
Improved Passive Splitting
Keith D. Cooper Jason Eckhardt∗

Department of Computer Science
Rice University

Houston, TX, U.S.A.

Abstract— We present a graph coloring register allocator which
uses an improved form of passive live range splitting to reduce the
count of dynamic spill operations. Program structure is used to guide
the global splitting of live ranges and to place split operations at
infrequently executed portions of the program. We also optimistically
reconsider spill decisions at certain points to potentially enable more
splits and/or fewer spills. Certain issues that complicate implemen-
tation of the original passive splitting method are discussed. Finally,
experimental results are presented which indicate that the improved
passive splitter is effective.

Keywords— global register allocation, live range splitting.

1 INTRODUCTION

The Chaitin-Briggs (“CB”) graph coloring register alloca-
tion framework [7], [6], [3], [2], [4] is generally regarded as the
dominant paradigm for global register allocation in optimizing
compilers. The technique is highly effective, but its method
of spilling live ranges— sometimes referred to informally as
the “spill everywhere” approach— may insert far more spill
operations than necessary.

A number of approaches have been proposed for improving
on the limitations of the CB spill method [1], [5], [11], [9],
[10]. One general way of attacking the problem is bylive range
splitting— breaking certain live ranges into smaller pieces so
that each piece can be allocated independently. Such splitting
may enable a graph to be colored with fewer colors, or allow
more intelligent placement of spill instructions.

In [2], Briggs describes anaggressiveapproach to splitting.
In this method live ranges are split before the coloring phase
by the insertion of split operations (copies) at certain points in
the program. For example, splits can be inserted at the bound-
aries of loops for global live ranges that span the loop. For a
live rangex , this allows the allocator to consider the portion of
x within the loop separately from the portion outside the loop.
Briggs attempted a number of ways of choosing split points,
such as by using loop boundaries, dominator frontiers, etc. The
technique is considered aggressive in that every range live at
a split point would be split. While the experiments showed
significant wins for the strategy, it also showed significant
losses due to excessive split copies remaining in the code.

In an effort to obtain some of the benefits of splitting, while
not incurring as many losses as aggressive splitting, Cooper
and Simpson introduced a lazy orpassive approach [8].
Their results indicate that a less aggressive approach can still
significantly reduce dynamic spill operations compared to the
standard Chaitin-Briggs allocator, without incurring the big

∗Correspondence: Jason Eckhardt (jle@rice.edu)

losses of being too aggressive. This paper introduces some
modifications that boost the effectiveness of passive splitting.

Section 2 provides an overview of the original passive
splitting allocator. Section 3 discusses opportunities for im-
provement and presents a modified version of the algorithm.
Experimental results for the new technique are given in Sec-
tion 4. Finally, Section 5 discusses some other implementation
issues.

2 CHAITIN -BRIGGS ALLOCATOR W ITH PASSIVE

SPLITTING

Passive splitting (“PS”) was designed to cope with some of
the situations in which Chaitin’s “spill everywhere” approach
performs poorly. Figure 1a portrays one such case. Suppose for
the sake of illustration that the allocator has only one register
available. Since there are two conflicting live rangesx and
y, CB will completely spill one or the other. Assumingy is
chosen for spilling, a store ofy will be inserted after every
definition and a load before every use, producing the code in
Figure 1b. Unfortunately, this approach leads to a new load
operation that will execute on each iteration of the loop.

Simpson observed that this undesirable situation can be
avoided by splittingx aroundy. That is, becausex is not
used until the second loop, it need not occupy a register until
after the first loop (aftery dies). This allowsy to occupy the
register during its lifetime in the first loop. By splitting in this
fashion, spill operations are placed outside of either of the
loops, and both live ranges occupy a register in the frequently
executed portions of their lifetimes, as shown in Figure 1c.

The key to Simpson’s approach is solidifying the notion
of when one live range can be split around another. In the
example, splitting was allowed becausey is containedin x—
all the uses and definitions ofy occur entirely between any
uses or definitions ofx.

2.1 Overview of the Algorithm

Passive splitting is implemented with a small number of
changes to the overall CB framework, as depicted in Figure 2.
Items in boldface represent phases that were changed or added
to CB.

In addition the the interference graph used by CB, Simpson
builds acontainment graphwhich indicates the containment
relationships between any pair of live ranges. The graph is
built using an algorithm nearly identical to that for building an
interference graph. It is the data structure used during splitting
to determine whether or not a split is feasible. The graph is



selectrenumber build coalesce simplify

spill code

spill costs

split costs

split code

find splits

Fig. 2. The Passive Splitting Allocator

(c)

x=...
y=...

...=y

...=x ...=x

...=y

...=x

x=...
y=...

store y

...=y
load y

x=...

y=...
store x

load x

(a) (b)

Fig. 1. Example of passive splitting: (a) original; (b) spilly completely; (c)
split x aroundy.

actually built at the beginning of thesplit costs phase
described below.

It was not mentioned in Simpson’s original paper, but a
special phase is run before register allocation to remove all
critical edges in the control flow graph. This is done to ensure
that there is always a proper location in which to place split
operations.

1. Split costs: For each live rangel, this phase determines
the cost of splitting a live ranges aroundl, where the
cost is the number ofLOAD and STOREinstructions
(weighted by loop nesting depth) needed to perform the
split. The underlying implementation operates similarly
to thespill costs phase in CB.

2. Select: This phase operates as in CB, with one change.
When a noden is encountered that cannot receive a
color, find splits is called in an attempt to find a
color for n by splitting. If splitting was successful,n
will now be assigned a color and is no longer marked
for spilling. If splitting was not successful,n is marked

for spilling as usual.
3. Find splits: Invoked byselect , this is the key routine

that determines whether splitting can free a color for
a noden that did not receive a color. Utilizing the
containment graph and the computed split costs, it will
try to either split interfering live ranges aroundn, or
split n around interfering live ranges, choosing the least
costly choice. Further, the choice is only acceptable if
it costs less than spillingn everywhere.

4. Split code: Once a split decision has been made, the
actual instructions must be inserted into the code. This
operates similarly to thespill code phase of CB.
For each live ranges that was split aroundl, a STORE
of s is inserted before every definition ofl, and aLOAD
of s is inserted after every death ofl.

3 SOME I MPROVEMENTS

Simpson reports good results for passive splitting, and
experiments by this author confirm that PS can significantly
reduce dynamic spill operations compared to CB. Even so,
examination of some benchmarks reveals that even better
results are achievable.

Consider the code in Figure 3a. Suppose that during
select node t did not receive a color, and thatfind
splits determines that splittingx around t is less costly
than spilling t everywhere.1 Recall thatsplit code will
insert aSTOREbefore every definition oft and aLOADafter
every death oft. In this example, that has the unfortunate
drawback of placing all the split instructions within the loop
(Figure 3b). But by observing thatx has no reference (use or
definition) within the first loop, a much better placement for
the split operations is just outside the loop (Figure 3c). That
is, the dynamic number of spill operations will be decreased
because the split code is placed in less frequently executed
regions of the program. In the case of a deeply nested loop,
the splits can be pushed outside of more than one loop in the
nest as long as there are no references to the split range in
that loop.

Using loops to guide the splitting is convenient in that it
is relatively easy to differentiate high frequency regions from

1The split is legal sincex containst.



load x

...
<heavy use of x>

...

...
<heavy use of x>

...

...
<heavy use of x>

x=... x=...
store x

t=...
...=t

...=t load x
...=t

t=...
...=t

...=t

x=...

(a) (c)(b)

...=tt=...
store x

...

Fig. 3. Example of improved passive splitting: (a) original; (b) splitx around
t (old); (c) split x aroundt (new).

=d

d

e

c

b

a

(b)(a) (c)

d=

e=

a=
=a

b=

=b

=e

=c
c=

=e

=e =b

store d

load d

d=

e=

a=
=a

b=

=b

=e

=c
c=

=e

=e =b

=d

Fig. 4. Spill reconsideration opportunity (k = 2): (a) live ranges; (b)
containment graph CG; (c) live ranges after first pass (e in memory)

those of low frequency with purely static control flow analysis.
Unless a loop has a tiny trip count (e.g., one), or the body of
the loop is guarded by a rarely true condition, then it is a fairly
safe to assume that moving split code out of a loop is better
when possible.

It is also possible to use other program structure to guide
the splitting, such as with conditional regions. However, unlike
loops, it is not necessarily obvious by static analysis which
part of a conditional executes more frequently than the other.
By incorporating profile feedback from a training run, the
allocator could decide how to place split code in or around
conditionals. The allocator framework used in the present work
does not currently use profiling feedback.

Another opportunity for improvement arises inselect .
Consider the live ranges depicted in Figure 4a. Suppose that
the number of colors isk = 2 ({1,2}), the coloring stack
created bysimplify is d, c, e, a, b (d is the stack top), and
that only c is in a loop. Now duringselect , d is popped
off the coloring stack first and assigned color 1. Nextc is
popped and assigned color 2. Whene is popped, it cannot
be assigned a color since all colors are used by neighbors
d and c. At this point, find splits attempts to free a
color by considering a split ofe around c. While the split

is feasible (〈e, c〉 /∈ CG), it is more costly than just spilling
e, sincec is at a greater loop depth. Thus,e is marked for
spilling. Continuing,a is popped and assigned color 2, the
only possibility. Finally,b is popped but cannot receive a color.
This time, however,find splits determines that a split of
d aroundb is both legal (〈d, b〉 /∈ CG) and less costly than
spilling b. Thus the split is noted andb is assigned color 1.
At this point, the stack is empty, and once spill and split code
is inserted, the next phase of allocation will build and color
the resulting graph successfully (i.e., without introducing any
more splits or spills).

Rather than accepting the spill ofe as just described, an
examination of the live ranges just after the spill and split code
is inserted (Figure 4c) reveals that we can do better. Suppose
that instead of markinge for spilling, it is reconsidered for
allocation in the next pass. This timee is a candidate for
splitting around the second part ofd (the range starting at the
load of d). Not only that, doing the split is less costly than
spilling e.

The previous example shows that splitting enabled a node
that was destined for spilling to be allocated to a register—
but only because it was reconsidered rather than spilled in the
first pass. In other words, instead ofpessimisticallyspilling
all nodes that were marked for spilling weoptimistically
assume that splitting (if any) has enabled one or more of them
to become colorable. This seemingly simple modification to
select makes a significant difference on the benchmarks
used here.

3.1 The Improved Algorithm

Figure 5 depicts the improved passive allocator, with
changes from the original marked in boldface. A detailed
explanation of the new functionality is given next. The imple-
mentation was performed in the Rice Scalar Compiler Group’s
ILOC compiler, starting with the original passive splitting code
written by Simpson.

3.1.1 Build Loop Tree In order to make use of loops when
computing spill costs and inserting split code, the new phase
build loop tree constructs a convenient representation
of the program. This data structure, theLoopTree , represents
the hierarchical loop nesting structure of the program.2 Each
node in theLoopTree represents a loop. A nodec is a child
of nodep if the loop represented byc is contained within the
loop represented byp, and c is contained in no other loops.
If two disjoint loops have the same containing loop, then they
will be sibling nodes with the same parent node. Each node
t also contains the following:t.blocks is a list of all the
basic blocks contained in this loop, but not any of its inner
loops;t.parent points to the parent node;t.depth is the
loop nesting depth (depth 1 is an outermost loop). The actual
control flow analysis method used here to determine loops is
based on DJ-graphs [12], though a number of other techniques
would work as well. This pass is performed once before the
main register allocation starts.

2To simplify this discussion, it is assumed that all loops are reducible.
However, reducibility is not a requirement for the algorithm.



find splits

renumber coalesce simplify select

spill code

spill costs
build

build loop tree

split code (w/ loops)

split costs (w/ loops) (reconsider spills)

Fig. 5. The Improved Passive Splitting Allocator

annotateLoopTree(t)
t.refs← {}
t.spilled on entry[*] ← {}
t.reloadedon exit[*] ← {}
For each inner loop c of t

annotateLoopTree(c)
t.refs← t.refs∪ c.refs

For each block b in t.blocks
For each instruction i in b

For each live rangel defined in i
t.refs← t.refs∪ l

For each live rangel used in i
t.refs← t.refs∪ l

Fig. 6. Algorithm for loop annotation

3.1.2 Split Costs Before starting,split costs needs
to annotate theLoopTree with additional information about
virtual register usage within the loops. This information will
be queried to determine the legality of pushing a split out
of a loop or loops. Figure 6 shows the annotation algorithm.
The algorithm computes (or initializes) three additional sets
of information for each loop. Membert.refs is the set
of all virtual registers referenced (used or defined) in the
subtree rooted att . Sett.spilled on entry[e] contains
the name of each VR that has previously been spilled to
memory on edgee before the loop is entered. Likewise, set
t.reloaded on exit[e] contains the name of each VR
that has previously been reloaded from memory on edgee
after the loop is exited.

The algorithm will perform a postorder (bottom-up) traver-
sal of the loop tree, propagating information up the tree. For
each loop, all ranges which have have a reference in the current
loop t are added tot.refs . After each subtree oft has been
processed, its’ref set is incorporated into the current set for
t .

Simpson’s original method of performing splitting is based
on the idea that for every live rangesi split across live range
l, si will be stored immediately before a definition ofl, and
reloaded just after a death ofl. Thus, for somesi, the same
split code will be inserted aroundl as any othersj (except,

splitCosts()
buildContainmentGraph()
annotateLoopTree(LoopTree.root)
For each block b

live← liveOutb
For each successor s of b

deaths← liveOutb−liveIns

For each m∈ deaths
calcPerNeighborCosts(m, s, ForDeath)

For each inst i in b in reverse order
For each live rangel defined in i

calcPerNeighborCosts(l, b, ForDef)
For each live rangel used in i

if l /∈ live
calcPerNeighborCosts(l, b, ForDeath)

Update the live set

calcPerNeighborCosts(l, b, type)
deflt weight← 10depth(b)

For each neighbor n ofl
if 〈n, l〉 /∈ containment graph

pushout← 0
p← loop(b)
while p 6= NIL ∧ n /∈ p.refs

pushout← pushout + 1
new weight← 10p.depth−1

p← p.parent
if pushout> 0

weight = newweight
else

weight = defltweight
if type = ForDef

l.split costs[n].stores←
l.split costs[n].stores + weight

else if type = ForDeath
l.split costs[n].loads←

l.split costs[n].loads + weight

Fig. 7. Algorithm for computing split costs



select()
· · ·
while¬coloring stack.empty
· · ·
c← pick color for name
if c = invalid color

spillset← spillset∪ name
if findSplits(name) = TRUE

spillset← spillset− name
if passnumber = 1

spillset← {}
· · ·

Fig. 8. Algorithm fragment for color selection

of course, the name). To represent split costs then, a single
quantity was stored with each live rangel. That quantity being
the cost of splitting anysi aroundl.

The key to the new approach is realizing that it can be
beneficial to splitsi aroundl in a different way than splitting
sj aroundl. For example, a death ofl may occur within a loop,
while a splittable neighborsi has no references in the loop. At
the same time, another splittable neighborsj has a reference
in the loop. For the former case, it is desirable to insert the
split operations forsi outside the loop, while a reload ofsj

would be required (as originally) just after the death ofl.
To model the previous scenario, a single cost stored with

l is no longer sufficient. Instead, costs are stored for every
neighborn of l, andsplit costs will compute a distinct
cost for splittingn aroundl.

Figure 7 shows the new method of computing costs. For
every basic block in the compilation unit,split costs
iterates through the instructions in reverse order and maintains
a set live of currently live ranges. If either a definition or
death of l is detected in the current instruction, then every
neighbor of l is examined to determine a split cost for that
neighbor. There are currently two options. Either the split
cost will be based on the default location (i.e., just before
the definition ofl or just after the death ofl), or the loop tree
will be consulted to determine whether the split cost can be
decreased by pushing the split operation out of a loop.

To determine whether pushing splittable neighbors out is
possible, the algorithm traverses the loop tree in a bottom-up
fashion. It first obtains the loop tree nodepi containingl, then
iteratively checks whethers has any references inpi and then
moves to the parent looppi−1. If pi−1 contains a reference of
s, then the iteration stops andpi is the outermost loop thats
can be pushed out of.

3.1.3 Select As described earlier, it can be beneficial to
reconsider spill decisions after splitting. Thus, at the end of
select (Figure 8), the spill set is cleared if any splits were
made. This is done only on the first build-color pass, in order to
minimize compile-time impact. The rationale being that most
splitting will happen on the first pass, and allowing reconsider-
ation on every pass has diminishing returns. However, it may

still be worthwhile to provide a command line option to allow
reconsideration on every pass.

3.1.4 Find Splits This phase operates very similarly to
the original passive splitter, except that when considering the
neighborsn of l, it must utilize the new per-neighbor cost for
eachn. In Figure 9, symbolsRC, SC, and LC are constants
that represent machine-dependent costs for rematerialization
instructions, store instructions, and load instructions respec-
tively.

3.1.5 Split Code As seen in Figures 10 and 11, the high-
level operation ofsplit code is similar tosplit costs .
That is, definitions and deaths of a live rangel are detected
on a reverse pass through the instructions in a basic block.
This time, however, the actual split instructions are inserted
into the program.

For a live ranges split around l, if no pushing out is
possible, then aLOAD of s is inserted into the instruction
stream just after a death ofl and aSTOREof s just before
any definitions ofl. In either case, if a split ranges can be
rematerialized, then noSTOREof s is necessary andLOADs
are replaced with cheaperLOAD-IMMEDIATEs.

For splits which can be pushed out of a loop, code insertion
is slightly more complicated. Placing a split operation “just
outside” a loopL means either placing it on an edge entering
L from outside ofL (loop entry edges), or placing it on an
edge exiting to a block outside ofL (loop exit edges). Since it
is assumed that all critical edges have been split before register
allocation, there is always a place to insert such operations—
in the block at the head (tail) of an entry (exit) edge.

Consider the case in whichs is split aroundm in loopL and
the STOREof s is pushed out ofL. FunctionplaceSplit
iterates over every loop entry edgee of L, checking ifs is live
on edgee. Ranges is live on edgee if s ∈ (liveOute.pred ∩
liveIne.succ). Only theliveOute.pred set actually needs to be
checked, though, sinces is known to be live throughoutL (it
has no references inL yet it interferes withm). If s is live on
e, then theSTOREof s is inserted at the end of basic block
e.pred (the block at the head ofe).

Similar processing happens when aLOADis pushed out of
L. This time, however, the operation will be placed on the
exit edges ofL where it is live. Liveness on an exit edgee is
checked by examiningliveIne.succ.

Any time an operation for s is placed
outside a loop L on edge e, s is added to
either the set L.spilled on entry[e] or
L.reloaded on exit[e] . Since s may have been
split across more than one range, the processing above
would normally insert a split operation at the loop boundary
for every live ranges was split around. Such redundant
operations are suppressed by checking whethers has already
been spilled (or reloaded) aroundL.

4 EXPERIMENTS

To test the effectiveness of the passive splitting
improvements, we compared Simpson’s original splitter
to the new splitter, both of which are implemented



findSplits(l)
bestCost← range[l].cost
splitFound← FALSE
For each color c

/* Try to split c aroundl. */
splitOK← TRUE
cost← 0
For each neighbor n ofl with colors[n] = c

if 〈n, l〉 ∈ containment graph
splitOK← FALSE

else if rematerializable(n)
cost← cost +l.split costs[n].loads× RC

else
cost← cost +l.split costs[n].stores× SC

+ l.split costs[n].loads× LC
if splitOK ∧ cost< bestCost

bestCost← cost
bestColor← c
splitDir← splitAroundName
splitFound← TRUE

/* Try to split l around c. */
splitOK← TRUE
cost← 0
For each neighbor n ofl with colors[n] = c

if 〈l, n〉 ∈ containment graph
splitOK← FALSE

else if rematerializable(l)
cost← cost + n.splitcosts[l].loads× RC

else
cost← cost + n.splitcosts[l].stores× SC

+ n.split costs[l].loads× LC
if splitOK ∧ cost< bestCost

bestCost← cost
bestColor← c
splitDir← splitAroundColor
splitFound← TRUE

if splitFound = TRUE
colors[l] ← bestColor
if splitDir = splitAroundName

For each neighbor n ofl
with colors[n] = bestColor

Mark n to be split aroundl
else

For each neighbor n ofl
with colors[n] = bestColor

Mark l to be split around n

Fig. 9. Algorithm for determining splits

splitCode()
For each block b

live← liveOutb
For each successor s of b

deaths← liveOutb−liveIns

For each m∈ deaths
For each live rangel split around m

placeSplit(l, s, s.firstinst, ForDeath)
For each inst i in b in reverse order

For each live rangel defined in i
For each live range s split aroundl

if ¬rematerializable(s)
placeSplit(s, b, i, ForDef)

For each live rangel used in i
if l /∈ live

For each live range s split aroundl
placeSplit(s, b, i.nextinst, ForDeath)

Update the live set

Fig. 10. Algorithm for inserting split code

in the ILOC compiler. The compiler first runs the
original program through a series of optimization
passes, and gives the result to the register allocator
for processing. The optimization flags used were
-r[-RD]v[-vfsmp]zc[-mf]dv[-vfsmp]zc[-f]dn ,
which causes these passes to run (in order, with repetition):
reassociation, value numbering, lazy code motion, constant
propagation, dead code elimination, value numbering, lazy
code motion, constant propagation, dead code elimination, and
control flow clean-up. Simpson’s original study benchmarked
program wave5 (SPEC95). We chose the same program
and also addedtomcatv (SPEC92), andg271decoder
(MediaBench).

The first three columns of Table 1 show the number of dy-
namic spill operations executed by each allocator, where each
row represents one procedure from a benchmark program. All
procedures which executed any spill operations were included
in the table. The remaining columns show the percentage
improvement (where percent improvement is calculated as
old−new

old ×100). In the table headingsPS denotes the original
passive splitter,PS∗ is the new splitter (program structure
only), andPS∗∗ is the new splitter with both program structure
and spill reconsideration.

Adding program structure decreased the dynamic spill op-
eration count in 11 of the 25 procedures, in some cases
dramatically. Improvements ranged from 0.08% all the way up
to 50% fordenpt . Two procedures show small losses while
12 procedures showed no change. By using both program
structure and spill reconsideration, 14 procedures improved,
with three routines showing better than 49% reduction in spill
overhead.

The few losses that occurred relative toPS can happen
for two reasons— the same reasons mentioned by Simpson
regardingPS compared to Chaitin-Briggs without splitting.



placeSplit(n, b, defltinst, type)
pushout← 0
t← NIL
p← loop(b)
while p 6= NIL ∧ n /∈ p.refs

pushout← pushout + 1
t← p
p← p.parent

if type = ForDef
if pushout> 0

For each entry edge e of loop t
pred← e.pred
if n ∈ liveOutpred ∧ n /∈ t.spilled on entry[e]

t.spilled on entry[e]← t.spilled on entry[e]∪ n
Insert STORE n at end of pred

else if pushout = 0
Insert STORE n before defltinst in b

else if type = ForDeath
if pushout> 0

For each exit edge e of loop t
succ← e.succ
if n ∈ liveInsucc ∧ n /∈ t.reloadedon exit[e]

t.reloadedon exit[e]← t.reloadedon exit[e]∪ n
if rematerializable(n)

Insert a LOAD-IMMEDIATE for n
at beginning of succ

else
Insert LOAD of n at beginning of succ

else if pushout = 0
if rematerializable(n)

Insert a LOAD-IMMEDIATE of n
before defltinst in b

else
Insert LOAD of n before defltinst in b

Fig. 11. Algorithm for placing split code

First, all spill and split cost analysis is currently done with
static estimates. These estimates cannot predict actual runtime
behavior with perfect accuracy, so that spills or splits might
be placed in unfortunate locations. Second, after a round
of splitting/spilling, the second pass of allocation will be
presented with a different interference graph. This means that
simplify might make completely different decisions than it
did in the first pass.

Improved passive splitting has a reasonable compile time
cost, as shown in Table 2.PS∗ increases compile time
between 4 and 6% overPS, while PS∗∗ increases it by 6
to 17%. Most of the extra time spent inPS∗∗ is due the
the extra renumber-build-color cycle needed when spills are
reconsidered.

5 OTHER I SSUES ANDM ODIFICATIONS

As specified in Simpson’s original article, the passive
splitting algorithm is unable to function correctly for certain

TABLE 1

DYNAMIC SPILL OPERATIONS FORwave5, g271decoder, tomcatv

(25 INTEGER/25 FLOAT REGISTERS, 13/13,AND 14/14RESPECTIVELY)

Proc. PS PS∗ PS∗∗ % PS∗ % PS∗∗
celbnd 880 720 720 18.18 18.18
denpt 2700002 1350002 1350002 50.00 50.00
energy 200216 200216 100696 0 49.70
fftb 125275 125275 125275 0 0
fftf 125275 125275 125275 0 0
field 13494690 13243885 13309290 1.86 1.37
getb 820728 812912 789440 0.95 3.81
init 504020 504020 505870 0 -0.37
injchk 10 10 10 0 0
numb 16 16 16 0 0
parmvr 6518815 6826430 6831315 -4.72 -4.79
pdiag 93792 93792 93792 0 0
putb 59597 58620 57643 1.64 3.28
radb2 3724700 3505600 3536900 5.88 5.04
radb4 7292900 7105100 6948600 2.58 4.72
radb5 5414900 5414900 5414900 0 0
radf2 3756000 3756000 3536900 0 5.83
radf4 7731100 7480700 7292900 3.24 5.67
radf5 5414900 5414900 5414900 0 0
rffti1 32 32 32 0 0
slv2xy 900 925 825 -2.78 8.33
smooth 8062200 6937280 6562180 13.95 18.61
vslv1p 11934370 11903095 12117520 0.26 -1.53
update 19847517 19847517 10031360 0 49.46
main 52483505 52442514 49831213 0.08 5.05

TABLE 2

COMPILE-TIME IMPACT OF IMPROVED PASSIVE SPLITTING(SECONDS)

Benchmark PS PS∗ PS∗∗ PS∗
PS

PS∗∗
PS

wave5 54 56 62 1.04 1.15
g271decode 0.84 0.89 0.89 1.06 1.06
tomcatv 0.48 0.50 0.56 1.04 1.17

kinds of instruction-set architectures or compiler intermediate
representations. None of these issues affect the ILOC compiler
used for the original implementation, which is somewhat
simplified compared to other compilers. Also, ILOC itself
is generally simpler and cleaner than many actual machine
instruction sets. However, it is likely that industrial practioners
or other researchers using different compiler infrastructures
will be impacted.

5.1 Representing Call-clobbered Registers at Call Sites

In some compilers, the clobbering of caller-saved registers
at a call site is represented by adding extra operands to a
procedure call instruction (one for each register clobbered).
Each new operand is marked as a definition of the correspond-
ing register. Under this scenario,split costs andsplit
code will not operate properly if they try to split a range
around one of these definitions. That is, the definition will
signal that aSTOREis needed, but since it has no later uses,
no LOADoperation (to reload the split range) will be signalled.

A small modification is made so that while processing a
definition of a range that is not already live, it is treated like
a death. That is, aLOADwill be needed after the definition
and the cost must be adjusted accordingly. The situation must
be detected while processing definitions because the defined



register has no use in any instruction, so that it will have
never become live, and hence never seen by the code dealing
with deaths. For example, incalcPerNeighborCosts ,
two lines are added to the “ForDef” case as shown below. An
analogous, but slightly more complicated change is needed in
placeSplits as well.

calcPerNeighborCosts(l, b, type)
· · ·
if type = ForDef

l.split costs[n].stores←
l.split costs[n].stores + weight

if l /∈ live
l.split costs[n].loads←

l.split costs[n].loads + weight
· · ·

5.2 Two-address Instructions/Modified Input Operands

Many existing (and entrenched) instruction set architectures
contain two-address instructions or other instructions that both
read and write a register operand. For example, both the
PowerPC and PA-RISC ISAs have load and store instructions
that update the index register. For the Intel x86 series, most
arithmetic instructions are two-address, overwriting one of the
two inputs with the result. Such instructions present a real
complication for the original splitting algorithm. Consider the
following fragment in Intel x86-like psuedo-assembly code
(using virtual register numbers).

VR1 = · · ·
VR2 = · · ·
· · ·

ADD VR2,[EBP+32]
· · ·

· · · = VR2
· · ·

· · · = VR1

SupposePS decides to splitVR1 aroundVR2. Where should
it insert the store operations? Normally, that would be done
at every definition ofVR2 but clearly that presents a problem
here. The idea behind splittingVR1 is to use the same register
for it that VR2 has been assigned. The second inserted store
of VR1 (before theADDinstruction) would store the improper
value, since it would have been overwritten by the first write of
VR2 (recall, they both will share the same physical register).
Therefore, the reload back intoVR1, which would be placed
after the last use ofVR2 would get the wrong value. Because
the ADD both readsVR2 for its data, and writesVR2 with
its result, we cannot view the write ofVR2 as a new live
range. In essence, the register mentioned in a modified input
must be treated as a single live range. A solution has been
implemented, but we do not have space to present the details
here.

6 CONCLUSIONS AND FUTURE WORK

Simpson’s passive splitting is an elegant extension to
Chaitin-Briggs that successfully attacks the “spill everywhere”

problem. We presented algorithmic improvements that increase
its effectiveness even more (up to 50% fewer dynamic spill
operations) by incorporating program structure directly into
the splitting process and by reconsidering spill decisions. The
improved algorithm also maintains the elegance and simplicity
of the original, so that practitioners can consider including the
method into their Chaitin-Briggs-style allocators.

Future work includes incorporating conditional program
structure into the allocator, along with the profile feedback
necessary to support it. It would be interesting to re-implement
the algorithm in a production-quality compiler targeted to
a mainstream microprocessor architecture. This would also
permit a much wider range of applications to be tested.

ACKNOWLEDGEMENTS

Tim Harvey answered numerous questions about the ILOC
compiler and the original passive splitting implementation.

REFERENCES

[1] Peter Bergner, Peter Dahl, David Engebretsen, and Matthew T. O’Keefe.
Spill Code Minimization via Interference Region Spilling. InSIGPLAN
Conference on Programming Language Design and Implementation,
pages 287–295, 1997.

[2] Preston Briggs. Register Allocation via Graph Coloring. Technical
Report TR92-183, Rice University, 24, 1992.

[3] Preston Briggs, Keith D. Cooper, and Linda Torczon. Rematerialization.
In Proceedings of the Conference on Programming Language Design
and Implementation (PLDI), volume 27, pages 311–321, New York,
NY, 1992. ACM Press.

[4] Preston Briggs, Keith D. Cooper, and Linda Torczon. Improvements to
Graph Coloring Register Allocation.ACM Transactions on Program-
ming Languages and Systems, 16(3):428–455, May 1994.

[5] D. Callahan and B. Koblenz. Register Allocation via Hierarchical Graph
Coloring. SIGPLAN, 26(6):192–203, June 1991.

[6] G.J. Chaitin. Register Allocation and Spilling via Graph Coloring. In
SIGPLAN82, 1982.

[7] G.J. Chaitin, M.A. Auslander, A.K. Chandra, J. Cocke, M.E. Hopkins,
and P.W. Markstein. Register Allocation via Coloring.Computer
Languages, 6:45–57, January 1981.

[8] K. D. Cooper and L.T. Simpson. Live range Splitting in a Graph Col-
oring Register Allocator. InProceedings of the International Compiler
Construction Conference, March 1998.

[9] Kathleen Knobe and Kenneth Zadeck. Register Allocation Using Control
Trees. Technical Report CS-92-13, Brown University, Department of
Computer Science, March 1992.

[10] Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Fusion-
based register allocation.ACM Transactions on Programming Lan-
guages and Systems, 22(3):431–470, 2000.

[11] Cindy Norris and Lori L. Pollock. Register Allocation over the
Program Dependence Graph. InSIGPLAN Conference on Programming
Language Design and Implementation, pages 266–277, 1994.

[12] Vugranam C. Sreedhar, Guang R. Gao, and Yong-Fong Lee. Identifying
loops using dj graphs.ACM Transactions on Programming Languages
and Systems, 18(6):649–658, 1996.


