Improved Passive Splitting

Keith D. Cooper Jason Eckhardt
Department of Computer Science
Rice University
Houston, TX, U.S.A.

Abstract—We present a graph coloring register allocator whichlosses of being too aggressive. This paper introduces some
uses an improved form of passive live range splitting to reduce thgodifications that boost the effectiveness of passive splitting.
count of dynamic spill operations. Program structure is used to guide Section 2 provides an overview of the original passive

the global splitting of live ranges and to place split operations at_ I, .
infrequently executed portions of the program. We also optimisticeﬂ'ﬁpIIttIng allocator. Section 3 discusses opportunities for im-

reconsider spill decisions at certain points to potentially enable moferovement and presents a modified version of the algorithm.
splits and/or fewer spills. Certain issues that complicate implemeBxperimental results for the new technique are given in Sec-

tation of the original passive splitting method are discussed. Finalljjon 4. Finally, Section 5 discusses some other implementation
experimental results are presented which indicate that the improvrggues

passive splitter is effective.
Keywords—global register allocation, live range splitting. 2 CHAITIN -BRIGGS ALLOCATOR WITH PASSIVE

PLITTIN
1 INTRODUCTION S G

The Chaitin-Briggs (“CB") graph coloring register alloca- Passive splitting (“PS”) was designed to cope with some of

tion framework [7], [6], [3], [2], [4] is generally regarded as théhefsituations Iin \é\{hich (i‘,haitin’s “spill everyr\:vhere" approach]c
dominant paradigm for global register allocation in optimizin erforms poorly. Figure a portrays one such case. Suppo_se or
compilers. The technique is highly effective, but its method'® sake of illustration that the allocator has only one register
of spilling live ranges— sometimes referred to informally agvanablgil Smcelthelre arﬁ two conrf]hctmg live ra"@’?m.‘d

the “spill everywhere” approach— may insert far more spifl’ CB wi comp etely spill one or the _Ot er. Assumingis
operations than necessary. chosen for spilling, a store af will be inserted after every

A number of approaches have been proposed for improviﬂgﬁnition and a load before_every use, producing the code in
on the limitations of the CB spill method [1], [5], [11], [9]. Fgure_ 1b. Unfor_tunately, this appro_ach I_eads to a new load
[10]. One general way of attacking the problem isiibg range ope'rat|on that will execute on each |te_rat|on of the. loop.
splitting— breaking certain live ranges into smaller pieces so S_lmpson obs_e_rved that this undes_lrable situation can be
that each piece can be allocated independently. Such splitt@ided by splittingz aroundy. That is, because is not
may enable a graph to be colored with fewer colors, or allob\?ed untlllthe second Ioop_, It ”ee‘?' nat occupy a register unti
more intelligent placement of spill instructions. aftgr the f'r$t Io.op .(aft_ey dps). T.h's allowsy to occupy the.

In [2], Briggs describes aaggressiveapproach to splitting. reglgter dur'lng its Ilfgtlme in the first loop. .By spllttl.ng in this
In this method live ranges are split before the coloring phagaeSh'on’ spill opgratlons are placed OUt.S'de .Of either of the
by the insertion of split operations (copies) at certain points ‘HOPS’ and bOFh live ranges occupy a register n the_ frequently
the program. For example, splits can be inserted at the bouf§ECUted portions of their lifetimes, as shown in Figure 1c.
aries of loops for global live ranges that span the loop. For a e Key to Simpson's approach is solidifying the notion
live rangex, this allows the allocator to consider the portion off When one live range can be split around another. In the

x within the loop separately from the portion outside the loofzX@MPple, splitting was allowed becauges containedin z—

Briggs attempted a number of ways of choosing split pointdl! the uses and definitions gf occur entirely between any
such as by using loop boundaries, dominator frontiers, etc. THES OF definitions of.

technique is considered aggressive in that every range liveoaf oyerview of the Algorithm

a split point would be split. While the experiments showed

significant wins for the strategy, it also showed significanthpass'v‘i stf]llttmg 'S” |(r:nglfemented I:wth 3 s_mtaI:j r_1ur|2_ber 0;
losses due to excessive split copies remaining in the code £aNges 1o the overa ramework, as depicted in FIgure <.

In an effort to obtain some of the benefits of splitting, whiléterg; in boldface represent phases that were changed or added
not incurring as many losses as aggressive splitting, Coo { .dd" he the interf h d by CB. Si
and Simpson introduced a lazy gqassive approach [8]. n addition the the interierence graph used by CB, Simpson

Their results indicate that a less aggressive approach can Qifiids acontainment grapiwhich indicates the containment

significantly reduce dynamic spill operations compared to thg'ationships between any pair of live ranges. The graph is
standard Chaitin-Briggs allocator, without incurring the bi uilt using an algorithm nearly identical to that for building an
terference graph. It is the data structure used during splitting

*Correspondence: Jason Eckhardt (jle@rice.edu) to determine whether or not a split is feasible. The graph is

spill code

split code

] spill costs L
- renumber build coalesce simplify select >

=

find splits
Fig. 2. The Passive Splitting Allocator
X=. S%/X:: storéx for spilling as usual. - _
= orey = 3. Find splits Invoked byselect , this is the key routine

that determines whether splitting can free a color for
y Y a noden that did not receive a color. Utilizing the
=DD Iogl@) =DD containment graph and the computed split costs, it will
try to either split interfering live ranges around or
split n around interfering live ranges, choosing the least
Y costly choice. Further, the choice is only acceptable if
j it costs less than spilling everywhere.

4. Split code Once a split decision has been made, the
actual instructions must be inserted into the code. This
operates similarly to thepill code phase of CB.
For each live range that was split around, a STORE
of s is inserted before every definition 6fand aLOAD
of s is inserted after every death bf

3 SOME |IMPROVEMENTS

@ (b) © Simpson reports good results for passive splitting, and
') - .) experiments by this author confirm that PS can significantly
Fig. 1. Example of passive splitting: (a) original; (b) spilcompletely; (c) d d . il . d
split x aroundy. reduce dynamic spi operations compared to CB. Even so,
examination of some benchmarks reveals that even better
results are achievable.

Consider the code in Figure 3a. Suppose that during
select node ¢ did not receive a color, and thdind
splits determines that splitting: aroundt is less costly

It was not mentioned in Simpson’s original paper, but gh';\n spilling ¢t everywheré. Recall thatsplit code will

spemal phase_ is run before register allogat_lon to remove insert aSTOREbefore every definition of and aLOADafter
critical edges in the control flow graph. This is done to ensure

: A . fvery death oft. In this example, that has the unfortunate
that there is always a proper location in which to place spli . o . -
operations rawback of placing all the split instructions within the loop

(Figure 3b). But by observing that has no reference (use or

1. Split costs For each live rangé, this phase determinesdefinition) within the first loop, a much better placement for
the cost of splitting a live range around!, where the the split operations is just outside the loop (Figure 3c). That
cost is the number o OAD and STOREinstructions is, the dynamic number of spill operations will be decreased
(weighted by loop nesting depth) needed to perform thg:cause the split code is placed in less frequently executed
split. The underlying implementation operates similarlyegions of the program. In the case of a deeply nested loop,
to thespill costs phase in CB. the splits can be pushed outside of more than one loop in the

2. Select This phase operates as in CB, with one changgest as long as there are no references to the split range in
When a noden is encountered that cannot receive gat loop.
color, find splits is called in an attempt to find a Using loops to guide the splitting is convenient in that it

color for n by splitting. If splitting was successful s relatively easy to differentiate high frequency regions from
will now be assigned a color and is no longer marked

for spilling. If splitting was not successful, is marked The split is legal since: containst.

actually built at the beginning of theplit costs phase
described below.

is feasible (e,c) ¢ CG), it is more costly than just spilling

e, sincec is at a greater loop depth. Thus,is marked for

spilling. Continuing,a is popped and assigned color 2, the

only possibility. Finally,b is popped but cannot receive a color.

This time, howeverfind splits determines that a split of

d aroundb is both legal (d,b) ¢ CG) and less costly than

spilling b. Thus the split is noted andl is assigned color 1.

At this point, the stack is empty, and once spill and split code
is inserted, the next phase of allocation will build and color

Cj Cj load x the resulting graph successfully (i.e., without introducing any
more splits or spills).

Rather than accepting the spill efas just described, an
examination of the live ranges just after the spill and split code

<heavy use of x> <heavy use of x> <heavy useof x> is inserted (Figure 4c) reveals that we can do better. Suppose
that instead of marking: for spilling, it is reconsidered for
(@ (b) (© allocation in the next pass. This timeis a candidate for

splitting around the second part @f(the range starting at the
Fig. 3. Example of improved passive splitting: (a) original; (b) spiround |oad of d). Not only that, doing the split is less costly than
t (old); (c) splitx aroundt (new). P
spilling e.
. - The previous example shows that splitting enabled a node
) Jsored = - that was destined for spilling to be allocated to a register—
= but only because it was reconsidered rather than spilled in the
= . first pass. In other words, instead péssimisticallyspilling
o d all nodes that were marked for spilling weptimistically
} I assume that splitting (if any) has enabled one or more of them
= to become colorable. This seemingly simple modification to
= =e select makes a significant difference on the benchmarks
N used here.

@ (b) (©
3.1 The Improved Algorithm

Figure 5 depicts the improved passive allocator, with
changes from the original marked in boldface. A detailed
explanation of the new functionality is given next. The imple-

those of low frequency with purely static control flow analysignentation was performed in the Rice Scalar Compiler Group’s
Unless a loop has a tiny trip count (e.g., one), or the body BsOC compiler, starting with the original passive splitting code
the loop is guarded by a rarely true condition, then it is a fairfy/ritten by Simpson.
safe to assume that moving split code out of a loop is better3-1-1 Build Loop Tree In order to make use of loops when
when possible. computing spill costs and inserting split cpde, the new phase
It is also possible to use other program structure to gui@lild loop tree constructs a convenient representation
the splitting, such as with conditional regions. However, unlikgf the program. This data structure, theopTree , represents
loops, it is not necessarily obvious by static analysis whidi€ hierarchical loop nesting structure of the progfaftach
part of a conditional executes more frequently than the othBPde in theLoopTree represents a loop. A nodeis a child
By incorporating profile feedback from a training run, th@f nodep if the loop represented byis contained within the
allocator could decide how to place split code in or arourldOP represented by, andc is contained in no other loops.
conditionals. The allocator framework used in the present wolfiWo disjoint loops have the same containing loop, then they
does not currently use profiling feedback. will be S|bI|n.g nodes W|th.the same par_ent n.ode. Each node
Another opportunity for improvement arises #elect t also contains the followingt.blocks s a list of all the

Consider the live ranges depicted in Figure 4a. Suppose thgsic blocks contained in this loop, but not any of its inner
the number of colors i = 2 ({1,2}), the coloring stack loops;t.parent points to the parent nodédepth is the

created bysimplify is d, c,e,a,b (d is the stack top), and loop nesting depth (depth 1 is an outermost loop). The actual
that only ¢ is in a loop. Now duringselect , d is popped control flow analysis method used here to determine loops is
off the coloring stack first and assigned color 1. Nexis Paseéd on DJ-graphs [12], though a number of other techniques
popped and assigned color 2. Wheris popped, it cannot would work as well. This pass is performed once before the

be assigned a color since all colors are used by neighb8tain register allocation starts.

d and c. At tl”!iS Pomt' ﬁnd_ splits attemPtS to free_ & 2710 simplify this discussion, it is assumed that all loops are reducible.
color by considering a split oé aroundc. While the split However, reducibility is not a requirement for the algorithm.

Fig. 4. Spill reconsideration opportunityc (= 2): (a) live ranges; (b)
containment graph CG; (c) live ranges after first pasg(memory)

spill code

split code (w/ loops)

] spill costs L
renumber build coalesce simplify select
split costs (w/ |oops) (reconsider spills)
— build loop tree find splits

Fig. 5. The Improved Passive Splitting Allocator

annotateLoopTree(t)
t.refs— {} '
t.spilledon.entry[*] — {} splitCosts()
t.reloadedon exit[*] — {} buildContainmentGraph()
For each inner loop c of t annotateLoopTree(LoopTree.root)
annotateLoopTree(c) For each block b
t.refs— t.refsu c.refs live — liveOu,
For each block b in t.blocks For each successor s of b
For each instruction i in b deaths— liveOut,—liveln;
For each live rangedefined in i For each ne deaths
t.refs— trefsUl calcPerNeighborCosts(m, s, ForDeath)

For each instiin b in reverse order
For each live rangedefined in i
calcPerNeighborCosltsb, ForDef)

For each live rangkused in i
t.refs— t.refsul

Fig. 6. Algorithm for loop annotation For each live rangkused in i
ifl ¢ live
calcPerNeighborCosltsp, ForDeath)
. . . Update the live set
3.1.2 Split Costs Before starting,split costs needs p v

to annotate théoopTree with additional information about
virtual register usage within the loops. This information wil
be queried to determine the legality of pushing a split out

FalcPerNeighborCosts(b, type)
deflt weight«— 10%erth(b)

: . . For each neighbor n éf
of a loop or loops. Figure 6 shows the annotation algorithm." . .
) o " if (n,1) ¢ containment graph
The algorithm computes (or initializes) three additional sets
i) . pushout— 0
of information for each loop. Membet.refs is the set
p < loop(b)

of all virtual registers referenced (used or defined) in the
subtree rooted dt. Sett.spilled _on_entry[e] contains
the name of each VR that has previously been spilled to
memory on edge before the loop is entered. Likewise, set

while p# NIL A n ¢ p.refs
pushout— pushout + 1
new weight«— 10p-depth—1

treloaded _on_exit[e] contains the name of each VR _P—p-p arent

- if pushout> 0
that has previously been reloaded from memory on eelge o .

. . weight = newweight
after the loop is exited. else

The algorithm will perform a postorder (bottom-up) traver-
sal of the loop tree, propagating information up the tree. For
each loop, all ranges which have have a reference in the current
loopt are added tb.refs . After each subtree df has been
processed, itstef set is incorporated into the current set for
t.

weight = defltweight
if type = ForDef
1.split costs[n].stores—
1.split costs[n].stores + weight
else if type = ForDeath
1.split costs[n].loads—

Simpson’s original method of performing splitting is based 1.split costs[n].loads + weight
on the idea that for every live rangg split across live range _ ‘ _ _
1, s; will be stored immediately before a definition fand Fig. 7. Algorithm for computing split costs

reloaded just after a death &f Thus, for somes;, the same
split code will be inserted aroundas any others; (except,

select() still be worthwhile to provide a command line option to allow
reconsideration on every pass.

while ~coloring stack.empty 3.1.4 Find Splits This phase operates very similarly to
T the original passive splitter, except that when considering the
€« pick color for name neighborsn of I, it must utilize the new per-neighbor cost for
if ¢ = invalid._color eachn. In Figure 9, symbolRG SC, andLC are constants
spillset— spillsetJ name that represent machine-dependent costs for rematerialization
if findSplits(name) = TRUE instructions, store instructions, and load instructions respec-
spillset— spillset— name tively.
if passnumber = 1 3.1.5 Split Code As seen in Figures 10 and 11, the high-

spillset— {} level operation obplit code s similar tosplit costs

That is, definitions and deaths of a live rangare detected

Fig. 8. Algorithm fragment for color selection on a reverse pass through the instructions in a basic block.
This time, however, the actual split instructions are inserted
into the program.

) . _For a live ranges split around!, if no pushing out is
of course, the name). To represent split costs then, a singlesgiple then . OADof s is inserted into the instruction

guantity was st.o_red with each live rangeérhat quantity being ¢ream just after a death éfand aSTOREOf s just before
the cost of splitting any; around!. N _ any definitions ofl. In either case, if a split range can be
The key to the new approach is realizing that it can h@materialized, then NS TOREOf s is necessary andOADs
beneficial to splits; around! in a different way than splitting 5. replaced with cheape©OAD-IMMEDIATES.
s; around!. For example, a death 6fmay occur within aloop, Eor splits which can be pushed out of a loop, code insertion
while a spllytable neighbay; has no references in the loop. Atg slightly more complicated. Placing a split operation “just
the same time, another splittable neighbprhas a reference side” a loopZ, means either placing it on an edge entering
in the loop. For the former case, it is desirable to insert the from outside of (loop entry edgss or placing it on an
split operations fors; outside the loop, while a reload of gqge exiting to a block outside df (loop exit edges Since it
would be required (as originally) just after the deatV.of s assumed that all critical edges have been split before register
To model the previous scenario, a single cost stored Wigfjocation, there is always a place to insert such operations—
I is no longer sufficient. Instead, costs are stored for evegythe block at the head (tail) of an entry (exit) edge.
neighborn of I, andsplit costs will compute a distinct consider the case in whichis split aroundn in loop L and

cost for splittingn around!. _ the STOREOf s is pushed out of.. FunctionplaceSplit
Figure 7 shows the new method of computing costs. Fgérates over every loop entry edgef L, checking ifs is live
every basic block in the compilation unisplit costs on edgee. Ranges is live on edgee if s € (liveOute preqd N

iterates through the instructions in reverse order and maintajfise 1, ,,,..). Only theliveOut, .4 Set actually needs to be
a setlive of currently live ranges. If either a definition orchecked, though, sinceis known to be live throughouk (it
death of! is detected in the current instruction, then everias no references ih yet it interferes withm). If s is live on

neighbor ofl is examined to determine a split cost for that then theSTOREOf s is inserted at the end of basic block
neighbor. There are currently two options. Either the split)red (the block at the head aof).

cost will be based on the default location (i.e., just before Simijlar processing happens whe.@ADis pushed out of
the definition ofl or just after the death df, or the loop tree 1, This time, however, the operation will be placed on the
will be consulted to determine whether the Spllt cost can t< edges ofZ, where it is live. Liveness on an exit edgds
decreased by pushing the split operation out of a loop. checked by examiningveln,. suce.

To determine whether pushing splittable neighbavut is Any time an operation for s is placed
possible, the algorithm traverses the loop tree in a bottom-gptside a loop L on edge e, s is added to
fashion. It first obtains the loop tree nogecontainingl, then ejther the set L.spilled _on_entry[e] or
iteratively checks whether has any references ji and then | reloaded _on_exitfe] . Since s may have been

moves to the parent loop ;. If p;_; contains a reference of split across more than one range, the processing above
s, then the iteration stops ang is the outermost loop that would normally insert a split operation at the loop boundary
can be pushed out of. for every live ranges was split around. Such redundant
3.1.3 SelectAs described earlier, it can be beneficial t@perations are suppressed by checking whetheas already

reconsider spill decisions after splitting. Thus, at the end b&en spilled (or reloaded) arourd

select (Figure 8), the spill set is cleared if any splits were
made. This is done only on the first build-color pass, in order to
minimize compile-time impact. The rationale being that most To test the effectiveness of the passive splitting
splitting will happen on the first pass, and allowing reconsideémprovements, we compared Simpson’s original splitter
ation on every pass has diminishing returns. However, it m&y the new splitter, both of which are implemented

4 EXPERIMENTS

findSplits()
bestCost— rangef].cost
splitFound— FALSE
For each color c
/* Try to split c around. */
splitOK — TRUE
cost— 0
For each neighbor n éfwith colors[n] = ¢
if {n,1) € containment graph
splitOK — FALSE
else if rematerializable(n)
cost— cost +l.split costs[n].loadsc RC
else
cost— cost +1.split costs[n].storesx SC
+[.split costs[n].loads< LC
if splitOK A cost< bestCost
bestCost— cost
bestColor— ¢
splitDir — splitAroundName
splitFound— TRUE
/* Try to splitl around c. */
splitOK — TRUE
cost— 0
For each neighbor n éfwith colors[n] = ¢
if {I,n) € containment graph
splitOK — FALSE
else if rematerializablé)
cost— cost + n.splitcosts[].loadsx RC
else
cost— cost + n.splitcosts[].storesx SC
+ n.splitcosts[].loadsx LC
if splitOK A cost< bestCost
bestCost— cost
bestColor— ¢
splitDir — splitAroundColor
splitFound— TRUE
if splitFound = TRUE
colors]] < bestColor
if splitDir = splitAroundName
For each neighbor n af
with colors[n] = bestColor
Mark n to be split arounél
else
For each neighbor n of
with colors[n] = bestColor
Mark to be split around n

Fig. 9. Algorithm for determining splits

splitCode()
For each block b
live — liveOut,
For each successor s of b
deaths— liveOut,—liveln,
For each ne deaths
For each live rangksplit around m
placeSplit{, s, s.firstinst, ForDeath)
For each instiin b in reverse order
For each live rangedefined in i
For each live range s split arouhd
if —=rematerializable(s)
placeSpilit(s, b, i, ForDef)
For each live rangeused in i
ifl ¢ live
For each live range s split arouhd
placeSpilit(s, b, i.nextinst, ForDeath)
Update the live set

Fig. 10. Algorithm for inserting split code

in the ILOC compiler. The compiler first runs the
original program through a series of optimization
passes, and gives the result to the register allocator
for processing. The optimization flags used were
-r[-RD]v[-vfsmp]zc[-mf]dv[-vfsmp]zc[-fldn

which causes these passes to run (in order, with repetmon)
reassociation, value numbering, lazy code motion, constant
propagation, dead code elimination, value numbering, lazy
code motion, constant propagation, dead code elimination, and
control flow clean-up. Simpson’s original study benchmarked
program wave5 (SPEC95). We chose the same program
and also addedomcatv (SPEC92), andy271decoder
(MediaBench).

The first three columns of Table 1 show the number of dy-
namic spill operations executed by each allocator, where each
row represents one procedure from a benchmark program. All
procedures which executed any spill operations were included
in the table. The remaining columns show the percentage
improvement (where percent improvement is calculated as
old=ncw » 100). In the table heading®S denotes the original
passive splitter,PS* is the new splitter (program structure
only), andP.S** is the new splitter with both program structure
and spill reconsideration.

Adding program structure decreased the dynamic spill op-
eration count in 11 of the 25 procedures, in some cases
dramatically. Improvements ranged from 0.08% all the way up
to 50% fordenpt . Two procedures show small losses while
12 procedures showed no change. By using both program
structure and spill reconsideration, 14 procedures improved,
with three routines showing better than 49% reduction in spill
overhead.

The few losses that occurred relative &S can happen
for two reasons— the same reasons mentioned by Simpson
regarding PS compared to Chaitin-Briggs without splitting.

placeSplit(n, b, deflinst, type) TABLE 1

pushout— 0 DYNAMIC SPILL OPERATIONS FORwave5, g271decoder, tomcatv
t— NIL (25 INTEGER/25 FLOAT REGISTERS 13/13,AND 14/14RESPECTIVELY)
p loop(b) Proc. PS PS5~ PS™ [% PS* | % PS™
while p# NIL A n¢ p.refs celbnd 880 720 720 || 18.18 18.18
pushout— pushout + 1 denpt 2700002 | 1350002 | 1350002 50.00 50.00
t—p energy 200216| 200216 | 100696 0 49.70
ffth 125275| 125275| 125275 0 0
_p« p.parent fftf 125275 | 125275| 125275 0 0
if type = ForDef field 13494690 | 13243885| 13309290 1.86 1.37
if push getb 820728 | 812912 | 789440 0.95 3.81
pushout> 0 init 504020 | 504020 | 505870 0 -0.37
For each entry edge e of loop t injchk 10 10 10 0 0
pred— e.pred numb 16 16 16 0 0
if n € liveOut,,..q A n¢ t.spilledon_entry[e] Egi’g’g‘” 65;3??913 68;5;‘;3 68331%25 ‘4-75 '4-73
t.spilled on_entry[e] t.spilledon entry[e]U n puth 59597 | 58620 57643 1.64 3.28
Insert STORE n at end of pred radb2 3724700| 3505600| 3536900 5.88 5.04
Ise if pushout = rado4 7292900| 7105100| 6948600 2.58 4.72
else if pushout = 0) radb5 5414900 | 5414900 | 5414900 0 0
Insert STORE n before defiost in b radf2 || 3756000| 3756000| 3536900 0 5.83
else if type = ForDeath radf4 7731100| 7480700| 7292900 3.24 5.67
; radfs 5414900 | 5414900 | 5414900 0 0
if pushout> O. rffti1 32 32 32 0 0
For each exit edge e of loop t siv2xy 900 925 825 -2.78 8.33
succ— e.succ smooth || 8062200| 6937280| 6562180| 13.95 18.61
ifn € liveln,,.. A n¢ treloadedon exitfe] vslvip || 11934370| 11903095| 12117520 0.26 -1.53
t reload (‘;;C“ " reloadedo i update || 19847517 19847517| 10031360 0 49.46
L. reloadedon exit[e] — t.reloadedon exit[e]U n main || 52483505 52442514 49831213 0.08 505
if rematerializable(n)
Insert a LOAD-IMMEDIATE for n TABLE 2
at beginning of succ COMPILE-TIME IMPACT OF IMPROVED PASSIVE SPLITTING(SECONDS
else
Insert LOAD of n at beginning of succ Benchmark PS | ps* | ps || £ | B
i — waveb 54 56 62 1.04 1.15
elge itp ush.ou.t 0 g271decode || 0.84| 089 | 089 1.06| 1.06
if rematerializable(n) tomcatv 048 | 050| 056 1.04| 1.17
Insert a LOAD-IMMEDIATE of n
before defitinst in b
else) kinds of instruction-set architectures or compiler intermediate
Insert LOAD of n before deflinst in b representations. None of these issues affect the ILOC compiler

used for the original implementation, which is somewhat
simplified compared to other compilers. Also, ILOC itself

is generally simpler and cleaner than many actual machine
instruction sets. However, it is likely that industrial practioners

First, all spill and split cost analysis is currently done withy other researchers using different compiler infrastructures
static estimates. These estimates cannot predict actual runtii e impacted.

behavior with perfect accuracy, so that spills or splits might
be placed in unfortunate locations. Second, after a rouBdl Representing Call-clobbered Registers at Call Sites

of splitting/spilling, the second pass of allocation will be ', some compilers, the clobbering of caller-saved registers
p.rese.nted wit.h a different interferenqe graph. Thi; means t_lé@ta call site is represented by adding extra operands to a
simplify might make completely different decisions than i ocequre call instruction (one for each register clobbered).
did in the first pass. ~ Each new operand is marked as a definition of the correspond-
Improved passive splitting has a reasonable co_mpll_e th}flg register. Under this scenarisplit costs andsplit
cost, as shown in Table 2PS* increases compile time coqe will not operate properly if they try to split a range
between 4 and 6% ovePS, while PS™ increases it by 6 around one of these definitions. That is, the definition will
to 17%. Most of the extra time spent iRS™ is due the gjgng| that aSSTOREs needed, but since it has no later uses,
the extra renumber-build-color cycle needed when spills 5§ 0 ADoperation (to reload the split range) will be signalled.
reconsidered. A small modification is made so that while processing a
definition of a range that is not already live, it is treated like
a death. That is, &OADwill be needed after the definition
As specified in Simpson’s original article, the passivand the cost must be adjusted accordingly. The situation must
splitting algorithm is unable to function correctly for certairbe detected while processing definitions because the defined

Fig. 11. Algorithm for placing split code

5 OTHER |ISSUES ANDM ODIFICATIONS

register has no use in any instruction, so that it will haveroblem. We presented algorithmic improvements that increase
never become live, and hence never seen by the code deaiiageffectiveness even more (up to 50% fewer dynamic spill

with deaths. For example, isalcPerNeighborCosts , operations) by incorporating program structure directly into

two lines are added to the “ForDef” case as shown below. Ahe splitting process and by reconsidering spill decisions. The
analogous, but slightly more complicated change is neededrmproved algorithm also maintains the elegance and simplicity
placeSplits as well. of the original, so that practitioners can consider including the

method into their Chaitin-Briggs-style allocators.

Future work includes incorporating conditional program
structure into the allocator, along with the profile feedback
necessary to support it. It would be interesting to re-implement
the algorithm in a production-quality compiler targeted to
a mainstream microprocessor architecture. This would also

calcPerNeighborCoslsp, type)

if type = ForDef
1.split costs[n].stores—
1.split costs[n].stores + weight

Ifllfpx"fzosts[n] loads— permit a much wider range of applications to be tested.
1.split costs[n].loads + weight ACKNOWLEDGEMENTS

Tim Harvey answered numerous questions about the ILOC
5.2 Two-address Instructions/Modified Input Operands ~ compiler and the original passive splitting implementation.

Many existing (and entrenched) instruction set architectures REFERENCES
contain two-anress |n§tructlons or other instructions that bOTHiI] Peter Bergner, Peter Dahl, David Engebretsen, and Matthew T. O’Keefe.
read and write a register operand. For example, both the spil code Minimization via Interference Region Spilling. SIGPLAN
PowerPC and PA-RISC ISAs have load and store instructions Conferzréce Z%H Prggramming Language Design and Implementation

: : ; pages 287-295, 1997.

thfit Upd,at_e the In,dex register. For the Intel X86 Series, mOF}] Preston Briggs. Register Allocation via Graph Coloring. Technical
arithmetic instructions are two-address, overwriting one of the ™ Rreport TR92-183, Rice University, 24, 1992.
two inputs with the result. Such instructions present a red8l Preston Briggs, Keith D. Cooper, and Linda Torczon. Rematerialization.
complication for the original spliting algorithm. Consider the " Proceedings of the Conference on Programming Language Design

. . . and Implementation (PLDJ)volume 27, pages 311-321, New York,
following fragment in Intel x86-like psuedo-assembly code Ny, 1992. ACM Press.

(using virtual register numbers)_ [4] Preston Briggs, Keith D. Cooper, and Linda Torczon. Improvements to
Graph Coloring Register AllocationACM Transactions on Program-
VR1=... ming Languages and System$(3):428-455, May 1994.
VR2=... [5] D. Callahan and B. Koblenz. Register Allocation via Hierarchical Graph

Coloring. SIGPLAN 26(6):192—-203, June 1991.
T [6] G.J. Chaitin. Register Allocation and Spilling via Graph Coloring. In
ADD VR2,[EBP+32] SIGPLANS2 1982.
L [7]1 G.J. Chaitin, M.A. Auslander, A.K. Chandra, J. Cocke, M.E. Hopkins,
and P.W. Markstein. Register Allocation via ColoringComputer
... = VR2 Languages6:45-57, January 1981.

cee [8] K. D. Cooper and L.T. Simpson. Live range Splitting in a Graph Col-
.=VRI1 oring Register Allocator. IProceedings of the International Compiler

Construction ConferengéMarch 1998.
SupposePs decides to SpIVR1 aroundVR2 Where should 15 Kaliesn Knobe s Kernety sacecc et mocaton g conve
it insert the store operations? Normally, that would be done computer Science, March 1992.
at every definition oVR2 but clearly that presents a problen’{lO] Guei—Yuan_ Lueh, Thomas Gross, and AI_i—Reza AdI—Tabatab_ai. Fusion-
herg. The idea behind splittiﬁg?l is to use the same register g3;3‘;S’gﬂ'j‘g;;!?,;zf‘t'(g;ﬁgl“fggfnfggg_°”S on Programming Lan-
for it that VR2 has been assigned. The second inserted Stei§ Cindy Norris and Lori L. Pollock. Register Allocation over the
of VR1 (before theADDinstruction) would store the improper Program Dependence Graph.SiGPLAN Conference on Programming
value, since it would have been overwritten by the first write of , bﬁg?:r?agri 8e§?:egﬂgr'gﬂg%egtag‘ggggﬁ dzsgr_\;?l:?énlggﬁgé \dentitying
VR2 (recall, they both will share the same physical regiSte%- loops using aj graphsAbM Transactions on Programming Lénguages
Therefore, the reload back indR1, which would be placed and Systemsl8(6):649-658, 1996.
after the last use 0fR2 would get the wrong value. Because
the ADD both readsVR2 for its data, and write3/R2 with
its result, we cannot view the write 6fR2 as a new live
range. In essence, the register mentioned in a modified input
must be treated as a single live range. A solution has been
implemented, but we do not have space to present the details

here.

6 CONCLUSIONS AND FUTURE WORK

Simpson’s passive splitting is an elegant extension to
Chaitin-Briggs that successfully attacks the “spill everywhere”

