Computational Proof as Experiment:
Probabilistic Algorithms from a
Thermodynamic Perspective™

Krishna V. Palem

Center for Research on Embedded Systems and Technology,
Georgia Institute of Technology, Atlanta GA 30332, USA.
palem@ece.gatech.edu
(http://www.crest.gatech.edu)

Abstract. A novel framework for the design and analysisoiergy-awarelgo-
rithms is presented, centered around a determinititevel (Boltzmann) Ran-
dom Access Machir@ BRAM model of computing, as well its probabilistic coun-
terpart, theRABRAM. Using this framework, it is shown for the first time that
probabilistic algorithms can yield asymptotic savings in the energy consumed,
over their deterministic counterpart€oncretely, we show that thexpected en-
ergy savingslerived from a probabilistieABRAM algorithm for solving thelis-

tinct vector problenfor bvp for short) introduced here, oveny deterministic
BRAM algorithm grows a€) (nlog (ﬁog(n)» even though the correspond-
ing deterministic and probabilistic algorithms have the same (asymptotic) time-
complexity of@(n). Also, our probabilistic algorithm is guaranteed to be correct
with a probabilityp > (1— n—lc) (for a constant chosen as a design parameter). As
usualn denotes the length of the input instance of tiv® measured in the num-
ber of bits. These results are derived in the context of a technology-independent
complexity measure for energy consumption introduced here, referreddg-as
ical work. In keeping with the theme of the symposium, the introduction to this
work is presented in the context of “computational proof” (algorithm) and the
“work done” to achieve it (its energy complexity characterized as logical work).

1 Introduction

The word “fact” conjures up images of a sense of definitiveness in that there is a belief
in its absoluteruth. This notion is the very essence of modern mathematical theories,
with their foundational framework based on (formal) languages such gw¢déate
calculus Thus, following Whitehead and Russell's seminal formalization of mathemat-
ical reasoning embodied in their Principia [32], the very notion of the consistency of an
axiomatic theory disallows even a hint of a doubt about a fact, often referred thes a
orem(or its subsidiaryjemmag in modern as well as ancient mathematical thought. The

* This work is supported in part by DARPA under seedling contract #F30602-02-2-0124.
** A version of this work appeared in The ProceedingSleé International Symposium on Veri-
fication (Theory and PracticeYaormina, Italy, Jun 29-Jul 4, 2003.

modern foundations of verification as proof, with emphasis on its automatic or mecha-
nized form, applied to problems motivated in large part from within the disciplines of
computer science and electrical engineering (see Manna for example [13, 14]) are also
bound in essential ways to this notion of an absolutdeterministictruth.

A concomitant to this absolute notion of truth, and a significant contribution of the
mathematical theory of computing (referred to in popular terms as theoretical computer
science) is the notion of theomplexityor equivalently, the “degree of difficulty” of
such a proof. Thus, starting with Rabin’s [23] work as a harbinger with further con-
tributions by Blum [1], the notion of a machine independent measum@woiplexity
led to the widely used formulations of Hartmanis and Stearns [7]—essentially within
the context of a deterministic mechanistic approach to proof. Here, a deterministic
algorithm—equivalently, any execution of a Turing machine’s program [29]—upon
halting, is viewed as proving a theorem or fact, stated as a decision problem. For ex-
ample, determining the outcome of the celebrdtalting problem [14, 29] would con-
stitute proving such a theorem in the context of a given instance, where an answer of
ayeswould imply that the Turing machine program given as the input would halt with
certainty.

Both this notion of absolute truth as well as the deterministic (Turing machine
based) approach to arriving at it mechanically are subject to philosophically signifi-
cant revision if one considers alternate approaches thaiocdceterministic. A critical
first step involves non-deterministic approaches with the foundations laid by Rabin and
Scott [25]. Based on these foundations, Cook’s [4] (and Levin's [12]) characterizations
of NP as a resource bounded class of proofs, whose remarkable richness was demon-
strated by Karp [9], elevated NP to a complexity class of great importance, and the
accompanying P=?NP question to its exalted status. Here, while the approach to prov-
ing is not based on the traditional deterministic transition of a Turing machine, the
meaning of truth one associates with the final outcoraeeeptor reject—continues to
be definite or deterministic.

Moving beyond nondeterminism, the early use of statistical methods with empha-
sis on probability can be found in Karp’s [10] introductionaferage case analysis
Compelled by the need to better understand the gap between the empirical behavior
and the results of pessimal (mathematical) analysis of algorithms (or a determination of
lengths of proofs in our sense), in Karp’s approach, the input is associated with a prob-
ability distribution. Thus, while the proof itself is deterministic, its difficulty, length, or
more precisely itexpected time complexitydetermined by averaging over all possible
inputs.

A striking shift in the notion of proof as well as the truth associated with it em-
anated from the innovation gfrobabilistic methods and algorithms. In this context,
both the method or “primitive” proof-step (of the underlying program) as well as the cer-
tainty associated with the proof undergo profound revision. Schwartz [26] anticipated
the eventual impact of the role of probability in the context of these influential devel-
opments best: “The startling success of the Rabin-Strassen-Solovay (see Rabin [24])
algorithm, together with the intriguing foundational possibility that axioms of random-
ness may constitute a useful fundamental source of mathematical truth independent of,
but supplementary to, the standard axiomatic structure of mathematics (see Chaitin and

Schwartz [3]), suggests that probabilistic algorithms ought to be sought vigorously.”
Thus,in this probabilistic context, both the deduction step as well as the meaning of
truth are both associated with probabilities as opposed to certairfiesconvenience,

let us refer to these as probabilistic proofs (or algorithms when convenient).

With this as background, we now consider the long and fruitful relationship be-
tween the notions of proof in the domain of mathematics and its remarkable use in the
physical sciences over the past several centuries. Historically, mathematical theories
have served remarkably well in characterizing and deducing truths about the universe
in a variety of domains, with notable successes in mechanics (classical and quantum),
relativity and cosmology, and physical chemistry to name a few areas—see von Neu-
mann’s [31] development of quantum mechanics as a notable example. In this role,
knowledge about the physical world is derived from mathematical frameworks, meth-
ods, and proofs, which could include the above mentioned algorithmic form of proof as
well. Thus, in all of the above endeavors, tfieection for deriving knowledges from
(applying) mathematict® (creating knowledge about) physical reality. By contrast, in
this work, we are concerned with the opposite directidrem using computational de-
vices rooted in the reality of the physical universe such as transistoestablishing
(computationally derived) mathematical facts or theories. Let us, for convenience (and
without a careful and scholarly study of the possible use of this concept by philosophers
earlier on), refer to this opposing perspective agwersal of ontological direction,
wherein the physical universe and its empirical laws form the basis for all deduction
of mathematical facts through computational prodd clarify, the reversal in “onto-
logical direction” which this work (and earlier publications of this author on which it
is based [18, 19]) explores, refers to the fact that the physical universe and its laws as
embodied in computing devices form the basis for (algorithmically) generating math-
ematical knowledge, by contrast with the traditional anmbositedirection wherein
mathematical methods produce knowledge about the physical world.

To reiterate, in all of our work, the meaning we associate with proof will be that
associated with the execution of a Turing machine program, and we will be interested in
the “complexity” of realizing such a (mechanized proof) in the physical universe. Thus,
to reiterate, we will consider a concrete and physically realizable form of a proof—
such as that generated by a theorem-prover executing on a conventional microprocessor,
or perhaps its Archimedian predecessor—as a physical counterpart of Putnam’s [22]
“verificationist” approach by contrast with (as observed by him [22]) the “Platonic”
approach with “evidence that the mind has mysterious faculties of grasping concepts”
(or “perceiving mathematical objects...”).

Continuing, a first and important observation about the universe of physical objects
such as modern microprocessors is that their inherent behavior is best described statis-
tically. Thus, all notions ofleterminismare “approximationsin that they are only true
with sufficiently high probability(See Meindl [15] and Stein [27] for a deterministic
interpretation of the values 0 and 1 within the context of switching based computing
through electrical devices, to better understand this point.) Specifically, the approxima-
tions to determinism are derived by investing (sufficiently) large amount of energy to
make the probability of error small [15]. Building on this observation, the work de-
scribed in this paper characterizes the (somewhat oversimplified in this introduction)

fact that the process of computational proof entails physical “wavkich in turn con-
sumes energyescribed in its most elegant form through statistical thermodynamics.
The crux of our thesis is that since nature at its very heart, or our perception of it as
we understand it today is statistical at a (sufficiently) small, albeit classical scale—
side-stepping the debate whether “God does or does not play dice” (attributed to Ein-
stein to whom a statistical foundation for physical reality was a source of considerable
concern)—the most natural physical models for algorithmic proof or verification us-
ing fine-grained physical devices such as increasingly small transistors, are essentially
probabilistic, and their energy consumption is a crucial figure of méritt complete-
ness, we reiterate here that following the principle of reversal of ontological direction,
we are only concerned with the discovery of mathematical knowledge via computa-
tional proofs realized through the dynamics of a physical computing device, such as the
repeated switching of semiconductor devices in a microprocessor.

Now, considering the specific technical contributions of this work, in order to de-
scribe and analyze these physically realized proofs or algorithms, we introduce (Sec-
tion 2) a simpleenergy-awareanodel for computing: théit-level (Boltzmann) Ran-
dom Access Machiner BRAM , as well as its probabilistic variant, tiaBRAM (in
Section 2.4). Specifically, each primitive step or transition of these models involves a
change of state—realized in a canonical way through a transition function associated
with a finite state control as in Turing machines [29]—that mirrors a corresponding and
explicit change in some physically realizable device. One variant of such a realization is
through the notion of awitching stepl5, 19] whereas an earlier more abstract variation
is through the notion of aamulation[18] of the transition in the physical universe.

Any computational proof (or equivalently algorithm) described in such a model has
an associated technology-independamrgy complexityintroduced asogical workin
Section 3 for the deterministic as well as the probabilistic cases. Historically, the inter-
est and subsequently the success of probabilistic algorithms within the context of algo-
rithm design, was to derive (asymptotically) faster algorithms. Assuming that all steps
take (about) the same amount of energy, traditional analysis based on time-complexity
will trivially imply that a probabilistic algorithm might consume less energy, because
it computes and solves problems faster—shorter running time implies lesser switching
energy. In contrast to these obvious advantages, we show in Section 4 that the energy ad-
vantages offered by probabilistic algorithms can be more subtle and varied. Concretely,
we prove that for thalistinct vector problenor bvp with an input ofn bits, a proba-
bilistic algorithm and its deterministic counterpart take the same number of (time) steps

asymptotically, whereas the probabilistic approach yieldsrgy savingshat grow as
n— oo,

Briefly, solving theDvP involves computationally (in therRAM or RABRAM model)
proving that a givem— tuple defined on the set of symbd]6,1} has the symbol 1
in all of its n positions; the answer to this decision question (or theoreng if
indeed all positions of the input— tuple have the symbol 1 and the answenNi3
otherwise. In this paper, we are interested in the follondegsevariant of thenpvp :
the inputn— tuple either has no 0 symbol in it, or if it does have a 0 symbol, it has
log(n) such symbols. For this (dense) version of ther problem, which for conve-
nience will be referred to as thevp problem in the sequel (defined in Section 4.1),

we prove that a novadrobabilistic value amplificatiomlgorithm, proves the (algorith-
mic) theorem, or resolves the associated decision question with an error probability
bound above byj—c (for a constant chosen as a design parameter) usinggmected

(2n+log*(n))kTIn (2 [1— s'og”]) Joules, where & ¢ < 1 andk > 2 are constants.

n
The algorithm and its associated analysis are outlined in Section 4. In an earlier publica-
tion, this author proved [18] that any deterministiRam algorithm for solving theovp
consumes at leagen—log(n) 4 1)k T In2 Joules; this is a lower bouhdBy combining
these two facts, we show that through the use of the probabilistic algorithm introduced

here, the expected savings in energy measured in Joules gr@\swdag (ﬁog(n))) ,

for a constant & € < 1, and for am bit input to thepvp. Thus both the energy savings

as well as the error probability are respectively monotone increasing and decreasing
functions ofn. To the best of our knowledge, this result is the first of its kind that estab-
lishes an asymptotic improvement in the energy consumed.

These models and analysis methodology build on the following results (from [17,
19]) that bridge computational complexity and statistical thermodynamics for the first
time: a single deterministic computation step, which corresponds to a switching step,
consumes at leagfT In(2) Joules, and this is a lower bound. Furthermore, using proba-
bilistic computational steps (or switching), the energy consumed by each step is bound
above by T In(2p) Joules, where p> % is the probability that the transition is cor-
rect; (1— p) is the per-step error probabilityAlso, k is the well-known Boltzmann’s
constant,T is the temperature of the thermodynamic system, and In is the natural log-
arithm. In all of this work, the physical models are based on the statistical and hence
probabilistic generalizations of switches formulated originally by Szilard [11] within
the context of clarifying the celebrated Maxwell's demon paradox [11, 30]. A detailed
comparison and bibliography of relevant work from the related field referred to as the
Thermodynamics of Computing can be found in [19]. Additionally, Feynman [5] pro-
vides a simple and lucid introduction to the interplay between thermodynamically based
physical models of computing, mathematical models, and abstractions such as Turing
machines.

2 The Bit-level (Boltzmann) Random Access Machine BRAM

In this section, we will introduce our machine model for computing, exclusively oper-
ating in thelogical domain. However, to reiterate, a fundamental theorem of this work

is that each of itstate transitions—explained below—can be associated with definite
amounts of energy expenditure. Furthermore, this energy consumption can also be pre-
cisely related to the inherent amount of energy needed to compute, using this model.
Significantly, aBrRAM model will allow us to abstract away all aspects of the underly-
ing physics and characterize energy purely in the world in which models of computa-
tion such as Turing machines are realized. We anticipate this as being helpful from the

1 while the analysis is based on the technology-independent notion of logical work, we present
the corresponding energy consumption results implied by idealized physical devices switching
at thermal equilibrium, referred to as a quasistatic process in classical thermodynamics [28].

perspective of algorithm analysis and design—an exercise whichpmaa, can be
decoupled from the specificities of physical implementations.

The BRAM however does provide a bridge to the physical world through the en-
ergy costs associated with the transitions ofiiige state contro(defined below). This
bridge to the world of implementation and energy allows us to define the novel complex-
ity measure ofogical work as detailed in Section 3, which characterizes the “energy
complexity” of the algorithm being designed.

2.1 Informal Introduction to a BRAM

Informally, aBRAM (a bit-level random access machfjéhas aprogramwith a finite
number ofstates The transition from a current state to the next involves evaluating the
associatedransition functionleading to the “reading” of one or more bits of an input
from a specific memory location, transitioning to a new state and writing a new bit value
in a designated memory location. The number of bits read is dependent of the size of
thealphabet to be defined below. Every execution starts in a unigoerT state, and

halts upon reaching a uniq@aopstate.

To extend such models to account for the energy consumed, we defirana
(somewhat) formally. For a computer scientist, definimgam based on well-understood
elements of a random access machiner@®K) is elementary; however, we define it
here for completeness. The textbook by Papadimitriou [21] provides a rigorous and
complete introduction to models such as Turing machines and random access machines
including definitions of conventional measures of complexity for representing time and
space. This book also provides a comprehensive introduction to the numerous well-
understood interrelationships between classes of (time and space) complexity, and can
serve as an excellent guide to the topic of defining models of computation in classical
contexts, not concerned with energy.

2.2 Defining aBRAM

A BRAM consists of several components, which will be introduced in the rest of this
section.

The BrRAM Program Following convention, th@grogram is represented as a five-
tuple {PC,%,R 4,Q}. Note that conventionally, variants of the program are referred to
as théfinite state contral

The Set of StatesPC is the set of states. Each state € PC has designated loca-
tions inmemory defined below, that serve respectively as its input and output. Without
loss of generality, let the states be labeled, 3, ..., |PC|. The setQ consists of three
special states§TART , STOPandUNDEFINED-STATE not in PC.

The Alphabet of therRAM - X is a finite alphabet, and without loss of generality,
we will use the sef{1,2,...|Z|}, which includes the empty symbglto denote this

2 Given aBRAM’s eventual connection with energy and its statistical interpretation, one can also
interpret the acronym to mean a Boltzmann random access machine.

alphabet. From the standpoint of algorithm design, in most cases, it suffices to work
with an alphabet drawn from the set= {0, 1}, which is the case throughout this paper
whenever 8RAM (or aRABRAM) is used to analyze an algorithm. However, we note

in passing that the size of the alphali®t has important consequences to the precise
energy behavior of the associated state transifiofberefore, the contexts wherein the
more restricted alphabet is used need to be distinguished from those contexts in which
the more general alphabet of si2¢ > 2 is used.

The Address Registers of the States in-PThese registers are places where the
input and output addresses of a state are stored. In conventional computer science and
engineering parlance, BRAM uses a form of accessing memory that is referred to
asindirect addressingWe shall return to a discussion of the role of these registers
in Section 2.3. Theddress registergepresented by the sBtis partitioned into two
classesR" and R°; these are both sets (of registers) where each reg’n@l@ RN
(p‘j’Ut € R is a (potentially unbounded) linearly ordered set of elements referred to as
cells<sj1,Sj2,...,8)k > (<tj1,tj2,...,tjk >). Each of the cells (1)) is associated
with a value from the s€lt0, 1, @}. We note that even though the overall alphabet may be
of size|Z| > 2, each cell in the registers either stores a single bit, or is empty. Further-
more, if the value associated with such an elemegqt(empty or not defined) for some
value ofk’ < k, then the value associated with afl (tj) is @ for all k' <k” <k;
thus, in the general case, the values stored in any of the address registers are a contin-
uous “run” of values from the s€0,1} followed by a run, possibly of length zero, of
the symbolp.

We associate the paqixij“ e R" and p‘jJUI € R°!" uniquely with the statgoc;. For a
given state, intuitively, these pair of registers yield the addresses from where the input
o is to be read, and to where the outpmxit(if any) is to be “written” respectively.

It is important to note that these addresses can in fact be the registers themselves. The
potentially unbounded lengths of the registers denote the fact that the range of addresses
being accessed (corresponding to the length of a Turing machine’s tape for example)
could be unboundéd

The Transition Functior We are now ready to define the transition functyn
which will play a central role in characterizing the energy behavior of computations. In
its most general form, a transition function is based on an alphabet dbsize2.

Syntacticallyd : (PCU{START }) x ¥ — (PCUQ—{START }) x Z is the transition
function. Wheneved(pg,o € %) = (pcj,0’ € X), we say thab transitions frompg to
thenext-state pecwith o as input and’ as the output.

Some useful remarks about the transition function follow. First, we note that the
stateUNDEFINED-STATEis in the range 0d. Given a statgg, letv; denote the number
of symbols fromZ for which d transitions into a state iRCU{ sToP }, as opposed
into the UNDEFINED-STATE . For the remainind|Z| — vj) symbols,d transitions into
UNDEFINED-STATE . (This is one way of defining transitions of varying “arity}’ as-
sociated with stat@g, thus allowing states with varying number of successors with
an alphabet of fixed size). In this setting, it is trivial to verify that given an alphabet

3 For convenience, to avoid the usefdffunction, |Z| is assumed to be a power of 2 throughout.
4 In any terminating computation, there will be a limit on this bound, typically specified as a
function of the length of the input [21].

%, there is no loss of generality in definidg with respect to a stats), such that the

first vi symbols from the linearly ordered sEtrepresent defined transitions whereas
symbolsvi1,Vii2,...|Z| represent undefined transitions. These notions are illustrated
in Figure 1. In the sequel, we will (mostly) be concerned v&ttam programs whose
transition functions have a maximum arity of two. (It is trivial to verify that @mam
program with a transition function of arity more than two can be replaced vatha
program with a transition function whose maximum arity is two although its energy
behavior need not be preserved). Furthermore, any transition function with an arity of
two will henceforth be referred to as tB®ANCH instruction®.

O
1
Input symbols 1,2,...n; are legal

2 ;O \. 1, successors
(o]
o
o

) 4

pcC

Current state

J

Fig. 1. lllustrating the legal and illegal cases of a transition function with an alphabet of
size|Z| > vj

For convenience, drawing upon graph theoretic terminology, let us ref@rde
thefanoutof pg and furthermore, refer to stap’, as beinga successoof pg if and
only if there exists a symbat € X such tha®(pg, o) yields pc; as the next state. Let
successokglenote the set dll successors of stafeg from PC.

The Memory EachBrRAM has aMEMORY consisting of the set df = (2|PC| +1) lin-
early ordered sets tvanks each potentially unbounded. As shown in Figure 3, elements
I and(l 4+ 1) in MEMORY are denoted Mand M ;1 where 1< | < 2|PC]| are respectively
used as registe” € R" andp®" € R°Y, wherei = ('é]. Additionally, the last set M
of MEMORY, denotedM is a potentially unbounded skt =< my,my,...,mg >. Each
cell m; is associated with an element from the §@t1, ¢}. Informally, M is the set of
locations where the inputs and outputs values being computed Ierie “program”
are stored—it is the workspace.

Recall that the input arguments to the transition func@oare the current state
pc and a value from the alphabEt Since the input can only be a symbol frdma
maximum of lod|Z|) bits are needed to store this vakieTherefore, for convenience,

5 States associated with transition functions of akity 2 can be referred to as-way branches
of course.
6 Unless specified otherwise, all logarithms written as “log” are to the base two.

Successors of PC

@ Input Transition to
1 pc',
2 c'
Current state PC
3 pc'y
4 pc',
Alphabet & ={1,2,3,4} U f

Fig. 2. A state, its successors and related transitions

each M will be partitioned into “locations” whertcation L; for J > 1 is made up of
log(|2]) constituentells; lets= (log|Z|(J —1)). ThenL; =< Ms;1...Msij0g|s)) >

The Memory Access Unit The value at a location b is the concatenation of the
values in its constituent cells. Since the value of a location, when defined, is a natural
number from the rangél, 2,...|Z|}, it is determined by a binary interpretation, of the
concatenation of symbols from the & 1}. If one of the values associated with any
of the cells inL; is @, then the value of this location is undefined.

A VALUE in MEMORY is a function from(N* x N*) into the seE U { ¢} defined as
follows:

1. If 1 <1 < 2|PC| namely if indexl corresponds to a register, themLue (1,J) =§
where § is the value at thE" location of M.
2. If I =M, VALUE (M,J) = § is the value at thé™" location (;) of M.

The functionvALUE that is implemented through tihheemory access urof aBRAM
yields the value associated with ti#® location in one of the registers R or at the
locationL; from M depending on the value bf

Theaddressn registerpin (or pUY is the unique non-negative integer whose value
is u. ThemAu is a function that uses these (pair of) addresses as an arguBteetitng
from Section 4and throughout the rest of the paper we will consider an alphabet where
|Z| = 2, and a unary representation of addresses. Alternate alphabet sizes as well as
binary representations will be the topic of future study as discussed briefly in Section 6.

We define functionseadandwrite with addresses as their domain. Thus, using con-
ventions inspired by Turing machines as originally defined [B4d (I,LOCATION)
andwrite (X,1,LOCATION =+ 1) are respectively used to read the value or (over)write
the values associated with the constituent cells of locdtiogm M. The MAU is the

10

J® 1 2 3 4 .. 2|PC|1 2|PC| L=2|PC| +1
r 1in r 1out r 2in r zom r PCm r pcOUt Iog a bits
locationl. Scratch/
Working
location2
Memory
o o [o] o o o
8 8 8 8§ | °°° | 8 3 §

H_)

Addresses for PC, Addresses for PC, Addresses for PC,,
Fig. 3. The Memory Structure of thBRAM

union of theread andwrite functions. It will be used to evaluate the transition function
as explained in Section 2.3 below.

2.3 The Computation of aBRAM

Building on the elements introduced above, we will now introduce the operational be-
havior of aBRAM . Given an arbitrarsRAM program®, initially, all computations start

in the START state. All the registers and the memory cells are initialized from the set
{0,1,¢}. It is convenient to define the operation of tBRAM inductively as follows.

The START state transitions to, without loss of generality, state at which point the
computation starts; the concatenation of the cellslinis referred to as the inputto

P. Now, statepc; is said to be theurrent state More generally, lepg be the current
state. The transition function is evaluated with the spatec PC as its input argument.

Recall that the input to the transition function is also a symbol figrwhich is
accessed using = read(M,LOCATION), whereLOCATION is the address stored in
unary inp}”. These notions are illustrated in Figure 4.

Continuing with the evaluation of the transition functidfpq, o) yields thenext
state pg which then becomes the current state. Furthermore, the output syrhiol
{0,1} is written (usingwrite) into the LOCATION whose address is stored in register
pPU'. The computatiomaltswhenevempg, = sToP.

More generally, &omputationC is thesequencef state transitions; = start —

S —...—...Sp=stopwhererc N*. Givens = pqg to be the current state during the
evaluation of the transitiors_ 1 = pg- is the next state. A computationliegyal if and
only if, during the evaluation of the transition function wéh= pg as the current state,
the addresses 'p\’n andp],; as well as the input determined by evaluatiagd, are all

11

Next state pc;. Output value s *

Input s
d(pc,, s)
Evaluate
N
~
READ NEXT STATE? CURRENT STATE = pc,
‘\ OUTPUT VALUE /1 WRITE s’

Location Location

from I |OUt

from rli”
Fig. 4. lllustrating the Evaluation of the Transition Function

defined. The computation ibegal otherwise. In the sequel, we will be concerned with
legal computations only and will, for convenience, refer to them simply as computa-
tions.

Fact 1. All computations of @RAM program® with input I are the identical. Formally,
given any two computation§y = §; = START — $ — ... — ...Sy = STOPand G =

§1 =START— & — ... — ... = sTOPgenerated by prograrfi with inputs / and7,
sj = §j wheneverl = 1.

2.4 The RandomizedBRAM Or RABRAM

A RABRAM is identical to aBRAM in all aspects except that the transition from the
current state to the next state occurs probabilistically. There are alternate forms of
defining the particular approach through which this probabilistic transition is intro-
duced into the formulation of &ABRAM. In our approach, the transition functién

(a BRANCH) from Section 2.2 is extended to a transition funct@n Let P be the

open interva(%, 1). Now, &;:((PCU{START }) x Z) — ((PCUQ— {START }) x Zx P)

is the probabilistic transition function. Consideriig= {0,1}, let pc; and po. be the
possible successors @i, where j = k is allowed. For% < p € P<1, whenever

& (pG,0=0) = (pcj,0’ € Z, p; € P), dtransitions frompg into thenext-state pewith

o = 0 as input, and witlo’ as output, with probability;, and to statgo, with o’ as out-

put with probability(1— p;). Note thato’ is the symbol fron® that is output whenever

O yields a transition from stateg to next-statgg. The transition function witlo = 1

can be defined accordingly. Let us refer to this branch instruction as a probabilistic
BRANCH with probability parametep;.

12

Three clarifications are in order here. First, in the current definition ok tBERAM,
for simplicity, the probability parameter is defined to be independent of the input sym-
bol. This is consistent with the definition of randomized algorithms where the source of
the random bits isot biased based on the input. Second, our definition oRkEBRAM
does allow for different probability parameters associated with different state@.in
Finally, the probability parametqy, can be restricted to range only fro§1to 1 be-
cause any transition of the ford (pc,o = 0) = (pcj,0’ € Z,pi < %) immediately
impliesd; (pg,0 = 0) = (p&, 0’ € Z,% < pl <1) wherep/ =1—p;.

An equivalent representation can couple the deterministic transition function with a
coin-toss and base the outcome on the input symbol and the outcome of the coin-toss
based on a previously specified probability distribution on the set of successugs of
This notion of a randomized transition function is shown in Figure 5.

Input Symbol | Current State | Deterministic Transition | Randomized Transition

0 pc, pc pc, with probability p,
pc, with probability (1- p;)

1 pc, pc, pc, with probability p,
pc; with probability (1- p;)

Fig. 5. The transition function of a probabilistitRANCH where the output symbols are
uniquely associated with the next state

3 Logical Work as a Measure of Complexity

Recall that a computation of trERAM program® with an inputI is the sequence of
state transitiong =s; = START — S — ... — ...Sy=STOP, as defined in Section 2.3;
s = pag € PCfor some indexX. Thedeterministic logical workD done by computation
Cis’

ﬂo:ﬂﬂ$

whereF (5) is the fanout of statg. States represents aRANCH instruction whenever
F(s) > 1. Letl, denote the set of all inputs 18 of n bits in length andC,, the corre-
sponding set of all computations. Tlogjical workdone by thesRAM program®? with
lengthnis

7 Because of the natural logarithmic relationship between the fafgir and energy, logical
work is specified as a product so that it can be naturally related to energy consumption in the
corollary below.

13

L(2,n) = MAX;cec, (D(C))

In earlier work [17, 19], this author established the following theorem in the context
of an idealized physical device at thermal equilibrium everywhere.

Theorem 1. The energy consumed in evaluating the transition function in the context
a state pcof anyBrRAM program? is at leastT In(F (s)) Joules.

It follows that

Corollary 1. For a deterministicBRAM computation, the energy consumed by a pro-
gram 2 with inputs of length n is no less thaT In(L(2,n)) Joules.

Proof. Immediate from Theorem 1, the fact that energy is additive and the identity
T Tt
In (ﬂHs)) = i;ln(l:(sa))
L]

Also, we recall (from [17,19]) that

Theorem 2. The energy consumed in evaluating the transition function in the context
a state pcof anyRABRAM program®x can be as low a&T In(F(s)p) Joules, where
p is the probability parametét.

We note that in the context of computations realized throughBrAM each state
transition is probabilistic. Therefore, Fact 1 does not apply and different computations
are possible with the same input. Thus, given a fixed inpthere exits damily of
computation<C; where each computatiofi € C,; has a probabilityg. of occurrence.

In this case, the notion of logical work has to be modified wheredMidX function is
applied over theexpectedength of the probabilistic computations frog;. We define
the expected logical workor an input! to be the weighted sum (by the probabilities
qc) of the fan-outs of the computations corresponding.to

R(C,)= Y a*D(C)
VCEC|
The probabilistic logical workof a RABRAM program®, is defined to be

LR (Pg,Nn) =MAXc, e{R(Ci)}

whereC is the set of all trajectory families associated witk 1.

Let Cmax denote the family of computations definiugg (P ,n) corresponding to
an input Imax

8 Here the expression “as low as” is meant to imply an upper bound in an idealized system at
thermal equilibrium everywhere, which can be realized by a quasistatic process. For exam-
ple, these estimates can be potentially improved using “information theoretic compression”
following Zurek [33].

14

Corollary 2. For a RABRAM program Py, the expected energy consumed with input
Imaxcan be as low as
T 5 alin(D(0)
VCECmax

In the general case, thegical work of an algorithm£ might consist of determin-
istic as well as probabilistic logical work components. As usual, given the nature of
asymptotic analysis and in this hybrid case, it will be sufficient only to consider the
dominant term.

4 Design and Analysis of Algorithms in theBRAM and the
RABRAM

In this Section, we will demonstrate the use of the models described in the previous
sections, in the context of analyzing energy savings using probabilistic algorithms. Our
problem of choice will be thelistinct vector problenor bvp for short, introduced in
Section 4.1. In Section 4.2, we will outline a probabilistic algorithm for solving this
problem, whose energy consumed is provably better #mrdeterministic algorithm

for solving thebvp in the BRAM model. To establish this result, we have to prove

a lower bound on the deterministic logical work needed to solve this problem using
any (deterministic)sBRAM algorithm (claimed in Section 5 and proved in this author’'s
earlier work [18]). While the central ideas and some of the details are presented in
the sequel, complete proofs and other implementation specifics that are easy to verify,
will be included in a full-version of the paper. Thus, this paper should be viewed as an
extended abstract. For notational succinctness, we will use the symp&d, m and

nin a new context throughout the rest of this paper, where this reuse will not cause any
ambiguity.

4.1 The Distinct Vector Problembvp

Informally, thepvp is defined to be the problem of determining whether a giveriu-
ple, defined on the set of symba{, 1}, is distinct from amn— tuple which has the
symbol 1 in all of its positions. Formally,

Input: avector T=<t3,tp,...,t, > whereT € {0,1}" such that

1. tj = 1 in alln positions or,
2. t; = 0 for logn values ofi where 1<i <n.

Additionally, a string of symbols with value 1, and len@®UNT is given where the
length is a design parameter which will determine the probability of correctness. In our
caseCOUNT = clogn for an appropriately chosen constanflso the valuenis spec-

ified as acounter

Question: Ist; = 1 for all values ofi in unary, referred to asENGTH, 1 <i<n?

15

Let T denote the set of all possible inputs to ther. A RABRAM program Py
solves thebvp with probability p provided, given an input as defined above, it halts
with a symbol 1 denoting an answer of “yes” to the above question, in a designated
outputcell in memory whenevet = 1 for all values ofi 1 <i < nin T, and with the
symbol O otherwise, denoting the answer “no” with probability no less th&or con-
venience, we will refer to the value in the celitputto be theoutput bit

4.2 A Probabilistic Algorithm PROBDVP

The proposed (probabilisti®aBrRAM algorithm for solving theovpP, PROBDVPiS now
described below and shown in Figure 6. This algorithm revolves around a single crucial
step, described and analyzed as\hkie-amplification techniquieelow; it is a proba-
bilistic “test” for detecting whether or not a given valties 1 (or equivalently 0). For
convenience, all of the algorithms in this section are specified as a type of “pseudo-
code” and not in the more detailedhABRAM (Or BRAM) notation. To the extent neces-
sary, we will specify the extensions for converting these specifications into full-fledged
RABRAM programs.

Algorithm: PROBDVP
1.Fori=1tonDo
2 If t/=LENGTH /Fheobability parameteip)*/
3 continue
4. Else It #£1%
5. VALAMP
6 MAJORITY
7 If output=0
8. Halt
9. Else
10. continue
11. End If
12. EndIf
13End For

Fig. 6. The probabilistiovp algorithm based on value amplification

Value Amplification and Voting for Majority Without loss of generality, let be a
power of 2. Value amplification is the following simple algorithm (Figure 7) performed
on each of the positions af using an auxiliary two-dimensional arrafi, j] of size

16

nx (clog(n)) where 1< i < n, initialized to zero. Here > 1 is a suitably chosen con-

stant. Throughout, lgp = 1 — £%9" wheree < L.

Algorithm: vALAMP

1. While j <COUNT = clog(n)
2 Iftt=0

3. Then seX|i, j] = 1;
4. End If

5. j=i+1

6. End While

Fig. 7. Algorithm to perform value amplification

Let 1<i < nand recall that in ®ABRAM, each step has an associated probability
parametep, the probability that the outcome of a probabilisiRANCH is correct, for
example in the comparison in StdpFigure 7). This comparison is implemented as
a BRANCH with fan-out two and with probability parametpras stated before. In this
case, the following basic fact about the probability of correctness of value amplification
can be derived as stated in Lemma 1 below.

Consider applying value amplification using the value of elemgenthich by defi-
nition is either 0 or 1. Also, upon completion of value amplification with valits out-
puts or “amplified values” are recorded in locations or memory &¢ls X[i, 1], X[i, 2],
---,X][i,clogn]. Letx; denote the number of these locations with value identicél to
For example it; = 0, x; denotes the number of elements or cellXimwith value zero
upon completion of the value amplification step withs input, and vice-versa.

We will first state two useful facts

Fact 2. (Chernoff bound [16]) LeY1,Y>,--- .Y, be independent Poisson trials such that,
for1<i<I,PrY,=1] = p;, where O< p; < 1. Thenfory =5!_ Y, u=E[Y]=5!_; pi
and anyd > 0,

& H
PriY > (14 9)y < (1+5)<1+5>]

As above, lePr[Y > m| denote the probability that eveYitoccurs at leasin times
out of| > mindependent trials, whene denotes the probability of occurrenceYoin
any one trial. That ig; = p; for 1 <i <|. Similarly we definePr[Y’ > m] whereY’ is
associated with probabilitg’. The following useful fact is immediate.

17

Fact 3.Pr[Y > m| > Pr[Y’ > m wheneverp > p/ forall| >0°
Using these facts, we can now prove

Lemma 1. In any single invocation of algorithwaLAamMP with input value tthe (error)
probability that the number of elementsixless tharg logn,

1

Cc
Prixi < =logn| < —
(i < 5logn) <

for all n > 2 and constant§ ande that are design parameters.

Proof. Supposep,”the probability of a per-step error during value amplification be
p=1- % for ¢ > 1 a constant. Also, lgt = (clogn—X;), wherex; denotes the number
of elements or cells iX; with values identical tt. The expected values gfis denoted

by u= Slogn.

Now,

Priyi > glogn] = Prly; > (1+6)§Iogn] (1)

for (14+0) = %for constant’.

From Fact 2
/ §Iogn
ez !
Priyi > (1+9)logn] < | ——5 ()
(5"
2
1
< 3)

for any constant S 1, with an appropriate choice ofandc'.
The error probability1—p) = s"’% < é for n=2 ande < % Thereforee'o% <
(1—p) for anyn> 2 since loghis a decreasing function ime N*. From this and Fact 3,

the bound in inequality (2) above serves as an overestimate to the error proldability.

Intuitively, the basic idea behind value amplification is that whenever the value at a
positiont; is probabilistically tested and found it be 0, its value is “suspect”. In this case,
algorithmvaLAMP performs repeated independent tests on the same bit, and sets the
outputbased on the majority of the tests. The result of an individual test will henceforth
be referred to aseote Thedemocratic-votinglgorithm entitledvwAJoRITY (Figure 8)
accomplishes the goal of counting the total number of votes and settiraythetbit
appropriately, based on a simple majority.

9 With my student Lakshmi N. Chakrapani, a new proof for the above relation has been devel-
oped, which does not use the conventional combinatorial technique.

18

Algorithm: MAJORITY

1. If the number of entries with the symbol 1
in X[i, j]: 1< j < clog(n) is greater thar log(n)
2. Then sebutputto 0 and terminate.

3. Else

4, setoutputto 1 and terminate.

5. End If

Fig. 8. Algorithm to count majority vote

Implementation-issues While a RABRAM implementation of algorithnvALAMP is
immediate—we will defer the discussion of implementing the iteration control to the
end of this section—it is interesting to consider an implementation of algonithm
JORITY in some detail. Specifically, we will propose two alternate approaches for com-
pleteness.

The first approach “combines” an implementation of algoritliuoRITY with
that of algorithmvaLAMP . In this case, each primitivBRANCH instruction will serve
two purposes, as shown in Figure 9. First it is used to test the bit in the inputTrray
Second, whenever the input bit fromis 0 and hence algorithmaLAMP is invoked
(by the overall algorithm referred to as algoritthrROBDVP), it is used to increment
the POINT ERvalue that points to the location where the “next bit” is to be written
in arrayX[i, j]. The input valueCOUNT is used as a unary counter, realized as a sin-
gle BRANCH instruction which will terminate the iteration (Figure 9) when a zero is
detected ilCOUNT afterclogn iterations.

Using this algorithm, it is easily verified inductively that for any value ahere
always exists g > 0 such thak[i, |’ < |] = 1 andX[i, j” > j] = 0. Informally, all the
“1 entries” in rowi of X[i, j] will be contiguous as shown in Figure 10. Thus, in this im-
plementation, the analysis from Lemma 1 immediately implies that upon completion of
value amplification, the “majority” test can be replaced by testing whether the location

X[i,1+ (ﬁgn)] has value 1.
Based on analysis identical to that developed in the proof of Lemma 1 above, itis a
simple exercise to verify that

Corollary 3. When considering input ind after applying algorithnvaALAMP, algo-

rithm MAJORITY sets output td if and only if §{ = 0 with probability p, > (17 nﬁlc)

for some constarg, a design parameter.

For convenience, this “one bit” test as well as the unary counter implementation
shown in Figure 9 above are presented to be determirgstiom implementations.
They can however be realized as probabiligiaNCH instructions in a&RABRAM by
“bootstrapping” on the value amplification notion.

19

Advance POINTER
to next location
by testing
COUNT

Test input bit i
fromT 77~
/

/

!

1
]
[} \
\ Repeat till value \
AN amplification terminates

S——a -

Fig. 9. A combinedRABRAM implementation of algorithmaLAampP and algorithmva -
JORITY

A

J
X 11111110000000

1,2,...clogn
_—

i

Fig. 10.The structure of any rowin X

20

The second approach to realizing algorithuas AMP and MAJORITY is to con-
sider separate implementations. Again, considering algonthaoRrITY, we note that
a straightforward approach to determining the majority will involve a tree-structured
computation withclogn leaves, where the output of the root is a value of 1 if and only
if the number of entries in rowof array X designated; is greater tharf logn. Each
“node” of the tree represents some constant number,,s#ytests, such that a value of
1 is recorded iff both of its children are associated with a value of 1. The valuésof

chosen so that withl — p) = £°%9" we have an overall error probability bounded above

n 1
by % as in Corollary 3.

5 Analysis of Algorithm PROBDVP

The input lengthn is specified as a vector in unary ofits. The end of this counter

is detected by the transition from a bit with value 1 to one with value 0. Consider-
ing Algorithm PrOBDVPfrom Section 4.2 above, we note that the counter that controls
the iteration over the input vector can also be implemented through a single branch for
each position till the “end-of-array” symbol is detected in the input vettto deter-

mine termination of the entire algorithm. To reiterate, for convenience, we assume that
the branch instruction associated with this test is deterministic. Thus in its final imple-
mentation algorithmPROBDVPIs a “hybrid” algorithm with both probabilistic and de-
terministic steps. Thus its complexity characterized in Theorem 3 has deterministic and
probabilistic logical work components. We again note that the probabilistic techniques
outlined earlier can in fact be used to replace this deterministic test by a probabilistic
test leading to a “non-hybrid” fully probabilistic implementation. For completeness we
recall that each test in the “for” loop specified as Skep-algorithmpProBDVP (Fig-

ure 6) is implemented using a probabilistic branch, with an associated error probability
_ ¢log(n)
of p=——.

With this as background, let and3 denote the number of times that that the branch
used to realize Stepdis executed incorrectly-e-denotes the number of times that an
event of typeA, wherein the input vector has a value 0 and the branch determined it to
be erroneously 1 occurs, wherdghdenotes the number of times that an event of §pe
wherein an input value of 1 is erroneously determined to be 0. Similadgnotes the
number of times this step is executed correctly, and the corresponding event is said to
be of type/. Ag denotes an event of typewith an input symbol of 0, with\; defined
similarly.

Using the Chernoff bound (from Fact 2) once again, and using analysis similar to
that that used in the proof of Lemma 1, we can show that

Lemma 2. The probability thato or B is greater than togn where r< 1, is bound
above bynﬁlc, for suitably chosen constanisand c.

10|n the probabilistic case, the end of array symbol can be represented as a strong litdog
with value 0 followed by a corresponding string of lobits with value 1; in the deterministic
case, a single bit with value 1 will suffice.

21

The Expected Logical Work Done by Algorithm PrRoBDVP Using the above devel-
opment as background, we are now ready to analyze the expected logical®ork
done by algorithnPROBDVP.

Fact 4. The value amplification in Step-of Algorithm PrRoOBDVPIs invoked iff events
of type B or Ag occur in Step2.
From the above fact, we have

Theorem 3. The expected logical work® (PROBDVP,n) = 2nHogn for some positive
constant k> 2 and L(PROBDVPR N) = 2"

Proof. The logical work during each invocation of value amplification is triviallggn,

for some constard. Furthermore, the number of such invocations due to events of type
Mo is bound above by logfrom the definition of the input to thevp. From Lemma 2,

the probability that the number of invocations of value amplification caused by events
of typeB will exceedrlognis no more thannl—é. This in turn implies an expected logical

work of rlog? n from events of typd. Also the number of step8RANCH) and hence
logical work that can be caused by events of tyaeas well as typé\ is cumulatively
bound above by. By noting that a unary implementation of a counter in Step-1 of the
algorithm using deterministic tests can be realized usingl branches, we have the
theorem[_]

Expected Energy Savings Using AlgorithmPROBDVP In earlier work [18], we have
shown that the£(?,n) of any deterministiRAM algorithm 2 for solving thebvp
problem is bound below byr?— logn+ 1. From this lower bound, from Theorem 3,
and from Corollaries 1 and 2, we can claim that

Theorem 4. The expected savings in energy in Joules using AlgoriRmBDVPOver
any deterministic algorithm for solving thevp grows asQ (nlog (ﬁmgn)) Joules,
for constan0 < € < 1, and is therefore monotone increasing in n.

5.1 Probability of Error of Algorithm PROBDVP

We note that errors can occur either due to events of &ype of typeB. Based on the
probabilities these types of events, we have:

Theorem 5. The probability that AlgorithmPROBDVP will terminate correctly is at
leastp = (1— n—lc) for c a constant and a design parameter.

Proof. We note that an incorrect termination occurs if and only if the input vector had
the value 1 in all of its positions and upon termination, the valusutputwas O (events

of typeB), which we will refer to agCase-1 and vice-versa, (events of typg which

we will refer to asCase-2

Case-1:From algorithmPROBDVFP, let us consider events of tyBeFrom Lemma 1
and Corollary 3, the probability of any one of these events settiigut= 0, < n—lc

22

Since there are a total of positions and hence a maximummftuch events, the ex-
pected number of such eventseign. The probability that any one of theséogn
setsout put= 0 after value amplification is trivially bound above ?&T and therefore

we are done witlt = ¢ — 1. (We note that performinglog n trials, for a constant ,

in the algorithmvalampinstead of thelogn used in this paper, simplifies the calcula-
tion of this bound, but does not affect the asymptotics of the energy complexity of the
algorithmpPRrROBDVP. Further, using the bound dhfrom Lemma 2 will yield a better
estimate ot.)

Case-2:In this case there existsta= 0. Then by the definition of thevp, there
exist logn positions such that = 0 at every one of these positions; &tdenote the
set of all such indice$. Considering events of typ&, we note from Lemma 2 that the

probability thato < lognis bound below b)(l — nﬁlc) . Therefore, there exists one index

j’ € &0 such that upon execution of St@mf algorithmproBDVPWiIth t; as input, the
resulting event is not of typa with probabilityp’ > 1— Flc Therefore witht;, as input,
Step5 and Stepb of algorithmProBDVPwould have been executed with probability
p’ and from Lemma 1.]

6 Remarks and Conclusions

With the ever increasing emphasis on the energy consumed by computers and the need
to minimize it, our goal here is to develop a framework and a supporting complexity
(theory) that is technology independent, intending to parallel classical computational
complexity theory developed in the context of running-time and space (see Papadim-
itriou [21] for details concerning the classical theory of computational complexity). The
work presented here is one approach towards accomplishing this goal wherein energy
is the figure of merit—as opposed to traditional time or space. In this context, the mea-
sure of complexity introduced here and referred to as logical work serves to provide an
abstract, albeit representative measure of the energy consumed. Thus, while analyzing
an algorithm as demonstrated in the context ofttke for example, the logical work

can be the figure of merit that one seeks to improve, which is then easily “translated” to
deduce energy gains, as demonstrated in Section 4.

The particular formulation presented here affords a clear separation of concerns
between the energy behavior of an algorithm across the logical and physical levels, by
introducing an “abstract” estimate of energy-consuming behavior through logical work,
which is independent of particular physical implementations. Subsequently, we provide
specific translations from the domain of logical work, through idealized physical models
of computing as summarized in Section 3, into the domain of energy.

Thus, using this framework, the specifibysicaldevices that implement the com-
puting elements can be changed, without perturbing the algorithm framework affecting
the design and analysis where the latter constitutéotifieal components of our frame-
work. Furthermore, our particular choice of an idealized physical device abstracts away
dependencies on specific technologies, but nevertheless exposes the logical components
of the framework to the inherent limits to energy consumed—specifically the idealized

23

physical devices used here are based on statistical thermodynamics building on the his-
toric work of Maxwell [30], Boltzmann [2], and Gibbs [6], rather than being based in

a specific physical domain such as transistors of a particular feature size for example.
Furthermore, these idealized devices consume energy as they compute and once energy
is consumed, the complexity measure of logical wiorkversibly charges for this ex-
penditure; this is in contrast with theversiblestyle of computing (see Feynman [5]

for a survey) which allows energy consumed to be recovered allowing, in theory, com-
putations to be realized with zero energy consumption.

From a utilitarian perspective of course, any framework such as that introduced in
this paper is “only as useful as the results that it can help achieve.” In this context, the
central thesis established in this paper that is used to validate the value of this framework
is: probabilistic techniques and algorithms—or, as referred to in the introduction and
in keeping with the theme of this symposium, “probabilistic proofs"—yield expected
energy savings, when compared to their deterministic counterparts.

Several directions of inquiry suggest themselves, given that the energy behavior
of algorithms in general and probabilistic algorithms in particular remains a largely un-
chartered domain. While deferring the cataloging of such “open questions”—computations
on finite-fields suggest themselves immediately as candidates for study—including those
aimed at developing an energy-based complexity theory to a future publication, we will
briefly comment on some of the more immediate questions here.

An obvious first step is to consider other interesting as well as more meaningful
candidate problems for demonstrating possible energy savings achieved through proba-
bilistic algorithms or proofs. In this regard, results similar to those presented fovthe
in Section 4 have been derived by this authordtsing matching The classical prob-
abilistic algorithm for solving this problem based fimgerprintingis due to Karp and
Rabin [8]. Commenting on the specifics briefly, our energy savings are derived by ex-
tending the notion of value amplification (from Section 4.2) rather than through the use
of the Karp-Rabin fingerprints. It will be of interest to analyze fingerprinting from an
energy perspective using the framework provided bystRem and theRABRAM mod-
els, and to systematically compare the power and scope of this technique with that of
value amplification. Specifically, the error probability of value amplification is higher
than the error probability achieved through fingerprinting. The first interesting ques-
tion is to determine whether value amplification can yield the same error probability
as fingerprinting does. Assuming that the probabilities of error are different, it will be
interesting to determine whether energy can be used to separate the complexity of fin-
gerprinting from value amplification, even though both of then would yield algorithms
that run inO(n).

All of the results presented in this paper were using unary representations of num-
bers, as opposed to the more natural binary representation. This choice was deliberate
in thatin a model such aserAM , the particular choice of representation has an impact
on the asymptotic energy behavior, and our interest in this (first) work is to understand
the energy behavior at the most elementary level possible. A basic question to consider
in this regard is that of implementing a binargunterand its accompanying arithmetic,
and comparing it to the unary design used to implement iteration in realizing Algorithm
PROBDVPfor example.

24

A direction of inquiry that is only hinted at here but not elaborated upon, is the im-
plication of this work to novel physical computing devices that are probabilistic. As the
analysis in Section 4 demonstrated, such implicit randomization in the (abstract) device
can lead to energy improvements, even asymptotically. To reiterate, these improvements
are not due to faster running times that probabilistic algorithms might yield, but follow
from the following fundamental reason: using the idealized physical devices (from [17,
19]) referred to above, a physical interpretation of randomization allows computation
to be realized with higher thermodynamic-entropy (or Boltzmann-entropy) which is a
physical quantity, thus yielding energy savings. Pursuing realizations of such devices
and validating them in the context of implementing probabilistic algorithms promises
to be a particularly interesting direction for inquiry, which is being collaboratively pur-
sued [20]. Intuitively, a physical interpretation of probabilistic computing can be viewed
as “merely” riding the wave of naturally occurring thermodynamic phenomena, which
are best characterized statistically.

Acknowledgments

This work is supported in part by DARPA under seedling contract #F30602-02-2-0124

References

1. M. Blum. A machine-independent theory of the complexity of recursive functidmsrnal
of the ACM 14(2):322-326, 1967.
2. L. Boltzmann. Further studies on the equilibrium distribution of heat energy among gas
molecules.Viennese Report©ct. 1872.
3. G. J. Chaitin and J. T. Schwartz. A note on monte carlo primality tests and algorithmic
information theory.Communications on Pure and Applied Mathematg&521-527, 1978.
4. S. A. Cook. The complexity of theorem proving procedurBise Third Annual ACM Sym-
posium on the Theory of Computinpges 151-158, 1971.
5. R. Feynman.Feynman Lectures on Computatiolddison-Wesley Publishing Company,
1996.
6. J. W. Gibbs. On the equilibrium of heterogeneous substaficassactions of the Connecti-
cut Academy2:108-248, 1876.
7. J.Hartmanis and R. E. Stearns. On the computational complexity of algorifremsactions
of the American Mathematical Sociefyl 7, 1965.
8. R. Karp and M. Rabin. Efficient randomized pattern matching algoritiBigl Journal of
Research and DevelopmeBtL(2):249-260, 1987.
9. R. M. Karp.Reducibility among combinatorial problemBlenum Press New York, 1972.
10. R. M. Karp. Probabilistic analysis of partitioning algorithms for the traveling-salesman prob-
lem in the planeMathematics of Operations Research,(USAB):209-224, Aug. 1977.
11. H. Leff and A. F. RexMaxwell's demon: Entropy, information, computirigtinceton Uni-
versity Press, Princeton, N. J., 1990.
12. L. A. Levin. Universal sorting problemBroblems of Information Transmissio®265—-266,
1973.
13. Z. Manna. Properties of programs and the first-order predicate caldalusal of the ACM
16(2):244-255, 1969.
14. Z. MannaMathematical theory of computatioMcGraw-Hill, 1974.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.
29.

30.

31.

32.
33.

25

J. D. Meindl. Low power microelectronics: Retrospect and prospoteedings of IEEE
pages 619-635, Apr. 1995.

R. Motwani and P. RaghavaRandomized AlgorithmsCambridge University Press, 1995.

K. V. Palem. Thermodynamics of randomized computing: A discipline for energy aware
algorithm design and analysis. Technical Report GIT-CC-02-56, Georgia Institute of Tech-
nology, Nov. 2002.

K. V. Palem. Energy aware computation: From algorithms and thermodynamics to ran-
domized (semiconductor) devices. Technical Report GIT-CC-03-10, Georgia Institute of
Technology, Feb. 2003.

K. V. Palem. Energy aware computing through randomized switching. Technical Report
GIT-CC-03-16, Georgia Institute of Technology, May 2003.

K. V. Palem, S. Cheemalavagu, and P. Korkmaz. The physical representation of probabilistic
bits (pbits) and the energy consumption of randomized switcHIREST Technical repart
June 2003.

C. PapadimitriouComputational ComplexityAddison-Wesley Publishing Company, 1994.

H. Putnam. Models and realityournal of Symbolic LogicXLV:464-482, 1980.

M. O. Rabin. Degree of difficulty of computing a function and a partial ordering of recursive
sets. Technical Report 2, Hebrew University, Israel, 1960.

M. O. Rabin. Probabilistic algorithm for testing primalitylournal of Number Theory
12:128-138, 1980.

M. O. Rabin and D. S. Scott. Finite automata and their decision probl&isJournal of
Research and Developmef{2):115-125, 1959.

J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identiiiesnal

of the ACM 27:701-717, 1980.

K.-U. Stein. Noise-induced error rate as limiting factor for energy per operation in digital
ics. IEEE Journal of Solid-State Circuit$C-31(5), 1977.

R. C. TolmanThe Principles of Statistical MechanicBover, 1980.

A. Turing. On computable numbers, with an application to the entscheidungsproblem. In
Proceedings of the London Mathematics Societynber 42 in 2, 1936.

H. von BaeyerMaxwell’s Demon: Why warmth disperses and time pasRasdom House,
1998.

von Neumann JMathematical foundations of quantum mechani€inceton University
Press, Princeton, N. J., 1955.

A. Whitehead and B. RusseRrincipia Mathematica Cambridge University Press, 1913.

W. H. Zurek. Algorithmic randomness and physical entr@hysical Review A0(8):4731—
4751, 1989.

