%$83*%9$
74%$:;<4-$

".(<,'4,0$

=>,;.4-$

5+-4?+11@A$

7*0*$74%4,;4,B4$",*./)43$

Figure B.2: Vectorization in the PAO

B.2.1 Input

The vectorization pass in the TAO uses the following inputs to perform replacement of scalar oper-
ations by vector operations in straight line code.

Scalar LLVMCode The TAO accesses the PAO analysis information as LLVM IR with LLVM metadata
that encodes the analysis information.

Vectorizable LLVM IR Loops The PAO marks an innermost loop as vectorizable by annotating the
SAGE III IR AST node representing the loop. The Rose to LLVM translator transfers this annotation
to the corresponding LLVM IR terminator instructions in all basic blocks within the loop using the
metadata tag “!noivdep !1”.

!1 = metadata ! { i1 true }

; ...

for.inc10:

%.incr15 = add i32 %i.0, 1

br label %for.cond8, !noivdep !1 ; back edge

The vectorization pass in the TAO uses this information to guide which code blocks it should
vectorize. It also serves as an indicator that the TAO vectorizer should use the embedded depen-
dence information (!dep) instead of using LLVM’s alias analysis to approximate dependence infor-
mation.

Alignment Information Vector instructions involving memory accesses on certain architectures
require the access to be aligned at a specific byte boundary. For example, SSE requires memory
loads and stores to be 16 byte aligned. Otherwise the programmer must use more expensive un-
aligned memory move instructions. The PAO tries to generate loops that contain mostly aligned
memory accesses, for example, by peeling a loop. The PAO annotates memory accesses (loads,
stores), whether they are aligned or not. The TAO accesses this information as LLVM metadata by
using the tag !aligned.

!0 = metadata ! { i1 false }

!1 = metadata ! { i1 true }

; Code: ... = a[i]; ... = a[i+1];

%elemaddr= getelementptr [2000 x float]* %array, i32 0, i32 %i

116 APPENDIX B. AUTOMATIC VECTORIZATION IN THE PACE COMPILER

%val = load float* %elemaddr, !aligned !1, ...

%elem2addr= getelementptr [2000 x float]* %array, i32 0, i32 %iplusone

%val2 = load float* %elemaddr, !aligned !0, ...

Memory Dependence Analysis The PAO generates dependence edge information for memory
accesses in the loop. It annotates the SAGE III IR memory accesses with has-to-happen-before
edges between memory accesses. The Rose to LLVM translator provides access to this information
through LLVM metadata by using the tag !dep. The has-to-happen-before edges are represented
in LLVM IR by a set of incoming edges for every memory access instructions. Every memory access
instruction is identified by a unique identifier (a 64 bit value). This is stored in metadata as the first
operand of the !dep node. All following operands of the !dep node represent incoming edges. The
example below shows an example where the first store has to happen before the second store.

; Oxaffe is the address of the dependency graph node

!3 = metadata ! { /* Dep. source id: */ i64 0xaf10 }

!4 = metadata ! { /* Dep. source id: */ i64 0xaf20, /* Dep. sink id: */ i64 0xaf10 }

; ...

store float* %elemaddr, !dep !3, ...

store float* %elemaddr1, !dep !4, ...

Bundles When the PAO unrolls a loop it replicates array accesses. For every array access that it
replicates to a contiguous memory location, it builds a tuple that contains all the replicated ar-
ray accesses. For example, if a for loop contains read accesses to a[i] and the loop is unrolled
four times, the PAO builds a bundle data structure that contains the load of (a[i], a[i+1], ...,

a[i+3]). Bundles are tuples, so the position is significant. The PAO annotates memory access
nodes in SAGE III IR with pointers to their corresponding bundle data structure. The Rose to LLVM

translator provides access to the pointers through the LLVM metadata tag !bun. The metadata as-
sociated with the tag contains not only the pointer but also the index in the bundle tuple. Bundles
simplify finding consecutive memory accesses during the vectorization pass in the TAO.

!4 = metadata ! { i64 0xf00b, i32 0 } ; 0xf00b is the pointer to the bundle

!5 = metadata ! { i64 0xf00b, i32 1 } ; 1 is the position in the tuple

; Code: ... = a[i]; ... = a[i+1];

%elemaddr= getelementptr [2000 x float]* %array, i32 0, i32 %i

%val = load float* %elemaddr, !bun !4, ...

%elem2addr= getelementptr [2000 x float]* %array, i32 0, i32 %iplusone

%val2 = load float* %elemaddr, !bun !5, ...

Resource Characterization Information The vectorization algorithm needs the cost of scalar
and vector instructions as input to perform instruction selection. It also needs the width of the
vector unit to generate vector types of the right size. For example, if the vector length is 128 bits,
the vectorization path will try to replace scalar double instructions by instructions of the vector <2
x double> type.

B.2.2 Output

The vectorization pass replaces scalar instructions by vector instructions if the cost analysis has
determined it is beneficial to do so.

a0 = load double* %a1ptr, i32 %i, !bun !4, !aligned !1,

a1 = load double* %a1ptr, i32 %iplus1, !bun !4, !aligned !1, ...

b0 = fadd double %a0, %val1

b1 = fadd double %a0, %val2

B.3. METHOD 117

The TAO vectorization pass would replace the previous code by the following vectorized version.

%valvec.0 = insertelement <2 x double> zeroinitializer, double %val1, i32 0

%valvec = insertelement <2 x double> %valvec.0, double %val2, i32 1

a0 = load <2 x double>* %a1ptr, i32 %i, align 16, !bun !4, !aligned !1,

b0 = fadd <2 x double> %a0, %valvec

Note that the pass put the two scalar values, %val1 and %val2, into a vector register and an-
notated the memory load with the LLVM align specification. That alignment specification is nec-
essary so that a native backend will emit an aligned memory move instead of an unaligned one,
resulting in better performance.

B.3 Method

Generating good quality vector code for a straight-line piece of IR fragment is paramount to the
performance of the program in processors that support a short vector SIMD unit. As stated in prior
work, the process of vector code generation can either be easy or cumbersome. As an example
of the former, the compiler can find consecutive memory operations, combine them, and sub-
sequently combine their dependent statements until no more instructions can be combined. As
an example of the latter, the compiler can use depth-first search, backtracking, and branch-and-
bound techniques to find the best possible way of combining operations to generate vector code. In
this document we propose a different approach to automatic vector code generation that is driven
by a cost model. The cost model guides the vector code generation steps and prunes many search
paths that would lead to suboptimal vector code generation. The cost model is combined with a
dynamic programming technique to evaluate the best cost for a sequence of IR instructions.

B.3.1 Dynamic Programming

Each TAO IR instruction has an associated cost1. As stated earlier in this chapter, the dependence
information is readily available from PAO. Using this dependence information, we build a depen-
dence graph at the TAO IR instruction level. A dependence node is an IR instruction and a depen-
dence edge a → b implies that b is dependent on a. Such a dependence graph is made single sink
by adding synthetic nodes as needed. We use two cost metrics: (1) scost: cost of evaluating an oper-
ation in scalar fashion; (2) vcost is the cost of evaluating some operations in a vector fashion—the
number of such operations can be determined by the vector length of the underlying machine2.
When we consider instruction tuples for vectorization we use alignment and bundle information
to guide which memory instructions can be put in vector tuples.

Our proposed algorithm starts a bottom-up pass of the dependence graph to compute the costs
of evaluating various operations in the dependence graph in both scalar and vector fashion, choos-
ing the minimum cost along the traversal path. The overall cost of the sink node denotes the overall
cost of generating vector code. A second top-down pass over the dependence graph identifies those
operations that need to be evaluated in scalar fashion and those operations that need to be evalu-
ated in vector fashion. Finally, the vector code for the dependence graph is automatically generated
by making a bottom-up pass. A detailed account of this algorithm has been published [7].

The above algorithm needs to pay special attention to dependence graphs that are DAGs rather
than trees. Several approaches have been proposed in the literature to break a DAG into trees and
then compute the overall cost of each tree. We compute the cost of a tree the first time it is shared
between several nodes and use this cost as input for subsequent nodes.

The complexity of the above algorithm is bounded by three passes over the dependence graph.

1The cost of each IR instruction is computed relative to the cost of an integer-add IR operation.
2RC provides such information to TAO.

118 APPENDIX B. AUTOMATIC VECTORIZATION IN THE PACE COMPILER

Bibliography

[1] F E Allen, John Cocke, and Ken Kennedy. Reduction of operator strength. In Steven S Much-
nick and Neil D Jones, editors, Program Flow Analysis: Theory and Applications, chapter 3,
pages 79–101. Prentice-Hall, 1981.

[2] Randy Allen and Ken Kennedy. Optimizing compilers for modern architectures: a dependence-
based approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2002.

[3] L. Almagor, Keith D. Cooper, Alexander Grosul, Timothy J. Harvey, Steven W. Reeves, Devika
Subramanian, Linda Torczon, and Todd Waterman. Finding effective compilation sequences.
In Proceedings of the 2004 ACM SIGPLAN/SIGBED conference on Languages, compilers, and
tools for embedded systems, pages 231–239, New York, NY, USA, 2004. ACM.

[4] Glenn Ammons, Thomas Ball, and James R. Larus. Exploiting hardware performance coun-
ters with flow and context sensitive profiling. In SIGPLAN Conference on Programming Lan-
guage Design and Implementation, pages 85–96, NY, NY, USA, 1997. ACM.

[5] C. Ancourt and F. Irigoin. Scanning polyhedra with DO loops. In 3rd ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming, pages 39–50, june 1991.

[6] U. Banerjee. Unimodular transformations of double loops. In Advances in Languages and
Compilers for Parallel Processing, pages 192–219, Irvine, August 1990.

[7] Rajkishore Barik, Jisheng Zhao, and Vivek Sarkar. Efficient selection of vector instructions us-
ing dynamic programming. In Proceedings of the 2010 43rd Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO ’43, pages 201–212, Washington, DC, USA, 2010.
IEEE Computer Society.

[8] Muthu Baskaran, Albert Hartono, Sanket Tavarageri, Thomas Henretty, J. Ramanujam, and
P. Sadayappan. Parameterized tiling revisited. In CGO, April 2010.

[9] C. Bastoul. Code generation in the polyhedral model is easier than you think. In IEEE Intl.
Conf. on Parallel Architectures and Compilation Techniques (PACT’04), pages 7–16, Juan-les-
Pins, september 2004.

[10] C. Bastoul. Improving Data Locality in Static Control Programs. PhD thesis, University Paris
6, Pierre et Marie Curie, December 2004.

[11] Cedric Bastoul, Albert Cohen, Sylvain Girbal, Saurabh Sharma, , and Olivier Temam. Putting
polyhedral loop transformations to work. In Workshop on Languages and Compilers for Par-
allel Computing (LCPC’03), pages 23–30, 2003.

[12] Cédric Bastoul and Paul Feautrier. Adjusting a program transformation for legality. Parallel
processing letters, 15(1):3–17, March 2005.

119

120 BIBLIOGRAPHY

[13] J. A. Benediktsson, P. H. Swain, and O. K. Ersoy. Neural network approaches versus statistical
methods in classification of multisource remote sensing data. IEEE. Trans. Geosci. andRemote
Sens., 28(4):540, 1990.

[14] Uday Bondhugula, Muthu Baskaran, Sriram Krishnamoorthy, J. Ramanujam, Atanas Roun-
tev, and P. Sadayappan. Automatic transformations for communication-minimized paral-
lelization and locality optimization in the polyhedral model. In International Conference on
Compiler Construction, pages 132–146, 2008.

[15] Uday Bondhugula, Albert Hartono, J. Ramanujan, and P. Sadayappan. A practical automatic
polyhedral parallelizer and locality optimizer. In ACM SIGPLAN Programming Languages
Design and Implementation (PLDI ’08), 2008.

[16] Preston Briggs. Register Allocation via Graph Coloring. PhD thesis, Rice University, 1992.

[17] Preston Briggs, Keith D. Cooper, and Linda Torczon. Rematerialization. In PLDI ’92 Proceed-
ings of the ACM SIGPLAN 1992 Conference on Programming Language and Design Implemen-
tation, pages 311–321, 1992.

[18] Preston Briggs, Keith D. Cooper, and Linda Torczon. Improvements to graph coloring register
allocation. ACMTransactions on Programming Languages and Systems (TOPLAS), 16(3), May
1994.

[19] Michael Burke and Linda Torczon. Interprocedural optimization: Eliminating unnecessary
recompilation. ACM Transactions on Programming Languages and Systems, 15(3):367–399,
July 1993.

[20] Martin Burtscher, Byoung-Do Kim, Jeff Diamond, John McCalpin, Lars Koesterke, and James
Browne. Perfexpert: An easy-to-use performance diagnosis tool for hpc applications. In Pro-
ceedings of the 2010 ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’10, pages 1–11, Washington, DC, USA, 2010. IEEE Com-
puter Society.

[21] C Language Standard, ISO/IEC 9899:TC3, 2007.

[22] Candl, the Chunky Analyzer for Dependence in Loops. Available at
http://cse.ohio-state.edu/ pouchet/software/pocc.

[23] John Cavazos, Grigori Fursin, Felix Agakov, Edwin Bonilla, Michael F. P. O’Boyle, and Olivier
Temam. Rapidly selecting good compiler optimizations using performance counters. In Pro-
ceedings of the International Symposium on Code Generation and Optimization, pages 185–
197, Washington, DC, USA, 2007. IEEE Computer Society.

[24] John Cavazos and Michael F. P. O’Boyle. Method-specific dynamic compilation using logistic
regression. ACM SIGPLAN Notices, Proceedings of the International Conference on Object-
Oriented Programming, Systems, Languages, and Applications, 41(10):229–240, 2006.

[25] CLooG, the Chunky Loop Generator. Available at
http://www.cloog.org.

[26] Cristian Coarfa, John Mellor-Crummey, Nathan Froyd, and Yuri Dotsenko. Scalability anal-
ysis of SPMD codes using expectations. In ICS ’07: Proc. of the 21st annual International
Conference on Supercomputing, pages 13–22, NY, NY, USA, 2007. ACM.

BIBLIOGRAPHY 121

[27] Keith D. Cooper and Anshuman Dasgupta. Tailoring graph-coloring register allocation for
runtime compilation. In CGO ’06 Proceedings of the International Symposium on Code Gener-
ation and Optimization, pages 39–49, March 2006.

[28] Keith D. Cooper, Alexander Grosul, Timothy J. Harvey, Steve Reeves, Devika Subramanian,
Linda Torczon, and Todd Waterman. Exploring the structure of the space of compilation
sequences using randomized search algorithms. Journal of Supercomputing, 36(2):135–151,
2006.

[29] Keith D. Cooper, Alexander Grosul, Timothy J. Harvey, Steven W. Reeves, Devika Subrama-
nian, Linda Torczon, and Todd Waterman. ACME: Adaptive compilation made efficient. In
Proceedings of the 2005 ACM SIGPLAN Conference on Languages Compilers and Tools for Em-
bedded Systems (LCTES 05), pages 69–77, June 2005.

[30] Keith D. Cooper, Philip J. Schielke, and Devika Subramanian. Optimizing for reduced code
space using genetic algorithms. Proceedings of the ACM SIGPLAN workshop on Languages,
compilers, and tools for embedded systems, pages 1–9, 1999.

[31] Keith D. Cooper, L. Taylor Simpson, and Christopher A. Vick. Operator strength reduction.
ACM Trans. Program. Lang. Syst., 23:603–625, September 2001.

[32] Keith D. Cooper and Linda Torczon. Engineering a Compiler. To appear., 2011.

[33] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck. Ef-
ficiently computing static single assignment form and the control dependence graph. ACM
Trans. Program. Lang. Syst., 13:451–490, October 1991.

[34] Kaushik Datta, Mark Murphy, Vasily Volkov, Samuel Williams, Jonathan Carter, Leonid
Oliker, David Patterson, John Shalf, and Katherine Yelick. Stencil computation optimization
and auto-tuning on state-of-the-art multicore architectures. In SC ’08: Proceedings of the 2008
ACM/IEEE conference on Supercomputing, pages 1–12, Piscataway, NJ, USA, 2008. IEEE Press.

[35] Paul J. Drongowski. Instruction-based sampling: A new performance analysis technique
for AMD family 10h processors. http://developer.amd.com/Assets/AMD_IBS_paper_EN.
pdf. Last accessed: Dec. 16, 2009., November 2007.

[36] W. H. Farrand, E. Merényi, , J.F. Bell III, J. R. Johnson, S. Murchie, and O. Barnouin-Jha. Class
maps of the mars pathfinder landing site derived from the imp superpan: Trends in rock dis-
tribution, coatings and far field layering. The International Journal of Mars Science and Explo-
ration, 4:33–55, July 11 2008.

[37] P. Feautrier. Dataflow analysis of scalar and array references. Intl. J. of Parallel Programming,
20(1):23–53, February 1991.

[38] P. Feautrier. Some efficient solutions to the affine scheduling problem, part II: multidimen-
sional time. Intl. J. of Parallel Programming, 21(6):389–420, dec 1992.

[39] Jeanne Ferrante, Vivek Sarkar, and Wendy Thrash. On Estimating and Enhancing Cache
Effectiveness. Lecture Notes in Computer Science, (589):328–343, 1991. Proceedings of the
Fourth International Workshop on Languages and Compilers for Parallel Computing, Santa
Clara, California, USA, August 1991. Edited by U. Banerjee, D. Gelernter, A. Nicolau, D. Padua.

[40] Nathan Froyd, John Mellor-Crummey, and Rob Fowler. Low-overhead call path profiling of
unmodified, optimized code. In Proc. of the 19th annual International Conference on Super-
computing, pages 81–90, New York, NY, USA, 2005. ACM Press.

122 BIBLIOGRAPHY

[41] Sylvain Girbal, Nicolas Vasilache, Cédric Bastoul, Albert Cohen, David Parello, Marc Sigler,
and Olivier Temam. Semi-automatic composition of loop transformations. IJPP, 34(3):261–
317, June 2006.

[42] M. Griebl, C. Lengauer, and S. Wetzel. Code generation in the polytope model. In Intl. Conf.
on Parallel Architectures and Compilation Techniques (PACT’98), pages 106–111, 1998.

[43] B. Hammer and Th. Villmann. Generalized relevance learning vector quantization. Neural
Networks, 15:1059–1068, 2002.

[44] Albert Hartono, Muthu Baskaran, Cédric Bastoul, Albert Cohen, Sriram Krishnamoorthy,
Boyana Norris, J. Ramanujam, and P. Sadayappan. Parametric multi-level tiling of imper-
fectly nested loops. In International Conference on SuperComputing (ICS’09), 2009.

[45] E. S. Howell, E. Merényi, and L. A. Lebofsky. Classification of asteroid spectra using a neural
network. Jour. Geophys. Res., 99(E5):10,847–10,865, 1994.

[46] F. Irigoin and R. Triolet. Supernode partitioning. In ACMSIGPLANPrinciples of Programming
Languages, pages 319–329, 1988.

[47] Ajay Joshi, Aashish Phansalkar, Lieven Eeckhout, and Lizy John. Measuring benchmark sim-
ilarity using inherent program characteristics. IEEE Transactions on Computers, 55(6):769–
782, 2006.

[48] W. Kelly, W. Pugh, and E. Rosser. Code generation for multiple mappings. In Frontiers’95
Symposium on the frontiers of massively parallel computation, McLean, 1995.

[49] Jinwoo Kim, Rodric M. Rabbah, Krishna V. Palem, and Weng-Fai Wong. Adaptive compiler
directed prefetching for epic processors. In PDPTA, pages 495–501, 2004.

[50] John M. Mellor-Crummey and Michael L. Scott. Algorithms for scalable synchronization on
shared-memory multiprocessors. ACM Trans. Comput. Syst., 9:21–65, February 1991.

[51] M.J. Mendenhall and E. Merényi. Relevance-based feature extraction for hyperspectral im-
ages. IEEE Trans. on Neural Networks, 19(4):658–672, April 2008.

[52] E. Merényi. Precision mining of high-dimensional patterns with self-organizing maps: Inter-
pretation of hyperspectral images. In Quo Vadis Computational Intelligence: New Trends and
Approaches in Computational Intelligence (Studies in Fuzziness and Soft Computing, Vol 54,
P. Sincak and J. Vascak Eds.). Physica Verlag, 2000.

[53] E. Merényi, B. Csató, and K. Taşdemir. Knowledge discovery in urban environments from
fused multi-dimensional imagery. In P. Gamba and M. Crawford, editors, Proc. IEEEGRSS/IS-
PRS Joint Workshop on Remote Sensing and Data Fusion over Urban Areas (URBAN 2007).,
pages 1–13, Paris, France, 11–13 April 2007. Invited.

[54] E. Merényi, W. H. Farrand, R. H. Brown, Th. Villmann, and C. Fyfe. Information extraction
and knowledge discovery from high-dimensional and high-volume complex data sets through
precision manifold learning. In Proc. NASA Science Technology Conference (NSTC2007), vol-
ume ISBN 0-9785223-2-X, page 11, College Park, MD, June 19 – 21 2007.

[55] E. Merényi, W. H. Farrand, L.E. Stevens, T.S. Melis, and K. Chhibber. Mapping Colorado River
ecosystem resources in Glen Canyon: Analysis of hyperspectral low-altitude AVIRIS imagery.
In Proc. ERIM, 14th Int’l Conference and Workshops on Applied Geologic Remote Sensing, 4–6
November, 2000, Las Vegas, Nevada, 2000.

BIBLIOGRAPHY 123

[56] E. Merényi, K. Tasdemir, and W. Farrand. Intelligent information extraction to aid science
decision making in autonomous space exploration. In W. Fink, editor, Proceedings of DSS08
SPIE Defense and Security Symposium, Space Exploration Technologies, volume 6960, page
69600M, Orlando, FL, Mach 17–18 2008. SPIE. Invited.

[57] E. Merényi, K. Tasdemir, and L. Zhang. Learning highly structured manifolds: harnessing the
power of SOMs. In M. Biehl, B. Hammer, M. Verleysen, and T. Villmann, editors, Similarity
based clustering, Lecture Notes in Computer Science, LNAI 5400, pages 138–168. Springer-
Verlag, 2009.

[58] David Mosberger-Tang. libunwind. http://www.nongnu.org/libunwind.

[59] David Patterson. “The Parallel Revolution Has Started: Are You Part of the Solution or Part of
the Problem?”. Talk at Rice University, February 2010.

[60] Pluto, a Practical Automatic Polyhedral Parallelizer and Locality Optimizer. Available at
http://pluto.sourceforge.net.

[61] Louis-Noël Pouchet, Cédric Bastoul, Albert Cohen, and John Cavazos. Iterative optimization
in the polyhedral model: Part II, multidimensional time. In ACMSIGPLANConf. on Program-
ming Language Design and Implementation (PLDI’08), pages 90–100. ACM Press, 2008.

[62] Louis-Noël Pouchet, Uday Bondhugula, Cédric Bastoul, Albert Cohen, J. Ramanujam, and
P. Sadayappan. Combined iterative and model-driven optimization in an automatic paral-
lelization framework. In Conference on Supercomputing (SC’10), New Orleans, LA, November
2010. IEEE Computer Society Press.

[63] Louis-Noël Pouchet, Uday Bondhugula, Cédric Bastoul, Albert Cohen, J. Ramanujam, P. Sa-
dayappan, and Nicolas Vasilache. Loop transformations: Convexity, pruning and optimiza-
tion. In 38th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages
(POPL’11), pages 549–562, Austin, TX, January 2011. ACM Press.

[64] F. Quilleré, S. Rajopadhye, and D. Wilde. Generation of efficient nested loops from polyhedra.
Intl. Journal of Parallel Programming, 28(5):469–498, october 2000.

[65] J. Ramanujam and P. Sadayappan. Tiling multidimensional iteration spaces for multicom-
puters. Journal of Parallel and Distributed Computing, 16(2):108–230, 1992.

[66] Rice University. HPCToolkit performance tools. http://hpctoolkit.org.

[67] L. Rudd and E. Merényi. Assessing debris-flow potential by using AVIRIS imagery to map
surface materials and stratigraphy in cataract canyon, Utah. In R.O. Green, editor, Proc. 14th
AVIRIS Earth Science and Applications Workshop, Pasadena, CA, May 24–27 2005.

[68] Vivek Sarkar. Automatic Selection of High Order Transformations in the IBM XL Fortran Com-
pilers. IBM Journal of Research and Development, 41(3), May 1997.

[69] Vivek Sarkar and Radhika Thekkath. A General Framework for Iteration-Reordering Loop
Transformations. Proceedings of the ACMSIGPLAN ’92Conference onProgramming Language
Design and Implementation, pages 175–187, June 1992.

[70] Vivek Sarkar and Radhika Thekkath. A general framework for iteration-reordering loop trans-
formations. In Proc. of the ACM SIGPLAN conference on Programming language design and
implementation (PLDI’92), pages 175–187. ACM, 1992.

124 BIBLIOGRAPHY

[71] Mark Stephenson, Saman Amarasinghe, Martin Martin, and Una-May O’Reilly. Meta op-
timization: improving compiler heuristics with machine learning. ACM SIGPLAN Notices,
Proceedings of the 2003 Conference on Programming Languages, Design and Implementation,
38(5):77–90, 2003.

[72] Nathan R. Tallent and John Mellor-Crummey. Effective performance measurement and anal-
ysis of multithreaded applications. In Proc. of the 14th ACM SIGPLAN Symposium on Princi-
ples and Practice of Parallel Programming, pages 229–240, New York, NY, USA, 2009. ACM.

[73] Nathan R. Tallent, John Mellor-Crummey, and Michael W. Fagan. Binary analysis for mea-
surement and attribution of program performance. In Proc. of the 2009 ACM SIGPLAN Con-
ference onProgramming LanguageDesign and Implementation, pages 441–452, New York, NY,
USA, 2009. ACM.

[74] Nathan R. Tallent, John Mellor-Crummey, and Allan Porterfield. Analyzing lock contention
in multithreaded applications. In Proc. of the 15th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, 2010.

[75] Nathan R. Tallent, John M. Mellor-Crummey, Laksono Adhianto, Michael W. Fagan, and Mark
Krentel. Diagnosing performance bottlenecks in emerging petascale applications. In Proc. of
the 2009 ACM/IEEE Conference on Supercomputing, 2009.

[76] T. Villmann, E. Merényi, and B. Hammer. Neural maps in remote sensing image analysis.
Neural Networks, 16:389–403, 2003.

[77] Brian N. West. Adding operator strength reduction to LLVM. Technical Report TR11-03, Rice
University, September 2011.

[78] M. Wolfe. High performance compilers for parallel computing. Addison-Wesley Publishing
Company, 1995.

[79] Michael J. Wolfe. Optimizing Supercompilers for Supercomputers. Pitman, London and The
MIT Press, Cambridge, Massachusetts, 1989. In the series, Research Monographs in Parallel
and Distributed Computing.

[80] L. Zhang, E. Merényi, W. M. Grundy, and E. Y. Young. An SOM-hybrid supervised model
for the prediction of underlying physical parameters from near-infrared planetary spectra.
In R. Miikkulainen, editor, Advances in Self-Organizing Maps, Proc. 7th Intl Workshop on
Self-OrganizingMaps (WSOM 2009, volume 5629 of Lecture Notes in Computer Science, LNCS,
pages 362–371, St. Augustine, FL, June 8–10 2009. Springer-Verlag.

[81] L. Zhang, E. Merényi, W. M. Grundy, and E. Y. Young. Inference of surface parameters from
near-infrared spectra of crystaline H2O ice with neural learning. Publications of the Astro-
nomical Society of the Pacific, February 2010. Submitted.

