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1. ABSTRACT

The major impediments to technology scaling towards nanometer regime include power dissipation and “erroneous”
behavior due to process variations and noise susceptibility. In this paper, we demonstrateth&devices whose
behavior is rendered probabilistic through noise (yielding probabilisticos or PcM09 can be harnessed for ultra low
energy computatiorrcMosdevices are inherently probabilistic in that they are guaranteed to compute correctly with a
probability p, and by design, they are expected to compute incorrectly with a probatiity). In this paper, we show

for the first time thatcmostechnology not only yields energy savings at the device level, but also yields significant
savings, simultaneously, in the energy consumed as well as in the performance for probabilistic applications drawn from
the embedded computing domain. These benefits are derived using a novel algorithm-technology co-design methodology
for pcmMOsbased co-processors. All of our application level savings are quantified using the product of the energy and
the performance denoted energyperformance: thecmosbased savings range from a substantial multiplicative factor

of over560when compared to a competing conventioosllos based realization.
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2. INTRODUCTION

As cMmos technology scales down into the nanometer region, noise and other perturbations (see Sano [12, 20], Kish [9]
and Shepard [21]) pose increasing number of challenges. The surprising premise that noise can be harnessed as a
resource, rather than viewed as an impediment has been shown using foundational principles and theoretical mod-
els [14, 13, 15]. In prior work [3, 2], we have designed and studies devices based on these principles though
analytical models and simulations. In this work, we demonstrate for the first time that computing platforms based on
suchcmos devices can yield orders of magnitude improvements simultaneously tn#rgy consumeds well as to
the running time—collectively characterized as the energy-performance prodwe)-{of an application. A singular
innovation through which these savings are accomplished is the particular foomas that is affected by ambient
(thermal) noise—we refer to it gwobabilistic cMOs or PcMOS The two significant contributions of this paper are
(i) the development of a methodology for usingmosto realize ultra efficient embedded computing platforms in the
energy-performance sense, gjiid the demonstration of the value of this novel technology in the context of a range of
embedded applications of interest.

To demonstrate the utility and the efficacyrafmos we first develop a methodology (akin to hardware software co-
design), described in Section 4 that we refer talgsrithm-technologgo-design. Our methodology is aimed at realizing
an extremely efficienprobabilistic system-on-a-chi®soq architectures usingcmosdevices. As shown in Figure 2,
a canonicabsocarchitecture consists of a (conventional) host processor used to compute most of the control-intensive
deterministiccomponents of an application, whereas the co-processor realizedrgir@s devices will be used as an
energy-performancefp accelerator. The reasons for emphasizing the development of this co-design methodology as a
significant contribution is based on the following two observations. First, the “probabilistic content” (formalized later as
flux) of the algorithm becomes a novel resource to be managed and treated, much as space requirements, flexibility and I1P-
reuse are treated in the traditional co-design context. Furthermore, as we will see in the sequel, considerations of design
efficiency differ significantly in the context afcmMoswhen compared to those arising in the context of conventional
CMOS.

Applications based oprobabilistic algorithmsenefit the most frorrsocimplementations. Probabilistic algorithms
find wide use in arange of embedded applications ranging from speech and pattern recognition to security. To evaluate the
benefits ofPcMosbased architectures, we consider a set of applications (Section 4) and four alternate implementations
of the probabilistic applications (Section 3) and present the gains in Section 5. In addition, in Section 6, we study
another crucial aspect of computing platforms that implement probabilistic algorithms. In application domains employing
probabilistic algorithms, independent probabilistic bits are needed in copious quantities. This trend is very favorable to
our design approach since it increases the flux. Nevertheless, techniques for producing independent random bits are
difficult and are an extensive area of study [17] with several complex approaches yielding poor results [6]. We show
that, while yielding significant gains in thePP, PCMOStechnology also yields significantly better quality random bits,
verified by applying the tests provided by the National Institute of Standards and Technology (NIST) [19]. Concluding
remarks and directions for future research are presented in Section 7.

3. PROBABILISTIC SYSTEM ON A CHIP ARCHITECTURES

As mentioned in the introduction, the surprising premise ttrabs devices rendered probabilistic due to noise, are

not only useful but also yield energy and performance benefits at the application level, will be demonstrated using
probabilistic system on a chip architectures©c). For completeness, we first present a brief overvieprathabilistic

cmos (PcMos9) technology (for a detailed description, please see [3, 2]).

3.1 PCMOSTechnology

It has been established in prior work th@tos devices have an exponential relationship between the probability of
correctnessp) and the switching energ\ej. In addition, the relationship between the noires and the switching
energyE is quadratic. These two relationships formalized as theR@moslaws characterize the behavior eEMos
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devices. These laws, derived from analytical modeling of noise susceptible switches, have been extensively studied and
verified using HSpice simulations as well as actual fabrication and measuremeatafs devices inTsmc 0.25um
technology. In this paper, we use thesemosswitches as building blocks to demonstrate their benefits to applications

in the context of a typicabsocarchitecture.

3.2 Canonical PSOCArchitectures

To effectively leveragecmostechnology and to compare with computing platforms based on conventiorts tech-

nology, algorithm implementation in four scenarios shown in Figure 1 are considedetie best possibleleterministic
algorithm solving the same problem, implemented completely in software and executing on the host processor (in our
case a StrongARMA-1100),(b) the probabilistic counterpart executing completely on the host processor, with pseudo
random bits generated by a software implementation of a well known algorithm(¢1Zhe probabilistic algorithm
executing on the host processor with a conventianabs co-processor (referred to as the “conventioosios based

soc’) or (d) with a functionally identicaPcmosco-processor. Collectively, these four cases encompass all reasonable

Deterministic part of
Probabilistic Algorithm Probabilistic and
— Accelerated Parts
Deterministic Software Based Deterministic part of Probabilistic
Algorithm Pseudorandom Number of Probabilistic Algorithm
Generation Algorithm
M H @ Memory ﬁ
mapped
(0]
Host Co-Processor(s)

(@) ) (c), (d)

Figure 1. The Host + Co-processor style implementations that are compared

alternate implementations of the application. Throughout this study, the co-processors are application-specific.

3.3 Performance and Energy Modeling of PSOCArchitectures

To estimate the performance of thesgocand soc architectures, thewpACT simulator of the Trimaran infrastruc-
ture [23] has been modified to measure the number of cycles taken by an application executing on a StrargARM
1100 host. The simulator records a trace of the activity oftb®osand cMoOs co-processors. The combination of
this information with the performance models of the co-processors, typically obtained through HSpice simulations or
physical chip measurements @Emosswitches) yields thesoc(socd) performance in terms of execution time.

The energy consumption of an application executing es@c(soc) architecture is the sum of the energy consumed
by the host, the energy consumed by #t@v0s(CcM0OS) co-processor(s) and the energy cost of communication between
the host and the co-processor(s). The co-processors are memory mapped and communication is through load-store
instructions executed on the host. To quantify the energy consumed Byith&00 host, the JouleTrack model [22] is
used. This model is reported to be within 3% of the energy measured on ans&tlial00 host. The power modeling
techniques applied to various components ofteec(soc) architecture are illustrated in Figure 2. Since the design of
the co-processors are application-specific, the energy consumed by a particular co-processor is different for each of the
applications. Themos based co-processors are designed and synthesized into TSg@r{process, and the energy
cost and performance are derived from HSpice simulations. In the context of extensions basadoanthe energy
cost of the co-processor is derived fraaysical chip measuremera$functioningpcmosswitches realized in TSMC
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Figure 2. The Host+Co-processor Architecture and Power Modeling.

0.25umprocess. In all of the styles efsocimplementations, to account for the probabilistic nature of the applications,
several “runs” are averaged.

4. THE PSOCCODESIGN FRAMEWORK

As mentioned in the introduction, applications based on probabilistic algorithms benefit fogimplementations. In

this study, we consider applications based on probabilistic algorithms that impl&agesgian Inferencpl0], Random

Neural Networkq8], Probabilistic Cellular Automatd7] and Hyper-Encryption[4]. Any psocimplementation of

a probabilistic application involvegartitioning the application between the host and the (application speeifisjos

based co-processor. Even though the exact host - co-processor partition and the corresmndsigased co-processor
architecture for each of these applications vary, they follow a common theme. Common to these applications (and to
almost all probabilistic algorithms) is the notion o€are probabilistic stepvith its associated probability parameter

This core probabilistic step is manually identified and implementetimos The deterministic parts of the application

are implemented as software executing on the host processor. This co-design methodology is unique in the sense that
as opposed to traditionaloc designs, several unique algorithm and technology characteristics need to be considered to
obtain efficient designs.

4.1 Algorithm and Technology Characteristics Influencing Codesign

PcMOSsis particularly efficient in computing with ultra-low energy. For example, the energy consumed for generating
one random bit byrcmosis 0.4 pico Joules [2]. By contrast, the Park-miller algorithm [17] implemented in custom
hardware consumes about 20@Hesthat energy. Given this benefit, it is natural to expect that higher amounts of
“probabilistic content” in the algorithm will yield greater opportunities gaining from the useefos Thus the amount
of “probabilistic content” will be a figure of merit, which we refer to as flixdefined as théotal number of primitive
probabilistic operations) of the algorithm.

Thoughpcmosis extremely energy efficient the operating frequencies of our current design is low [16] at about 1
MHz. By contrast, software antiMos based pseudo-random bit generators produce random bits at the r&88 ahd 4
million bits per second respectively. The peak rate at which an application demands randonttémeak application
demand bandwidtlis an application characteristic of interest. If the peak application demand bandwidth exceeds the
bandwidth of theecmosdevice, theecmosdevices need to be replicated. This is captured byReglication factorR .
Current realizations afcmosdevices do not allow on demand activation; by contrasgsadc designs clock- and data-
gating are assumed to be exploited to reduce the energy consumption. In this regard, we are conservative in calculating
theepPgains forrsoc. Given these technology and algorithm characteristics, the applications of interest are partitioned,
optimized and implemented asocdesigns.
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4.2 The Suite of Applications

In this section, we (due to space constraints) briefly describe the suite of applications, their partitioning and optimization.
Bayesian Inference(BN) Bayesian inference is a statistical inference technique which models the human decision
making process. Hypotheses and their corresponding probability weights are notions central to this technique. The

probability weights are interpreted as ttiegrees of belieih their corresponding hypotheses. Basedewitienceshe

degree of belief in an hypothesis is incremented (decremented) till it approaches 1 (or 0) in which case the hypothesis is
very likely (unlikely). A Bayesian network is used to perform Bayesian inference and is a directed acyclic graph of nodes
V representing variables and eddesepresenting dependence relations between the variables. The variable represented
by a nodeu can take a value from a finite set of valuBs Each values in the setz,, has a conditional probability

p(o/%’) associated with it, wherE € £ x X x - -- is the string of values of the variables represented by the parents of

u. Variables whose values are known apriori are caffeidlencesnd based on evidence, other variablesiaferred

The particular bayesian networks considered in this study implements hospital patient management and windows printer
troubleshooting.

A row in a module
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Figure 3. The co-processor architecture for a PSoC implementing Bayesian Inference

Partitioning and Optimization In the likelihood weighting algorithm [18] for bayesian inference, the random exper-
iment (used for inference) is implemented in emos co-processor (consisting of sevenabdule$, with the rest of
the algorithm implemented as software executing on the host. For a Bayesian né&vthekconditional probabilities
associated with each value of the variable of a node are known apriori and are used to design a nradutessfvitches
(inverters) for each node in the graph. As an example, consider anwitle >, = {0,1,2}. LetZ’ be the string of values
associated with the parentsafLet 0< p(0/%'), p(1/%'), p(2/Z’) < 1 be the conditional probabilities associated with
0,1,2 € 3, respectively. Inference can be performed by designing thaaso sswitchesA, B,C corresponding to @, 2
respectively. The inputs are fixed at 0 and the probability of correctne&s3o€ is specialized tg(0/%'), %,

%ﬁg(lﬁ’) respectively. When the switches are inspected in the dkd®C the value which corresponds to the

first switch whose output is a 1, is the inferred value. Henceforth, the set of swiacBeS will be referred to as aow
and each switch referred to as@lement Since a row is required for ea@h, many rows are required to implement the
random experiments which correspond to each of the possible val®s Bhese set of rows will be referred to as a
table
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As shown in Figure 3, thecmosmodule corresponding to a nodemplements a table whose row is indexed by
the string of values of the parentsaf The number of columns in the table is the cardinalitggfwhere each column
corresponds to a value from the &gt An element in the table, identified by a (row,column) pair corresponds to a value
o € ¥, and is implemented by a specializedmos switch whose probability of correctness is computed as explained
above. Finally a priority encoder connected to the outputs of a row determines the result of the random experiment.

Random Neural Network{8] (RNN) A random neural network consists néuronsand connectionsbetween the
neurons. Information travels between the neurons in the form of bipolar signal trains. Neurons have potentials associated
with them which are the sums of incoming signals. The potential in turn, influences the rate of firing. The particular
neural network considered in this study solves the vertex-cover [8] of an input graph.

Partitioning and Optimization The Poisson process which models neuron firing is implemented indhes co-
processor with the rest of the computation implemented as software in the host processor. To approximate the Poisson
process modeling the firing of a neuron, the Bernoulli approximation of a Poisson process [5] is used. Since the rate
at which random bits are requested by the host exceedsdhes operating frequencyycMos switches in the co-
processor are replicated to match the required rate. Application level optimization is performed to reduce the replication
factor R, by interleaving demand for random bits fraramosco-processor and the processing of these bits—collecting
and distributing these firings. This has the effect of reducing#&akapplication demand bandwidth.

Probabilistic Cellular Automatd7] (PcA) are a class of cellular automata used to model stochastic processes. Cellular
automata consist afellswith local (typically nearest neighbor) communication. Each cell is associated wittieand
a simpletransition rulewhich specifies the next state of a state transition based on its current state and the states of its
neighbors. In therobabilistic string classification algorithm [7], the state of each cell is either O or 1, giving rise to 8
possible transition rules (each rule has two possible outcomes, 0 or 1). In addition, the transition rules are probabilistic:
for a transition rule; (0 <i < 7) the probability that the output state of the rule is 0 is denoteg pywnd the probability
that the output state is 1 is denotedpy.

Partitioning and Optimization Each transition rule is implemented byramos switch whose input is a 0. The
probability of correctness associated with tHeswitch is pi.1. The control-intensive part of choosing transition rule
(based on the state of a cell and the states of its neighbors) and updating the states are implemented on the host processor.
Since the rate at which the transition rules are evaluated exceeds the frequency of operatisrtofdbeevices, this
structure is replicated many times.

Hyper-Encryption (HE) is a provably secure encryption technique [4] in the bounded storage model. This scheme
consists of generating amcryption padased on a publicly available random stringnd a shared (between the sender
and the receiver) secret key. The secret 8éy a sequence of whole numbes= 51,5, s3...5 such that each number
0<s < |a|. If a[j] is the " bit of alpha, the encryption pad is generatedi#ays] where 1< i < k. Message encryption
is performed by a bitwisgOR operation of the encryption pad with the message.

Partitioning and Optimization In the host plus co-processor architecture, the random string is generateiims
while the encryption pad generation and the encryption are performed by the host. In the full custom implementation as
shown in Figure 4, the entire algorithm is implemented in custom hardware, thkangtances ofa| to 1 multiplexers
whose select inputs are from the elements of the secret key.

5. METRICS, RESULTS AND ANALYSIS

In order to characterize and quantifgmosbenefits at the application level, we now define a variety of metrics. Subse-
guently we will summarize the application level benefits using these metrics.

5.1 Metrics for Quantifying the Application Level Benefits

Energy Performance Product: EpPdescribed earlier, is defined as the product of the application level energy and the
execution time, and will be used as the chief metric of interest to evaluate various implementations. Geendhe
two alternate realizations, they can be compared by computing the ratio of their indizrierlues.
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Figure 4. The Customasic host andPcMmosco-processor architecture for a PSoC implementing Hyper-Encryption

Energy Performance Product Gain: I is the ratio of theeppof the baseline to theppof a particular implementation
I (e.g., apsocor ansogQ) using a technology (e.g.,pcMoOsor cM0S). This ratio is calculated as follows:

_ Energysaselinex TiM&aseline (1)
Energy; x Time,

For calculating™, in the sequel, the baseline always corresponds to the case when the entire computation is done on the
host processor and therefore, there is no co-procedsor example, in the context of tiN application, the baseline is
the StrongARMsA-1100 computing the deterministic as well as the probabilistic content &the combination of the
StrongARMSsA-1100 as the host computing the deterministic content and the co-processor computing the probabilistic
content implemented with technolod@y Now, to compare pairs of alternate choices for realizing the co-processor, for
examplecmMmosandpPcMOS we introduce the notion of a “relative energy performance product” as follows.

Relative Energy Performance Product Gain with Technology Parameterd, T’: REPPof an application is defined
as the ratio of it€PPgain when it is implemented on a orraocwith a co-processor realized using technoldgyto
theEPPgain when it is implemented on a (functionally identical, conventioaal} with a co-processor realized using
technologyT. The host processor is invariant in both cases. Giveretirgainsl T andl'y respectively, REPPy is
calculated as follows.

Mt

N+ EP
rT _ EPPr ?)
T EPP/
Quality of Probabilistic Implementation: is defined empirically based on the statistical tests from the NIST suite [19]
and is detailed in Section 6.

REPPr 1/ =

5.2 Application Level Gains of PCMOS

We will now describe the gaifit where the technology is PcMOS Since the applications of interest are probabilistic,
these gains in the scope of an entire application vary with varying inputs (and input sizes). As illustrated in Figure 5, the
EPPgains are attributed to gains in energy as well as performance. Due to space constraints, the gains are summarized in
Table 1. As shown in the table, these gains at the scope of an entire application range from a factor of (about) one order
of magnitude for theiE application, to a factor of about 300 in the context of #hen application kernel.

A range ofeEPPgains are observed whenever multiple data points are available, for example, in the context of the
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Figure 5. Energy and performance gainsmémosbasedsocover the baseline when comparedti@os basedsoc

Algorithm | Flux (as percentage of total operations) EPP Gain £

Min | Max

BN 0.25%-0.75% 125 | 291
RNN 16.4%-19.7% 226.5| 300
PCA 4.19%-5.29% 61 82

HE 12.5% 112 | 112

Table 1.Application level max and migppPgains ofPcMOsover the baseline implementation with increasing flux: The baseline for
HE is anAsic implementation of the host processor, with the StrongARM1100 serving as the baseline in the remaining three
cases.

[ Application | gain oversa-1100 [ gain overcMos |

BN 9.99x 107 2.71x 1P
RNN 1.25x 10° 2.32x 107
PCA 4.17x10% 7.7x 107
HE 1.56x 10° 2.03x 1C°

Table 2. TheEPPgain ofPcMOSoversa-1100 and ovecMos for the core probabilistic step for different applications.

bayesian network where different data points correspond to different networks, the flux variesZEo# 6 Q75 %,
the corresponding gain increases from a factor 0618 an impressive factor of 291 due to increase in flux. Similar
increases are observed for the other applications as well, caused by an increase in the flux values as shown in the table.

5.3 Analysis of Application Level Gains

The application level gains in energy and performance (when compared to the baseline case where there is no co-
processor) is attributed to the efficiency of the co-processor while executing the probabilistic operations. We summarize
these gains oPcMmosover StrongARMsA-1100 and ovecmos for the core probabilistic stefior each of the applica-
tions in Table 2. Each row of this table corresponds to one of the four distinct applications of interest to us and presents
the gains achieved per core probabilistic step. As can be readily seen from Table 2, these gains are substantially more for
pcmos—orders of magnitude greater—than thosederos. These per-operation gains would of course be valuable at
the level of an entire application, only if the application embodies significant opportunity, characterized by fts flux

A more interesting case is the comparison of two alternate choices for realizing the co-processor—speuifically,
andcMos—using the concept acREPr This comparison exposes another interesting characteristic influencing design
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efficiency forrsocbased designs. Specifically we wish to delineate the (less obvious) impact of the efficiency of the host
processor. In the interests of staying within the mandated space limits, we will restrict our analysise@tiication:
Starting with Figure 1, wherein the host processor is a StrongARM, we note that the hosbissgrocessor. In

this rather inefficient regimeRePp; 1/ whereT = cmos and T’ = pcMosis nearly 1. That is, thecmosand the
conventionalcMos basedsoc designs achieve nearly the same performance in terms of energy and running time. By
contrast and moving away from StrongARM to a host processor realized from castartogic (illustrated in Figure 4),

the corresponding proportion of energy and running time spent in the host is considerably lesser. This enhances the impact
of pcmosefficiency at the application level—the correspondir&pPvalue to improve significantly to a factor of 38

with a customasic host; signifying thatPcmos basedrsocis many orders of magnitude better (in thep sense)

not only over a baseline non-co-processor design, but even over convertiaoa basedsoc. We note that these
trends are extremely favorable fesocbased designs as host processors become more efficient with future technology
generations, thereby increasing the gaine®bcs over conventionatocs. The Table 3 below summarizes tRepp

for a StrongARM based host and custasic host forHE andPcA applications where the technologies of interest are
PCMOS basedrsoc design and conventionalMos basedsocdesign.

Algorithm REPPwith SA host | REPPwith AsiC Host
Hyper-Encryption 1.00 9.48
Probabilistic Cellular Automatg 1.09 561

Table 3. REPPgains for theHE andPCA applications.

6. THE VALUE OF PCMOSTO QUALITY OF RANDOMNESS

While epp gains for applications have been our foremost metric of concern to demonstrate the utiityofs the
quality of the implementation of a probabilistic algorithm is a characteristic of interest as well. Generation of random
sequences of “high quality” and their impact on the application level quality metrics is an extensive area of study. Poor
quality random bits impact application behavior—from the correctness of Monte Carlo simulations [6] to the strength
of encryption schemes like Hyper-Encryption, which can be severely compromised if sequence of random bits can be
“guessed”. To assess to quality of randomization affordeddiyos we employ statistical tests from the NIST sufite
The random sequences in the case@fioshave been produced from the actual chip measurementsa¥iasinverter
from 0.25umTSMC prototype and those afvosfrom HSpice simulations of the hardware implementation of the Park-
Miller [17] random number generator; for both casgss considered to be.b.

Figure 6, presents the results. Among these tests and to highlight a fewnttest determine contiguous sequence of
1sinablock. Theanktest checks the linear dependence, whileRR& andapproximate entroptests detect periodicity
and frequency of overlapping patterns. Tieenplate matchindests detect repetitions of non-periodic patterns. In
evaluating the test results, we use the same testing strategy and criteria as recommended by the NIST suite. Specifically,
the test results shown in parenthesis in the table are compared against a threshold (wigigh uséd to determine
whether the sequence passes or fails a test. The tests are run on random bit sequences of 08y R0The result
indicates the proportion of subsequences (tested through iterations) that pass from the random sequence being tested.
As seen from the figure, the quality of random sequences generatetibiysis higher than that of those generated by
CMOS.

7. CONCLUSION AND REMARKS

We have demonstrated the value of the na@lhostechnology within the context of embedded applications, which, by
their nature often admit probabilistic behaviors. In embedded applications, probability plays a role both in the context

1For an explanation and use of these tests, see [19]
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Test PCMOS CMOS
Frequency PASS (0.98) FAIL (0.84)
Block-frequency PASS (1.00) PASS (0.98)
Cumulative sum PASS (0.98) FAIL (0.86)
Runs PASS (0.98) PASS (0.96)
FFT PASS (1.00) PASS (1.00)
Approximate entropy PASS (0.98) FAIL (0.92) (result > 0.93) > PASS
Long-run PASS (1.00) PASS (1.00) (result < 0.93) > FAIL
Rank PASS (1.00) FAIL (0.00)
Non-overlapping template | PASS (0.93) PASS (0.9375)
Overlapping template FAIL (0.8889) FAIL (0.00)
Lempel-Ziv FAIL (0.8125) FAIL (0.0625)
Linear complexity PASS (1.00) PASS (1.00)
Universal Statistical FAIL (0.725) FAIL (0.8889)
Serial PASS (1.00) PASS (1.00)

Figure 6. Comparison of quality of randomization feRNGandPCcMOS

of the “quality of solution” as well as in context of the algorithm used to solve the problem. The improvements that we
were able to demonstrate weneders of magnitudever application specificmos designs. We find this sufficiently
promising and wish to extend this work along two directions. First, we wish to explore a larger suite of applications,
significantly from the signal processinggP) domain wherein the probability of correctngsat the device level man-

ifests itself naturally as thsignal-to-noiseratio at the level of a computational kernel such as a filter. An independent
and equally interesting direction, involves investigating the applicability of the ideas, methods and constructs presented
here to the overarching question of realizing reliable computing from unreliable elements—such “probabilistic designs”
are considered central to sustaining Moore’s law in the nanometer regioeaxs designs [1, 11].
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