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1. ABSTRACT

The major impediments to technology scaling towards nanometer regime include power dissipation and “erroneous”
behavior due to process variations and noise susceptibility. In this paper, we demonstrate thatCMOS devices whose
behavior is rendered probabilistic through noise (yielding probabilisticCMOSor PCMOS) can be harnessed for ultra low
energy computation.PCMOSdevices are inherently probabilistic in that they are guaranteed to compute correctly with a
probability p, and by design, they are expected to compute incorrectly with a probability(1− p). In this paper, we show
for the first time thatPCMOS technology not only yields energy savings at the device level, but also yields significant
savings, simultaneously, in the energy consumed as well as in the performance for probabilistic applications drawn from
the embedded computing domain. These benefits are derived using a novel algorithm-technology co-design methodology
for PCMOSbased co-processors. All of our application level savings are quantified using the product of the energy and
the performance denoted energy× performance: thePCMOSbased savings range from a substantial multiplicative factor
of over560when compared to a competing conventionalCMOS based realization.
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2. INTRODUCTION

As CMOS technology scales down into the nanometer region, noise and other perturbations (see Sano [12, 20], Kish [9]
and Shepard [21]) pose increasing number of challenges. The surprising premise that noise can be harnessed as a
resource, rather than viewed as an impediment has been shown using foundational principles and theoretical mod-
els [14, 13, 15]. In prior work [3, 2], we have designed and studiedCMOS devices based on these principles though
analytical models and simulations. In this work, we demonstrate for the first time that computing platforms based on
suchCMOS devices can yield orders of magnitude improvements simultaneously to theenergy consumedas well as to
the running time—collectively characterized as the energy-performance product (EPP)—of an application. A singular
innovation through which these savings are accomplished is the particular form ofCMOS that is affected by ambient
(thermal) noise—we refer to it asprobabilistic CMOS or PCMOS. The two significant contributions of this paper are
(i) the development of a methodology for usingPCMOS to realize ultra efficient embedded computing platforms in the
energy-performance sense, and(ii) the demonstration of the value of this novel technology in the context of a range of
embedded applications of interest.

To demonstrate the utility and the efficacy ofPCMOS, we first develop a methodology (akin to hardware software co-
design), described in Section 4 that we refer to asalgorithm-technologyco-design. Our methodology is aimed at realizing
an extremely efficientprobabilistic system-on-a-chip(PSOC) architectures usingPCMOSdevices. As shown in Figure 2,
a canonicalPSOCarchitecture consists of a (conventional) host processor used to compute most of the control-intensive
deterministiccomponents of an application, whereas the co-processor realized usingPCMOSdevices will be used as an
energy-performance (EPP) accelerator. The reasons for emphasizing the development of this co-design methodology as a
significant contribution is based on the following two observations. First, the “probabilistic content” (formalized later as
flux) of the algorithm becomes a novel resource to be managed and treated, much as space requirements, flexibility and IP-
reuse are treated in the traditional co-design context. Furthermore, as we will see in the sequel, considerations of design
efficiency differ significantly in the context ofPCMOS when compared to those arising in the context of conventional
CMOS.

Applications based onprobabilistic algorithmsbenefit the most fromPSOCimplementations. Probabilistic algorithms
find wide use in a range of embedded applications ranging from speech and pattern recognition to security. To evaluate the
benefits ofPCMOSbased architectures, we consider a set of applications (Section 4) and four alternate implementations
of the probabilistic applications (Section 3) and present the gains in Section 5. In addition, in Section 6, we study
another crucial aspect of computing platforms that implement probabilistic algorithms. In application domains employing
probabilistic algorithms, independent probabilistic bits are needed in copious quantities. This trend is very favorable to
our design approach since it increases the flux. Nevertheless, techniques for producing independent random bits are
difficult and are an extensive area of study [17] with several complex approaches yielding poor results [6]. We show
that, while yielding significant gains in theEPP, PCMOS technology also yields significantly better quality random bits,
verified by applying the tests provided by the National Institute of Standards and Technology (NIST) [19]. Concluding
remarks and directions for future research are presented in Section 7.

3. PROBABILISTIC SYSTEM ON A CHIP ARCHITECTURES

As mentioned in the introduction, the surprising premise thatCMOS devices rendered probabilistic due to noise, are
not only useful but also yield energy and performance benefits at the application level, will be demonstrated using
probabilistic system on a chip architectures (PSOCs). For completeness, we first present a brief overview ofprobabilistic
CMOS (PCMOS) technology (for a detailed description, please see [3, 2]).

3.1 PCMOSTechnology

It has been established in prior work thatCMOS devices have an exponential relationship between the probability of
correctness (p) and the switching energy (E). In addition, the relationship between the noiseRMS and the switching
energyE is quadratic. These two relationships formalized as the twoPCMOS laws characterize the behavior ofPCMOS
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devices. These laws, derived from analytical modeling of noise susceptible switches, have been extensively studied and
verified using HSpice simulations as well as actual fabrication and measurement ofPCMOS devices inTSMC 0.25µm
technology. In this paper, we use thesePCMOSswitches as building blocks to demonstrate their benefits to applications
in the context of a typicalPSOCarchitecture.

3.2 Canonical PSOCArchitectures

To effectively leveragePCMOStechnology and to compare with computing platforms based on conventionalCMOS tech-
nology, algorithm implementation in four scenarios shown in Figure 1 are considered:(a) thebest possibledeterministic
algorithm solving the same problem, implemented completely in software and executing on the host processor (in our
case a StrongARMSA-1100),(b) the probabilistic counterpart executing completely on the host processor, with pseudo
random bits generated by a software implementation of a well known algorithm [17](c) the probabilistic algorithm
executing on the host processor with a conventionalCMOS co-processor (referred to as the “conventionalCMOS based
SOC”) or (d) with a functionally identicalPCMOSco-processor. Collectively, these four cases encompass all reasonable
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Figure 1. The Host + Co-processor style implementations that are compared

alternate implementations of the application. Throughout this study, the co-processors are application-specific.

3.3 Performance and Energy Modeling of PSOCArchitectures

To estimate the performance of thesePSOCand SOC architectures, theIMPACT simulator of the Trimaran infrastruc-
ture [23] has been modified to measure the number of cycles taken by an application executing on a StrongARMSA-
1100 host. The simulator records a trace of the activity of thePCMOSandCMOS co-processors. The combination of
this information with the performance models of the co-processors, typically obtained through HSpice simulations or
physical chip measurements (ofPCMOSswitches) yields thePSOC(SOC) performance in terms of execution time.

The energy consumption of an application executing on aPSOC(SOC) architecture is the sum of the energy consumed
by the host, the energy consumed by thePCMOS(CMOS) co-processor(s) and the energy cost of communication between
the host and the co-processor(s). The co-processors are memory mapped and communication is through load-store
instructions executed on the host. To quantify the energy consumed by theSA-1100 host, the JouleTrack model [22] is
used. This model is reported to be within 3% of the energy measured on an actualSA-1100 host. The power modeling
techniques applied to various components of thePSOC(SOC) architecture are illustrated in Figure 2. Since the design of
the co-processors are application-specific, the energy consumed by a particular co-processor is different for each of the
applications. TheCMOS based co-processors are designed and synthesized into TSMC 0.25µmprocess, and the energy
cost and performance are derived from HSpice simulations. In the context of extensions based onPCMOS, the energy
cost of the co-processor is derived fromphysical chip measurementsof functioningPCMOSswitches realized in TSMC
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0.25µmprocess. In all of the styles ofPSOCimplementations, to account for the probabilistic nature of the applications,
several “runs” are averaged.

4. THE PSOCCODESIGN FRAMEWORK

As mentioned in the introduction, applications based on probabilistic algorithms benefit fromPSOCimplementations. In
this study, we consider applications based on probabilistic algorithms that implementBayesian Inference[10], Random
Neural Networks[8], Probabilistic Cellular Automata[7] and Hyper-Encryption[4]. Any PSOC implementation of
a probabilistic application involvespartitioning the application between the host and the (application specific)PCMOS

based co-processor. Even though the exact host - co-processor partition and the correspondingPCMOSbased co-processor
architecture for each of these applications vary, they follow a common theme. Common to these applications (and to
almost all probabilistic algorithms) is the notion of acore probabilistic stepwith its associated probability parameterp.
This core probabilistic step is manually identified and implemented inPCMOS. The deterministic parts of the application
are implemented as software executing on the host processor. This co-design methodology is unique in the sense that
as opposed to traditionalSOCdesigns, several unique algorithm and technology characteristics need to be considered to
obtain efficient designs.

4.1 Algorithm and Technology Characteristics Influencing Codesign

PCMOS is particularly efficient in computing with ultra-low energy. For example, the energy consumed for generating
one random bit byPCMOS is 0.4 pico Joules [2]. By contrast, the Park-miller algorithm [17] implemented in custom
hardware consumes about 2025times that energy. Given this benefit, it is natural to expect that higher amounts of
“probabilistic content” in the algorithm will yield greater opportunities gaining from the use ofPCMOS. Thus the amount
of “probabilistic content” will be a figure of merit, which we refer to as fluxF defined as thetotal number of primitive
probabilistic operationsO of the algorithm.

ThoughPCMOS is extremely energy efficient the operating frequencies of our current design is low [16] at about 1
MHz. By contrast, software andCMOSbased pseudo-random bit generators produce random bits at the rate of 3.33 and 4
million bits per second respectively. The peak rate at which an application demands random bits, orthe peak application
demand bandwidthis an application characteristic of interest. If the peak application demand bandwidth exceeds the
bandwidth of thePCMOSdevice, thePCMOSdevices need to be replicated. This is captured by theReplication factorR .
Current realizations ofPCMOSdevices do not allow on demand activation; by contrast, inSOCdesigns clock- and data-
gating are assumed to be exploited to reduce the energy consumption. In this regard, we are conservative in calculating
theEPPgains forPSOC. Given these technology and algorithm characteristics, the applications of interest are partitioned,
optimized and implemented asPSOCdesigns.
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4.2 The Suite of Applications

In this section, we (due to space constraints) briefly describe the suite of applications, their partitioning and optimization.
Bayesian Inference(BN) Bayesian inference is a statistical inference technique which models the human decision

making process. Hypotheses and their corresponding probability weights are notions central to this technique. The
probability weights are interpreted as thedegrees of beliefin their corresponding hypotheses. Based onevidencesthe
degree of belief in an hypothesis is incremented (decremented) till it approaches 1 (or 0) in which case the hypothesis is
very likely (unlikely). A Bayesian network is used to perform Bayesian inference and is a directed acyclic graph of nodes
V representing variables and edgesE representing dependence relations between the variables. The variable represented
by a nodeu can take a value from a finite set of valuesΣu. Each valueσ in the setΣu has a conditional probability
p(σ/Σ′) associated with it, whereΣ′ ∈ Σ×Σ×Σ · · · is the string of values of the variables represented by the parents of
u. Variables whose values are known apriori are calledevidencesand based on evidence, other variables areinferred.
The particular bayesian networks considered in this study implements hospital patient management and windows printer
troubleshooting.
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Figure 3. The co-processor architecture for a PSoC implementing Bayesian Inference

Partitioning and Optimization In the likelihood weighting algorithm [18] for bayesian inference, the random exper-
iment (used for inference) is implemented in thePCMOSco-processor (consisting of severalmodules), with the rest of
the algorithm implemented as software executing on the host. For a Bayesian networkG, the conditional probabilities
associated with each value of the variable of a node are known apriori and are used to design a module ofPCMOSswitches
(inverters) for each node in the graph. As an example, consider a nodeu with Σu = {0,1,2}. Let Σ′ be the string of values
associated with the parents ofu. Let 0≤ p(0/Σ′), p(1/Σ′), p(2/Σ′) ≤ 1 be the conditional probabilities associated with
0,1,2∈ Σu respectively. Inference can be performed by designing threePCMOSswitchesA,B,C corresponding to 0,1,2

respectively. The inputs are fixed at 0 and the probability of correctness ofA,B,C is specialized top(0/Σ′), p(1/Σ′)
1−p(0/Σ′) ,

p(2/Σ′)
1−p(0/Σ′)−p(1/Σ′) respectively. When the switches are inspected in the orderA,B,C the value which corresponds to the
first switch whose output is a 1, is the inferred value. Henceforth, the set of switchesA,B,C will be referred to as arow
and each switch referred to as anelement. Since a row is required for eachΣ′, many rows are required to implement the
random experiments which correspond to each of the possible values ofΣ′. These set of rows will be referred to as a
table.
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As shown in Figure 3, thePCMOS module corresponding to a nodeu implements a table whose row is indexed by
the string of values of the parents ofu. The number of columns in the table is the cardinality ofΣu, where each column
corresponds to a value from the setΣu. An element in the table, identified by a (row,column) pair corresponds to a value
σ ∈ Σu and is implemented by a specializedPCMOSswitch whose probability of correctness is computed as explained
above. Finally a priority encoder connected to the outputs of a row determines the result of the random experiment.

Random Neural Network[8] (RNN) A random neural network consists ofneuronsand connectionsbetween the
neurons. Information travels between the neurons in the form of bipolar signal trains. Neurons have potentials associated
with them which are the sums of incoming signals. The potential in turn, influences the rate of firing. The particular
neural network considered in this study solves the vertex-cover [8] of an input graph.

Partitioning and Optimization The Poisson process which models neuron firing is implemented in thePCMOSco-
processor with the rest of the computation implemented as software in the host processor. To approximate the Poisson
process modeling the firing of a neuron, the Bernoulli approximation of a Poisson process [5] is used. Since the rate
at which random bits are requested by the host exceeds thePCMOS operating frequency,PCMOS switches in the co-
processor are replicated to match the required rate. Application level optimization is performed to reduce the replication
factorR , by interleaving demand for random bits fromPCMOSco-processor and the processing of these bits—collecting
and distributing these firings. This has the effect of reducing thepeakapplication demand bandwidth.

Probabilistic Cellular Automata[7] (PCA) are a class of cellular automata used to model stochastic processes. Cellular
automata consist ofcellswith local (typically nearest neighbor) communication. Each cell is associated with astateand
a simpletransition rulewhich specifies the next state of a state transition based on its current state and the states of its
neighbors. In theprobabilisticstring classification algorithm [7], the state of each cell is either 0 or 1, giving rise to 8
possible transition rules (each rule has two possible outcomes, 0 or 1). In addition, the transition rules are probabilistic:
for a transition ruleτi (0≤ i ≤ 7) the probability that the output state of the rule is 0 is denoted bypi,0 and the probability
that the output state is 1 is denoted bypi,1.

Partitioning and Optimization Each transition rule is implemented by aPCMOS switch whose input is a 0. The
probability of correctness associated with theith switch is pi,1. The control-intensive part of choosing transition rule
(based on the state of a cell and the states of its neighbors) and updating the states are implemented on the host processor.
Since the rate at which the transition rules are evaluated exceeds the frequency of operation of thePCMOSdevices, this
structure is replicated many times.

Hyper-Encryption (HE) is a provably secure encryption technique [4] in the bounded storage model. This scheme
consists of generating anencryption padbased on a publicly available random stringα and a shared (between the sender
and the receiver) secret key. The secret keyS is a sequence of whole numbersS= s1,s2,s3...sk such that each number
0≤ si < |α|. If α[ j] is the j th bit of alpha, the encryption pad is generated by⊕α[si ] where 1≤ i ≤ k. Message encryption
is performed by a bitwiseXOR operation of the encryption pad with the message.

Partitioning and Optimization In the host plus co-processor architecture, the random string is generated byPCMOS

while the encryption pad generation and the encryption are performed by the host. In the full custom implementation as
shown in Figure 4, the entire algorithm is implemented in custom hardware, throughk instances of|α| to 1 multiplexers
whose select inputs are from the elements of the secret key.

5. METRICS, RESULTS AND ANALYSIS

In order to characterize and quantifyPCMOSbenefits at the application level, we now define a variety of metrics. Subse-
quently we will summarize the application level benefits using these metrics.

5.1 Metrics for Quantifying the Application Level Benefits

Energy Performance Product: EPPdescribed earlier, is defined as the product of the application level energy and the
execution time, and will be used as the chief metric of interest to evaluate various implementations. Given theEPPof
two alternate realizations, they can be compared by computing the ratio of their individualEPPvalues.
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Figure 4. The CustomASIC host andPCMOSco-processor architecture for a PSoC implementing Hyper-Encryption

Energy Performance Product Gain:Γ is the ratio of theEPPof the baseline to theEPPof a particular implementation
I (e.g., aPSOCor anSOC) using a technologyT (e.g.,PCMOSor CMOS). This ratio is calculated as follows:

ΓT =
EnergyBaseline×TimeBaseline

EnergyI ×TimeI
(1)

For calculatingΓ, in the sequel, the baseline always corresponds to the case when the entire computation is done on the
host processor and therefore, there is no co-processor. For example, in the context of theRNN application, the baseline is
the StrongARMSA-1100 computing the deterministic as well as the probabilistic content andI is the combination of the
StrongARMSA-1100 as the host computing the deterministic content and the co-processor computing the probabilistic
content implemented with technologyT. Now, to compare pairs of alternate choices for realizing the co-processor, for
example,CMOS andPCMOS, we introduce the notion of a “relative energy performance product” as follows.

Relative Energy Performance Product Gain with Technology ParametersT,T ′: REPPof an application is defined
as the ratio of itsEPPgain when it is implemented on a on aPSOCwith a co-processor realized using technologyT ′ to
the EPPgain when it is implemented on a (functionally identical, conventional)SOC with a co-processor realized using
technologyT. The host processor is invariant in both cases. Given theEPPgainsΓT andΓT ′ respectively, REPPT,T ′ is
calculated as follows.

REPPT,T ′ =
ΓT ′

ΓT
=

EPPT

EPPT ′
(2)

Quality of Probabilistic Implementation: is defined empirically based on the statistical tests from the NIST suite [19]
and is detailed in Section 6.

5.2 Application Level Gains of PCMOS

We will now describe the gainΓT where the technologyT is PCMOS. Since the applications of interest are probabilistic,
these gains in the scope of an entire application vary with varying inputs (and input sizes). As illustrated in Figure 5, the
EPPgains are attributed to gains in energy as well as performance. Due to space constraints, the gains are summarized in
Table 1. As shown in the table, these gains at the scope of an entire application range from a factor of (about) one order
of magnitude for theHE application, to a factor of about 300 in the context of theRNN application kernel.

A range ofEPP gains are observed whenever multiple data points are available, for example, in the context of the
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Figure 5. Energy and performance gains ofPCMOSbasedSOCover the baseline when compared toCMOS basedSOC

Algorithm Flux (as percentage of total operations)EPP Gain =Γ
Min Max

BN 0.25%-0.75% 12.5 291
RNN 16.4%-19.7% 226.5 300
PCA 4.19%-5.29% 61 82
HE 12.5% 1.12 1.12

Table 1.Application level max and minEPPgains ofPCMOSover the baseline implementation with increasing flux: The baseline for
HE is an ASIC implementation of the host processor, with the StrongARMSA-1100 serving as the baseline in the remaining three
cases.

Application gain overSA-1100 gain overCMOS

BN 9.99×107 2.71×106

RNN 1.25×106 2.32×104

PCA 4.17×104 7.7×102

HE 1.56×105 2.03×103

Table 2. TheEPPgain ofPCMOSoverSA-1100 and overCMOS for the core probabilistic step for different applications.

bayesian network where different data points correspond to different networks, the flux varies from 0.25 % to 0.75 %,
the corresponding gain increases from a factor of 12.5 to an impressive factor of 291 due to increase in flux. Similar
increases are observed for the other applications as well, caused by an increase in the flux values as shown in the table.

5.3 Analysis of Application Level Gains

The application level gains in energy and performance (when compared to the baseline case where there is no co-
processor) is attributed to the efficiency of the co-processor while executing the probabilistic operations. We summarize
these gains ofPCMOSover StrongARMSA-1100 and overCMOS for thecore probabilistic stepfor each of the applica-
tions in Table 2. Each row of this table corresponds to one of the four distinct applications of interest to us and presents
the gains achieved per core probabilistic step. As can be readily seen from Table 2, these gains are substantially more for
PCMOS—orders of magnitude greater—than those forCMOS. These per-operation gains would of course be valuable at
the level of an entire application, only if the application embodies significant opportunity, characterized by its fluxF .

A more interesting case is the comparison of two alternate choices for realizing the co-processor—specifically,PCMOS

andCMOS—using the concept ofREPP. This comparison exposes another interesting characteristic influencing design
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efficiency forPSOCbased designs. Specifically we wish to delineate the (less obvious) impact of the efficiency of the host
processor. In the interests of staying within the mandated space limits, we will restrict our analysis to theHE application:
Starting with Figure 1, wherein the host processor is a StrongARM, we note that the host is aCOTS processor. In
this rather inefficient regime,REPPT,T ′ whereT ≡ CMOS andT ′ ≡ PCMOS is nearly 1. That is, thePCMOS and the
conventionalCMOS basedSOC designs achieve nearly the same performance in terms of energy and running time. By
contrast and moving away from StrongARM to a host processor realized from customASIC logic (illustrated in Figure 4),
the corresponding proportion of energy and running time spent in the host is considerably lesser. This enhances the impact
of PCMOSefficiency at the application level—the correspondingREPPvalue to improve significantly to a factor of 9.38
with a customASIC host; signifying thatPCMOS basedPSOC is many orders of magnitude better (in theEPP sense)
not only over a baseline non-co-processor design, but even over conventionalCMOS basedSOC. We note that these
trends are extremely favorable forPSOCbased designs as host processors become more efficient with future technology
generations, thereby increasing the gains ofPSOCs over conventionalSOCs. The Table 3 below summarizes theREPP

for a StrongARM based host and customASIC host forHE andPCA applications where the technologies of interest are
PCMOS basedPSOC design and conventionalCMOS basedSOCdesign.

Algorithm REPPwith SA host REPPwith ASIC Host
Hyper-Encryption 1.00 9.48

Probabilistic Cellular Automata 1.09 561

Table 3. REPPgains for theHE andPCA applications.

6. THE VALUE OF PCMOSTO QUALITY OF RANDOMNESS

While EPP gains for applications have been our foremost metric of concern to demonstrate the utility ofPCMOS the
quality of the implementation of a probabilistic algorithm is a characteristic of interest as well. Generation of random
sequences of “high quality” and their impact on the application level quality metrics is an extensive area of study. Poor
quality random bits impact application behavior—from the correctness of Monte Carlo simulations [6] to the strength
of encryption schemes like Hyper-Encryption, which can be severely compromised if sequence of random bits can be
“guessed”. To assess to quality of randomization afforded byPCMOS, we employ statistical tests from the NIST suite1.
The random sequences in the case ofPCMOShave been produced from the actual chip measurements of aPCMOSinverter
from 0.25µmTSMC prototype and those ofCMOS from HSpice simulations of the hardware implementation of the Park-
Miller [17] random number generator; for both cases,p is considered to be 0.5.

Figure 6, presents the results. Among these tests and to highlight a few, therunstest determine contiguous sequence of
1s in a block. Therank test checks the linear dependence, while theFFT andapproximate entropytests detect periodicity
and frequency of overlapping patterns. Thetemplate matchingtests detect repetitions of non-periodic patterns. In
evaluating the test results, we use the same testing strategy and criteria as recommended by the NIST suite. Specifically,
the test results shown in parenthesis in the table are compared against a threshold (which is 0.93) used to determine
whether the sequence passes or fails a test. The tests are run on random bit sequences of length 20,000,000. The result
indicates the proportion of subsequences (tested through iterations) that pass from the random sequence being tested.
As seen from the figure, the quality of random sequences generated byPCMOS is higher than that of those generated by
CMOS.

7. CONCLUSION AND REMARKS

We have demonstrated the value of the novelPCMOStechnology within the context of embedded applications, which, by
their nature often admit probabilistic behaviors. In embedded applications, probability plays a role both in the context

1For an explanation and use of these tests, see [19]
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Figure 6. Comparison of quality of randomization forPRNGandPCMOS.

of the “quality of solution” as well as in context of the algorithm used to solve the problem. The improvements that we
were able to demonstrate wereorders of magnitudeover application specificCMOS designs. We find this sufficiently
promising and wish to extend this work along two directions. First, we wish to explore a larger suite of applications,
significantly from the signal processing (DSP) domain wherein the probability of correctnessp at the device level man-
ifests itself naturally as thesignal-to-noiseratio at the level of a computational kernel such as a filter. An independent
and equally interesting direction, involves investigating the applicability of the ideas, methods and constructs presented
here to the overarching question of realizing reliable computing from unreliable elements—such “probabilistic designs”
are considered central to sustaining Moore’s law in the nanometer regime ofCMOS designs [1, 11].
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