
Value-Driven Code Motion

Keith Cooper

Taylor Simpson

CRPC-TR95637-S

October 1995

Center for Research on Parallel Computation

Rice University

6100 South Main Street

CRPC - MS 41

Houston, TX 77005

Value-Driven Code Motion

Keith D. Cooper

L. Taylor Simpson

Value-driven code motion is an improvement to classical code motion techniques that takes advantage of the results
of global value numbering. Traditional data-ow analysis frameworks must assume that every de�nition produces a
distinct value. Therefore, an instruction cannot move past a de�nition of one of its subexpressions. This restriction
can be relaxed when certain de�nitions are known to produce redundant values. This information is discovered
during value numbering, but previous techniques have not exploited it. By understanding how code motion interacts
with global value numbering, we can simplify and improve the code motion framework. Our approach is to modify
the data-ow framework to account for the assumption that each de�nition represents a value rather than a lexical
name. This approach can be applied to a variety of data-ow frameworks. In particular, this paper focuses on lazy
code motion as proposed by Knoop, R�uthing, and Ste�en and modi�ed by Drechsler and Stadel [14, 15, 11]. That
algorithm is provably optimal; this paper shows that by changing our assumptions about the shape of the input
program, we can produce a technique that both eliminates more redundancies and runs more e�ciently. We present
experimental data that shows both these e�ects.

1 Introduction

Optimizing compilers often attempt to eliminate redundant computations either by removing instructions or

by moving instructions to less frequently executed locations. Historically, the algorithms aimed at removing

instructions have been designed independently from those aimed at moving instructions. Usually, there is

one optimization pass that attempts to determine when two instructions compute the same value and then

decides if one of the instructions can be eliminated. A second optimization pass determines a set of locations

where an instruction would compute the same result, and it selects the one that is expected to be the least

frequently executed. One problem with this approach is that critical information is lost between the passes.

We believe the correct approach to redundancy elimination is a single optimization with two steps:

1. Determine which computations in the program compute the same value, and identify the values com-
puted in the routine. We will refer to this step as value numbering, because we assign numbers to
values so that two values have the same number if the compiler can prove they are equivalent.

2. Use the value numbers to remove instructions or move them to less frequently executed locations.

One advantage of formulating the problem in this manner is that it provides a good separation of concerns.

In other words, we can select the algorithmfor step one independently of the selection of the algorithm for step

two. The results of step one are communicated to step two by assigning a unique name (value number) to each

value and rewriting the program accordingly. This paper describes how to take advantage of this information

to improve code motion. Section 2 explains what informationmust be communicated by the value numbering

step and reviews several techniques for discovering it. Section 3 describes previous techniques for redundancy

elimination. Section 4 presents our approach to value-driven redundancy elimination, and Section 5 shows

experimental results demonstrating that our technique is indeed an improvement over previous ones.

2 Value Numbering

Value numbering is a code optimization with a long history in both literature and practice. Although the

name was originally applied to a method for improving single basic blocks, it is now used to describe a

Authors address: Rice University, 6100 South Main Street, Mail Stop 41, Houston, TX 77005. Address all correspondence to
Taylor Simpson, lts@cs.rice.edu
This research has been supported by both ARPA and IBM Corporation.

1

collection of optimizations that vary in power and scope. All of the algorithms discussed here operate on

the static single assignment (SSA) form of the code [9]. The primary objective is to assign an identifying

number (a value number) to each value computed in the routine in a way that two values have the same

number if the compiler can prove they are equal for all possible program inputs.

In value numbering, the compiler can only assign two expressions the same number if it can prove that

they always produce equal values. We will discuss three techniques for proving this equivalence. In general,

each one discovers a di�erent set of equivalences. The important feature that these algorithms share is that

they can rewrite the names in the entire routine consistently to reect the equivalences discovered.

2.1 Hash-Based Value Numbering

Cocke and Schwartz describe a local technique that uses hashing to discover redundant computations and

fold constants [7]. Each unique value is identi�ed by its value number. Two computations have the same

value number if they are provably equal. In the literature, this technique and its derivatives are called \value

numbering."

Briggs et al. introduced an extension that performs hash-based value numbering over an entire procedure

by using a single hash table for all the basic blocks [6]. It achieves a consistent name space for the routine by

replacing every SSA name with its value number. This form of value numbering cannot remove instructions

as they are processed because the relative locations of two equal computations are not known. In contrast,

when value numbering over a single basic block, an expression exists in the hash table only when it is

computed earlier in the same basic block.

In this method, the compiler traverses the control-ow graph (CFG) in reverse postorder and process the

�-nodes and instructions in each block. Before it can process the �-nodes in a block, it must check that there

are no incoming back edges. If a �-node references a value that ows through a back edge, that parameter

may not have a value number yet. If so, the compiler must assign a unique value number to each �-node

in the block. If no back edges ow into a block, the reverse-postorder traversal guarantees that all �-node

parameters have been assigned value numbers. If so, the �-nodes in the block can be analyzed.

When processing the �-nodes and instructions in a block, the algorithm overwrites the operands with

their value numbers, folds constants, simpli�es algebraic identities, and searches the table for the resulting

expression. If the expression is found, the result is overwritten with the value number of the expression.

Otherwise, the expression is added to the table with the SSA name de�ned by the �-node or instruction as

its value number.

Figure 1 demonstrates how this technique works. Both computations of the expression a+ b are assigned

the name x0 and both computations of c + d are assigned z0. Notice that even though the expression c + d

exists in the hash table when block C is processed, it would be unsafe to remove the instruction. The �-node

in block D is removed because all of its parameters are equal.

Technically, this is not a global algorithm because it cannot handle values that travel through back

edges in the CFG. However, it does name values consistently throughout the routine, and this is the key

feature that we require for value-driven code motion. While other value numbering algorithms will discover

a di�erent set of equivalences, our experiments show that this algorithm is competitive in practice with the

global algorithms presented in Sections 2.2 and 2.3 [6].

2.2 Value Partitioning

Alpern, Wegman, and Zadeck present a technique that uses a variation on Hopcroft's DFA-minimization

algorithm to partition values into congruence classes [4, 1]. It operates on the SSA form of the routine [9].

Two values are congruent if they are computed by the same opcode, and their corresponding operands are

2

x0 a+ b
y0 a+ bA

z0 c+ dB z1 c+ d C

z2 �(z0; z1)

z3 z2 + 1
D

H
H
H
H
Hj

�
�

�
�
��

H
H
H
H
Hj

�
�
�
�
��

x0 a + b
x0 a + bA

z0 c + dB z0 c + d C

z3 z0 + 1
D

H
H
H
H
Hj

�
�
�

�
��

H
H
H
H
Hj

�
�
�
�
��

Before After

Figure 1 Hash-based value numbering

congruent. For all legal expressions, two congruent values must be equal. Since the de�nition of congruence

is recursive, there will be routines where the solution is not unique. A trivial solution would be to set each

value in the routine to be congruent only to itself; however, the solution we seek is the maximal �xed point

{ the solution that contains the most congruent values.

Initially, the partition contains a congruence class for the values de�ned by each operator in the program.

The partition is iteratively re�ned by examining the uses of all members of a class and determining which

classes must be further subdivided. After the partition stabilizes, the registers and �-nodes in the routine

are renumbered based on the congruence classes. Because the e�ects of partitioning and renumbering are

analogous to those of value numbering described in the previous section, we think of this technique as a form

of global (or intraprocedural) value numbering.1 The drawback of value partitioning is that it cannot handle

algebraic identities such as the �-node eliminated by hash-based value numbering in Figure 1.

2.3 SCC-Based Value Numbering

SCC-based value numbering can discover at least as many equivalences as hash-based value numbering or

value partitioning [8]. The algorithm operates in conjunction with Tarjan's algorithm for �nding strongly

connected components (SCCs) [18]. It runs in O(N �D(SSA)) time, where N is the number of SSA names,

and D(SSA) is the loop connectedness of the SSA graph [13]. The loop connectedness of a graph is the

maximumnumber of back edges in any acyclic path. This number can be as large as O(N), but it is believed

that, in practice, this number is bounded by a small constant. The running time of the iterative data-ow

analysis used in code motion is O(N � B � D(CFG)), where B is the number of blocks in the CFG and

D(CFG) is the loop connectedness of the CFG.

Tarjan's algorithm uses a stack to determine which nodes are in the same SCC; nodes not contained in

any cycle are popped singly, while all the nodes in the same SCC are popped together. Therefore, we assign

value numbers as nodes are popped from the stack. When a single node is popped from the stack, we know

that we have assigned value numbers to the operands of the corresponding expression. Thus, we can examine

the expression and assign a value number to this node. When a collection of nodes representing an SCC is

1Rosen, Wegman, and Zadeck describe a technique called global value numbering [17]. It is an interesting and powerful approach
to redundancy elimination, but it should not be confused with value partitioning.

3

popped, we know that we have assigned value numbers to any operands outside the SCC. The members of

the SCC require special handling in order to perform value numbering.

We assign value numbers to the nodes of an SCC by iterating in reverse postorder. Initially, the value

number for each member of the SCC is > (pronounced \top"). A value number of > indicates that this value

has not yet been examined. In order to make optimistic assumptions about the values and later disprove

them, we use two hash tables. The iterative phase uses an optimistic table. Once the value numbers in the

SCC stabilize, entries are added to the valid table. The value numbering of single values uses only the valid

table.

2.4 Summary and Comparison

The key di�erence between these algorithms is the set of equivalences they discover. Hash-based value

numbering can discover constant values, evaluate expressions whose operands are constants, and propagate

these values through the code. It can also recognize certain algebraic identities, like i = i+ 0 and j = j � 1,

and use them to simplify the code and to expand the set of values known to be equal. Value partitioning

does not propagate constants or simplify identities, but it can analyze values that ow through back edges

in the CFG. SCC-based value numbering combines the best features of hash-based value numbering and

value partitioning. It can propagate constants, simplify identities, and analyze values that ow through back

edges.

3 Code Removal and Motion

Value numbering, as described in Section 2, rewrites the routine so that each name corresponds to a unique

value number. Therefore, better value numbering results in fewer names. However, value numbering alone

will not improve the running time of the routine; the compiler must also �nd and remove redundant compu-

tations. This is accomplished either by eliminating instructions or by moving instructions to less frequently

executed locations. This section describes previous approaches to code removal and motion.

3.1 Available Expressions

The classical approach to redundancy elimination is to remove computations in the set of available expressions

(AVAIL) at the point where they appear in the routine [2]. This approach uses data-ow analysis to determine

the set of expressions available along all paths from the start of the routine.

Properties of value numbering let us simplify the formulation of AVAIL. The traditional data-ow equa-

tions deal with lexical names, while our equations deal with values. This is a very important distinction. We

need not consider the killed set for a block because no values are rede�ned in SSA form, and value numbering

preserves this property. Consider the code fragment on the left side of Figure 2. Under the traditional data-

ow framework, the assignment to X would \kill" the Z expression. However, if the assignment to X caused

Z X + Y

X : : :

Z X + Y

AVINi =

8><
>:
;; if i is the entry block\
j2pred(i)

AVOUTj; otherwise

AVOUTi = AVINi [de�nedi

Example Data-Flow Equations

Figure 2 AVAIL-Based Removal

4

the two assignments to Z to have di�erent values, then they would be assigned di�erent names. Since value

numbering has determined that the two assignments to Z are congruent, the second one is redundant and

can be removed. The only way the intervening assignment will be given the name X is if the value computed

is equal to the de�nition of X that reaches the �rst assignment to Z. The simpli�ed data-ow equations are

shown in Figure 2. Notice that the equation for AVOUTi does not include a term for the expressions killed

in block i. We simply add the set of values de�ned in the block (de�nedi) to the set of values available at

the beginning of the block (AVINi). The set de�nedb is the set of value numbers with a de�nition in block

b. This is a superset of the set of values generated in b (genb) which does not include any expressions whose

de�nition is followed by a modi�cation of one of its subexpressions.

3.2 Code Motion

The compiler can eliminate redundancies not only by removing computations but also by moving computa-

tions to less frequently executed locations. Many techniques rely on data-ow analysis to determine the set

of locations where each computation will produce the same value and to select the ones that are expected

to be least frequently executed.

Partial redundancy elimination (PRE) is an optimization introduced by Morel and Renvoise that combines

common subexpression elimination with loop invariant code motion [16, 10]. Partially redundant computa-

tions are redundant along some, but not necessarily all, execution paths. One interesting property of PRE

is that is never lengthens a path through the program.

Knoop, R�uthing, and Ste�en describe a descendant of PRE, called lazy code motion (LCM) [14, 15]. Their

technique avoids the unnecessary code motion inherent in PRE. This feature is important when code motion

interacts with register allocation and other optimizations. Drechsler and Stadel present a variation of this

technique that they claim is more practical [11]. Although our value-driven approach could be applied to any

of these data-ow frameworks, we will show speci�cally how to extend Drechsler and Stadel's framework.

4 Value-Driven Code Motion

The ability of the compiler to perform code motion is inuenced heavily by the \shape" of the input program.

Briggs and Cooper showed that global reassociation followed by value partitioning will transform code into a

form that makes PRE more e�ective [5]. Further improvements are still possible. The focus of this research

is to extend the data-ow framework to operate on value equivalences rather than lexical names, just as

we extended the framework for available expressions in Section 3.1. Because values are never killed, a

computation of an expression can move across a de�nition of one of its operands if the value of that operand

is available at the point where the computation is placed. In other words, a computation can be placed

anywhere that the values of its operands are available.

In value-driven code motion (VDCM), certain operations cannot be moved; they are called �xed. Exam-

ples of �xed operations include �-nodes, subroutine calls, and control-ow operations. All other operations

are considered candidates for code motion.2

The �rst step of VDCM is to �nd available expressions as described in Section 3.1. The only local predicate

required for this framework is de�nedb { the set of values de�ned in block b. Using the results of the available

expressions calculation, we can compute the other predicates needed for the remaining data-ow frameworks.

These predicates take on a di�erent meaning under VDCM because we are dealing with values rather than

lexical names.

The predicate alteredb represents the set of values that cannot move past some de�nition in block b.3 In

2This same distinction exists in both PRE and LCM.
3The analogous predicate in Drechsler and Stadel is TRANSPb.

5

ANTOUTi =

8><
>:
;; if i is the exit block\
j2succ(i)

ANTINj; otherwise

ANTINi = ANTOUTi � alteredi [antloci

Anticipatability

EARLIESTi;j =

(
ANTINj \ AVOUTi; if i is the exit block

ANTINj \ AVOUTi \ (altered [ANTOUTi); otherwise

Earliest

LATERINj =

8><
>:
;; if j is the entry block\
i2prej(j)

LATERi;j; otherwise

LATERi;j = LATERINj \ ANTLOCi [EARLIESTi;j

Later

INSERTi;j = LATERi;j \ LATERINj

DELETEi =

(
;; if i is the entry block

ANTLOCi \ LATERINi; otherwise

Placement

Figure 3 Data-ow equations for code motion

6

our framework an instruction can move past the de�nition of one of its operands. However, an instruction

cannot move to a point where the values of its operands cannot be made available. The concept of ready is

de�ned recursively for each value v and each program point p. We say that v is ready if its �xed operands

are available and its candidate operands are ready at p. Given the set of available values at point p, we can

compute the set of ready values as follows: Initially, the set of ready values is the set of available values,

then we traverse each expression tree bottom up and add any expression with all of its operands in the set.

Finally, the set of values altered in block b is simply the set of values that are ready at the end of b but not at

the beginning. In other words, a value is altered in block b if at least one of its subexpressions is computed

in block b for the �rst time along some path in the CFG.

Intuitively, alteredb for block b is derived by �rst computing the set of ready values at the beginning and

end of the block, and then �nding the di�erence. In practice, alteredb can be computed more e�ciently by

starting with AVOUTb � AVINb, then traversing each expression tree bottom up and adding any expression

with one of its operands in the set. This requires O(N) time, where N is the number of names.

Compare this approach with the technique for computing the altered set using lexical names. First, the

subexpressions for each candidate and the set of dependences for each �xed value must be computed. To

compute subexpressions, the analyzer must traverse each expression tree bottom up; for each expression, it

computes the union of the subexpressions of its operands. To compute the set of dependences, it examines the

subexpressions, S[e] for each expression e. For each �xed value f 2 S[e], it adds e to the set of dependences

for f . This process requires O(N2) time, where N is the number of names. Finally, for each block b, the

analyzer computes alteredb as the union of the dependences for any �xed value de�ned in b.

The other predicate needed for each block b is the set of expressions that are locally anticipatable, antlocb.

Under the traditional framework, this is the set of expressions e computed in b before any of e's operands

are modi�ed in b. However, under the value-driven framework, antlocb is the set of values computed in b

whose de�nition could legally be placed at the beginning of b. Any value computed in b can be computed at

the beginning of b if that value is not altered in b. Therefore, we de�ne antlocb as the set of values that are

computed but not altered in b (i.e., de�nedb � alteredb).

Given the value-driven versions of available expressions, altered, and locally anticipatable, the code

motion proceeds as before. Speci�cally, we compute the set of values to insert on each edge (i.e., INSERTi;j

for each edge e = (i; j)) and the set of values to delete from each block (i.e., DELETEb for each block b). For

reference, the complete set of equations is given in Figure 3.

The example in Figure 4 demonstrates how VDCM is more powerful than LCM. The traditional framework

would compute the set of subexpressions for r1 as fxg, and for r2 as fr1; xg. Therefore, the set of dependences

for x would be fr1; r2g, and the STORE to x in block B2 must be assumed to alter the values of both r1 and

r2 (i.e., alteredB2
= fr1; r2g). However, the value numbering has discovered that the value of r2 depends

only on the value of r1, and it is independent of the value stored into x inside the loop. In other words, r2

must be the absolute value of the value of x on entry to the loop.

We will now explain how value-driven code motion would analyze this example. The �rst step is to

compute available expressions using the equations in Figure 2. The solution to these equations shows that r1

is available on entry and exit for block B2 (r1 2 AVINB2
and r1 2 AVOUTB2

). We initialize the set alteredB2

with AVOUTB2
� AVINB2

. Since r1 62 AVOUTB2
� AVINB2

, r2 62 alteredB2
, and VDCM is able to move the

de�nition of r2 outside the loop. On the other hand, LCM must leave the de�nition inside the loop.

5 Experimental Results

Even though LCM is provably optimal, we have shown that assumptions about the input program can be

modi�ed. To assess the impact of VDCM over LCM, we have implemented both of the optimizations in our

7

r1 LOAD x
B1

STORE x

r2 ABS r1
B2

?

?

� �

� �
?

r1 LOAD x

r2 ABS r1B1

STORE xB2

?

?

� �

� �
?

Before After

Figure 4 Example

experimental Fortran compiler. Comparisons were made using routines from a suite of benchmarks consisting

of over 50 routines drawn from the SPEC benchmark suite and from Fosythe, Malcolm, and Moler's book on

numerical methods [12].

Our optimizer is composed of a sequence of passes that operate on ILOC { our intermediate language.

ILOC is a pseudo-assembly language for a RISC machine with an arbitrary number of symbolic registers.

The back end generates code that is capable of counting the number of ILOC operations executed. Routines

are optimized using the sequence of global reassociation [5], SCC-based value numbering [8], code motion

(the type is indicated in the legend), global constant propagation [19], operator strength reduction [3], SCC-

based value numbering, global constant propagation, global peephole optimization, dead code elimination [9,

Section 7.1], copy coalescing, and a pass to eliminate empty basic blocks. We repeat the value numbering

and constant propagation passes to clean up after operator strength reduction. Figures 5 and 6 show only

those routines where there was variation in the number of ILOC operations executed. Each column represents

dynamic counts of ILOC operations, normalized against LCM. Recall that LCM is an optimal method; thus,

we expect the improvements in code motion to be relatively minor. In no case did VDCM do worse than

LCM.

We also compared the time required by each of the techniques for some of the larger routines in the test

suite. These results are shown in Table 1. The number of blocks, SSA names, and operations are given

to indicate the size of the routine being optimized. Since the di�erences in running times are determined

primarily by the size of the bit vectors and the time required to compute the altered set for each block, these

LCM VDCM
routine blocks SSA names operations set size altered total set size altered total

tomcatv 131 2212 2663 790 0.41 0.52 924 0.06 0.18
ddeflu 109 5494 4502 1420 1.67 1.82 3632 0.10 0.49
debflu 116 5856 3951 1073 0.75 0.88 3851 0.09 0.52
deseco 251 13164 11771 2500 4.32 4.90 6054 0.43 1.78
twldrv 266 23486 15615 3792 9.07 9.95 16004 0.83 4.69

Table 1 Running times of code motion techniques

8

0.5

0.6

0.7

0.8

0.9

1

twldrv deseco paroi repvid inithx inideb ddeflu ihbtr yeh

LCM

VDCM

Figure 5 Comparison of code motion techniques { SPEC benchmark

0.5

0.6

0.7

0.8

0.9

1

svd decomp urand solve

LCM

VDCM

Figure 6 Comparison of code motion techniques { FMM benchmark

9

times are included in the comparison. Notice that the bit vector sizes used by VDCM are larger than those

used by LCM. This is due to the fact that there are more values than lexical names (i.e., the same name

can have many values). However, the reduction in the time required to compute the altered sets more than

compensates for this di�erence. In every instance, VDCM ran faster than LCM.

6 Conclusion

We have presented a new approach to data-ow analysis that takes advantage of facts discovered during

value numbering. Traditional data-ow analysis frameworks operate on lexical names while our framework

uses values. We have applied this important distinction to the framework for lazy code motion. Despite the

fact that lazy code motion is provably optimal, we can eliminate more redundancies using our technique.

Further, our algorithm runs faster than lazy code motion because the computation of the altered set for each

block is greatly simpli�ed. We experimentally compared the improvements made by our technique over lazy

code motion when applied to real programs in the context of an optimizing compiler. Finally, we showed

that our optimization runs signi�cantly faster than lazy code motion.

7 Acknowledgements

Our colleagues in the Massively Scalar Compiler Project at Rice have played a large role in this work.

Without their implementation e�orts, we could not have completed this work. We would also like to thank

Vivek Sarkar and IBM for supporting Taylor Simpson through the IBM Cooperative Fellowship.

References

[1] Alfred V. Aho, John E. Hopcroft, and Je�rey D. Ullman. The Design and Analysis of Computer

Algorithms. Addison-Wesley, Reading, Massachusetts, 1974.

[2] Alfred V. Aho, Ravi Sethi, and Je�rey D. Ullman. Compilers: Principles, Techniques, and Tools.
Addison-Wesley, 1986.

[3] Frances E. Allen, John Cocke, and Ken Kennedy. Reduction of operator strength. In Steven S. Muchnick
and Neil D. Jones, editors, Program Flow Analysis: Theory and Applications. Prentice-Hall, 1981.

[4] Bowen Alpern, Mark N. Wegman, and F. Kenneth Zadeck. Detecting equality of variables in pro-
grams. In Conference Record of the Fifteenth Annual ACM Symposium on Principles of Programming

Languages, pages 1{11, San Diego, California, January 1988.

[5] Preston Briggs and Keith D. Cooper. E�ective partial redundancy elimination. SIGPLAN Notices,
29(6):159{170, June 1994. Proceedings of the ACM SIGPLAN '94 Conference on Programming Language

Design and Implementation.

[6] Preston Briggs, Keith D. Cooper, and L. Taylor Simpson. Value numbering. Technical Report CRPC-
TR95517-S, Center for Research on Parallel Computation, Rice University, November 1994. Submitted
to Software { Practice and Experience.

[7] John Cocke and Jacob T. Schwartz. Programming languages and their compilers: Preliminary notes.
Technical report, Courant Institute of Mathematical Sciences, New York University, 1970.

[8] Keith D. Cooper and L. Taylor Simpson. SCC-based value numbering. Extended abstract submitted to
SIGPLAN PLDI '96.

[9] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck. E�ciently
computing static single assignment form and the control dependence graph. ACM Transactions on

Programming Languages and Systems, 13(4):451{490, October 1991.

10

[10] Karl-Heinz Drechsler and Manfred P. Stadel. A solution to a problem with Morel and Renvoise's \Global
optimization by suppression of partial redundancies". ACM Transactions on Programming Languages

and Systems, 10(4):635{640, October 1988.

[11] Karl-Heinz Drechsler and Manfred P. Stadel. A variation of Knoop, R�uthing, and Ste�en's \lazy code
motion". SIGPLAN Notices, 28(5):29{38, May 1993.

[12] George E. Forsythe, Michael A. Malcolm, and Cleve B. Moler. Computer Methods for Mathematical

Computations. Prentice-Hall, Englewood Cli�s, New Jersey, 1977.

[13] John B. Kam and Je�rey D. Ullman. Global data ow analysis and iterative algorithms. Journal of the
ACM, 23(1):158{171, January 1976.

[14] Jens Knoop, Oliver R�uthing, and Bernhard Ste�en. Lazy code motion. SIGPLAN Notices, 27(7):224{
234, July 1992. Proceedings of the ACM SIGPLAN '92 Conference on Programming Language Design

and Implementation.

[15] Jens Knoop, Oliver R�uthing, and Bernhard Ste�en. Optimal code motion: Theory and practice. ACM
Transactions on Programming Languages and Systems, 16(4):1117{1155, July 1994.

[16] Etienne Morel and Claude Renvoise. Global optimization by suppression of partial redundancies. Com-

munications of the ACM, 22(2):96{103, February 1979.

[17] Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck. Global value numbers and redundant
computations. In Conference Record of the Fifteenth Annual ACM Symposium on Principles of Pro-

gramming Languages, pages 12{27, San Diego, California, January 1988.

[18] Robert E. Tarjan. Depth �rst search and linear graph algorithms. SIAM Journal on Computing,
1(2):146{160, June 1972.

[19] Mark N. Wegman and F. Kenneth Zadeck. Constant propagation with conditional branches. ACM

Transactions on Programming Languages and Systems, 13(2):181{210, April 1991.

11

