1. Scope
2. Goals for the long and short term
3. Progress by team
 - compilers, tools, libraries, systems, visualization, NT clusters
4. Collaborations with AT teams
5. The Future

http://www.cs.rice.edu/~ken/Presentations/Alliance98TeamA.pdf
Team A: Parallel, Visual Supercomputing

• Integrated Computing
 - single box
 - collection of homogeneous processors
 - visualization

• Architectures
 - Distributed shared memory (DSM)
 - Clusters of Homogeneous PCs
 Windows NT

• Challenges
 - Management of deep memory hierarchy
 - Portable programmability
 - Support for high performance visualization
General Goals

• Consistent Parallel Programming Environment
 - for all Alliance sites
 - special focus on DSM and PC Clusters
 - languages and tools
 - communication, math, and data structure libraries
 - scientific programming tools
 optimization, automatic differentiation, problem-solving
 - systems technologies
 schedulers, performance analysis

• Direct Collaboration with AT Teams
 - use of technologies in applications
 - feedback on usefulness of tools

• Wide Dissemination of Software
 - through repository and deployment teams
Specific Goals for the First Year

• Repository
 - **Goal:** All software available in distributable form with documentation up and running with software from over half the team (see demo)
 http://www.nhse.org/rib/repositories/ncsa_teamA/
 - **Goal:** Software installed at NCSA
 ScALAPACK, PETSc, PG HPF

• Collaboration
 - **Goal:** Each group actively working with at least one AT team
 many connections established (see explicit slides)
 - **Goal:** Effective collaboration with central site
 Scalable Computing initiative

• Deployment Team
 - **Goal:** Deployment team hired and working with NCSA and AT teams
 not yet
Languages and Compilers

- HPF (Kennedy, Rice)
 - Goal: Improved HPF implementations for DSM
 - Strategies:
 - Build research prototype and work with vendor (PGI)
 - Use research tool in collaborations with applications
 - Activities:
 - First DSM prototype focuses on latency and bandwidth
 - Collaboration with Cosmology (Balsara) and Tools (Reed)

- HPC++ (Gannon, Indiana)
 - Goal: High performance on DSM systems
 - Strategy: Port HPC++Lib and tune to DSM
 - Activities:
 - Completed port of HPC++Lib to the SGI O2K using multithreaded shared-memory programming (version 10 by end of quarter)
• **SvPablo Performance Tool** *(Reed, Illinois)*

 - **Goals:**
 Connect performance analysis to high-level languages
 Employ advanced visualization

 - **Strategy:**
 Collaboration with compiler through documentation of transformations

 - **Activities:**
 Distributed and in wide use; supports C, Fortran, and HPF
 Experience: enables users to quickly identify and correct performance bottlenecks in large applications
 Collaboration with Cosmology AT team
 Beginning to explore ports of SvPablo interfaces to Windows NT
• General library interface (Johnsson, UH; Dongarra, Tennessee)
 - Goal: support for high-level languages (HPF and HPC++)
 - HPF interface to ScaLAPACK subset available on Team A repository

• ScaLAPACK (Dongarra, Tennessee)
 - Goal: dense linear algebra support, interfaced to high-level languages
 - Installed at NCSA, available via NHSE Team A repository
 - Working on out-of-core linear solvers and eigensolvers

• PETSc (Stevens, Argonne)
 - Sparse matrix-vector product and parallel preconditioners
 - Installed at NCSA, available via NHSE Team A repository

• FFTPACK (Johnsson, Houston)
 - Goal: general parallel FFTs for DSM
 - Implementation of 1D version
Advanced Tools

• **Optimization** *(Dennis, Rice; Stevens, Argonne)*
 - **Goals:**
 - Implement DSM version of Parallel Direct Search (PDS)
 - Implement parallel SLP and SQP on DSM
 - Parallel automatic differentiation (ADIFOR)
 - **Activities**
 - Parallel direct search on O2K by end of summer
 - ADIFOR available in Team A repository, tried and planned for use by Chemical Engineering AT team

• **Netsolve** *(Dongarra, Tennessee)*
 - **Goal:** Network-based problem solving
 - **Activities:**
 - Deployment of NetSolve on NCSA Alliance machines
 - ATLAS automatically tunes software for deep memory hierarchies
- **Communication** *(Stevens, Gropp, Lusk, Argonne)*
 - MPI
 - DSM and NT
 - MPICH and MPI-IO available on Alliance systems
 - Communication for adaptive irregular computations
 - SUMMA3D

- **Distributed Adaptive Data Structures** *(Browne, Texas)*
 - Goal: Support adaptive mesh refinement on parallel and distributed systems
 - Activities
 - DAGH available via Team A repository in May,
 - Tutorial offered, real manual in progress
 - Developing scripts to move DAGH to most common machines.
• Visual Supercomputing (DeFanti, Illinois Chicago)
 - Goals:
 Cave VR libraries on both DSM (done) and NT
 New VR technologies
 - Activities (see demos):
 Developed dual perspective VR
 Upgraded CAVE library to IR system and enable applications

• Systems for DSM
 - Scheduling (Vernon, Wisconsin)
 Goal: improved LSF across alliance
 Activity: software to generate performance metrics from LSF logs
 - DSM evaluation (Torrellas, Illinois)
 Goal: understand performance of DSM systems
 Activity: comparison of hand vs automatic parallelization on O2K
NT Clusters

- **HPVM (Chien, Illinois)**
 - **Goal:** complete HP computing environment on NT PC network
 - **Activities:**
 Design, integration, and demonstration of a 192-processor Windows NT "High Performance Virtual Machines" Cluster
 Running ZeusMP (Cosmology) code from Alliance, and others
 Performance analysis and tuning and HPF backend (PGI) underway.

- **TreadMarks (Zwaenepoel, Rice)**
 - **Goal:** software DSM on NT clusters
 - **Activities:**
 Completed port to NT clusters, but performance poor vs UNIX,
 tuning now in progress
 Collaborating with Chien to port onto HPVM/Fast Messages
 Evaluation with Cosmology of software DSM as alternative to HPF
Interactions with AT Teams I

- **Chemical Engineering**
 - ADIFOR client
 - Requests for large scale PDE simulations, large scale optimization, numerical linear algebra software, DSM performance analysis/tuning

- **Cosmology**
 - hpf-cosmo mailing list
 - Rice currently working on large code from Balsara, order of magnitude more complex than anything we've gotten through our research compiler before
 - Actively using HPC++ and DAGH on other codes
 - Much feedback to HPF and HPC++ about "less desirable features"

- **Environmental Hydrology**
 - Comparing standard versions of codes to PETSc version to understand performance, evaluate MPI
Interaction with AT Teams II

• Computational Biology
 - High performance parallel computation needed for Genome Informatics, Macromolecular structure, NMR databank, Molecular dynamics, Electrostatics/Brownian Dynamics
 - Specific requests for better FFTs, scalable n-body solvers, load balancing

• Nanostructures
 - Using DAGH for scalable multigrid solvers for real-space electronic structure
 - Considering HPF for kinetic lattice Monte Carlo for surface growth
 - Optimizing batch scheduling for O2K for better Monte Carlo throughput

• Scientific Instrumentation
 - 3-D FFTs needed on O2K for wide-field imaging algorithm (radio astronomy)
Summary

• Team A Head Start
 - Our job:
 Reap the harvest of HPCC software
 Install on alliance hardware and make available to NSF community
 - Where we stand
 Nearly halfway to goal

• The Future
 - Can we put ourselves out of business?
 Most Team A goals are near term
 - Long term— become subsidiary of Team B?
 Many problems reappear in more complex form