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Abstract

By viewing noise as a resource rather than as an im-
pediment, we demonstrate an entirely novel approach to
ultra low-energy computing. The subject of this study is
the probabilistic inverter, ubiquitous to the design of digi-
tal systems, whose behavior is rendered probabilistic by
noise. Summarized through the concept of an energy-
probability relationship for inverters based onAMI 0.5µm
andTSMC 0.25µm processes, we quantitatively show that
significant energy savings are possible when a probabilis-
tic inverter is switched with probability1/2 < p < 1,
and that these savings increase exponentially asp is low-
ered. We also quantitatively show that for a fixedp, in-
creasing the noiseRMS has the effect of increasing energy
dissipation quadratically. Collectively, we refer to these
two facts as the energy-probability laws governing prob-
abilistic CMOS switches—these laws constitute the first
contribution of this work. Furthermore, we also present a
practical realization of a probabilistic inverter in a read-
ily available TSMC 0.25µm technology. Finally, by using
the probabilistic inverter as a building block, we provide
early evidence that probabilistic switches can yield signif-
icant improvements to the energy×performance metric at
the application level, by a factor of more than288, for a
probabilistic neural network application.

1. Introduction and Background
As enormous gains are made in faster and smaller pro-

cessors largely driven by Moore’s law, significant chal-
lenges have emerged, especially asCMOS devices ap-
proach the deep sub-micron “nano-scale”. Two of these
challenges of particular significance are the impact of
noise (see Shepard [21], Kish [6], Hernandez et. al [10,
11]), as well as lowering the energy consumption (see
Mamun and Katti [8] and Meindl [9]). In the current ap-
proaches to overcome these twin challenges encountered
in the semiconductor roadmap, noise is typically viewed
as an impediment to scaling (see Kish [6], Natori and
Sano [14]). In this work and in a dramatic shift from
known approaches, we show that viewed as a resource
rather than as an impediment, noise can be a basis for
achieving significant energy savings thus yielding an en-
tirely new approach towards realizing ultra low-energy
circuits and concomitant computing platforms. Our ap-

proach, and the subject of this paper, is centered around
the concept of aprobabilistic computingswitch or in-
verter, whose output is deliberately guaranteed to be cor-
rect only with a probabilityp, 1/2 < p < 1 (wherep is
considered to be unity in the context of all conventional
computing switches, in that the device is deemed to com-
pute correctly).

In this paper, we provide a systematic and comprehen-
sive characterization of a probabilisticCMOS switch, with
an emphasis on its value as a building-block for applica-
tions with probabilistic workloads. In particular, we char-
acterize the energy consumed per switching step and the
associated probability of correctnessp—referred to as the
energy-probability(or E-p for short) relationship. Thus,
by building on the mathematical foundations of proba-
bilistic switching in the context of energy savings devel-
oped by Palem [15, 17] as well as a preliminary proof-
of-concept within the context ofCMOS based switches
presented by Cheemalavagu, Korkmaz and Palem [1], we
first show that the energy consumed in producing a sin-
gle bit of information in Joules is exponentially related to
p acrossCMOS technology generations—in our case, the
AMI 0.5µm and TSMC 0.25µm processes.First, the en-
ergy per-switching step increases exponentially withp—
the higher the probability with which the computed bit is
guaranteed to be correct, the higher the energy consumed
to compute it. This relationship allows us to trade a rela-
tively small probability of error for significant savings in
energy (and heat) dissipation of probabilistic applications.
Second, we establish that for a fixed probability of cor-
rectness, energy is quadratically related to the amount of
noise, quantified as the noiseRMS value in this paper—the
higher the noise amount exposed on the device, the higher
the value ofE. In Section 4.2, we characterize these two
facts as theenergy-probabilitylaw and theenergy-noise
law for probabilisticCMOS devices.

ConventionalCMOS inverters (or switches) coupled
with noise to induce the probabilistic behavior will be the
subject of our study. The particular noise sources con-
sidered here include naturally occurring thermal noise
sources as studied by Sano [20], as well as power-supply
noise sources—as studied by Heydari and Pedram [4] and
by Pant et. al [18]—increasingly common in Giga- and
Tera-scale ICs based on deep sub-micron technologies.
Given the comprehensive nature of this study, both sce-
narios wherein the thermal noise source is coupled to the
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Figure 1. The two ways in which noise is cou-
pled to a deterministic switch yielding its prob-
abilistic variant: (a) noise is coupled to the out-
put of the inverter, (b) noise is coupled to the in-
put of the inverter.

input of the (inverter) switch as well as to the output have
been characterized in this paper (see Figure 1) through the
energy-probability and energy-noise laws.

With this as background, we provide a summary of re-
lated work in Section 2. In Section 3, we define the prob-
abilistic switch and describe itsCMOS implementation. In
Section 4, we outline an analytical model that helps ex-
plain the empirical findings describing the two energy-
probability laws. We quantify the application level ben-
efits of probabilistic inverters or switches in terms of en-
ergy and performance in Section 6, and finally, we con-
clude the paper with remarks in Section 7.

2. Related Work

Low energy design has been an area of increasing in-
terest especially since energy consumption has become a
limiting factor in sustaining Moore’s law [5, 9, 13, 19].
Palem [15, 16, 17] showed for the first time that noise
could be used for energy savings if it is harnessed as
a source of randomness in realizing implementations of
probabilistic algorithms. In all of this work [15, 16, 17],
the energy characteristics are modeled in the framework
of thermodynamics [7]. This new interpretation of noise
as a utility was very different from the traditional inter-
pretation where noise in the electrical domain is invari-
ably viewed as an impediment to successful design [3,
6, 14, 24]. To leverage the results obtained in the frame-
work of thermodynamics, and to prove the validity of this
novel view of noise, the behavior of probabilistic devices
realized out ofCMOS technology was characterized by
Cheemalavagu, Korkmaz and Palem [1] through theE-p
relationship. In this paper, we extend this early character-
ization significantly by (i) providing a novel and explicit
construction of a probabilistic inverter, (ii) validatingit in
AMI 0.5µm and TSMC 0.25µm technologies by charac-
terizing the energy-probability laws governing its behav-
ior and reconciling using an analytical model (from [1]),
and (iii) demonstrating the value of these probabilistic in-
verters in realizing ultra-low energy implementation of a
probabilistic neural network.

3. Probabilistic Inverter
In this section, we first give the definition of a prob-

abilistic switch. Then, we describe a probabilistic switch
realization using aCMOS inverter.

3.1. Definition of a Probabilistic Switch

A switch as a digital device with one input and one out-
put. The switch can be either deterministic or probabilis-
tic. The output of the switch is a function, sayf , of its in-
put. The act of switching is defined as the invocation of
this functionf , which corresponds to the event when the
output is computed in a typical digital circuit. Switching
takes a finite amount of timeT . If we denote the output
of the switch byY (t) and the input of the switch byX(t)
wheret denotes a point in time, then for a deterministic
switchY (t2) = f(X(t1)), whereinf : {0, 1} → {0, 1}
is a function of a single bit,t2 is the time when the switch-
ing ends andt1 is the time when the switching starts; thus,
T = (t2 − t1). For a probabilistic switch, on the other
hand,

Y (t2) =

{

f(X(t1)) with probabilityp

f(X(t1)) with probability (1-p)

where f(X) denotes the logical complement of the
Boolean result of functionf(X).

3.2. CMOS Inverter Realization of a Probabilis-
tic Switch

A CMOS inverter is a digital gate that realizes the inver-
sion function with one input and one output. In the con-
text of the switch definition above, for a deterministic in-
verter,Y (t2) = X(t1). For a probabilistic inverter, on the
other hand,

Y (t2) =

{

X(t1) with probabilityp
X(t1) with probability (1-p)

To illustrate this concept, we show the input and output
(waveforms) of a deterministic inverter in Figure 2(a) and
Figure 2(b), and the corresponding output (waveform) of
a probabilistic inverter (withp = 0.87) in Figure 2(c), re-
spectively. Note that the input/output voltage levels for a
deterministic inverter is higher (1V) than that for a prob-
abilistic inverter (0.8V). This is because, the probabilistic
behavior for the inverter is realized through varying two
parameters (1) the noise amount coupled on the inverter
characterized as itsRMS value in Volts, and (2) its supply
voltageVdd, and in Figure 2(c), the supply voltage value
of 0.8V corresponds to a probability valuep = 0.87 with
a noiseRMS value of0.4V. The details of the effects of the
two parameters: the amount of noise, and the supply volt-
age, will constitute the two laws and are the subject of
the following sections. Briefly, since the probabilityp re-
sults due to noise destabilizing the inverter as shown in
Figure 1, the probability parameterp is decreased either
by increasing the noise (RMS) magnitude, or by decreas-
ing the operating supply voltage of the inverter,Vdd. As a
result, incorrect switchings occur at the output of the in-
verter as shown in Figure 2(c).
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Figure 2. (a) Input signal of the inverter, (b) cor-
responding output signal of a deterministic in-
verter, and (c) corresponding output signal of a
probabilistic inverter with p = 0.87.

4. Characterizing the E-p Relationship of a
CMOS Inverter

Our experimental findings characterize the laws gov-
erning a probabilistic inverter caused by the effects of (i)
noise coupling in the case of thermal noise, (ii) the power
supply noise, and (iii) across technology generations. In
Sections 4.1 to 4.4, we present our simulation framework
and results that characterize the two laws.

4.1. Simulation Framework and Experimental
Methodology

As pointed out in Section 1, an inverter is coupled
with noise (Figure 1). We consider input-coupled noise
as well as output-coupled noise, both of which are ther-
mal, as well as power supply noise coupled to the sup-
ply node of the inverter. In modeling thermal noise and
power supply noise, we follow the approach of Stein [24]
and Pant [18], respectively, where the noise source is as-
sumed to be a random process characterized by a Gaus-
sian distribution with a standard deviationσ, referred to
as root-mean-square (RMS) value.

In our simulations, noise is injected into an HSpice
netlist in the form of aPWL (piecewise linear)voltage
source. The data points of the PWL source are generated
from a Gaussian distribution of random numbers gener-
ated by Matlab. The probabilityp is determined by sam-
pling the output node, and it is computed as follows
p = Number of samples with correct values

Total number of samples

wherein the total number of samples is 14,000. Simula-
tions were performed forAMI 0.5µm andTSMC 0.25µm
processes. Table 1 summarizes the simulation parameters.
As seen in the table, the two parameters being altered are
Vdd andσ. C denotes the load capacitance corresponding
to a fanout of four (which is a typical load present in dig-
ital circuits), leading to a load capacitance value of 60fF
and 28fF forAMI 0.5µm andTSMC 0.25µm, respectively.

AMI 0.5µm TSMC 0.25µm
Vdd 0.8V − 5V 0.5V − 2.5V
σ 0.2V − 0.8V 0.2V − 0.8V
C 60fF 28fF

Table 1. Simulation parameters
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Figure 3. The simulation results when noise
is input-coupled and output-coupled for TSMC

0.25µm. Also shown is the analytical results for
the same technology.

To reiterate, in our experimental framework, we vary
the magnitude of the signal, namely, the supply voltage,
Vdd, and theRMS value of the noise (shown in Table 1).

4.2. TheE-p Relationship of a CMOS Inverter

As stated earlier (in Section 1 and illustrated in Fig-
ure 1), we consider two types of (thermal) noise coupling:
the input-coupled noise and the output-coupled noise.
This is because, the noise—which can appear in the form
of interconnect noise, crosstalk, simultaneous switching
noise, thermal noise, etc—could be aggregated at the out-
put of a device as well as the input of a device as noted
by Motchenbacher [12] and by Shepard [22]. The sim-
ulation results of both the input- and the output-coupled
thermal noise cases are shown in Figure 3. The impact of
both the output-coupled noise and the input-coupled noise
cases follow each other very closely.

As validated in Section 4.3 below, the main conclusions
that we drive from the observed trends in Figure 3 are as
follows.

1. The first law—For any fixed technology generation
(feature size),E consumed by a probabilistic inverter
increasesexponentiallywith p whenever the noise
magnitude remains constant. For example, for a noise
RMS value of0.4V, the energy consumed by a prob-
abilistic inverter (designed inTSMC 0.25µm) rises
from 20fJ to 32fJ, in going from a probability value
of p = 0.9 to a (slightly) higher value ofp = 0.95.

2. The second law—For any fixed technology genera-
tion (feature size),E consumed by a probabilistic in-
verter increasesquadraticallywith noise magnitude
(RMS), wheneverp remains constant. For example,
for p = 0.9, the energy consumed by a probabilis-
tic inverter (designed inTSMC 0.25µm) rises from
20fJ to 81fJ, by doubling the noiseRMS value from
σ = 0.4V to σ = 0.8V.
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4.3. Explaining the Behavior of Probabilistic Inverter
Analytically

Here, we sketch an analytical model to two energy-
probability laws governing a probabilistic inverter for
completeness. We will then use this analytical model to
explain our HSpice simulation-based characterizations in
Section 4.2 above.

Figure 4 illustrates the output voltage (Vout) of an in-
verter that is coupled with noise at its output (see
Stein [24]). The probability of being correct can be com-
puted as in Equation (1) andVm = Vdd/2 (for a
symmetric ideal inverter) yields Equation (2). Next, us-
ing E = 1

2CV 2
dd that gives the energy per switching step,

the relationship of energy to probability can be character-
ized as shown in Equation (3), whereC is the load capac-
itance of the inverter,σ is theRMS value of noise, and erf
is the well known error function [25].

p =
1

2
+

1

4
erf(

Vm√
2σ

) − 1

4
erf(

Vm − Vdd√
2σ

) (1)

Vm = Vdd

2 yields:

p =
1

2
+

1

2
erf(

Vdd

2
√

2σ
) (2)

E = 4Cσ2[erf−1(2p − 1)]2 (3)

As shown in Equations 2—3,p depends on the sup-
ply voltage,Vdd and standard deviation,σ referred asRMS

value of noise.Moreover,E is exponentially related top
(first law) and quadratically toσ (second law). These ex-
pressions constitute the analytical model of a probabilistic
CMOS inverter.

4.3.1. Comments on our analytical modelAs shown in
Figure 3, the simulation and analytical results follow each
other closely for theTSMC 0.25µm technologies, with a
7% average difference inE (for a fixed value ofp).

The differences between the analytical and simulation
results are due to the fact that our analytical model con-
siders only the switching energy, whereas in the simula-
tions, the total energy (which also includes the short cir-
cuit and leakage energies) is considered.

As a remark, both the analytical and simulation results
show that given a fixed value of noiseRMS, for the same
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Figure 5. Coupling of the power supply noise to
the CMOS (inverter) gate.

amount of change∆p to the probability, the correspond-
ing energy saving∆E would be higher as we approach
p = 1. This is becauseE grows more rapidly with in-
creasingp. For example, for∆p = 0.1, the energy sav-
ings would be∆E = Ep − E(p−∆p) = 45fJ for p = 0.9,
whereas it would be∆E = Ep − E(p−∆p) = 21fJ for
p = 0.8. This trade of betweenp andE would have im-
plications to energy savings in the context of probabilis-
tic applications and algorithms, that include a probabilis-
tic inverter as a building block in hardware, in achieving
the optimum point for energy savings, given a “quality of
solution” determined withp.

4.4. Impact of Power Supply Noise

So far, we have considered the thermal noise as the
noise source being coupled either to the input or to the out-
put of the inverter. Again, following the stochastic model-
ing by Pant [18], the power supply noise is characterized
by a Gaussian distribution withRMS value of a few hun-
dred millivolts, derived by modeling a chip with a large
number of power grids. Therefore, we induce a Gaussian
noise source on the power supply node of theCMOS in-
verter. As illustrated in Figure 5,Vp

∗ is induced on the
inverter in conjunction with the output-coupled (thermal)
noise (Vn

∗).
The corresponding results derived via simulations for

the TSMC 0.25µm technology are shown in Figure 6.
Again, for a fixed value ofE, p decreases due to power
supply noise. Hence, in the context ofE-p relationship,
power supply noise increases the effectiveRMS value of
the thermal noise coupled to the inverter, or, equivalently,
for a fixedRMS value, it has the effect of decreasing the
value ofp by 1.7% on the average.Thus, adding power
supply noise affects the overall noiseRMS and has the
same effect as that shown in Figure 3 where theRMS value
of thermal noise was altered explicitly. Similar trends are
also seen if the thermal noise were to be input-coupled (as
opposed to output-coupled). To conclude (Figure 6), both
the first and second energy-probability laws are satisfied
by reconciling them against the analytical model.

4.5. Impact of Technology Generations on theE-p Re-
lationship

Considering technology scaling and comparing the
AMI 0.5µm process based probabilistic inverter with
the TSMC 0.25µm variant, as shown in Figure 7:to ob-
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tain the same probability valuep with a fixed RMS

value of the noise, less energy is consumed as the fea-
ture size decreases. For example, forp = 0.9, the amount
of switching energy consumed by theAMI 0.5µm in-
verter is190.6fJ, whereas it is69.7fJ in case of theTSMC

0.25µm inverter. This difference is mainly due the capac-
itance scaling between the two technologies. Thus both
of the laws (see Section 4.2) are preserved across tech-
nology generations while the absolute values scale as
anticipated by Moore’s Law.

5. Realizing a Probabilistic Inverter with
Limited Available Noise

As mentioned in Section 1, noise is a paramount de-
sign challenge in sustaining Moore’s Law, and the result-
ing unstable or probabilistic behavior will be a natural fea-
ture of deep sub-micron and nano-scale technologies. Us-
ing such devices as a basis for realizing low energy and
fast circuits for executing probabilistic algorithms is the
basic motivation for us in studying such probabilistic de-
vices. While this naturally induced probabilistic behavior
is inevitable for future technologies, to study the impact
of noise and the probabilistic devices in technologies cur-
rently available to us involves “approximation” of this be-
havior. To clarify this notion of an approximation, issue
(as shown in Section 4.2) to produce a probabilistic in-
verter withp = 0.7 using aTSMC 0.25µm technology, we
need a noise source with anRMS value of0.8V (see Fig-
ure 3). However, the available noise source that we study
in this paper has anRMS value of 12mV (the thermal noise
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Figure 8. Amplifier circuitry.

of the 10GΩ resistor within the bandwidth of the system
shown in Figure 8). Therefore, in order to achieve the ap-
proximate value ofp = 0.7, from the first and the second
laws, we also need an amplifier circuitry that raises the
RMS value of noise input to the inverter. Figure 8 shows
such an amplifier design that we verified using circuit sim-
ulations in HSpice also withTSMC 0.25µm technology.

Specifically, our design involves a transconduc-
tance amplifier, which is designed to operate in the
sub-threshold region to minimize the energy con-
sumption due to amplification. Thus we amplify the
thermal noise across the resistorR (shown in Fig-
ure 8) which serves as a thermal noise source. In order
to be able to tune the subthreshold amplifier, we in-
cluded five bias signals in the design. Referring back to
Figure 8, the signals denoted asdcoffset andhpbias con-
trol the DC offset at the output of the subthreshold am-
plifier. Also, the signal denoted asswitchbias controls
the DC operating points of the transistors M3–M6. Fi-
nally, the signal denoted asbias controls the bandwidth
and the current consumption of the amplifier. The cir-
cuit simulations in HSpice have shown that the DC gain
of the sub-threshold amplifier is 45.91dB, while the band-
width (at the 3dB point) of the amplifier is 1MHz. The
energy consumption of the amplifier is 221fJ per switch-
ing step, where switching occurs with a period of1µs
and corresponds to the 1MHz constraint bandwidth im-
poses. Using this integrated amplifier based probabilistic
inverter design, we will now demonstrate significant en-
ergy as well as performance gains at the application
level—our goal in innovating probabilistic switches.

6. Energy and Performance Savings for
Probabilistic Applications

We quantify the impact of using a probabilistic in-
verter to solve the minimum vertex cover problem
(which is well-known to be NP-complete), using aran-
domized (or, in our terminology, probabilistic) neural
network algorithm following Gelenbe [2]. Such a net-
work includes nodes (neurons) whose potentials are
incremented or decremented, respectively, by the in-
coming positive or negative signals. Based on the
magnitude of the signals, the nodes “fire” and this fir-
ing is determined by a Poisson process. Note that this
algorithm differs from the standard neural network algo-
rithm in the way the mechanisms controlling the firing
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work: in the context of randomized neural network algo-
rithm that we use, firing decisions are performed proba-
bilistically from a Poisson distribution.

To realize a highly energy and performance (running
time) efficient implementations of this algorithm using a
probabilistic inverter, we have devised a custom architec-
ture that consists of a set of probabilistic inverters that in-
clude the subthreshold amplifier shown in Figure 8 (and
hence, the energy and time consumed by it), and a counter.
This custom extension is accessed from a low-power em-
bedded microprocessor, the StrongArm SA-1100 as if it
were a (probabilistic) co-processor. We performed the
energy and performance profiling of the whole applica-
tion using the Trimaran infrastructure [26] for architecture
level modeling, and Jouletrack [23] for energy estimation
of the StrongArm SA-1100. Here, the energy is measured
in Joules, and the performance, akin to delay in circuits, is
measured in cycles. The energy consumption of the prob-
abilistic co-processor is derived from the HSpice simu-
lations. To determine the benefit of using the probabilistic
inverter, we compared the energy and performance figures
with those for the same application using StrongArm SA-
1100—in this case, the pseudo-probabilistic source is im-
plemented in software and thus, the entire application is
executed using StrongArm SA-1100 in isolation.

Figure 9(a) shows the improvements achieved through
the energy-performance (product) metric for differ-
ent neural-network sizes. As seen in this figure, a network
with 70 nodes for example realized using our probabilis-
tic co-processor and StrongArm SA-1100, can achieve
a striking factor of 288 improvement in the energy-
performance product, compared to the case wherein the
same application is executed on StrongArm SA-1100
only. Figure 9(b) shows the improvement to the perfor-
mance ratio (speedup) alone, which is17 for the same
network size.

The gains from our approach are due to energy savings
obtained by using a low-cost probabilistic inverter pro-
ducing truly probabilistic bits, instead of using pseudo-
randomness via software based technique run on a con-
ventional microprocessor, as well as by being able to com-
plete the execution of the application much faster and
hence with a higher performance compared to any de-
terministic execution. Our approach could be a basis for
an entirely novel approach to realizing highly efficient
(energy×performance) realizations of classes of applica-
tions: decision making problems using Bayesian networks
(e.g, intensive care patient monitoring, remote sensing im-
age retrieval, printer troubleshooting), classification prob-
lems using k-nearest neighbors algorithm (e.g., pattern
recognition, spoken alphabet recognition), probabilistic
routing, simulated annealing, and other applications that
inherently admit a probabilistic component.

7. Remarks and Next Steps

In this paper, we have presented an extensive character-
ization of two basic laws governing the behavior of a prob-
abilistic inverter, based on a study of input- and output-
coupled thermal noise, as well as the effects of power-
supply noise. These two laws provide a foundation for the
design of ultra-low energy and fast realizations inCMOS

for probabilistic algorithms. As preliminary evidences we
demonstrated these benefits in the context of a probabilis-
tic neural network solving the NP-complete vector cover
problem in graphs.

As devices feature sizes scale down into the nano-
regime, noise and the concomitant interference become
significant, and are increasingly viewed as an impedi-
ment to sustaining Moore’s law. Here, by using noise as
a resource—through probability-energy laws, as far as we
can determine, for the first time—we have provided a
framework for using the probability of correctnessp as an
explicit design parameter. Furthermore, this explicit char-
acterization encompasses a relationship to energy, which
poses yet another serious impediment toCMOS technol-
ogy scaling.

Essentially, we are able to show that while uncon-
trolled noise is an impediment todeterministic designs—
and numerous efforts are underway to combat this issue—
controlled and well-understood noise can be an asset in
realizing probabilistic designs of value to classes of prob-
abilistic algorithms. However, in currently and readily
available technology, noise magnitudes and their behav-
ior might not be sufficient to realizing any particular value
of p that an application might need. Thus, if the bene-
fits of probabilistic devices from an energy and perfor-
mance perspective are to be realized using currently avail-
able technology—AMI 0.5µm and TSMC 0.25µm being
our candidates for validating this idea—the noise attribute
might have to be amplified. Thus, to facilitate immediate
use of our approach, in this paper, we also provide a de-
sign and a detailed validation of an integrated structure
that includes a (subthreshold) amplifier that is coupled to
an inverter. This resulting composite structure is shown, in
the context of probabilistic neural networks, to be signifi-



cantly energy and performance efficient—even after pay-
ing the penalty for noise amplification—compared to a
conventional deterministic realization of these networks
on a low energy microprocessor executing without the
benefit of probabilistic switches. While using such a com-
posite structure as a “proof” of concept for the utility of
probabilisticCMOSand impressive energy savings of such
devices, we expect more energy savings in the nano-scale
regime where available noise is enough to elicit for prob-
abilistic behavior and the amplifier can be dispensed with.
In this context, out energy savings should be viewed as a
conservative approach.

We are currently developing the techniques and meth-
ods from this paper along two dimensions. First, we are
conducting a study to verify the validity of our energy-
probability laws in VLSI device feature sizes at a finer-
granularity than (coarse-grained)0.25µm technology pre-
sented here. Our main reason for choosing this technology
as a baseline is the ready availability to fabricate out prob-
abilistic switches using this technology—a process that is
underway now. Second, we are actively seeking and ex-
tending the suite of probabilistic applications which our
probabilistic (CMOS) switching technology can be applied
to yield ultra-low energy and high performance execution
substrates.
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