
A Probabilistic Boolean Logic and its Meaning

Lakshmi N. B. Chakrapani , Krishna V. Palem*

Department of Computer Science

Rice University

Houston, Texas, USA

{chakra,palem}@rice.edu

We introduce a novel probabilistic Boolean logic (pbl) in which the probabilistic disjunction, conjunction and negation operators,

provide the “output” expected of their deterministic counterparts, with a probability p. By design, this output can be incorrect

with a probability (1− p). In order to distinguish our approach to injecting probabilities into Boolean logic from past approaches,

we introduce a semantic model based on the novel notion of event sets. To the best of our knowledge, event sets provide a

novel meaning to truth when Boolean logic and probability are combined. Building on this, we continue to show that while

several of the standard properties (or laws) of Boolean logic are preserved in pbl, we unearth some surprises by showing that

the analogs of distributivity and associativity, are not preserved. In fact, the amount by which associativity is not preserved

in pbl can be quantified as the degree of non-associativity ∆n which grows as Ω(n), where n is the length of the formula, and

p = (1 − 1
nc). An obvious question is to ask whether pbl is essentially equivalent to a logic whose formulae are formed from

deterministic operators, but where (some of) the inputs are random variables. We show that the latter approach to injecting

probabilistic behavior is distinguishable semantically, and separable—since it is provably more expensive if energy consumption is

the complexity measure—from an equivalent approach based on pbl. We show this difference to be true both in the combinational

context of logic as well as in that of models of computation with state based on probabilistic automata. Our interest in pbl is

motivated in large part, by an increasing need to model transistors, gates and circuits—the building blocks of very large scale

integration (VLSI)—probabilistically as they approach nanometer sizes, creating a need to shift away from deterministic models

and logics that have been successfully used in the past.

1. INTRODUCTION

Automated computing, ranging from machine models such as Turing machines [62] to programming lan-
guages, has its roots in the study and advances in logic (see Davis [16] for an excellent overview and a
historical perspective, which relates advances in logic to the birth of “modern” computers and computer
science in its present form). One aspect of these foundational developments, two-valued Boolean logic, is at
the heart of advances in the specification, automated construction and verification of silicon-based digital
vlsi circuits—the bedrock of the information technology revolution. Curiously and counter-intuitively, the
notion of probability, when coupled with models of computing derived from logic, have proved to be very
effective in realizing highly efficient algorithms for computing. Notable work which introduced considera-
tions of probability in models of computing, include Rabin’s introduction of probabilistic automata [55] and
randomized algorithms. Their impact was eloquently anticipated by Schwartz [60]—“The startling success of

This work is supported in part by DARPA under seedling contract F30602-02-2-0124 and by an award from Intel Corporation.

*This author also wishes to thank the the Moore distinguished faculty fellow program at the California Institute of Technology

and the Canon distinguished professorship program of the Nanyang Technological University at Singapore during the 2007

academic year, which enabled pursuing this work in part.

Rice University, Department of Computer Science Technical Report, No. TR08-05, June 2008, Pages 1–33.

2 Rice University, Department of Computer Science Technical Report, No. TR08-05, June 2008

the Rabin-Solovay-Strassen algorithm (see Rabin [56]), together with the intriguing foundational possibility
that axioms of randomness may constitute a useful fundamental source of mathematical truth independent
of, but supplementary to, the standard axiomatic structure of mathematics (see Chaitin and Schwartz [9])
suggests that probabilistic algorithms ought to be sought vigorously.”. These contributions have led to vast
areas of study that explore the power that probability and randomness add to computing (we note in passing
that Chaitin and Schwartz’s work extended the reach of probability into the heart of mathematics itself and
studied the power of axiomatic systems and mathematical proof of a probabilistic nature [9]).

Historically, probabilistic behavior was realized by adding an external source of randomness to conventional
logic based constructs, such as gates and automata, to induce randomness and hence probabilistic behavior.
To achieve this, pseudo-random bits are coupled with deterministic mechanisms. We refer to this as an
explicit style of realizing probabilistic computing. By contrast, an implicit approach to realizing probabilistic
computing could be based on using naturally probabilistic phenomena, and thus, there is no need for an
external random source. Here, sources of randomness could include various types of noise [11, 47, 59]—
an increasingly perceptible phenomenon in physically deterministic devices [35]—and others. We note in
passing that probabilistic behavior of the implicit type is anticipated increasingly in cmos devices, gates and
circuits—the building blocks of modern computers—and are caused by manufacturing deficiencies and noise
susceptibility [28] as physical sizes of individual transistors approach 20nm. This is viewed as an impediment
to realizing deterministic switches and hence to Moore’s law [45]. Characterizing this implicit approach to
probabilistic computing and logic formally, and providing an approach to distinguishing it from its explicit
counterpart, serve as the overarching philosophical themes of this paper. To achieve this, probability and
Boolean logic need to be treated in an unified manner.

To this end, we introduce a novel Probabilistic Boolean Logic (pbl) as well as a model of computation—
essentially a probabilistic automata (pa) in the Rabin sense [55]—whose transition functions are realized
through pbl. In pbl, the canonical operations—disjunction, conjunction, and negation, denoted respectively
by ∨p,∧q,¬r—have an associated probability p, q, r (1/2 ≤ p, q, r ≤ 1) of being “correct”, and can be used to
construct probabilistic boolean formulae (pbf). Akin to formulae in classical Boolean logic, those in pbl can
be constructed as compositions of probabilistic operators, variables, and the constants {0, 1}. Informally, for
any input assignment to the (deterministic) variables in a probabilistic Boolean formula, its “value” is the
outcome of a random experiment, whose sample space (for examples, see Feller [24]) is determined by the
input assignment to the variables in the the formula, its structure, as well as the associated probabilities of
correctness of its constituent operators.

Next, to formally characterize and “interpret” this informal notion of correctness of a pbf, we introduce
the foundational concept of an event set: it consists of a set of events from a sample space, each of which
is associated with a conventional (deterministic) Boolean formula. Given an input assignment I to a pbf,
its event set can be used characterize the possible set of events associated with the input assignment. This
characterization helps us to unambiguously determine the correctness and truth of the pbf in a unified
way. We note that the assignment I is deterministic, and the probabilistic behavior is induced entirely
by the (implicitly) probabilistic operators of the pbf. This has to be contrasted with an approach to
explicitly injecting probabilistic behavior into conventional Boolean formulae with deterministic operators,
by considering some of the elements of the input assignment to be random variables (ranging over the set
{0, 1}). Based on the event set semantics, we will distinguish the implicit and explicit approaches of melding
logic with probability. Furthermore, we define the conditions under which two or more probabilistic Boolean
formulae can be characterized as being equivalent using event sets. This formal notion of equivalence through

3 Rice University, Department of Computer Science Technical Report, No. TR08-05, June 2008

event sets serves as a cornerstone of characterizing the significant identities or properties of pbl.

The properties of pbl for the most part, correspond to those of classical Boolean logic. However, in-
triguingly, pbl does not preserve distributivity and associativity. In the latter context, a novel contribution
of our work is to help quantify the “amount” by which a formula is non-associative. When we consider
reassociations of the same formula—for example ((x∨p y)∨q z) and (x∨p (y ∨q z)) are reassociations of each
other—the probability with which it is satisfied, varies. We use this variation as a basis for quantifying the
degree of non-associativity of pbl. Specifically, we show that there exist formulae of size n→∞ such that the
degree of non-associativity grows as Ω(n) where p = 1 − 1/nc. Conversely, the degree of non-associativity
demonstrates how the probability of correctness of a given pbf F may be improved through considering
reassociations of F . As discussed in Section 4, we anticipate that this characterization will prove to be useful
in (automatically) synthesizing circuits from specifications.

Next, we introduce and study Probabilistic Boolean Circuits, a model of computation based on pbl,
and characterize its relationship to conventional explicitly probabilistic circuit constructs from computer
science, that have randomness injected into them as “coin tosses”1. It might seem natural to view these
implicit and explicit formulations as being equivalent and consequently, the probabilistic Boolean circuit
model based on pbl and the classical randomized circuit model as being interchangeable. While pbl and
the associated constructs in the implicit context might be closely related to randomized circuits employing
explicit randomness in terms of conventional complexity measures such as size or depth, we will infer that
the implicit variety is more efficient or less expensive, through the measure of energy consumption. Thus,
(physical) energy consumption provides a second approach to distinguishing explicit and implicit approaches
beyond semantic differences.

This characterization of the difference between implicitly probabilistic and explicitly random constructs
based on energy considerations, builds on prior work: (i) A theoretical framework establishing such a sepa-
ration based on the energy complexity of probabilistic algorithms and deterministic algorithms (of identical
time complexity) in the bram model of computation [50] as well as in a model employing networks of
switches [51] and (ii) An empirical demonstration of the energy efficiency of cmos devices rendered proba-
bilistic by thermal noise, referred to as probabilistic cmos or pcmos [11, 39, 40]. Finally, moving beyond
circuit based models and considering computational models with a notion of state in the form of a pa, we
show that these gains, or energy advantages persist. To demonstrate this, we consider the transition function
of a pa and show that any transition function of such an automaton realized as an implicitly probabilistic
circuit consumes less energy than an equivalent explicitly realized circuit.

1.1 A Short Note on Related Work

Our work on pbl has connections to three distinct areas with a potential for further research: mathematical
logic, computer science, and applications to electrical engineering. We describe the connections in greater
detail and sketch future directions of inquiry in Section 6. In this section, we briefly distinguish our work
from prior results of a similar theme.

Historically, developments in probability theory have been intertwined with advances in logic with probable

1In this work, we distinguish between probabilistic and randomized Boolean circuits. We use the terminology “probabilistic

Boolean circuits” to refer to Boolean circuits whose gates correspond to one of the three probabilistic operators of pbl and hence

are implicitly probabilistic. On the other hand, we use the terminology “randomized Boolean circuits” to refer to conventional

Boolean circuits, some of whose inputs may be random variables and hence have probability explicitly injected into them.

4 Rice University, Department of Computer Science Technical Report, No. TR08-05, June 2008

inference as one of the main motivators. As a background to probable inference, we first consider the rule of
inference in propositional logic. In propositional logic, if P and Q are sentences then by the rule of Modus
ponens [42] ((P → Q), P) logically entails Q. Certain real world situations merit the question, If P is not
known to be true with certainty, is Q true ?. For example, in several artificial intelligence applications and
expert systems, rules and data are not known with certainty and only strongly indicated by evidence. With
this as motivation, several researchers (see Cox [15], Nilsson [49], Fagin and Halpern [22], Fagin, Halpern
and Megiddo [23], for example) have generalized logic to deal with uncertainties. In such logics, sentences
are associated with probabilities or confidences using which, rules of inference yield probabilities of other
sentences. It should be noted that the connectives themselves are deterministic.

In contrast, the individual variables in pbl are associated with truth values from the set {0, 1}, and are
deterministic, while probability is incorporated into pbl through probabilistic operators. Our dual approach
to the treatment of probability and logic stems in part from differing motivations. Whereas the former
work has been motivated by inference in the presence of probabilistic truth, our work has been motivated by
the characterization of models of computing (more specifically Boolean circuits) elements (such as gates) of
which which may exhibit probabilistic behavior.

Specifically, in the context of computing devices whose physical realizations may be probabilistic, com-
puting elements such as gates susceptible to probabilistically quantified erroneous behavior were studied
in the context of unreliable computing elements, with an aim of overcoming such probabilistic (unreliable)
behavior. In this context, von-Neumann’s classical work [65] was inspired by the need for realizing reliable
computing in the presence of faults. Other researchers have improved upon von Neumann’s techniques to
calculate the necessary and sufficient amount of redundancy to realize Boolean functions [19, 20]. This
line of work culminated on Pippenger’s demonstration of reliably realizing Boolean functions, with constant
multiplicative redundancy of gates susceptible to noise, and hence error [52, 53, 54]. More recently, in the
more technological context of cmos transistors, Bahar et al. demonstrate methods for improving the noise
immunity of logic circuits by using techniques based on Markov Random Fields [2, 48].

In all of these cases, a combinational logic element or a gate, is deemed to be either erroneous or correctly
functioning—there is no attempt to characterize and use it with varying degrees of reliability characterized
through the probability of correctness (parameter) p, q or r. More significantly, none of these earlier formula-
tions attempted to distinguish the explicit and implicit forms in general, and through a complexity measure
in particular. Our work in part is intended to help redress this situation.

1.2 Roadmap

The rest of this paper is organized as follows. The syntax of probabilistic Boolean formulae and the struc-
ture of well formed probabilistic Boolean formulae are outlined in Section 2. In Section 2.3, we introduce
probabilistic Boolean truth tables as an aid to interpreting the meaning of truth and satisfiability of proba-
bilistic formulae. Next, we formalize this notion of truth characterized by probabilistic truth tables, through
the (semantic) concept of an event set in Section 3, and provide a framework for expressing an equivalence
between arbitrary probabilistic Boolean formulae. Here, we are able to distinguish the explicit and implicit
approaches in a preliminary way through event set semantics. Next, in Section 4 we show that a number
of identities from Boolean logic can be extended and demonstrated to be valid in pbl. In Section 4.2,
we show that extensions of distributivity and associativity are not preserved, and quantify the degree of
non-associativity ∆n in Section 4.5. A further distinction between pbl and explicitly probabilistic logic is

5 Rice University, Department of Computer Science Technical Report, No. TR08-05, June 2008

made in Section 5 first in the context of a circuit model. In Section 5.3, we extend this result to models
with state through pa [55], and show that such automata based on probabilistic Boolean circuits are more
energy efficient than their explicit counterparts based on randomized Boolean circuits. We remark on the
implication of this work to technology, Moore’s law, discuss related work, conclude and outline directions
for future research in Section 6.

2. PROBABILISTIC BOOLEAN LOGIC AND WELL FORMED FORMULAE

Informally, probabilistic Boolean formulae—like their deterministic counterparts—can be constructed from
the Boolean constants 0, 1, Boolean variables, and probabilistic Boolean operators: probabilistic disjunction,
probabilistic conjunction and probabilistic negation. Probabilistic disjunction, conjunction and negation will
be represented by the symbols ∨p,∧q and ¬r respectively, where p, q, r are the corresponding probability
parameters or probabilities of correctness. The probabilities of correctness associated with the disjunction,
conjunction and negations operators are such that 1

2 ≤ p, q, r ≤ 1 and p, q, r ∈ Q, the set of rationals.
Initially, for clarity of exposition and for a model of finite cardinality, we consider only rational probabilities of
correctness. We seek the indulgence of the reader and will defer a more detailed discussion of the justification
underlying our choice of considering rational probabilities, to Section 3. A pair of probabilistic operators,
say in the case of probabilistic disjunction, ∨p,∨p̂, will be deemed identical whenever p = p̂. They will be
considered to be comparable whenever p 6= p̂. Similarly for probabilistic conjunction and negation. Analogous
to well-formed Boolean formulae, well formed probabilistic Boolean formulae are defined as follows:

(1) Any Boolean variable x, y, z, · · · and the constants 0,1 are well formed probabilistic Boolean formulae2.
(2) If F , G are well formed probabilistic Boolean formulae, (F ∨p G), (F ∧p G) and (¬pF) are well formed

probabilistic Boolean formulae.

Henceforth, we will use the term probabilistic Boolean formula, or pbf to refer to a well-formed prob-
abilistic Boolean formula and the term Boolean formula (bf) to refer to a classical well formed Boolean
formula (which is deterministic). In addition, the length of a probabilistic Boolean formula is the number
of operators n in the formula. Given a pbf F , we will use varF to denote the set of variables in F . If
varF = φ, that is if F is a formula over Boolean constants, F will be referred to as a closed well-formed
probabilistic Boolean formula or a closed pbf.

2.1 Boolean Logic Preliminaries

For any Boolean formula or bf J consider the set of its constituent Boolean variables, {x1, x2, x3, · · · , xk}
denoted by bvarJ where |bvarJ | = k. Consider any assignment I ∈ 〈0, 1〉k. Let JI be the closed formula
obtained by replacing each variable of J with the Boolean constant it is assigned. The value of the formula
J , when xi is assigned the ith element (bit) of I, or equivalently, the value of the formula JI , will be referred
to as the truth value of J with (input) assignment I and will be denoted by T (JI). Given two Boolean
formulae J,K, without loss of generality, let bvarK ⊆ bvarJ . If I is an assignment to variables in J , I ′

is a consistent assignment to variables in K if and only if whenever xi ∈ varK , xi is assigned to the same
Boolean constant under the assignments I and I ′.

Two Boolean formulae J and K where |bvarJ | = k are considered to be equivalent, whenever T (BI) =
T (CI′) for all input assignments. We recall that one approach to specifying the truth value of Boolean

2Typically we shall denote Boolean variables using lower case alphabets.

6 Rice University, Department of Computer Science Technical Report, No. TR08-05, June 2008

1 1 1

1 1 0

1 0 1

1 0 0

0 1 1

0 1 0

0 0 1

0 0 0

Input
x y z

Truth
Value

1

1

1

0

1

0

0

0

Figure 1. A Boolean truth table for the formula (((x ∧ y) ∨ (x ∧ z)) ∨ (y ∧ z))

formulae is through a Boolean truth table. A truth table with 2k, k > 0 rows and two columns is illustrated
in Figure 1. Conventionally, the first column of each row contains the input assignment, where the nth

row, 0 ≤ n < 2k, corresponds to the k bit binary representation of n, which we denote by N . The second
column of each row contains an element of {0, 1} where the symbols 1 and 0 denote the true and false values
respectively. Referring to the example in Figure 1, the truth table corresponds to the Boolean formula
(((x∧ y)∨ (x∧ z))∨ (y ∧ z)). The third row of the table with the input 010, is interpreted as the assignment
〈x = 0, y = 1, z = 0〉, and yields the truth value of the formula to be 0 and hence the second column of this
row contains a 0. In contrast, the fourth row which contains the input 011, with the symbol 1 in the second
column, implying that the value of the formula for this assignment is 1.

2.2 The Operational Meaning of Probabilistic Boolean Operators

Let F,G,H denote (x ∨p y), (x ∧q y) and (¬rx) respectively, and let T (Fα), T (Gβ) and T (Hγ) denote
their truth value under the assignments α, β and γ respectively. Then an informal operational approach to
assigning or determining “truth” in the case of a pbf is

T (Fα) =
{

Truth value of (x ∨ y) under the input assignment α with probability p
Truth value of ¬(x ∨ y) under the input assignment α with probability (1− p)

T (Gβ) =
{

Truth value of (x ∧ y) under the input assignment β with probability q
Truth value of ¬(x ∧ y) under the input assignment β with probability (1− q)

T (Hγ) =
{

Truth value of (¬x) under the input assignment γ with probability r
Truth value of (x) under the input assignment γ with probability (1− r)

7 Rice University, Department of Computer Science Technical Report, No. TR08-05, June 2008

1 1 1

1 1 0

1 0 1

1 0 0

0 1 1

0 1 0

0 0 1

0 0 0

x y z

Input Probabilities

01

01

01

¾¼

¼¾

¾¼

¾¼

¾¼

Truth
Value=0

Truth
Value=1

Figure 2. A probabilistic Boolean truth table for the pbf (((x ∧1 y) ∨1 (x ∧1 z)) ∨1 (y ∧3/4 z))

2.3 Probabilistic Boolean Formulae and their Truth Tables

Let us now extend this notion of truth with associated probability to arbitrary formulae in pbl. Our
initial approach will be through a probabilistic Boolean truth table. As shown in Figure 2 and analogous to
conventional truth tables, in a probabilistic truth table with l = 2k (k > 0) rows and three columns, the first
column of the nth row contains N , the k bit binary representation of n, 0 ≤ n < 2k. The second and the
third columns of the nth row contain rational numbers 0 ≤ pn, qn ≤ 1 where pn + qn = 1. The first column
of the nth row, which contains the binary representation N of n, is an assignment of Boolean constants to
the variables in the formula as shown in the Figure 2. The second column of the nth row, which is labeled
pn, represents the fact that the probability that value of the formula FN is 1 is pn for the assignment N ,
whereas the third column labeled qn is the probability that the value of the same formula for the same input
assignment is 0. For example, if F is a pbf over the variables x, y, z, and considering the row of the table
with the assignment 010, the probability that the value of F is 1 for this assignment is p2 = 1/4 whereas the
probability that the value of F is 0 is q2 = 3/4.

3. THE EVENT SET SEMANTICS OF PBL

In Section 2.2, we have introduced an operational meaning of pbl and established the fact that probabilistic
Boolean formulae in this logic can be represented by probabilistic Boolean truth tables. Given a pbf,
intuitively, for any assignment of values to the variables in the pbf, the value of the pbf is determined by

8 Rice University, Department of Computer Science Technical Report, No. TR08-05, June 2008

(i) the operators (probabilistic disjunction, conjunction or negation) in the pbf and (ii) the probabilities of
correctness of each of the operators. Whereas the former captures the notion of the “underlying” deterministic
Boolean formula, the latter characterizes the probability that the truth value of the pbf matches that of the
underlying deterministic Boolean formula. Note that this probability might vary with the input assignments,
and in general, indeed it does. Based on these two observations, we will formalize the meaning of pbf in
pbl based on the meaning of Boolean logic, and the frequentist interpretation of probability [64], for a given
input I.

3.1 A Frequentist View of pbl

If F is any pbf and I is an assignment to variables in F , then FI will be used to denote the closed pbf where
every variable in F is replaced by the Boolean constant it is assigned. We will use the symbol r== to mean
“is equal to with a probability r”. Also, for any assignment I to the variables in F , we will use SI to denote
the sentence FI

r== 1 (and S̄I to denote the sentence FI
r̄== 0). Our goal is to provide a semantic framework

that gives meaning to sentences formally. To this end, consider a closed pbf FI of the form (1 ∨p 0) where
p = 3/4. We recall that from the operational meaning given to the ∨p operator, the probability that the
truth value of FI is equal to T (1 ∨ 0) is 3/4, whereas the probability that the truth value of FI is equal to
T (¬(1 ∨ 0)) is 1/4. Since the symbol r== means “is equal to with a probability r”, the sentence SI which
denotes (1 ∨p 0) r== 1 is valid if and only if p = r; SI is an invalid sentence otherwise.

Considering SI , under the frequentist interpretation of probability, an infinite sequence Υ consists of two
types of events, each associated with a sentence in classical (deterministic) Boolean logic as follows: in our
example (Figure 3(b)), one type of event corresponds to those instances where FI “behaves like” (1∨ 0) and
hence the event is associated with the sentence in Boolean logic (1 ∨ 0) = 1, whereas the latter corresponds
to those instances where FI “behaves like” ¬(1 ∨ 0) and hence the event is associated with the sentence
¬(1 ∨ 0) = 0. This concept is illustrated in Figure 3(a) which shows the infinite sequence of events, each
associated with a sentence. With p = 3/4, we note that the relative frequency of the events which correspond
to sentences of the form (1∨ 0) = 1 is 3/4. Thus, our semantic interpretation of the validity of a sentence in
our example, is based on the validity (and the ratio) of the two types of sentences in Boolean logic, (1∨0) = 1
and ¬(1∨ 0) = 0. The first type of event is characterized by the sentence (1∨ 0) = 1 being valid whereas the
second type of event is characterized by the validity3 of the sentence ¬(1∨0) = 0. The probability parameter
p determines the relative frequency of these events as n, the number of events →∞.

Rather than considering the infinite sequence of events Υ, we will use its finite representation or encoding
of probability parameter, as follows: in our example, we consider a set (an “event set”) of 4 distinct events,
three of which correspond to the sentence in Boolean logic, (1 ∨ 0) = 1 and one event which corresponds to
¬(1∨ 0) = 0. Such a succinct representation for the infinite sequence in Figure 3(a) is shown in Figure 3(b).
To reinforce this point further, consider longer formulae, say H, of the form ((x ∨p y) ∨q z) where p = 3/4
and q = 5/6. Again, we will consider the sequence which corresponds to the sentence S ′

I which denotes
H

r== 1 where I denotes the assignment 〈x = 1, y = 0, z = 1〉. The sequence Υ′ associated with S ′
I would

consist of events ((1 ∨ 0) ∨ 1) = 1, (¬(1 ∨ 0) ∨ 1) = 1, ¬((1 ∨ 0) ∨ 1) = 0 or ¬(¬(1 ∨ 0) ∨ 1) = 0 with
relative frequencies of 15/24, 5/24, 3/24 and 1/24 respectively. This infinite sequence may be represented

3For a notion of validity of sentences and the semantics of Boolean logic—in fact the whole of predicate calculus—please see

Mendelson [42].

9 Rice University, Department of Computer Science Technical Report, No. TR08-05, June 2008

Sequence of events which characterizes to (1 Vp 0) = 1

Denotes ⎤ (1 V 0) = 0 Denotes (1 V 0) = 1

r

(1 V¾ 0) = 1
r

(a)

(b)

1. (1 V 0) = 1

2. (1 V 0) = 1

3. (1 V 0) = 1

4. ⎤ (1 V 0) = 0

True
Events

False
Event

Figure 3. (a) A frequentist interpretation of a sentence (1∨ 3
4

0)
r

=== 1 in pbl through an infinite sequence of events (b) a succinct

representation of this sequence as an event set

in a succinct manner with a set of 24 elements, 15 of which are copies4 of the sentence ((0 ∨ 1) ∨ 0) = 1, 5
elements being copies of (¬(0∨ 1)∨ 0) = 0, 3 elements being copies of ¬((0∨ 1)∨ 0) = 0 and a single element
of the form (¬(0 ∨ 1) ∨ 0) = 0. From such a succinct representation, the sequence Υ′ may be generated by
picking elements uniformly at random and constructing an infinite sequence of such trials. Since events are
picked at random, the sequence Υ′ satisfies both the axiom of convergence and the axiom of randomness
(please see Reichenbach [58] and Section 3.1.1 below) in the frequentist interpretation of probability.

A motivation towards developing pbl is to design efficient algorithms to synthesize implicitly probabilistic
circuits and the computational efficiency of such algorithms is dependent on the size of the event sets.
Therefore, we expect that it is advantageous to represent the sequence Υ′ as a finite set, which is the basis
for restricting the probability parameter of the operators of pbl to be the member of the set of rationals
Q. We note that if probabilities are drawn from the unit interval [0, 1], the cardinality of the event set will
not be finite and a notion of probability measure [37] has to be introduced. However, we note that the
subsequent development of the semantics of pbl can be extended naturally to the case where the probability

4Since our intention is to characterize the elements as a set, for element distinctness, we ensure that the copies of each sentence

is indexed uniquely from the set of naturals {0, 1, 2, . . .}, and thus individual copies can be distinguished from each other

through this index. For ease of exposition, we will omit these indices in the body of the paper, but will include it in a rigorous

formulation of these concepts in Appendix A.

10 Rice University, Department of Computer Science Technical Report, No. TR08-05, June 2008

parameters of the operators are chosen from the interval [0, 1].

3.1.1 A Digression into The Frequentist Interpretation of Probability. The concept of probability has
had differing interpretations, where the two important interpretations have been the frequentist approach,
championed by Venn [63], von Mises [64], Reichenbach [58], and others, and the Bayesian interpretation, of
which de Finetti [17], Ramsey [57], Jaynes [30] and others are prominent proponents (for a detailed discussion,
please see Cox [14] and Bergmann [3]). The word “frequentist” is used to refer to the proponents as well as
to the frequency theoretic interpretation of probability, and is attributed to Kendall [33]. Efron [21] outlines
the controversies between the Bayesian interpretation and the frequentist interpretation). The notion of
probability under the frequentist interpretation, is outlined elegantly by von Mises [64] “It is possible to speak
about probabilities only in reference to a properly defined collective” and Bergmann [3] “Probability theory
deals with mass phenomena and repetitive events”. Whereas, the interpretation of probability according to
the Bayesian approach, quoting Cox is “A relation between a hypothesis and a conclusion, corresponding to
the degree of rational belief and limited by the extreme relations of certainty and impossibility”.

Our motivation in choosing the frequentist approach is based on the fact that we wish to apply methods
based on our interpretation of pbl, to derive techniques not only for designing and synthesizing integrated
circuits, but also for verifying them. Here, measurement to ascertain the behavior of probabilistic Boolean
circuits is crucial. Ascertaining the behavior would typically involve testing the circuit not only over a large
number of inputs, but also over a large number of trials without using known priors5, resulting in a sequence
of outcomes which are elements of the “event set”.

The frequentist approach, broadly speaking, defines the probability of an event A in a sequence of trials,
as simply the ratio of the number of occurrences of A to the total number of trials, as the number of trials
tends to infinity. For example, the probability of occurrence of heads in any toss of a coin would simply be
the ratio of the number of occurrences of heads to the total number of trials in an infinite sequence of trials.
This interpretation, while satisfying the requirement of ascertainability—in principle, probabilities can be
assigned to each event—introduces paradoxes. von Mises addresses these concerns through the axiom of
convergence and the axiom of randomness. In particular, the axiom of convergence states that the limiting
relative frequency of any event exists in a sequence of infinite trials. The axiom of randomness states that
this limiting relative frequency of any event in an infinite sequence and the limiting relative frequency in
any infinite sub-sequence are the same, thereby attributing some property of uniform “randomness” to the
infinite sequence under consideration. This notion of “similarity” of an infinite sequence to any infinite sub
sequence was formalized by Church [13] and ultimately refined by Kolmogorov [38] and Chaitin [8].

3.2 A Interpretation of pbf for a Fixed Assignment Through Event Sets

With the frequentist interpretation of probability as a background, we will define the succinct representation
of the infinite sequence of trials which characterizes a sentence in pbf. Revisiting the example in Figure 3,
let SI denote (1∨p 0) r== 1 and Υ is the sequence which characterizes SI . We will refer to ES ,I , the succinct
representation of Υ as an event set of SI . In our example, any event E ∈ ES ,I will be associated with either
the sentence (1 ∨ 0) = 1 in Boolean logic, or with the sentence ¬(1 ∨ 0) = 0. If p = m/n (p ∈ Q), ES ,I is a
set of n elements (each element referred to as an event), m of which correspond to (1∨0) = 1 and the rest to

5For an eloquent defense of the use of known priors, please see Jaynes [30], whose book is reviewed in a most stimulating manner

by Diaconis [18].

11 Rice University, Department of Computer Science Technical Report, No. TR08-05, June 2008

¬(1 ∨ 0) = 0. We will refer to the former type of events as being true whereas the latter type of events will
be deemed to be false. Intuitively, the true events are witnesses to the formula under assignment I yielding
a value of 1 whereas the false events correspond to those which yield a value of 0. Let ψ(ES ,I) represent
the fraction of the event set made up of copies of true events, the sentence (1 ∨ 0) = 1.

Revisiting Figure 3, if r = 3/4, SI is a valid sentence and it is invalid otherwise. We can either say
“r = 3/4 is the value for which the sentence FI

r== 1 is valid”, or this fact can be stated as “F is satisfied
with probability r = 3/4 for the assignment I”. Given the event set ES ,I the rational number r and the
Boolean constant 1, they are said to be in a relationship R, that is (1, r,ES ,I) ∈ R, if and only if ψ(ES ,I) = r.
If (1, r,ES ,I) ∈ R, then the sentence (1 ∨p 0) r== 1 is said to be valid under our interpretation; it is invalid
otherwise.

Now consider the assignment Ī which denotes 〈x = 0, y = 0〉. As shown in Figure 4(a), a majority of the
events in the event set are false events. In this context, it is more natural to reason about the validity of
the sentence S̄Ī , which denotes FĪ

r̄== 0 or (0∨p 0) r̄== 0. If ψ̄(ES̄ ,Ī) is the fraction of events in ES̄ ,Ī which
are copies of false events, S̄Ī is a valid sentence if and only if r̄ = ψ̄(ES̄ ,Ī). In this case, r̄ = 3/4 is the

value for which the sentence FĪ
r̄== 0 is valid. Equivalently, we can say that F is unsatisfied with probability

r̄ = 3/4 for the assignment Ī. We note that ψ̄(ES ,I) = 1 − ψ(ES ,I) and therefore, a sentence FI
r== 1 is

a valid sentence if and only if FI
r̄== 0 is a valid sentence, where r̄ = (1 − r). For ease of exposition, in

the body of the paper and unless specified otherwise, we consider only sentences of the form FI
r== 1, and

reason about the probabilities with which F is satisfied. A rigorous formulation of validity of sentences in
each case—sentences of the form FI

r== 1 as well as those of the form FĪ
r̄== 0—is treated in a complete

manner in Appendix A.

We observe that, as illustrated in Figure 4(b), for a formula F , for each of the three remaining assignments
I ∈ {〈x = 0, y = 1〉, 〈x = 1, y = 0〉, 〈x = 1, y = 1〉}, three valid sentences, each of the form FI

r== 1 can be
constructed, and each sentence is associated with its own event set. The collection of events sets and the
notion of validity provides a model [42] in the sense of symbolic logic.

Consider any pbf G of the form (z) where z is a Boolean variable. For the assignment I which assigns 0
to z, if SI is the sentence GI

r== 1, the event set ES ,I consists of one event determined by the sentence in
Boolean logic, (0) = 0. Similarly, for the assignment I ′ which is 〈z = 1〉, the event set ES ,I′ consists of one
event determined by the sentence (1) = 1.

We will now consider the event set of a pbf H of length k+1 where k ≥ 0. To illustrate the way in which
event sets of sub-formulae combine, we consider an example where F and G are the formulae (x ∨q y) and
(z) respectively, where H is of the form (F ∨p G), q = 3/4 and p = 5/6. We will consider the assignment
I = 〈x = 1, y = 0, z = 1〉 to the variables in H, where I ′ = 〈x = 1, y = 0〉 and I ′′ = 〈z = 1〉 are the
corresponding consistent assignments to F and G. Consider the valid sentences SI ,S ′

I′ ,S
′′
I′′ which denote

HI
r== 1, FI′

r′=== 1 and GI′′
r′′=== 1 respectively, where ES ,I , ES ′,I′ and ES ′′,I′′ are the event sets of SI ,

S ′
I′ and S ′′

I′′ respectively. Referring to Figure 4, the event set of S ′
I′ consists of 4 events, 3 of which are true

Boolean sentences (0 ∨ 1) = 1 and one false Boolean sentence ¬(0 ∨ 1) = 0. This is shown in Figure 5(a),
where for the ease of exposition, we omit the indices of the events. With z = 1, as shown in Figure 5(b), the
event set of S ′′

I′′ has one true event associated with the Boolean sentence (1) = 1. Let Ẽ = ES ′,I′ ×ES ′′,I′′ .
As shown in Figure 5(c), we note that |Ẽ| = 4× 1 = 4, and any element of Ẽ is of the form (B = c, B̂ = ĉ),
where B, B̂ are closed bf and c, ĉ ∈ {0, 1}. For each element of Ẽ, as shown in Figure 5(d), we create 5
copies (since p = 5/6) each of the form (B∨ B̂) = T (c∨ ĉ) and 1 element of the form ¬(B∨ B̂) = T (¬(c∨ ĉ))

12 Rice University, Department of Computer Science Technical Report, No. TR08-05, June 2008

1. (0V0)=0
2. (0V0)=0
3. (0V0)=0
4. ⎤(0V0)=1

1. (0V1)=1
2. (0V1)=1
3. (0V1)=1
4. ⎤(0V1)=0

1. (1V0)=1
2. (1V0)=1
3. (1V0)=1
4. ⎤(1V0)=0

1. (1V1)=1
2. (1V1)=1
3. (1V1)=1
4. ⎤(1V1)=0

Event set

(b)

(a)

1. (0V0)=0
2. (0V0)=0
3. (0V0)=0
4. ⎤(0V0)=1

Event set

Event set

Event set

Event set

(0 V¾ 0) = 0¾

(0 V¾ 1) = 1
¾

(1 V¾ 0) = 1¾

(0 V¾ 0) = 1¼

(1 V¾ 1) = 1¾

Figure 4. (a) The event set for the valid sentence (0 ∨ 3
4

0)
3
4=== 0 and (0 ∨ 3

4
0)

1
4=== 1 (b) three valid sentences and their event

sets for the three remaining assignments to (x ∨ 3
4

y)

to get ES ,I . Hence it follows that |ES ,I | = 6 × |Ẽ| = 24, of which 20 events are true and the rest are
false. Therefore, whenever r = 5/6, SI is a valid sentence, since PH = ψ(ES ,I) = 20/24 = 5/6. A rigorous
formulation can be found in Appendix A. We will however describe some attributes of the event sets for
sentences which correspond to arbitrary formulae and assignments. These attributes will be used in Section 4
to characterize some of the properties of pbl.

In general, let H be of the form (F ∨p G) where p = m/n. To reiterate, for any assignment I to H, let I ′

and I ′′ denote the corresponding consistent assignment to variables in F and G respectively. Let the number
of events in ES ′,I′ be denoted by the symbol a, and let |ES ′,I′ | = b. Similarly, let the number of true events
in ES ′′,I′′ be denoted by the symbol c, and let |ES ′′,I′′ | = d.

Observation 3.2.1. Under assignment I, |ES ,I | is (bdn) where ES ,I has (acm+ a(d− c)m+ (b− a)cm+
(b− a)(d− c)(n−m)) true events. Therefore, if PF , PG and PH denote the probabilities with which FI′ , GI′′

and HI are respectively satisfied, PH = (PF)(PG)p+(1−PF)(PG)p+(PF)(1−PG)p+(1−PF)(1−PG)(1−p).

13 Rice University, Department of Computer Science Technical Report, No. TR08-05, June 2008

(1V0)=1
(1V0)=1
(1V0)=1

⎤(1V0)=0

True
Events

False
Event

(1 V3/4 0) = 1
r'

(1) = 1
r"

(1)=1

((1V0)=1, (1)=1)
((1V0)=1, (1)=1)
((1V0)=1, (1)=1)
(⎤(1V0)=0, (1)=1)

((1V0) V (1))=1
((1V0) V (1))=1
((1V0) V (1))=1
((1V0) V (1))=1
((1V0) V (1))=1
⎤((1V0) V (1))=0

●
●
●
●
●

((1 V3/4 0) V5/6 1) = 1
r

(b)(a) (c) (d)

Figure 5. (a) Event set ES ′,I′ of (1∨ 3
4

0)
r′

=== 1 (b) event set ES ′′,I′′ of (1)
r′′

==== 1 (c) Ẽ = ES ′,I′ ×ES ′′,I′′ (d) constructing

the event set for ((1 ∨ 3
4

0) ∨ 5
6

1)
r

=== 1 from Ẽ.

Proof. Based on the frequentist interpretation of pbl and the event set semantics, we know that the
probability that H is satisfied for the assignment I, is the ratio of the number of true events to the total
number of events in ES ,I . Hence PH = ψ(ES ,I). Similarly, PF = ψ(ES ′,I′) = a/b, PG = ψ(ES ′′,I′′) = c/d.
The number of true events in ES ,I is (acm+a(d−c)m+(b−a)cm+(b−a)(d−c)(n−m)) and |ES ,I | = (bdn)
(from Observation A.0.1 in Appendix A). Hence,

ψ(ES ,I) =
(acm+ a(d− c)m+ (b− a)cm+ (b− a)(d− c)(n−m))

bdn
or

PH = ψ(ES ,I) = (PF)(PG)p+ (1− PF)(PG)p+ (PF)(1− PG)p+ (1− PF)(1− PG)(1− p)

Note: Again, we note that there might exist an assignment I, such that a majority of events in ES ,I

may be false events (and hence PH < 1/2). In this context, it is more natural to reason about the validity of
the sentence S̄I which denotes HI

r̄== 0, and the probability with which HI is unsatisfied rather than PH ,
the probability with which it is satisfied. However, since Observation 3.2.1 is only a combinatorial relation
between the event sets of S ′

I′ ,S
′′
I′′ , the probability parameter p, and the event set of SI , we have derived

a relation using the function ψ. In combinatorial arguments such as in Observation 3.2.1, it is sufficient
to use the function ψ without having to to explicitly invoke ψ̄ keeping in mind that for any event set E,
ψ(E) = (1− ψ̄(E)).

Akin to Observation 3.2.1, similar relationships between the event sets can be established for pbf of the

14 Rice University, Department of Computer Science Technical Report, No. TR08-05, June 2008

form H = (F ∧p G) and H = ¬F as follows:

Observation 3.2.2. If H denotes (F ∧p G), |ES ,I | = (bdn) where acm + (b − a)c(n −m) + (b − a)(d −
c)(n−m) + (a)(d− c)(n−m) events in ES ,I are correct events. Furthermore, with PF = ψ(ES ′,I′) = a/b

and PG = ψ(ES ′′,I′′) = c/d, PH = ψ(ES ,I) = (PF)(PG)p + (1 − PF)(PG)(1 − p) + (PF)(1 − PG)(1 − p) +
(1− PF)(1− PG)(1− p).

Observation 3.2.3. If H denotes (¬pF), |ES ,I | = bn where a(n − m) + (b − a)(m) events in ES ,I are
correct events. Furthermore with PF = ψ(ES ′,I′) = a/b, PH = ψ(ES ,I) = (PF)(1− p) + (1− PF)p.

3.2.1 Equivalence of pbf Through Event Sets. Consider two formulae H and H ′ where varH ⊆ varH′

(or vice-versa). Then H and H ′ are equivalent under the assignment I (where I ′ is the corresponding
consistent assignment) if and only if

ψ(ES ,I) = ψ(ÊS ′,I′)

Finally pbf H and H ′ are equivalent, denoted H ≡ H ′, if they are equivalent for every assignment I ∈ I
(we claim without proof that the individual event sets ES ,I for a sentence S and its input I ∈ I can
be combined across all the inputs to yield a single finite representation common to all inputs. We will
introduce such a specification in a future report centered around the question of synthesizing circuits from
pbl specifications).

4. THE IDENTITIES OF PROBABILISTIC BOOLEAN LOGIC

Through the construct of event sets and the accompanying notion of equivalence of pbf, we will now char-
acterize some identities of pbl in Section 4.1. Specifically, we show that several of the identities of conven-
tional Boolean logic, such as commutativity, are preserved in pbl. Also, identities such as that introduced
by DeMorgan [66], which relate pairs of dual logical operators—∨ and ∧ in conventional Boolean logic for
example—are preserved in a suitably modified manner as described below. Properties such as distributivity
and associativity are not preserved. We will use the letters, p, q, r, a, b, c to denote probabilities where as
before, 1/2 ≤ p, q, r, a, b, c ≤ 1 and p, q, r, a, b, c ∈ Q.

4.1 Classical Identities That are Preserved

We have enumerated the significant identities of pbl in Table 4.1. As an illustrative example, let us consider
commutativity (identity (1) in Table 4.1). Now, consider F and G which denote (x ∨p y) and (y ∨p x)
respectively, where p = m/n. For any assignment I, in particular 〈x = 1, y = 0〉, let EF,I be the event
set of F . In EF,I , m events are associated with (1 ∨ 0) = 1 and hence associated with (0 ∨ 1) = 1 since
(1∨0) ≡ (0∨1) in classical Boolean logic. Similarly, n−m events in EF,I are associated with the ¬(1∨0) = 1
and hence ¬(0∨1) = 1. Similarly for each possible input assignment I ∈ {〈x = 0, y = 0〉, 〈x = 0, y = 1〉, 〈x =
1, y = 0〉, 〈x = 1, y = 1〉}. Hence, from the definition of equivalence of pbf, (x ∨p y) ≡ (y ∨p x), or the
operator ∨p is commutative6.

6A straight forward induction will allow us to extend this to pbf of arbitrary length.

15 Rice University, Department of Computer Science Technical Report, No. TR08-05, June 2008

1. Commutativity
(x ∨p y) ≡ (y ∨p x)

(x ∧p y) ≡ (y ∧p x)

2. Double Complementation

¬q(¬px) ≡ ¬p(¬qx)

¬p0 ≡ ¬1(¬p1)

¬p1 ≡ ¬1(¬p0)

3. Operations with 0 and 1

(0 ∧p x) ≡ (¬p1)

(1 ∧p x) ≡ ¬1(¬px)

(0 ∨p x) ≡ ¬1(¬px)

(1 ∨p x) ≡ (¬p0)

4. Identity
(x ∨p x) ≡ ¬1(¬px)

(x ∧p x) ≡ ¬1(¬px)

5. Probabilistic Tautology
(x ∨p (¬1x)) ≡ ¬p0

(x ∧p (¬1x)) ≡ ¬p1

6. Probabilistic DeMorgan Identity

¬p(x ∨q y) ≡ (¬1x) ∧r (¬1y)

¬p(x ∧q y) ≡ (¬1x) ∨r (¬1y)

where r = pq + (1− p)(1− q)

Table 1. Identities of pbl

4.2 Identities that are not Preserved

Surprisingly, not all properties from conventional Boolean logic can be extended to the probabilistic case. In
particular, associativity, distributivity and absorption as stated in Boolean logic are not preserved in pbl.

4.2.1 Associativity. Let F and G denote (x ∨p (y ∨p z)) and ((x ∨p y) ∨p z) respectively, where var =
{x, y, z} is the set of variables in F as well as in G.

Theorem 1. There exists an assignment I to var such that ψ(EF,I) 6= ψ(EG,I) and therefore F 6≡ G.
Hence pbl is not associative.

Proof. Consider the assignment I which denotes 〈x = 1, y = 0, z = 0〉. If EF,I and EG,I are the event
sets of FI and GI respectively, it follows from the definition of event sets, that ψ(EF,I) = p2 whereas
ψ(EG,I) = p2 + (1 − p)2 (from Observation 3.2.1). Hence there exist values of p, 1/2 ≤ p ≤ 1 such that
EF,I 6' EG,I , and therefore F 6≡ G.

4.2.2 Distributivity. Consider as a natural extension of distributivity in the pbl context, expressed as

(x ∨p (y ∧q z)) ≡ ((x ∨a y) ∧b (x ∨c z))

We shall now show that this identity does not hold for pbl.

Theorem 2. There exist p, q, 1/2 < p, q < 1 such that (x ∨p (y ∧q z)) 6≡ ((x ∨a y) ∧b (x ∨c z)) for any
1/2 ≤ a, b, c ≤ 1, and therefore ∨p does not distribute over ∧q.

Proof. Without loss of generality, let F represent (F ′∨pF
′′) where F ′, F ′′ respectively denote (x), (y∧q z),

and G denotes the formula ((x ∨a y) ∧b (x ∨c z)). In particular, let 1/2 < p, q < 1. Also, let I, J , the input
assignments to F , represent 〈x = 1, y = 0, z = 0〉, 〈x = 0, y = 1, z = 1〉 respectively where I ′′, J ′′ are the
corresponding consistent assignments to F ′′.

We will first show that ψ(EF,I) 6= ψ(EF,J). Suppose ψ(EF,I) = ψ(EF,J). Since 〈x = 1〉 in I, from
the definition of probabilistic disjunction operator, ψ(EF,I) = p. Furthermore, since 〈y = 1, z = 1〉 in J ,

16 Rice University, Department of Computer Science Technical Report, No. TR08-05, June 2008

from the definition of the probabilistic conjunction operator, ψ(EF ′′,J ′′) = q and from Observation 3.2.1,
ψ(EF,J) = pq + (1− p)(1− q). Since, ψ(EF,J) = ψ(EF,I),

pq + (1− p)(1− q) = p or

(1− 2p)(1− q) = 0

Then, (1− 2p) = 0 or (1− q) = 0 or both, which contradicts the fact that 1/2 < p, q < 1.

Now, let F ≡ G. Then from the definition of equivalence of pbf, it must be the case that ψ(EF,I) =
ψ(EG,I) and ψ(EF,J) = ψ(EG,J). Furthermore, we have shown that ψ(EF,I) 6= ψ(EF,J) and hence ψ(EG,I) 6=
ψ(EG,J).

For the assignments I and J , and from the definition of a probabilistic disjunction and Observation 3.2.2,

ψ(EG,I) = ψ(EG,J) = 1− b− ac+ 2abc

which is a contradiction

4.3 Degree of Non-Associativity

We know from Section 4.2 and Theorem 2 that formulae in pbl are not associative. We will now quantify
the degree to which a pbf is non-associative. Besides inherent intellectual interest, such a characterization is
of interest from a pragmatic perspective, since tools for synthesizing logic circuits from formulaic specifica-
tions (logic synthesis tools), use “reassociation” as a ubiquitous transformation for optimizing digital logic
circuits [43]. This transformation is legal or valid in the Boolean logic context, since associativity is truth
preserving. Typically, this transformation is applied to improve the performance (time) while preserving the
cost (size) of a Boolean circuit. In contrast to Boolean logic, in the case of pbl, a reassociation can result
in a significant change to the probability with which the formula is satisfied, depending on the input assign-
ment. As a simple example, consider Figure 6(a), where we illustrate a pbf F and its reassociation F ′ in
Figure 6(c). For those who are computationally minded, F and F ′ are depicted as trees, explicitly indicating
the order in which their constituent operators would be evaluated. Continuing, for an input assignment
〈x1 = 1, x2 = 1, x3 = 1, x4 = 1〉, it is easy to verify that the probability that F is satisfied is p whereas the
probability that F ′ is satisfied is p2 + p2(1− p) + (1− p)3; very different probability values for, 1/2 < p < 1.

More generally, let F be a maximal set of formulae where F, F ′ ∈ F if and only if they are reassociations of
each other. For F, F ′ ∈ F and for a particular input assignment7 I to F as well as to F ′, let the probabilities
that FI and F ′I are unsatisfied be qI and q′I respectively. If I is the set of all input assignments to F (and
F ′), we can quantify the amount by which F and F ′ are non-associative as,

NA(F, F ′) = max∀I∈I

{
q′I
qI
,
qI
q′I

}
(1)

7Since F and F ′ are defined on (exactly) the same set of Boolean variables, the same assignment I is valid in both cases.

17 Rice University, Department of Computer Science Technical Report, No. TR08-05, June 2008

Vp

Vp

Vp

x1 x2

x3

x4

(((x1Vp x2) Vp x3) Vp x4)

(a)

(b)

((x1Vp x2) Vp (x3Vp x4))

(c)

Vp

x3

Vp

x1 x2

Vp

x4

(d)

Figure 6. (a) A linear pbf over n variables in syntactic form (b) as a tree structure illustrating the linear form (c) a reassociation

of the same pbf (d) its balanced binary representation in tree form

Building on this, we can quantify the non-associativity of the set F to be

ηF = max∀(F,F ′)∈F {NA(F, F ′)} (2)

The degree of non-associativity of pbl with formulae of length no greater than n, ∆n is

∆n = max∀F∈Fn
{ηF} (3)

where F ∈ Fn if and only if the length of F is at most n for any F ∈ F.

4.4 Balanced Binary and Linear pbf

We will now consider two associations of the same base formula F , a “linear” formula L (Figure 6(a)) and a
“balanced binary” formula B(Figure 6(c)). In order to bound ∆n from below, we will bound the probability
QL that L is not satisfied from below, and the probability QB that B is not satisfied from above. Then we
will use the fact that ∆n ≥ QL/QB .

Consider n pbf, C1, C2, C3, · · · , Cn where Ci = (xi) and without loss of generality let n = 2m for some
positive integer m. For 1 ≤ i ≤ n/2, Hi is (C2i−1 ∨p C

2i) and for n/2 ≤ i ≤ n − 1, Hi is of the form
(Hj ∨pH

j+1) where j = (2i−n− 1). For example, with four variables {x1, x2, x3, x4}, C1, C2, C3, C4 would
be (x1), (x2), (x3), (x4) respectively H1 would denote (x1 ∨p x2), H2 would denote (x3 ∨p x4), and H3 or B
would be (H1∨pH

2) which is ((x1∨p x2)∨p (x3∨p x4)) as shown in Figure 6(c),(d). Thus, pbf B is of length

18 Rice University, Department of Computer Science Technical Report, No. TR08-05, June 2008

3 and height 2. For convenience, B denotes Hn−1. We shall refer to B as a balanced binary probabilistic
Boolean formula of height m and length (n− 1), since, as illustrated in Figure 6(d), B is a balanced binary
tree.

For the same set of n variables, we can construct the probabilistic Boolean formula L, a reassociation of B,
as follows: For some 1/2 ≤ p <≤ 1 (and q = (1− p) as before) construct the probabilistic Boolean formula
L where L is defined as follows: G2 = (C1 ∨p C

2) and for 2 < i ≤ n, Gi = (Gi−1 ∨p C
i) and for notational

convenience, we will use the symbol L to represent Gn, where L is a linear probabilistic Boolean formula of
length (n− 1), since topologically L is a linear structure with (n− 1) probabilistic disjunction operators (as
in Figure 6(b)).

We will now state a useful fact to be used subsequently in multiple contexts as we estimate ∆n.

Lemma 4.1. Given any pbf F of the form (F ′ ∨p F
′′) with an assignment I and corresponding consistent

assignments I ′, I ′′ to F ′ and F ′′, if QF , QF ′ and QF ′′ are the probabilities that they are unsatisfied, QF =
q +QF ′QF ′′(1− 2q).

Proof. This Lemma follows from the the fact that PF = (1−QF), PF ′ = (1−QF ′) and PF ′′ = (1−QF ′′),
and therefore from Observation 3.2.1,

QF = (q)(1−QF ′)(1−QF ′′) + (q)(1−QF ′)(QF ′′)

+(q)(QF ′)(1−QF ′′) + (1− q)(QF ′)(QF ′′) (4)

= q +QF ′QF ′′(1− 2q) (5)

Now, consider a balanced binary pbf of length n and consider Hi of length k where n/2 ≤ i ≤ n−1. From
the definition of a Balanced binary pbf, Hi is of the form (Hj ∨p H

k), where j = (2i− n− 1), k = (2i− n).
If Hj is satisfied with a probability Pj , we observe from Lemma 4.1 that

Observation 4.4.1. The probability with which Hi is satisfied is at least pPj

4.4.1 An Upper bound on the Probability of Unsatisfiability of a Balanced Binary pbf

Lemma 4.2. Let QB be the probability that a pbf B of length (n− 1), where n = 2k for some integer k ≥ 2,
is unsatisfied with an input assignment α, where α(x) = 1 for all x ∈ varB. Then QB <

∑log(n)
i=1 qi with

q = (1− p).

Proof. We will prove the lemma by induction on the length of B. For the basis, consider a balanced binary
pbf B̂ of length 22 − 1 = 3 with 4 variables, where B̂ = (B̂′ ∨p B̂′′). Now consider an input assignment
α̂(xi) = 1 for 1 ≤ i ≤ 4. Since B′ and B′′ are identical in a balanced binary pbf, we have QB̂′ = QB̂′′ = q

and therefore from Lemma 4.1,

QB = q + q2(1− 2q)

and since q > 0

QB < q + q2 (6)

19 Rice University, Department of Computer Science Technical Report, No. TR08-05, June 2008

Now Consider B of the form (B′ ∨p B
′′), where B′ and B′′ are balanced binary pbf of length (2k−1 − 1),

k ≥ 3 and B is of length (2k − 1). By definition of α, an identical value (of 1) is assigned to all the variables
of B′ and B′′ and QB′ = QB′′ . As an induction hypothesis, let QB′ = QB′′ <

∑k−1
i=1 q

i. From this hypothesis
and Lemma 4.1, we have

QB ≤ q +

(
k−1∑
i=1

qi

)(
k−1∑
i=1

qi

)
(1− q) = q +

(
k−1∑
i=1

qi

)
(q − qk)

hence

QB <

k∑
i=1

qi for q > 0

With k = log(n), we have the proof.

Building on this lemma, we will now determine an upper-bound on the probability QB that a (balanced
binary) pbf is not satisfied, when a constant fraction λ = nε for 0 < ε < 1 of its variables are assigned a
value of 1 (and the rest are assigned a value of 0) through an assignment8 α. We will continue to consider
the case where all of the probabilistic disjunction operators have the same associated probability parameter
p where n ≥ 4.

Theorem 3. Let QB be the probability that a balanced binary pbf B of length n − 1 is unsatisfied for an
assignment α, where α(xi) = 1 for 0 < i ≤ λ, α(xi) = 0 for λ < i ≤ n, and q log(n/λ) ≤ 1. Then,
QB < (1 + log(n

λ))q for n ≥ 4 whenever n = 2k, λ = 2l for l < k.

Proof. Let B be a balanced binary pbf of length n ≥ 4. Consider an assignment α such that α(xi) = 1
for 0 < i ≤ λ, and α(xi) = 0 for λ < i ≤ n. Consider the sub-formula Hm of B, with variables varHm =
{x1, x2, x3, · · · , xλ}. Since λ = 2l, from the definition of a balanced binary pbf, Hm is a balanced binary
pbf and m = (n+ 1− 2n/λ). Let Pm be the probability that Hm is satisfied for the assignment α.

Since λ ≤ n/2, there exists a sub formula Ho of B, which is of length 2λ−1, such that Ho = (Hm∨pH
m+1)

and o = (n + 1 − n/λ). The probability that Ho is satisfied (from Observation 4.4.1) is at least pPm.
Continuing, a straight forward induction will show that PB , the probability that B = Hn−1 is satisfied, is
(at least) plog(n/λ)Pm.

If Qm is the probability that Hm is unsatisfied, from Lemma 4.2, Qm <
∑log(λ)

i=1 qi. Since Pm = 1−Qm,

Pm > 1−
∑log(λ)

i=1 qi = 1− (q−q(log(λ)+1))
(1−q) ,

PB > plog(n
λ)Pm = (1− q)s

[
1− (q − qt)

(1− q)

]
= (1− q)s − (1− q)s−1(q − qt)

where s = log(n/λ) and t = log(λ) + 1

(1− q)s − (1− q)s−1(q − qt) > (1− q)s − (1− q)s−1(q)

since 0 < q < 1/2, and therefore

PB > (1− q)s−1(1− 2q) (7)

8The symbol α is reused with varying constraints throughout the paper, which entails some abuse of notation

20 Rice University, Department of Computer Science Technical Report, No. TR08-05, June 2008

Using the binomial theorem9 to expand (1 − q)s−1, we get (1 − q)s−1 =
[∑s−1

k=0

(
s−1

k

)
(−q)k

]
. There are

s terms in the expansion and where we refer to 1 as the first term, (s − 1)(−q) as the second term and so
on. For convenience, the jth term when j > s will be taken to be 0. Since λ ≤ n/2, s ≥ 1, and whenever
1 ≤ s ≤ 2, (1 − q)s−1 = 1 − (s − 1)q. Consider the case when s > 2, and let j be odd and 2 < j ≤ s, then
the sum of jth and j + 1th term of the binomial expansion of (1− q)s−1 is uj = (s−1)!qj−1

(j−1)!(s−j)! (1− (s− j)q/j).
Since sq ≤ 1, uj ≥ 0 and therefore (1− q)(s−1) ≥ (1− (s− 1)q). Therefore, from (7),

PB > (1− (s− 1)q)(1− 2q)

QB = 1− PB < (1− (1− (s− 1)q)(1− 2q))

or

QB < (s+ 1)q

and hence

QB <
(
1 + log

(n
λ

))
q

We note in passing that due to symmetry, it is easy to see that the result derived in Theorem 3 holds even
if the last λ variables are set to 1 and the rest of the variables to zero. In fact, it can be shown that the
result derived in Theorem 3 holds irrespective of the position of the “runs” of variables assigned a value 1,
due to the inherent symmetry in a balanced binary pbf.

4.4.2 A Lower bound on the Probability of Unsatisfiability of a Linear pbf. We will now consider the
case of a linear pbf L. Recall that L is of the form (((x1 ∨p x2)∨p x3) · · · ∨p xn) where, again, the value 1 is
assigned to xi if and only if 1 ≤ i ≤ λ and the value 0 to xi whenever λ < i ≤ n.

Theorem 4. Given a linear pbf L, of length n − 1, where QL is the probability that L is unsatisfied with
the input assignment α where α(xi) = 1 if 1 ≤ i ≤ λ < n and 0 otherwise,

QL ≥ max{0, (n− λ+ 1)q − (n− λ)(n− λ+ 1)q2}

Proof. Let λ + k = n. Since λ < n, it follows that k ≥ 1. Consider the case when k = 1. Then the pbf

L is of the form (L′ ∨p xλ+1), where L′ is a linear pbf of length λ− 1 with varL′ = {x1, x2, x3, · · · , xλ}. If
QL is the probability that L is unsatisfied by the assignment α, using Lemma 4.1 and recalling that xi = 1
for 1 ≤ xi ≤ λ and 0 otherwise,

QL = q +QL′(1− 2q)

= q + q(1− 2q)

= 2q − 2q2

Hence the theorem is true whenever k = 1 (since n− λ = k = 1).

Let k ≥ 2 and let us suppose that the theorem is false. Furthermore, let L̂ be the shortest sub-formula of L,
for which the theorem is false and thereforeQL̂ < max

{
0, (k̂ + 1)q − (k̂ + 1)(k̂)q2

}
. If the length of L̂ is λ+k̂,

9The interested reader is referred to [29] (page 86) where the binomial theorem is derived for (a + b)n where a, b are elements

of a commutative ring and n is any positive integer

21 Rice University, Department of Computer Science Technical Report, No. TR08-05, June 2008

where varL̂ = {x1, x2, x3, · · · , xλ+k̂+1}, it must be the case that k̂ > 1 (since we have shown to theorem to be

true for k̂ = 1). From the definition of a linear pbf, L̂ is of the form (ˆ̂
L∨pxλ+k̂+1) where ˆ̂

L is of length λ+k̂−1.

From the hypothesis, the theorem is true for ˆ̂
L, or equivalently Q ˆ̂

L
≥ max

{
0, q +

[
(k̂)q − (k̂)(k̂ − 1)q2

]}
.

From Lemma 4.1, it follows that

QL̂ = q +Q ˆ̂
L
(1− 2q) ≥ max

{
0, q +

[
(k̂)q − (k̂)(k̂ − 1)q2

]
(1− 2q)

}
and hence

QL̂ ≥ max
{

0, (k̂ + 1)q − (k̂ + 1)(k̂)q2
}

A contradiction.

4.5 The Degree of Non-associativity of pbl

Theorem 5. There exist two probabilistic Boolean formulae B and L, both of length (n−1) →∞ and n ≥ 4
such that B is a reassociation of L and furthermore NA(B,L) grows as Ω(n).

Proof. Consider n = 2m, m ≥ 2 variables {x1, x2, x3, · · · , xn} where B and L are respectively the bal-
anced binary Boolean formula and the linear probabilistic Boolean formula over this set of variables. From
Theorem 3, for the assignment α and 1/2 ≤ p < 1 and q = (1− p), a λ exists such that

QB ≤
(
1 + log

(n
λ

))
q (8)

And furthermore, from Theorem 4 also for the same assignment α, and the value λ,

QL ≥ max{0, (n− λ+ 1)q − (n− λ)(n− λ+ 1)q2} (9)

Consider

Q =
(n− λ+ 1)q − (n− λ)(n− λ+ 1)q2

(1 + log(n
λ))q

=
(n− λ+ 1)− (n− λ)(n− λ+ 1)q

(1 + log(n
λ))

since q 6= 0

For all n ∈ N+, n ≥ 4, q = 1
nc for c ≥ 2, and λ = n/2,

Q =
n

4
+

1
2
− 1

4nc−1
− 1

8nc−2
> 0

Recall from the definition of NA, the amount of non-associativity that

NA(B,L) = max∀I∈I

{
Q′

I

Q′′
I

,
Q′′

I

Q′
I

}

22 Rice University, Department of Computer Science Technical Report, No. TR08-05, June 2008

where Q′
I , Q

′′
I are respectively the probabilities that B and L are unsatisfied with an input assignment I.

Whenever Q > 0, it follows that

NA(B,L) ≥ QL

QB
≥ Q =

(n− λ+ 1)q − (n− λ)(n− λ+ 1)q2

(1 + log(n
λ))q

Therefore, for any n ∈ N+, n ≥ 4, q = 1
nc for c ≥ 2, and λ = n/2,

NA(B,L) ≥ n

4
+

1
2
− 1

4nc−1
− 1

8nc−2
≥ n

4
= Ω(n)

Therefore, it immediately follows that

Corollary 6. The degree of non-associativity, ∆n of pbl grows as Ω(n)

5. DISTINGUISHING PROBABILISTIC (IMPLICIT) AND RANDOMIZED (EXPLICIT) MODELS OF COM-

PUTING THROUGH ENERGY CONSIDERATIONS

We will now distinguish the implicitly and explicitly realized probabilistic behaviors—the latter referred to as
randomized for terminological clarity—using a measure based on the energy consumed in computing the result
by a computational step. In Section 5.1.1, we first review the known results from past work which provide a
foundation, both in theoretical and in experimental terms. This immediately provides a way of distinguishing
the implicitly probabilistic and explicitly randomized approaches to realizing Boolean operations, through
energy considerations. We will use the background from Section 5.2 to separate probabilistic and randomized
(implicit and explicit) Boolean circuits. Building on this, in Section 5.3, we will extend this concept beyond
combinational (Boolean) logic to a model of computation with state. Here we distinguish implicitly realized
pa with pbl as a foundation, from their explicitly realized counterparts through explicit coin tosses, using
the energy consumed by each state transition.

5.1 Thermodynamic Separation of Implicitly and Explicitly Probabilistic Gates and The Circuit Model of Com-

putation

We will define probabilistic Boolean circuits, a model of computing, based on pbl and then distinguish them
from their explicit counterpart, the randomized Boolean circuit with coin tosses.

5.1.1 pbf and Probabilistic Boolean Circuits. Analogous to conventional Boolean circuits, a probabilistic
Boolean circuit is defined as follows: a directed acyclic connected graph Ĉ = (V̂ , Ê), where V̂ is the set
of vertices and Ê the set of directed edges. The vertices are of three kinds. Input vertices, of in-degree 0
associated with Boolean variables (called input variables of the circuit) or Boolean constants {0, 1}, internal
vertices associated with one of three operators ∨p,∧q,¬r where 1/2 ≤ p, q, r ≤ 1 and one distinguished output
vertex of in-degree 1 and out-degree 0. Internal vertices associated ∨p and ∧q have in-degree 2 and out-
degree 1, whereas those associated with ¬r have in-degree and out-degree 1. For any assignment of Boolean
constants 0 or 1 to the input variables of the circuit, the value of the input vertex is either the Boolean
constant assigned to the corresponding Boolean variable, or the Boolean constant directly associated with

23 Rice University, Department of Computer Science Technical Report, No. TR08-05, June 2008

the vertex. The value of any internal vertex u, is the value obtained by applying the probabilistic Boolean
operator associated with the vertex, to values associated with its input edges. The value of a directed edge
(u, v) ∈ Ê is the value associated with the vertex u. Finally, the value computed by the probabilistic Boolean
circuit is the value associated with the output vertex. If the cardinality of the set of input vertices is k, Ĉ
computes a probabilistic Boolean truth table T with no more than 2k rows.

Observation 5.1.1. For any pbf F and the probabilistic truth table T it represents, there exists a proba-
bilistic Boolean circuit ĈF which computes T .

This observation is straightforward since a well formed pbf is obtained by the application of the rules
outlined in Section 2. An equivalent probabilistic Boolean circuit can be constructed by creating input
vertices for every Boolean variable and constant in the pbf, and an internal vertex for every Boolean
operator.

5.1.2 Randomized Boolean Circuits and Their Relationship to Probabilistic Boolean Circuits. Random-
ized Boolean circuits have been used as a computational model to study randomized algorithms [1, 46].
Analogous to conventional Boolean circuits, a randomized Boolean circuit is a directed acyclic connected
graph C = (V,E). As before, V can be partitioned into subsets, where the input vertices are associated with
Boolean variables (called input variables of the circuit), Boolean constants or Boolean random variables. The
internal vertices are associated with one of three operators or labels ∨,∧,¬ from Boolean logic. Any internal
vertex v ∈ V has the property that there is at most one edge (u, v) such that u ∈ V is an input vertex
associated with a Boolean random variable. As before, there is one distinguished output vertex of in-degree
1 and out-degree 0. Notions of values associated with vertices and edges correspond to those introduced in
Section 5.1.1 above.

Observation 5.1.2. For any pbf F and its truth table T , there exists a randomized Boolean circuit which
computes it.

We will now establish the fact that any randomized Boolean circuit (or more specifically its truth table)
can be realized by a probabilistic Boolean circuit. Let U ⊆ V denote input vertices associated with Boolean
random variables in C. Consider vertex u ∈ U and a set of internal vertices V ′ such that whenever v ∈ V ′,
(u, v) ∈ C. Let u be associated with Boolean random variable xu such that probability that xu = 1 is
pu ∈ Q. The source of randomness in this case, which as part of an assignment binding values to the
variables labeling the vertices in U , is explicit. By this, we mean that (informally) these bits are pseudo
random and are produced by a suitable combination of deterministic gates. We formalize this as a “thesis”
as follows.

Thesis 1. Each input bit bound to the random variable xu where u ∈ U is produced by a pseudo random
source10 constituted of gates all with a probability of correctness p = 1.

We will predicate the development in the sequel on Thesis 1 being valid.

Returning to the goal of relating randomized Boolean circuits to its probabilistic counterpart, for any
vertex u ∈ C as described above, let pu ≥ 1/2. We replace u with a new input vertex u′′ associated with

10There is a rich body of work, which seeks to address the cost for producing a (pseudo) random bit through techniques ranging

from recycling of random bits [27], to techniques which extract randomness from weak random sources [12] and methods to

“amplify” randomness through pseudo-random number generators [4, 67]. While Thesis 1 is claimed only for pseudo random

generators, we opine that it is also valid for alternate sources of (pseudo) randomness.

24 Rice University, Department of Computer Science Technical Report, No. TR08-05, June 2008

Boolean constant 0, a new internal vertex u′ associated with ¬p̂ where p̂ = pu, and a new edge (u′′, u′). Now
for all edges (u, v) where v ∈ V , we replace it with edge (u′, v) (when pu < 1/2, u′′ is associated with 1 and
p = 1− pu). We shall refer to this circuit as C/{u}.

Lemma 5.1. The Boolean random variable xu representing the value of any edge (u, v) in C, where v ∈ V ,
is equivalent to the Boolean random variable x̂u′ representing the value of the edge (u′, v) in C/{u}.

Proof. Immediate from the definition of a probabilistic negation operator and the equivalence of random
variables.

Let Ĉ = C/U denote the probabilistic Boolean circuit derived from C by applying the above transformation
for all vertices u ∈ U .

Theorem 7. Given a randomized Boolean circuit C, there exists a probabilistic Boolean circuit Ĉ such that
C and Ĉ compute identical truth tables.

Proof. (Outline) For any u ∈ U , from Lemma 5.1 and a straightforward induction on the elements of U ,
it can be shown that C and C/U compute identical probabilistic Boolean truth tables.

5.1.3 Energy Advantages of Probabilistic Boolean Circuits. Based on Theorem 7 and the manner in with
Ĉ is constructed from C, we can claim

Claim 5.1.1. The energy consumed by the implicitly probabilistic circuit Ĉ = C/U , is less than that con-
sumed by C which is explicitly randomized whenever the energy cost for producing each (pseudo) random bit
xu as an input to C is higher than that of a probabilistic inverter realizing the probabilistic operation ¬pu

.

We will subsequently see (in Section 5.2) that the energy cost of producing a random (or pseudo random)
bit is indeed higher than that of realizing a pbl operation ¬p̂. This is true based both on thermodynamic
principles and through empirical studies based on physical realization of gates through randomness, thereby
converting the conditional claim 5.1.1 above into an unconditional claim in these two contexts.

5.2 Energy Considerations For Realizing Probabilistic and Randomized Boolean Operators

The central result of Section 5.1 above, was to distinguish randomized and probabilistic Boolean circuits
of identical size and depth through a metric which quantifies the energy consumed by these circuits. In
the physical domain, probabilistic switches [51] serve as a foundational model relating the thermodynamic
(energy) cost of computing, to the probability of correctness of computing. In this context, if T is the
temperature at which switching takes place k is the Boltzmann constant [5] and as before, p is probability
of correctness, Palem showed that probabilistic switches are thermodynamically (with energy consumption
as a metric) more efficient than deterministic switches

Theorem 8. (Palem [51]) The potential for saving through probabilistic switching over deterministic switch-
ing is kT ln 1

p joules per switching step.

This theoretical evidence was substantiated empirically, in the domain of switches implemented using com-
plementary metal oxide semiconductor (cmos) technology, where the relationship between the probability
of correctness of switching and its energy consumption was established through analytical modeling, as well
as actual measurements of manufactured probabilistic cmos (pcmos) based devices [10]. The basic building

25 Rice University, Department of Computer Science Technical Report, No. TR08-05, June 2008

block in cmos technology is the ubiquitous transistor, whose (feature) size, typically measured in nanometers
these days, is denoted by the symbol ν. Cheemalavagu et. al [10] established a relationship between the
energy consumed by a switch and its probability of correctness p, and σ, the noise magnitude (quantified
as the standard deviation of the associated distribution) inducing the probabilistic behavior11. With this as
background, we have the relationship between E, the energy consumed by a switch (gate) and p, which we
paraphrase as follows.

Law 1: Energy-probability Law:([10, 40]) For any fixed transistor feature size ν and a noise magni-
tude σ, the switching energy Eν,σ consumed by a probabilistic switch grows as Ω(ep) where p ∈ [0, 1] denotes
the probability of correct switching.

To reiterate, whenever Law 1 holds, given any randomized Boolean circuit C and its equivalent probabilistic
Boolean circuit C, the energy consumed by the latter is less than the energy consumed by the former.

5.3 Extending to Computational Model with State

pa in the Rabin sense [55], with incorporate probabilistic transition functions. A pa over an alphabet Σ is a
system 〈S,M, s0, Q〉 where S = {s0, · · · , sn} is a finite set (of states), M is a function from (S ×Σ) into the
interval [0, 1]n+1 (the transition probabilities table) such that for (s, σ) ∈ (S × Σ), the transition function
M(s, σ) = (p0(s, σ), · · · , pn(s, σ)) where 0 ≤ pi(s, σ) and

∑
pi(s, σ) = 1. The initial state is denoted by s0

where s0 ∈ S and Q ⊆ S is the set of designated final states.

To establish that the distinction between the implicitly probabilistic and explicitly randomized variants
established in Section 5.1 persists, we consider a restricted probabilistic automaton P over an alphabet
Σ̂ = {0, 1}. Given a state ŝ ∈ Ŝ and an input σ̂ ∈ Σ̂, the cardinality of the set of possible successor
states (with non zero transition probability) is at most two. That is for (ŝ, σ̂) ∈ (Ŝ × Σ̂), where M̂(ŝ, σ̂) =
(p̂0(ŝ, σ̂), · · · , p̂n(ŝ, σ̂)), there exist distinct indices i and j, 0 ≤ i, j ≤ n such that p̂i(ŝ, σ̂) + p̂j(ŝ, σ̂) = 1 and
for 0 ≤ k ≤ n, k 6= i and k 6= j, p̂k(ŝ, σ̂) = 0. Furthermore, p̂i(ŝ, σ̂), p̂j(ŝ, σ̂) ∈ Q; Rabin’s formulation of pa

is not restricted to rational probabilities since pi(s, σ) can be any value in the unit interval.

We observe here without proof, illustrated for completeness through an example in Figure 7 that the
transition function of any (restricted) pa P can be represented as a probabilistic truth table. An example
pa is illustrated in Figure 7 whose (transition) truth table is shown in Figure 7(a), where Figure 7(b) is a
probabilistic Boolean circuit which computes this transition truth table, and Figure 7(c) is a randomized
Boolean circuit which computes the transition truth table (with the random source labeled R). If each
element of Ŝ is encoded in binary, any K ∈ (Ŝ × Σ̂) can be represented by a binary string (with the state
concatenated to the input alphabet). For any state ŝ and an input alphabet σ̂, the two possible successor
states ŝi, ŝj (with non zero transition probabilities) can be represented by 0 and 1 respectively. Then, the
transition function M̂ can be represented by a probabilistic Boolean truth table, with 2|Ŝ| rows and 3
columns, where the first column of the kth row contains K, the binary representation of k where K is an
element of (Ŝ × Σ̂). The second column contains p̂ŝj ,σ̂. From Claim 5.1.2 and Theorem 7, the (transition)
truth table of P can be computed using a probabilistic or randomized Boolean circuit respectively. This
construction immediately allows us to extend the separation between probabilistic and randomized Boolean

11A deterministic gate (or switch) is rendered probabilistic by (additive) ambient noise and the study by Cheemalavagu et

al [10] characterized noise magnitude through σ, which is the accepted approach

26 Rice University, Department of Computer Science Technical Report, No. TR08-05, June 2008

A
B

C

¾

A
B

C

InputCurrent State

¾¼1

¾¼0
s3=1 1

¾¼1

¼¾0
s2=1 0

¾¼1

¼¾0
s1=0 1

¼¾1

¼¾0
s0=0 0

1-pi(s,σ)pi(s,σ)σs

(a)

(b)

(c)

1

1

1

1

R=1 with probability ¼

Figure 7. (a) A transition function encoded as a transition truth table (b) A probabilistic circuit which computes this transition

truth table (c) An equivalent randomized Boolean circuit which computes the transition truth table

circuits to be applicable to the pa P. Let ĈP and CP respectively be the probabilistic and randomized
Boolean circuit implementations of the transition function of P. Then

Observation 5.3.1. The energy consumed by ĈP is less than that consumed by CP whenever the energy
cost for producing each (pseudo) random bit xu as an input to CP is higher than that of a probabilistic
inverter realizing the probabilistic operation ¬pu .

Again, based on the discussion in Section 5.2, we conclude that Claim 5.3.1 can be made unconditionally
in the contexts when Theorem 8 or Law 1 are valid, in conjunction with Thesis 1.

6. HISTORICAL REMARKS AND NEW DIRECTIONS FOR INQUIRY

Our work on pbl has connections to three distinct areas with a potential for further research: mathematical
logic, computer science, and applications to electrical engineering. We will remark on each of these areas
and outline the most interesting questions that we think arise, out of our development of pbl. We wish to

27 Rice University, Department of Computer Science Technical Report, No. TR08-05, June 2008

note that pbl was developed as a logic throughout this paper, thus diverging from the classical approach of
treating Boole’s work on two-valued logic as an algebra with a concomitant–often unspecified–axiomatization.
This choice was deliberate since we wished to introduce a simple and explicit semantics to our particular
approach to introducing probability into logic on the one hand, and furthermore, to cast it in a form that is
natural to the two application domains of interest, computer science (Section 6.2) and electrical engineering
(Section 6.3). Recall that, our own interest stemmed significantly from the generally expected trend that
gates and switches used to design circuits and computing architectures are going to be probabilistic, since
deterministic designs are unlikely to be feasible as device (transistor) sizes approach ten nanometers.

6.1 pbl, Logic and Probability

For philosophical and ontological reasons, probabilities have been associated with logics in the past, where
the two notable approaches involve associating confidences with sentences as probabilities, and also where
the truth value of the sentence—sentences with quantifiers—ranges over the interval [0, 1] and is therefore
many-valued. This approach has a long and distinguished history (see Keynes [34] and Reichenbach [58] as
good introductions). Relatively recently, considerations of probability in first order languages were treated
by Scott and Kraus [61] who attribute Gaifman’s investigation of probability measures [25] on (finitary)
first-order languages as an inspiration12. Hailperin [26] and Nilsson [49] also consider variations of these
notions, again with quantifiers and the confidence of the sentence associated with probability measures. The
former author also offers an excellent historical analysis of this work. The work of Fagin and Halpern, and
Fagin, Halpern and Megiddo continues in this rich tradition and represents a significant milestone [22, 23].

We note that pbl is a significantly simpler logic since it does not admit quantification. So, a reasonable
approach is to try and compare pbl to a suitable subset of the richer logics cited above, richer since they
use the predicate calculus as a basis. We will now sketch such a comparison informally. The essence of the
difference between the previous approaches which can be broadly referred to as sentential probability logics
on the one hand and pbl on the other, can be understood through the event set semantics (Section 3).
In particular, we draw the readers attention to Observation 3.2.1 which clearly identifies the effect of the
probability parameter p in an identity of the form F ≡ (F ′∨pF

′′). The main point worth noting here is that
the event set of F is dependent on the parameter p associated with the operator ∨p, in addition to the event
sets associated with its constituent probabilistic formulae F ′ and F ′′. It is important to note that this is not
true of of the previous approaches—in these cases, the operators are always deterministic. Thus, based on
previous approaches, the probability associated with a formula of the form G ≡ (G′ ∨ G′′) would entirely
depend on the probabilities associated with the sub-formulae G′, G′′ and not on the operator ∨.

6.1.1 Some Interesting Questions

(1) Extend pbl to a logic wherein each operator is associated with a probability interval, as opposed to a
definite probability value. We note that this extension is also of considerable interest in the context of
circuit design, discussed in Section 6.3.

(2) Extend pbl to include quantification, wherein the primitive operators are probabilistic as in pbl aug-
mented with deterministic quantification. For the resulting probabilistic predicate calculus (ppc),
(a) extend the event set semantics from this paper to be applicable

12The Scott-Kraus development extends it to infinitary languages.

28 Rice University, Department of Computer Science Technical Report, No. TR08-05, June 2008

(b) establish the usual consistency and completeness properties as well as other interesting properties
known for the predicate calculus.

(c) Establish 0− 1 laws [36] which we conjecture are true

(3) Extend the work further to demonstrate the distinction between ppc and
(a) probability logics whose operators are deterministic; in particular finitary variants of the logic due

to Scott and Kraus, Hailperin’s sentential probability logic and Nilsson’s versions are of interest.

6.2 pbl in Computer Science

We remind the reader that in pbl, the variables range over the two values from the set {0, 1} and the input
assignments are always deterministic. As discussed previously, the question arises whether this approach is
(implicitly) equivalent to working with formulae whose operators are deterministic, and whose constituent
variables are permitted to be random (Boolean) variables. Computer scientists have studied models using
the latter approach extensively. This alternate approach has been the basis for significant progress in char-
acterizing the power of randomness. Based on this observation, we wish to suggest the following directions
for further inquiry.

6.2.1 Some interesting questions

(1) Characterize the significant properties of an explicitly probabilistic Boolean logic. We conjecture that
the properties very similar to pbl (Section 4) will also be valid here.

(2) We also conjecture that a circuit realized using probabilistic operators (gates) and hence pbl is smaller
in size than an equivalent circuit realized using standard Boolean logic that uses explicit coin tosses.
Establishing this separation rigorously will further strengthen the difference we have seen in Section 5.

(3) It is well-known that formulae in conventional Boolean logic exhibit a threshold in their satisfiability [31]
when the inputs are drawn uniformly from a distribution—hence correspond to an explicitly probabilistic
Boolean logic—using the style of average case analysis advocated by Karp [32]. We conjecture that a
similar threshold is also valid in the case of formulae in pbl and that again the threshold value also
≈ 4.2.

6.3 Applications of pbl to Ultra Large Scale Integrated (ULSI) systems

To reiterate our interest pbl is due in large part motivated by its connection to the physical characteristics of
transistors, the ubiquitous building blocks of ULSI circuits13. With nanometer transistor sizes looming on the
horizon, the resulting ULSI circuits designs with over a billion transistors are facing severe challenges [44], not
least of which is the fact that their physical characteristics are expected to vary dramatically within a single
chip14. Such variation is well beyond the tolerances of a design methodology based on deterministic Boolean
logic and automata (state machines), and the need for probabilistic models, logics and design methodologies
is anticipated [6].

6.3.1 Some interesting questions

13As transistor (feature) sizes approach the low nanometer range, current very large integrated circuits (vlsi) circuits will evolve

into ultra large scale integrated circuits [41].
14Technically, the variations are modeled within a single die.

29 Rice University, Department of Computer Science Technical Report, No. TR08-05, June 2008

(1) The question identified in Section 6.1 aimed at extending pbl to model probability intervals, we believe
is an important next step of practical significance in the ULSI regime.

(2) Currently, logic synthesis is an extremely successful technology, where, given an input specification
as a formula, a (heuristically) optimized circuit is produced, based on VLSI cost considerations [43].
Extending this to pbl especially with intervals are important next steps that we intend to pursue.

(3) Binary decision diagrams (BDDs) [7] are widely used as a tool to verify the correctness of logic designs
based on deterministic (Boolean) logic. With the increasingly probabilistic nature of transistors in the
ULSI context, we anticipate that it will be of great value if a pbl based probabilistic BDD framework
can be created, to mirror the success of its deterministic counterpart.

(4) The event set semantics of pbl suggest a probability attribute for each operator (or gate) based in a set of
trials associated with it. This implicitly connotes an interpretation where the set of trials resulting in the
events occur over time. However, as noted before, in the context of ULSI circuits, the observed statistical
variations occur spatially across the the transistors or gates on the surface of the chip, whereas individual
transistors or gates, once manufactured, need not exhibit randomness. While it is straightforward to
reinterpret the concept of an event set and the associated semantics to the case of spatial variations,
given its importance to the design of integrated circuits, detailing this extension will be a step that we
wish to undertake next.

A. A FORMAL MODEL FOR PBL

Let L denote the language of pbl, which is a set of well formed sentences in pbl. The signature of L

consists of

— A countable set var of variables.
— A countable set P of probability parameters.
— The connectives ∨p,∧p′ ,¬p′′ where p, p′, p′′ ∈ P .
— The punctuation symbols (and).
— The set of constants {c0, c1}.
— Denumerable set of predicate letters r== where r ∈ P .

Any well formed sentence S [I] in this language is of the form FI
r== c1 or FI

r̄== c0 where F is a well
formed pbf, r, r̄ ∈ P , and I is an assignment which assigns one of {c0, c1} to any variable x ∈ varF ⊆ var.

The model M for this language consists of

— The punctuation symbols (and).
— The set N = {0, 1, 2, . . .}, of natural numbers.
— The set C = {0, 1} of Boolean constants.
— A set B of valid closed sentences from classical Boolean logic of the form B = 1 or B = 0, where B is

a closed well formed formula in Boolean logic. Conventionally, the former sentences will be called true
sentences and the latter are called false sentences.

— the set Q, of non-negative rationals.
— A set E where any ES ,I ∈ E is referred to as an event set where E ⊆ N× B, and any (i,B) ∈ ES ,I will

be called an event (the index i ∈ N and Boolean sentence B ∈ B). Furthermore, if the classical Boolean
sentence B is true, the event (i,B) will be referred to as a true event; it is a false event otherwise.

30 Rice University, Department of Computer Science Technical Report, No. TR08-05, June 2008

— Let SI denote HI
r== ĉ where H is a well formed pbf and ĉ ∈ {c0, c1}. If H is of length 0, H is of the

form (x) where x is a Boolean variable. For the assignment I which denotes 〈x = c1〉, ES ,I consists of
one event of the form (0, (1) = 1). Similarly for the assignment Î which denotes 〈x = c0〉, ES ,Î consists
of one event of the form (0, (0) = 0).
Let H be a pbf of length k ≥ 1, and let H be of the form (F ∨p G) where F and G are pbf of length
k − 1 or less. For an assignment I to H and the corresponding consistent assignments I ′, I ′′ to F and

G respectively, let S ′
I′ ,S

′′
I′′ respectively denote FI′

r′=== c′ and GI′′
r′′=== c′′, c′, c′′ ∈ {c0, c1}. Let ES ′,I′ ,

ES ′′,I′′ be the event sets of S ′
I′ and S ′′

I′′ respectively. Let pM = m/n where m,n are relatively prime
and Ẽ = (ES ′,I′ × ES ′′,I′′). For any ((i,B′), (j,B′′)) ∈ Ẽ let B′ denote B′ = t′ and let B′′ denote
B′′ = t′′, where B′, B′′ are well formed closed Boolean formulae and t′, t′′ ∈ {0, 1}. Let the number of
true events in ES ′,I′ be denoted by the symbol a, |ES ′,I′ | = b. Similarly, the number of true events in
ES ′′,I′′ is c and |ES ′′,I′′ | = d. Then,

ÊS ,I = { for 0 ≤ k < m, (f, (B′ ∨B′′) = T (t′ ∨ t′′)) : ((i,B′), (j,B′′)) ∈ Ẽ} (10)

where f = (di+ j) ∗ n+ k

ˆ̂ES ,I = { for m ≤ k < n, (g, (B′ ∨B′′) = T (¬(t′ ∨ t′′))) : ((i,B′), (j,B′′)) ∈ Ẽ} (11)

where g = (di+ j) ∗ n+ k

ES ,I = ÊS ,I ∪ ˆ̂ES ,I

— A function ψ : E → Q such that ψ(ES ,I) is the ratio of the number of true events in ES ,I to |ES ,I |. A
function ψ̄ : E → Q where ψ̄(ES ,I) is the ratio of the number of false events in ES ,I to |ES ,I |.

— A relationship R ⊆ C ×Q× E where (1, r,ES ,I) ∈ R if and only if ψ(ES ,I) = r and (0, r̄,ES ,I) ∈ R if
and only if ψ̄(ES ,I) = r̄.

Observation A.0.1. Under the assignment I, |ES ,I | = bdn where the number of true events in ES ,I is
(acm+ a(d− c)m+ (b− a)cm+ (b− a)(d− c)(n−m)).

Proof. We recall that the the number of true events in ES ′,I′ is a, |ES ′,I′ | = b, the number of true events
in ES ′′,I′′ is c and |ES ′′,I′′ | = d. We know that T (1 ∨ 0) = T (1 ∨ 1) = T (0 ∨ 1) = 1. From this, and
from (10), (ad + (b − a)c)m events in ÊS ,I are true events. Furthermore T (¬(0 ∨ 0)) = 1, and hence from

(11), (b − a)(d − c)(n − m) events in ˆ̂ES ,I are true events. Hence the number of true events in ES ,I is
(ad+(b−a)c)m+(b−a)(d−c)(n−m) = (acm+a(d−c)m+(b−a)cm+(b−a)(d−c)(n−m)). Furthermore,

from (10), the number of events in ÊS ,I is bdm and from (11), the number of events in ˆ̂ES ,I is bd(n−m).
Hence the total number of events in ES ,I is bdm+ bd(n−m) = (bdn).

Given any well formed sentence S [I] ∈ L of the form FI
r== c, the interpretation of the sentence S [I] in

the model M, maps

— The constants c0 to 0, c1 to 1, c to cM ∈ {0, 1}.
— The probability parameters p, q, · · · to pM, qM, · · · ∈ Q such that 1/2 ≤ pM, qM, · · · ≤ 1.
— The probability parameter r of the predicate symbol to rM ∈ Q such that 0 ≤ rM ≤ 1.
— The sentence S [I] to an event set ES ,I .
— The sentence S [I] is valid under this interpretation if and only if (cM, rM,ES ,I) ∈ R.

31 Rice University, Department of Computer Science Technical Report, No. TR08-05, June 2008

As an example consider a sentence S [I] ∈ L of the form (x ∨p y)
r== c1 where the assignment I denotes

〈x = c0, y = c1〉. Then under the interpretation M, c0 is mapped to 0, c1 to 1, p to some pM ∈ Q, where
1/2 ≤ pM ≤ 1 and r to rM ∈ Q such that 0 ≤ rM ≤ 1. Let pM = m/n for positive, relatively prime
integers m,n. Then the number of true events in the event set ES ,I of S [I] is m and these elements are
(0, (0 ∨ 1) = 1), (1, (0 ∨ 1) = 1), · · · , (m− 1, (0 ∨ 1) = 1) and the number of false events in ES ,I is (n−m)
and these events are (m,¬(0∨ 1) = 0), (m+ 1,¬(0∨ 1) = 0), · · · , (n− 1,¬(0∨ 1) = 0). The sentence S [I] is
valid under this interpretation if and only if (1, rM,ES ,I) ∈ R, or equivalently, if and only if ψ(ES ,I) = rM.

Similarly if H is of the form (F ∧p G) and as before pM = m/n,

ÊS ,I = { for 0 ≤ k < m, (f, (B′ ∧B′′) = T (t′ ∧ t′′)) : ((i,B′), (j,B′′)) ∈ Ẽ}
where f = (di+ j) ∗ n+ k

ˆ̂ES ,I = { for m ≤ k < n, (g, (B′ ∧B′′) = T (¬(t′ ∧ t′′))) : ((i,B′), (j,B′′)) ∈ Ẽ}
where g = (di+ j) ∗ n+ k

ES ,I = ÊS ,I ∪ ˆ̂ES ,I

Similarly if H is of the form ¬p(F),

ÊS ,I = { for 0 ≤ k < m, (i ∗ n+ k,¬(B′) = T (¬(t′))) : (i, (B′ = t′)) ∈ ES ′,I′}
ˆ̂ES ,I = { for m ≤ k < n, (i ∗ n+ k, (B′ = t′)) : (i, (B′ = t′)) ∈ ES ′,I′}

ES ,I = ÊS ,I ∪ ˆ̂ES ,I

REFERENCES

[1] L. M. Adleman. Two theorems on random polynomial time. In 19th Annual Symposium on Foundations of Computer

Science, pages 75–83, 1978.

[2] R. I. Bahar, J. Mundy, and J. Chen. A probabilistic-based design methodology for nanoscale computation. In The 2003

IEEE/ACM International Conference on Computer-aided Design, pages 480–486, 2003.

[3] G. Bergmann. The logic of probability. American Journal of Physics, 9:263–272, 1941.

[4] M. Blum and S. Micali. How to generate cryptographically strong sequences of pseudo-random bits. SIAM Journal on

Computing, 13(4):850–864, 1984.

[5] L. Boltzmann. Lectures on Gas Theory. University of California Press, Berkeley, 1964.

[6] S. Borkar. Exponential challenges, exponential rewards - the future of moore’s law. In VLSI-SOC, page 2, 2003.

[7] R. E. Bryant. Symbolic Boolean manipulation with ordered binary-decision diagrams. ACM Computing Surveys, 24(3):293–

318, 1992.

[8] G. Chaitin. Algorithmic information theory. IBM Journal of Research and Development, 21:350–359, 1977.

[9] G. J. Chaitin and J. T. Schwartz. A note on monte carlo primality tests and algorithmic information theory. Communi-

cations on Pure and Applied Mathematics, 31:521–527, 1978.

[10] S. Cheemalavagu, P. Korkmaz, and K. V. Palem. Ultra low-energy computing via probabilistic algorithms and devices:

CMOS device primitives and the energy-probability relationship. In The 2004 International Conference on Solid State

Devices and Materials, pages 402–403, Sept. 2004.

[11] S. Cheemalavagu, P. Korkmaz, K. V. Palem, B. E. S. Akgul, and L. N. Chakrapani. A probabilistic CMOS switch and its

realization by exploiting noise. In The IFIP international conference on very large scale integration, 2005.

[12] B. Chor and O. Goldreich. Unbiased bits from sources of weak randomness and probabilistic communication complexity

(extended abstract). In IEEE Symposium on Foundations of Computer Science, pages 429–442, 1985.

32 Rice University, Department of Computer Science Technical Report, No. TR08-05, June 2008

[13] A. Church. On the concept of a random sequence. Bulletin of the American Mathematical Society, 46:130–135, 1940.

[14] R. T. Cox. Probability, frequency and reasonable expectation. American Journal of Physics, 14:1–13, 1946.

[15] R. T. Cox. Algebra of Probable Inference. Johns Hopkins University Press, 2002.

[16] M. Davis. Engines of Logic: Mathematicians and the Origin of the Computer. W. W. Norton and Company, New York,

USA, 2001.

[17] B. de Finetti. Foresight, its logical laws, its subjective sources. Translated and reprinted in: H. Kyburg, H. Smolka (Eds.),

Studies in Subjective Probability, pages 93–159, 1964.

[18] P. Diaconis. A frequentist does this, a bayesian that. SIAM News, mar 2004.

[19] R. L. Dobrushin and S. I. Ortyukov. Lower bound for the redundancy of self-correcting arrangements of unreliable functional

elements. Problems of Information Transmission, 13(3):59–65, 1977.

[20] R. L. Dobrushin and S. I. Ortyukov. Upper bound on the redundancy of self-correcting arrangements of unreliable elements.

Problems of Information Transmission, 13(3):201–20, 1977.

[21] B. Efron. Controversies in the foundations of statistics. The American Mathematical Monthly, 85(4):231–246, 1978.

[22] R. Fagin and J. Y. Halpern. Reasoning about knowledge and probability. Journal of the ACM, 41(2):340–367, 1994.

[23] R. Fagin, J. Y. Halpern, and N. Megiddo. A logic for reasoning about probabilities. Information and Computation,

87(1):78–128, 1990.

[24] W. Feller. An Introduction to Probability Theory and its Applications. Wiley Eastern Limited, 1984.

[25] H. Gaifman. Concerning measures in first order calculi. Israel Journal of Mathematics, 2(1):1–18, 1964.

[26] T. Hailperin. Sentential Probability Logic: Origins, Development, Current Status, and Technical Applications. Lehigh

University Press, 1996.

[27] R. Impagliazzo and D. Zuckerman. How to recycle random bits. In IEEE Symposium on Foundations of Computer Science,

pages 248–253, 1989.

[28] itrs. International technology roadmap for semiconductors, 2007.

[29] N. Jacobson. Basic Algebra I. W H Freeman and Company, 1974.

[30] E. Jaynes. Probability Theory: The Logic of Science. Cambridge University Press, Cambridge, UK, 2003.

[31] A. Kamath, R. Motwani, K. V. Palem, and P. G. Spirakis. Tail bounds for occupancy and the satisfiability threshold

conjecture. Random Structures and Algorithms, 7(1):59–80, 1995.

[32] R. M. Karp. The probabilistic analysis of some combinatorial search algorithms. In Algorithms and complexity: New

Directions and recent results (Traub, J. P., ed.), pages 1–19. Academic Press, New York, USA, 1976.

[33] M. G. Kendall. On the reconciliation of theories of probability. Biometrika, 36(1-2):101–116, 1949.

[34] J. M. Keynes. A Treatise on Probability. Macmillan, London, 1921.

[35] L. B. Kish. End of Moore’s law: Thermal (noise) death of integration in micro and nano electronics. Physics Letters A,

305:144–149, 2002.

[36] P. G. Kolaitis and M. Y. Vardi. 0-1 laws and decision problems for fragments of second-order logic. Information and

Computation, 87(1-2):302–338, 1990.

[37] A. N. Kolmogorov. Foundations of the Theory of Probability (Trans. Nathan Morrison). Chelsea Publishing Company,

New York, 1956.

[38] A. N. Kolmogorov. Three approaches to the quantitative definition of information. Problems of Information Transmission,

1(1):1–7, 1965.

[39] P. Korkmaz. Probabilistic CMOS (PCMOS) in the Nanoelectronics Regime. PhD thesis, Georgia Institute of Technology,

2007.

[40] P. Korkmaz, B. E. S. Akgul, L. N. Chakrapani, and K. V. Palem. Advocating noise as an agent for ultra low-energy

computing: Probabilistic CMOS devices and their characteristics. Japanese Journal of Applied Physics, 45(4B):3307–

3316, Apr. 2006.

[41] J. Meindl. Theoretical, practical and analogical limits in ulsi. IEEE International Electron Device Meeting Technical

Digest, pages 8–13, 1983.

[42] E. Mendelson. Introduction to Mathematical Logic. Chapman and Hall, 1997.

[43] G. D. Micheli. Synthesis and Optimization of Digital Circuits. McGraw-Hill Higher Education, 1994.

[44] G. Moore. No exponential is forever: But forever can be delayed! In IEEE International Solid-State Circuits Conference,

pages 20–23, 2003.

[45] G. E. Moore. Cramming more components onto integrated circuits. Electronics Magazine, 38(8), 1965.

[46] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, 1995.

33 Rice University, Department of Computer Science Technical Report, No. TR08-05, June 2008

[47] K. Natori and N. Sano. Scaling limit of digital circuits due to thermal noise. Journal of Applied Physics, 83:5019–5024,

1998.

[48] K. Nepal, R. I. Bahar, J. Mundy, W. R. Patterson, and A. Zaslavsky. Designing logic circuits for probabilistic computation

in the presence of noise. In The 42nd Design Automation Conference, pages 485–490, 2005.

[49] N. J. Nilsson. Probabilistic logic. Artificial Intelligence, 28(1), 1986.

[50] K. V. Palem. Proof as experiment: Probabilistic algorithms from a thermodynamic perspective. In The International

Symposium on Verification (Theory and Practice),, Taormina, Sicily, June 2003.

[51] K. V. Palem. Energy aware computing through probabilistic switching: A study of limits. IEEE Transactions on Com-

puters, 54(9):1123–1137, 2005.

[52] N. Pippenger. On networks of noisy gates. In The 26th Annual IEEE Symposim on Foundations of Computer Science,

pages 30–38, 1985.

[53] N. Pippenger. Invariance of complexity measures for networks with unreliable gates. Journal of the ACM, 36:531–539,

1989.

[54] N. Pippenger, G. D. Stamoulis, and J. N. Tsitsiklis. On a lower bound for the redundancy of reliable networks with noisy

gates. IEEE Transactions on Information Theory, 37(3):639–643, 1991.

[55] M. O. Rabin. Probabilistic automata. Information and Control, 6:230–245, 1963.

[56] M. O. Rabin. Probabilistic algorithms. In J. F. Traub, editor, Algorithms and Complexity, New Directions and Recent

Trends, pages 29–39. 1976.

[57] F. P. Ramsey. Truth and probability (reprinted 1990). In Philosophical Papers, D. H. Mellor (ed.). Cambridge University

Press, Cambridge, 1926.

[58] H. Reichenbach. The Theory of Probability. University of California Press, Berkeley, USA, 1949.

[59] N. Sano. Increasing importance of electronic thermal noise in sub-0.1mm Si-MOSFETs. The IEICE Transactions on

Electronics, E83-C:1203–1211, 2000.

[60] J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. Journal of the ACM, 27(4):701–717,

1980.

[61] D. Scott and P. Krauss. Assigning probabilities to logical formulas. Aspects of Inductive Logic (J. Hintikka and P. Suppes,

ed.), pages 219–264, 1966.

[62] A. M. Turing. On computable numbers, with an application to the entscheidungsproblem. Proceedings of the London

Mathematical Society, 2(42):230–265, 1936.

[63] J. Venn. The Logic of Chance (reprinted 1962). Macmillan and co, New York, USA, 1876.

[64] von Mises R. Probability, Statistics and Truth, revised English edition. Macmillan and co, New York, USA, 1957.

[65] J. von Neumann. Probabilistic logics and the synthesis of reliable organizms from unreliable components. Automata

Studies, pages 43–98, 1956.

[66] J. E. Whitesitt. Boolean Algebra and Its Applications. Dover Publications, 1995.

[67] A. Yao. Theory and application of trapdoor functions. In The 23rd Symposium on The Foundations of Computer Science,

pages 80–91, 1982.

