
Computational Proof as Experiment:
Probabilistic Algorithms from a
Thermodynamic Perspective?,??

Krishna V. Palem

Center for Research on Embedded Systems and Technology,
Georgia Institute of Technology, Atlanta GA 30332, USA.

palem@ece.gatech.edu
(http://www.crest.gatech.edu)

Abstract. A novel framework for the design and analysis ofenergy-awarealgo-
rithms is presented, centered around a deterministicBit-level (Boltzmann) Ran-
dom Access Machineor BRAM model of computing, as well its probabilistic coun-
terpart, theRABRAM. Using this framework, it is shown for the first time that
probabilistic algorithms can yield asymptotic savings in the energy consumed,
over their deterministic counterparts. Concretely, we show that theexpected en-
ergy savingsderived from a probabilisticRABRAM algorithm for solving thedis-
tinct vector problem(or DVP for short) introduced here, overanydeterministic

BRAM algorithm grows asΩ
(

nlog
(

n
n−ε log(n)

))
, even though the correspond-

ing deterministic and probabilistic algorithms have the same (asymptotic) time-
complexity ofΘ(n). Also, our probabilistic algorithm is guaranteed to be correct
with a probabilityp≥ (1− 1

nc) (for a constantc chosen as a design parameter). As
usualn denotes the length of the input instance of theDVP measured in the num-
ber of bits. These results are derived in the context of a technology-independent
complexity measure for energy consumption introduced here, referred to aslog-
ical work. In keeping with the theme of the symposium, the introduction to this
work is presented in the context of “computational proof” (algorithm) and the
“work done” to achieve it (its energy complexity characterized as logical work).

1 Introduction

The word “fact” conjures up images of a sense of definitiveness in that there is a belief
in its absolutetruth. This notion is the very essence of modern mathematical theories,
with their foundational framework based on (formal) languages such as thepredicate
calculus. Thus, following Whitehead and Russell’s seminal formalization of mathemat-
ical reasoning embodied in their Principia [32], the very notion of the consistency of an
axiomatic theory disallows even a hint of a doubt about a fact, often referred to as athe-
orem(or its subsidiarylemma) in modern as well as ancient mathematical thought. The

? This work is supported in part by DARPA under seedling contract #F30602-02-2-0124.
?? A version of this work appeared in The Proceedings ofThe International Symposium on Veri-

fication (Theory and Practice),Taormina, Italy, Jun 29–Jul 4, 2003.

2

modern foundations of verification as proof, with emphasis on its automatic or mecha-
nized form, applied to problems motivated in large part from within the disciplines of
computer science and electrical engineering (see Manna for example [13, 14]) are also
bound in essential ways to this notion of an absolute ordeterministictruth.

A concomitant to this absolute notion of truth, and a significant contribution of the
mathematical theory of computing (referred to in popular terms as theoretical computer
science) is the notion of thecomplexityor equivalently, the “degree of difficulty” of
such a proof. Thus, starting with Rabin’s [23] work as a harbinger with further con-
tributions by Blum [1], the notion of a machine independent measure ofcomplexity
led to the widely used formulations of Hartmanis and Stearns [7]—essentially within
the context of a deterministic mechanistic approach to proof. Here, a deterministic
algorithm—equivalently, any execution of a Turing machine’s program [29]—upon
halting, is viewed as proving a theorem or fact, stated as a decision problem. For ex-
ample, determining the outcome of the celebratedhalting problem [14, 29] would con-
stitute proving such a theorem in the context of a given instance, where an answer of
a yeswould imply that the Turing machine program given as the input would halt with
certainty.

Both this notion of absolute truth as well as the deterministic (Turing machine
based) approach to arriving at it mechanically are subject to philosophically signifi-
cant revision if one considers alternate approaches that arenot deterministic. A critical
first step involves non-deterministic approaches with the foundations laid by Rabin and
Scott [25]. Based on these foundations, Cook’s [4] (and Levin’s [12]) characterizations
of NP as a resource bounded class of proofs, whose remarkable richness was demon-
strated by Karp [9], elevated NP to a complexity class of great importance, and the
accompanying P=?NP question to its exalted status. Here, while the approach to prov-
ing is not based on the traditional deterministic transition of a Turing machine, the
meaning of truth one associates with the final outcome—acceptor reject—continues to
be definite or deterministic.

Moving beyond nondeterminism, the early use of statistical methods with empha-
sis on probability can be found in Karp’s [10] introduction ofaverage case analysis.
Compelled by the need to better understand the gap between the empirical behavior
and the results of pessimal (mathematical) analysis of algorithms (or a determination of
lengths of proofs in our sense), in Karp’s approach, the input is associated with a prob-
ability distribution. Thus, while the proof itself is deterministic, its difficulty, length, or
more precisely itsexpected time complexityis determined by averaging over all possible
inputs.

A striking shift in the notion of proof as well as the truth associated with it em-
anated from the innovation ofprobabilistic methods and algorithms. In this context,
both the method or “primitive” proof-step (of the underlying program) as well as the cer-
tainty associated with the proof undergo profound revision. Schwartz [26] anticipated
the eventual impact of the role of probability in the context of these influential devel-
opments best: “The startling success of the Rabin-Strassen-Solovay (see Rabin [24])
algorithm, together with the intriguing foundational possibility that axioms of random-
ness may constitute a useful fundamental source of mathematical truth independent of,
but supplementary to, the standard axiomatic structure of mathematics (see Chaitin and

3

Schwartz [3]), suggests that probabilistic algorithms ought to be sought vigorously.”
Thus, in this probabilistic context, both the deduction step as well as the meaning of
truth are both associated with probabilities as opposed to certainties. For convenience,
let us refer to these as probabilistic proofs (or algorithms when convenient).

With this as background, we now consider the long and fruitful relationship be-
tween the notions of proof in the domain of mathematics and its remarkable use in the
physical sciences over the past several centuries. Historically, mathematical theories
have served remarkably well in characterizing and deducing truths about the universe
in a variety of domains, with notable successes in mechanics (classical and quantum),
relativity and cosmology, and physical chemistry to name a few areas—see von Neu-
mann’s [31] development of quantum mechanics as a notable example. In this role,
knowledge about the physical world is derived from mathematical frameworks, meth-
ods, and proofs, which could include the above mentioned algorithmic form of proof as
well. Thus, in all of the above endeavors, thedirection for deriving knowledge, is from
(applying) mathematicsto (creating knowledge about) physical reality. By contrast, in
this work, we are concerned with the opposite direction—fromusing computational de-
vices rooted in the reality of the physical universe such as transistors,to establishing
(computationally derived) mathematical facts or theories. Let us, for convenience (and
without a careful and scholarly study of the possible use of this concept by philosophers
earlier on), refer to this opposing perspective as areversal of ontological direction,
wherein the physical universe and its empirical laws form the basis for all deduction
of mathematical facts through computational proof. To clarify, the reversal in “onto-
logical direction” which this work (and earlier publications of this author on which it
is based [18, 19]) explores, refers to the fact that the physical universe and its laws as
embodied in computing devices form the basis for (algorithmically) generating math-
ematical knowledge, by contrast with the traditional andoppositedirection wherein
mathematical methods produce knowledge about the physical world.

To reiterate, in all of our work, the meaning we associate with proof will be that
associated with the execution of a Turing machine program, and we will be interested in
the “complexity” of realizing such a (mechanized proof) in the physical universe. Thus,
to reiterate, we will consider a concrete and physically realizable form of a proof—
such as that generated by a theorem-prover executing on a conventional microprocessor,
or perhaps its Archimedian predecessor—as a physical counterpart of Putnam’s [22]
“verificationist” approach by contrast with (as observed by him [22]) the “Platonic”
approach with “evidence that the mind has mysterious faculties of grasping concepts”
(or “perceiving mathematical objects...”).

Continuing, a first and important observation about the universe of physical objects
such as modern microprocessors is that their inherent behavior is best described statis-
tically. Thus, all notions ofdeterminismare “approximations”in that they are only true
with sufficiently high probability. (See Meindl [15] and Stein [27] for a deterministic
interpretation of the values 0 and 1 within the context of switching based computing
through electrical devices, to better understand this point.) Specifically, the approxima-
tions to determinism are derived by investing (sufficiently) large amount of energy to
make the probability of error small [15]. Building on this observation, the work de-
scribed in this paper characterizes the (somewhat oversimplified in this introduction)

4

fact that the process of computational proof entails physical “work”,which in turn con-
sumes energydescribed in its most elegant form through statistical thermodynamics.
The crux of our thesis is that since nature at its very heart, or our perception of it as
we understand it today is statistical at a (sufficiently) small, albeit classical scale—
side-stepping the debate whether “God does or does not play dice” (attributed to Ein-
stein to whom a statistical foundation for physical reality was a source of considerable
concern)—the most natural physical models for algorithmic proof or verification us-
ing fine-grained physical devices such as increasingly small transistors, are essentially
probabilistic, and their energy consumption is a crucial figure of merit!For complete-
ness, we reiterate here that following the principle of reversal of ontological direction,
we are only concerned with the discovery of mathematical knowledge via computa-
tional proofs realized through the dynamics of a physical computing device, such as the
repeated switching of semiconductor devices in a microprocessor.

Now, considering the specific technical contributions of this work, in order to de-
scribe and analyze these physically realized proofs or algorithms, we introduce (Sec-
tion 2) a simpleenergy-awaremodel for computing: theBit-level (Boltzmann) Ran-
dom Access Machineor BRAM , as well as its probabilistic variant, theRABRAM (in
Section 2.4). Specifically, each primitive step or transition of these models involves a
change of state—realized in a canonical way through a transition function associated
with a finite state control as in Turing machines [29]—that mirrors a corresponding and
explicit change in some physically realizable device. One variant of such a realization is
through the notion of aswitching step[15, 19] whereas an earlier more abstract variation
is through the notion of anemulation[18] of the transition in the physical universe.

Any computational proof (or equivalently algorithm) described in such a model has
an associated technology-independentenergy complexity, introduced aslogical workin
Section 3 for the deterministic as well as the probabilistic cases. Historically, the inter-
est and subsequently the success of probabilistic algorithms within the context of algo-
rithm design, was to derive (asymptotically) faster algorithms. Assuming that all steps
take (about) the same amount of energy, traditional analysis based on time-complexity
will trivially imply that a probabilistic algorithm might consume less energy, because
it computes and solves problems faster—shorter running time implies lesser switching
energy. In contrast to these obvious advantages, we show in Section 4 that the energy ad-
vantages offered by probabilistic algorithms can be more subtle and varied. Concretely,
we prove that for thedistinct vector problemor DVP with an input ofn bits, a proba-
bilistic algorithm and its deterministic counterpart take the same number of (time) steps
asymptotically, whereas the probabilistic approach yieldsenergy savingsthat grow as
n→ ∞.

Briefly, solving theDVP involves computationally (in theBRAM or RABRAM model)
proving that a givenn− tuple defined on the set of symbols{0,1} has the symbol 1
in all of its n positions; the answer to this decision question (or theorem) isYES if
indeed all positions of the inputn− tuple have the symbol 1 and the answer isNO

otherwise. In this paper, we are interested in the followingdensevariant of theDVP :
the inputn− tuple either has no 0 symbol in it, or if it does have a 0 symbol, it has
log(n) such symbols. For this (dense) version of theDVP problem, which for conve-
nience will be referred to as theDVP problem in the sequel (defined in Section 4.1),

5

we prove that a novelprobabilistic value amplificationalgorithm, proves the (algorith-
mic) theorem, or resolves the associated decision question with an error probability
bound above by1

nc (for a constantc chosen as a design parameter) using anexpected

(2n+ logk(n))κT ln
(

2
[
1− ε logn

n

])
Joules, where 0< ε < 1 andk > 2 are constants.

The algorithm and its associated analysis are outlined in Section 4. In an earlier publica-
tion, this author proved [18] that any deterministicBRAM algorithm for solving theDVP

consumes at least(2n− log(n)+1)κT ln2 Joules; this is a lower bound1. By combining
these two facts, we show that through the use of the probabilistic algorithm introduced

here, the expected savings in energy measured in Joules grows asΩ
(

nlog
(

n
n−ε log(n)

))
,

for a constant 0< ε < 1, and for ann bit input to theDVP. Thus both the energy savings
as well as the error probability are respectively monotone increasing and decreasing
functions ofn. To the best of our knowledge, this result is the first of its kind that estab-
lishes an asymptotic improvement in the energy consumed.

These models and analysis methodology build on the following results (from [17,
19]) that bridge computational complexity and statistical thermodynamics for the first
time: a single deterministic computation step, which corresponds to a switching step,
consumes at leastκT ln(2) Joules, and this is a lower bound. Furthermore, using proba-
bilistic computational steps (or switching), the energy consumed by each step is bound
above byκT ln(2p) Joules, where p≥ 1

2 is the probability that the transition is cor-
rect; (1− p) is the per-step error probability.Also, κ is the well-known Boltzmann’s
constant,T is the temperature of the thermodynamic system, and ln is the natural log-
arithm. In all of this work, the physical models are based on the statistical and hence
probabilistic generalizations of switches formulated originally by Szilard [11] within
the context of clarifying the celebrated Maxwell’s demon paradox [11, 30]. A detailed
comparison and bibliography of relevant work from the related field referred to as the
Thermodynamics of Computing can be found in [19]. Additionally, Feynman [5] pro-
vides a simple and lucid introduction to the interplay between thermodynamically based
physical models of computing, mathematical models, and abstractions such as Turing
machines.

2 The Bit-level (Boltzmann) Random Access Machine -BRAM

In this section, we will introduce our machine model for computing, exclusively oper-
ating in thelogical domain. However, to reiterate, a fundamental theorem of this work
is that each of itsstate transitions—explained below—can be associated with definite
amounts of energy expenditure. Furthermore, this energy consumption can also be pre-
cisely related to the inherent amount of energy needed to compute, using this model.
Significantly, aBRAM model will allow us to abstract away all aspects of the underly-
ing physics and characterize energy purely in the world in which models of computa-
tion such as Turing machines are realized. We anticipate this as being helpful from the

1 While the analysis is based on the technology-independent notion of logical work, we present
the corresponding energy consumption results implied by idealized physical devices switching
at thermal equilibrium, referred to as a quasistatic process in classical thermodynamics [28].

6

perspective of algorithm analysis and design—an exercise which, in aBRAM, can be
decoupled from the specificities of physical implementations.

The BRAM however does provide a bridge to the physical world through the en-
ergy costs associated with the transitions of itsfinite state control(defined below). This
bridge to the world of implementation and energy allows us to define the novel complex-
ity measure oflogical work as detailed in Section 3, which characterizes the “energy
complexity” of the algorithm being designed.

2.1 Informal Introduction to a BRAM

Informally, a BRAM (a bit-level random access machine2) has aprogramwith a finite
number ofstates. The transition from a current state to the next involves evaluating the
associatedtransition functionleading to the “reading” of one or more bits of an input
from a specific memory location, transitioning to a new state and writing a new bit value
in a designated memory location. The number of bits read is dependent of the size of
thealphabet, to be defined below. Every execution starts in a uniqueSTART state, and
halts upon reaching a uniqueSTOPstate.

To extend such models to account for the energy consumed, we define aBRAM

(somewhat) formally. For a computer scientist, defining aBRAM based on well-understood
elements of a random access machine (orRAM) is elementary; however, we define it
here for completeness. The textbook by Papadimitriou [21] provides a rigorous and
complete introduction to models such as Turing machines and random access machines
including definitions of conventional measures of complexity for representing time and
space. This book also provides a comprehensive introduction to the numerous well-
understood interrelationships between classes of (time and space) complexity, and can
serve as an excellent guide to the topic of defining models of computation in classical
contexts, not concerned with energy.

2.2 Defining aBRAM

A BRAM consists of several components, which will be introduced in the rest of this
section.

The BRAM Program Following convention, theprogramP is represented as a five-
tuple{PC,Σ,R,δ,Q}. Note that conventionally, variants of the program are referred to
as thefinite state control.

The Set of States- PC is the set of states. Each statepci ∈ PC has designated loca-
tions inmemory, defined below, that serve respectively as its input and output. Without
loss of generality, let the states be labeled 1,2,3, . . . , |PC|. The setQ consists of three
special states,START , STOPandUNDEFINED-STATE not inPC.

The Alphabet of theBRAM - Σ is a finite alphabet, and without loss of generality,
we will use the set{1,2, . . . |Σ|}, which includes the empty symbolφ to denote this

2 Given aBRAM ’s eventual connection with energy and its statistical interpretation, one can also
interpret the acronym to mean a Boltzmann random access machine.

7

alphabet. From the standpoint of algorithm design, in most cases, it suffices to work
with an alphabet drawn from the setΣ = {0,1}, which is the case throughout this paper
whenever aBRAM (or a RABRAM) is used to analyze an algorithm. However, we note
in passing that the size of the alphabet|Σ| has important consequences to the precise
energy behavior of the associated state transitions3. Therefore, the contexts wherein the
more restricted alphabet is used need to be distinguished from those contexts in which
the more general alphabet of size|Σ|> 2 is used.

The Address Registers of the States in PC- These registers are places where the
input and output addresses of a state are stored. In conventional computer science and
engineering parlance, aBRAM uses a form of accessing memory that is referred to
as indirect addressing. We shall return to a discussion of the role of these registers
in Section 2.3. Theaddress registers, represented by the setR is partitioned into two
classesRin and Rout; these are both sets (of registers) where each registerρin

j ∈ Rin

(ρout
j ∈Rout) is a (potentially unbounded) linearly ordered set of elements referred to as

cells< sj,1,sj,2, . . . ,sj,k > (< t j,1, t j,2, . . . , t j,k >). Each of the cellssl (tl) is associated
with a value from the set{0,1,φ}. We note that even though the overall alphabet may be
of size|Σ|> 2, each cell in the registers either stores a single bit, or is empty. Further-
more, if the value associated with such an element isφ (empty or not defined) for some
value ofk′ ≤ k, then the value associated with allsj,k′′ (t j,k′′) is φ for all k′ ≤ k′′ ≤ k;
thus, in the general case, the values stored in any of the address registers are a contin-
uous “run” of values from the set{0,1} followed by a run, possibly of length zero, of
the symbolφ.

We associate the pairρin
j ∈ Rin andρout

j ∈ Rout uniquely with the statepcj . For a
given state, intuitively, these pair of registers yield the addresses from where the input
σ is to be read, and to where the outputσ′ (if any) is to be “written” respectively.
It is important to note that these addresses can in fact be the registers themselves. The
potentially unbounded lengths of the registers denote the fact that the range of addresses
being accessed (corresponding to the length of a Turing machine’s tape for example)
could be unbounded4.

The Transition Function- We are now ready to define the transition functionδ,
which will play a central role in characterizing the energy behavior of computations. In
its most general form, a transition function is based on an alphabet of size|Σ| ≥ 2.

Syntactically,δ : (PC∪{START })×Σ→ (PC∪Q−{START })×Σ is the transition
function. Wheneverδ(pci ,σ ∈ Σ) = (pcj ,σ′ ∈ Σ), we say thatδ transitions frompci to
thenext-state pcj with σ as input andσ′ as the output.

Some useful remarks about the transition function follow. First, we note that the
stateUNDEFINED-STATE is in the range ofδ. Given a statepci , let νi denote the number
of symbols fromΣ for which δ transitions into a state inPC∪{ STOP}, as opposed
into theUNDEFINED-STATE . For the remaining(|Σ| − νi) symbols,δ transitions into
UNDEFINED-STATE . (This is one way of defining transitions of varying “arity”νi as-
sociated with statepci , thus allowing states with varying number of successors with
an alphabet of fixed size). In this setting, it is trivial to verify that given an alphabet

3 For convenience, to avoid the use ofde function,|Σ| is assumed to be a power of 2 throughout.
4 In any terminating computation, there will be a limit on this bound, typically specified as a

function of the length of the input [21].

8

Σ, there is no loss of generality in definingδ, with respect to a statesj , such that the
first νi symbols from the linearly ordered setΣ represent defined transitions whereas
symbolsνi+1,νi+2, . . . |Σ′| represent undefined transitions. These notions are illustrated
in Figure 1. In the sequel, we will (mostly) be concerned withBRAM programs whose
transition functions have a maximum arity of two. (It is trivial to verify that anyBRAM

program with a transition function of arity more than two can be replaced with aBRAM

program with a transition function whose maximum arity is two although its energy
behavior need not be preserved). Furthermore, any transition function with an arity of
two will henceforth be referred to as theBRANCH instruction5.

pc νi successors

Input symbols 1,2,…νi are legal

Current state

1

2

νi

Fig. 1. Illustrating the legal and illegal cases of a transition function with an alphabet of
size|Σ| ≥ νi

For convenience, drawing upon graph theoretic terminology, let us refer toνi as
the fanoutof pci and furthermore, refer to statepc′j as beinga successorof pci if and
only if there exists a symbolσ ∈ Σ such thatδ(pci ,σ) yields pcj as the next state. Let
successorsi denote the set ofall successors of statepci from PC.

The Memory EachBRAM has aMEMORY consisting of the set ofL = (2|PC|+1) lin-
early ordered sets orbanks, each potentially unbounded. As shown in Figure 3, elements
I and(I +1) in MEMORY are denoted MI and MI+1 where 1≤ I ≤ 2|PC| are respectively
used as registersρin

i ∈ Rin andρout
i ∈ Rout, wherei = d I

2e. Additionally, the last set ML
of MEMORY, denotedM is a potentially unbounded setM ≡< m1,m2, . . . ,mk >. Each
cell mj is associated with an element from the set{0,1,φ}. Informally, M is the set of
locations where the inputs and outputs values being computed by theBRAM “program”
are stored—it is the workspace.

Recall that the input arguments to the transition functionδ are the current state
pc and a value from the alphabetΣ. Since the input can only be a symbol fromΣ, a
maximum of log(|Σ|) bits are needed to store this value6. Therefore, for convenience,

5 States associated with transition functions of arityk > 2 can be referred to ask−way branches
of course.

6 Unless specified otherwise, all logarithms written as “log” are to the base two.

9

pc

Successors of PC

Input

Current state

pc‘2

Alphabet ∑ = {1,2,3,4} U φ

pc'33

pc'44

pc'22

pc'11

Transition toInputpc'1

pc‘3

pc‘4

1

2

3

4

Fig. 2.A state, its successors and related transitions

each MI will be partitioned into “locations” wherelocation LJ for J ≥ 1 is made up of
log(|Σ|) constituentcells; lets= (log|Σ|(J−1)). ThenLJ =< ms+1 . . .m(s+log|Σ|) >

The Memory Access Unit The value at a location LJ is the concatenation of the
values in its constituent cells. Since the value of a location, when defined, is a natural
number from the range{1,2, . . . |Σ|}, it is determined by a binary interpretation, of the
concatenation of symbols from the set{0,1}. If one of the values associated with any
of the cells inL j is φ, then the value of this location is undefined.

A VALUE in MEMORY is a function from(N+×N+) into the setΣ∪{φ} defined as
follows:

1. If 1≤ I ≤ 2|PC| namely if indexI corresponds to a register, thenVALUE (I ,J) = §
where § is the value at theJth location of MI .

2. If I = ML, VALUE (ML,J) = § is the value at theJth location (LJ) of M .

The functionVALUE that is implemented through thememory access unitof aBRAM

yields the value associated with theJth location in one of the registers inR or at the
locationLJ from M depending on the value ofI .

Theaddressin registerρin
i (or ρout

i) is the unique non-negative integer whose value
is u. TheMAU is a function that uses these (pair of) addresses as an argument.Starting
from Section 4and throughout the rest of the paper we will consider an alphabet where
|Σ| = 2, and a unary representation of addresses. Alternate alphabet sizes as well as
binary representations will be the topic of future study as discussed briefly in Section 6.

We define functionsreadandwrite with addresses as their domain. Thus, using con-
ventions inspired by Turing machines as originally defined [29],read (I , LOCATION)
andwrite (Σ, I , LOCATION ±1) are respectively used to read the value or (over)write
the values associated with the constituent cells of locationL in MI . The MAU is the

10

ρ1
in ρ1

out ρ2
in ρ2

out ρpc
in ρpc

out

Addresses for PC1 Addresses for PC2 Addresses for PCpc

location1

location2

Scratch/

Working

Memory

log ∑ bits

J → 1 2 3 4 … 2|PC|-1 2|PC| L=2|PC| + 1

Fig. 3.The Memory Structure of theBRAM

union of thereadandwrite functions. It will be used to evaluate the transition function
as explained in Section 2.3 below.

2.3 The Computation of aBRAM

Building on the elements introduced above, we will now introduce the operational be-
havior of aBRAM . Given an arbitraryBRAM programP , initially, all computations start
in the START state. All the registers and the memory cells are initialized from the set
{0,1,φ}. It is convenient to define the operation of theBRAM inductively as follows.
The START state transitions to, without loss of generality, statepc1 at which point the
computation starts; the concatenation of the cells inML is referred to as the inputI to
P . Now, statepc1 is said to be thecurrent state. More generally, letpcl be the current
state. The transition function is evaluated with the statepcl ∈ PC as its input argument.

Recall that the input to the transition function is also a symbol fromΣ, which is
accessed usingσ = read(M , LOCATION), whereLOCATION is the address stored in
unary inρin

l . These notions are illustrated in Figure 4.
Continuing with the evaluation of the transition functionδ(pcl ,σ) yields thenext

state pcl ′ which then becomes the current state. Furthermore, the output symbolσ′ ∈
{0,1} is written (usingwrite) into theLOCATION whose address is stored in register
ρout

l . The computationhaltswheneverpcl ′ ≡ STOP.
More generally, acomputationC is thesequenceof state transitionss1 ≡ start→

s2 → . . .→ . . .sπ ≡ stopwhereπ∈N+. Givensi ≡ pcl to be the current state during the
evaluation of the transition,si+1 ≡ pcl ′ is the next state. A computation islegal if and
only if, during the evaluation of the transition function withsi ≡ pcl as the current state,
the addresses inρ j

in andρ j
out as well as the input determined by evaluatingread, are all

11

pcl

Input σ

δ(pcl , σ)

Next state pcl' Output value σ ’

WRITE σ’OUTPUT VALUE

CURRENT STATE = pcl'NEXT STATE?READ

Evaluate

Location

from ρl
in

Location

from ρl
out

Fig. 4. Illustrating the Evaluation of the Transition Function

defined. The computation isillegal otherwise. In the sequel, we will be concerned with
legal computations only and will, for convenience, refer to them simply as computa-
tions.

Fact 1.All computations of aBRAM programP with inputI are the identical. Formally,
given any two computationsCq = s1 ≡ START→ s2 → . . . → . . .sπ ≡ STOPandCr =
ŝ1 ≡ START→ ŝ2 → . . .→ . . . ŝπ ≡ STOPgenerated by programP with inputsI andÎ ,
sj = ŝj wheneverI ≡ Î .

2.4 The RandomizedBRAM or RABRAM

A RABRAM is identical to aBRAM in all aspects except that the transition from the
current state to the next state occurs probabilistically. There are alternate forms of
defining the particular approach through which this probabilistic transition is intro-
duced into the formulation of aRABRAM. In our approach, the transition functionδ
(a BRANCH) from Section 2.2 is extended to a transition functionδr . Let P be the
open interval(1

2,1). Now,δr :((PC∪{START })×Σ)→ ((PC∪Q−{START })×Σ×P)
is the probabilistic transition function. ConsideringΣ ≡ {0,1}, let pcj and pck be the
possible successors ofpci , where j = k is allowed. For1

2 ≤ pi ∈ P ≤ 1, whenever
δr(pci ,σ = 0) = (pcj ,σ′ ∈ Σ, pi ∈P), δ transitions frompci into thenext-state pcj with
σ = 0 as input, and withσ′ as output, with probabilitypi , and to statepck with σ̄′ as out-
put with probability(1− pi). Note thatσ̄′ is the symbol fromΣ that is output whenever
δr yields a transition from statepci to next-statepck. The transition function withσ = 1
can be defined accordingly. Let us refer to this branch instruction as a probabilistic
BRANCH with probability parameterpi .

12

Three clarifications are in order here. First, in the current definition of theRABRAM,
for simplicity, the probability parameter is defined to be independent of the input sym-
bol. This is consistent with the definition of randomized algorithms where the source of
the random bits isnotbiased based on the input. Second, our definition of theRABRAM

does allow for different probability parameters associated with different states inPC.
Finally, the probability parameterpi can be restricted to range only from12 to 1 be-
cause any transition of the formδr(pci ,σ = 0) = (pcj ,σ′ ∈ Σ, pi < 1

2) immediately
impliesδr(pci ,σ = 0) = (pck, σ̄′ ∈ Σ, 1

2 ≤ p′i ≤ 1) wherep′i = 1− pi .
An equivalent representation can couple the deterministic transition function with a

coin-toss and base the outcome on the input symbol and the outcome of the coin-toss
based on a previously specified probability distribution on the set of successors ofpci .
This notion of a randomized transition function is shown in Figure 5.

pci

pci

Current State

pck with probability pi

pcj with probability (1- pi)
pck1

pcj with probability pi

pck with probability (1- pi)
pcj0

Randomized TransitionDeterministic TransitionInput Symbol

Fig. 5.The transition function of a probabilisticBRANCH where the output symbols are
uniquely associated with the next state

3 Logical Work as a Measure of Complexity

Recall that a computation of theBRAM programP with an inputI is the sequence of
state transitionsC ≡ s1≡ START → s2→ . . .→ . . .sπ ≡STOP, as defined in Section 2.3;
si ≡ pcl ∈ PC for some indexl . Thedeterministic logical workD done by computation
C is 7

D(C) =
π

∏
i=1

F(si)

whereF(si) is the fanout of statesi . Statesi represents aBRANCH instruction whenever
F(si) > 1. Let In denote the set of all inputs toP of n bits in length andCn the corre-
sponding set of all computations. Thelogical workdone by theBRAM programP with
lengthn is

7 Because of the natural logarithmic relationship between the fanoutF(si) and energy, logical
work is specified as a product so that it can be naturally related to energy consumption in the
corollary below.

13

L(P ,n)≡ MAX∀C∈Cn(D(C))

In earlier work [17, 19], this author established the following theorem in the context
of an idealized physical device at thermal equilibrium everywhere.

Theorem 1. The energy consumed in evaluating the transition function in the context
a state pci of anyBRAM programP is at leastκT ln(F(si)) Joules.

It follows that

Corollary 1. For a deterministicBRAM computation, the energy consumed by a pro-
gramP with inputs of length n is no less thanκT ln(L(P ,n)) Joules.

Proof. Immediate from Theorem 1, the fact that energy is additive and the identity

ln

(
π

∏
i=1

F(si)

)
=

π

∑
i=1

ln(F(si))

Also, we recall (from [17, 19]) that

Theorem 2. The energy consumed in evaluating the transition function in the context
a state pci of anyRABRAM programPR can be as low asκT ln(F(si)p) Joules, where
p is the probability parameter8.

We note that in the context of computations realized through aRABRAM each state
transition is probabilistic. Therefore, Fact 1 does not apply and different computations
are possible with the same input. Thus, given a fixed inputI there exits afamily of
computationsCI where each computationC ∈ CI has a probabilityqc of occurrence.
In this case, the notion of logical work has to be modified where theMAX function is
applied over theexpectedlength of the probabilistic computations fromCI . We define
the expected logical workfor an inputI to be the weighted sum (by the probabilities
qc) of the fan-outs of the computations corresponding toI .

R (CI ,I) = ∑
∀C∈CI

qc
2D(C)

Theprobabilistic logical workof a RABRAM programPR is defined to be

LR (PR ,n) = MAX∀CI∈Ĉ{R (CI)}

whereĈ is the set of all trajectory families associated withI ∈ I .

Let Cmax denote the family of computations definingLR (PR ,n) corresponding to
an inputImax

8 Here the expression “as low as” is meant to imply an upper bound in an idealized system at
thermal equilibrium everywhere, which can be realized by a quasistatic process. For exam-
ple, these estimates can be potentially improved using “information theoretic compression”
following Zurek [33].

14

Corollary 2. For a RABRAM programPR , the expected energy consumed with input
Imax can be as low as

κT ∑
∀C∈Cmax

qc
2 ln(D(C))

In the general case, thelogical workof an algorithmL might consist of determin-
istic as well as probabilistic logical work components. As usual, given the nature of
asymptotic analysis and in this hybrid case, it will be sufficient only to consider the
dominant term.

4 Design and Analysis of Algorithms in theBRAM and the
RABRAM

In this Section, we will demonstrate the use of the models described in the previous
sections, in the context of analyzing energy savings using probabilistic algorithms. Our
problem of choice will be thedistinct vector problemor DVP for short, introduced in
Section 4.1. In Section 4.2, we will outline a probabilistic algorithm for solving this
problem, whose energy consumed is provably better thanany deterministic algorithm
for solving theDVP in the BRAM model. To establish this result, we have to prove
a lower bound on the deterministic logical work needed to solve this problem using
any (deterministic)BRAM algorithm (claimed in Section 5 and proved in this author’s
earlier work [18]). While the central ideas and some of the details are presented in
the sequel, complete proofs and other implementation specifics that are easy to verify,
will be included in a full-version of the paper. Thus, this paper should be viewed as an
extended abstract. For notational succinctness, we will use the symbolsi, j,k, l ,m and
n in a new context throughout the rest of this paper, where this reuse will not cause any
ambiguity.

4.1 The Distinct Vector ProblemDVP

Informally, theDVP is defined to be the problem of determining whether a givenn− tu-
ple, defined on the set of symbols{0,1}, is distinct from ann− tuple which has the
symbol 1 in all of its positions. Formally,

Input: avector T≡< t1, t2, . . . , tn > whereT ∈ {0,1}n such that

1. ti = 1 in all n positions or,
2. ti = 0 for logn values ofi where 1≤ i ≤ n.

Additionally, a string of symbols with value 1, and lengthCOUNT is given where the
length is a design parameter which will determine the probability of correctness. In our
caseCOUNT= clogn for an appropriately chosen constantc. Also the valuen is spec-
ified as acounter.

Question: Is ti = 1 for all values ofi in unary, referred to asLENGTH, 1≤ i ≤ n ?

15

Let T denote the set of all possible inputs to theDVP. A RABRAM programPR
solves theDVP with probability p provided, given an input as defined above, it halts
with a symbol 1 denoting an answer of “yes” to the above question, in a designated
outputcell in memory wheneverti = 1 for all values ofi 1≤ i ≤ n in T, and with the
symbol 0 otherwise, denoting the answer “no” with probability no less thanp. For con-
venience, we will refer to the value in the celloutputto be theoutput bit.

4.2 A Probabilistic Algorithm PROBDVP

The proposed (probabilistic)RABRAM algorithm for solving theDVP, PROBDVPis now
described below and shown in Figure 6. This algorithm revolves around a single crucial
step, described and analyzed as thevalue-amplification techniquebelow; it is a proba-
bilistic “test” for detecting whether or not a given valueti is 1 (or equivalently 0). For
convenience, all of the algorithms in this section are specified as a type of “pseudo-
code” and not in the more detailedRABRAM (or BRAM) notation. To the extent neces-
sary, we will specify the extensions for converting these specifications into full-fledged
RABRAM programs.

Algorithm: PROBDVP

1.For i = 1 ton Do
2. If t ′i =LENGTH Then/*probability parameter(p)*/
3. continue
4. Else /* t ′i 6= 1 */
5. VALAMP

6. MAJORITY

7. If out put= 0
8. Halt
9. Else
10. continue
11. End If
12. End If
13.End For

Fig. 6.The probabilisticDVP algorithm based on value amplification

Value Amplification and Voting for Majority Without loss of generality, letn be a
power of 2. Value amplification is the following simple algorithm (Figure 7) performed
on each of the positions ofT using an auxiliary two-dimensional arrayX[i, j] of size

16

n× (clog(n)) where 1≤ i ≤ n, initialized to zero. Herec > 1 is a suitably chosen con-
stant. Throughout, letp = 1− ε logn

n , whereε < 1
c .

Algorithm: VALAMP

1. While j <COUNT= clog(n)
2. If ti = 0
3. Then setX[i, j] = 1;
4. End If
5. j = j +1
6. End While

Fig. 7.Algorithm to perform value amplification

Let 1≤ i ≤ n and recall that in aRABRAM, each step has an associated probability
parameterp, the probability that the outcome of a probabilisticBRANCH is correct, for
example in the comparison in Step-1 (Figure 7). This comparison is implemented as
a BRANCH with fan-out two and with probability parameterp as stated before. In this
case, the following basic fact about the probability of correctness of value amplification
can be derived as stated in Lemma 1 below.

Consider applying value amplification using the value of elementti , which by defi-
nition is either 0 or 1. Also, upon completion of value amplification with valueti its out-
puts or “amplified values” are recorded in locations or memory cellsXi ≡X[i,1],X[i,2],
· · · ,X[i,clogn]. Let xi denote the number of these locations with value identical toti .
For example ifti = 0, xi denotes the number of elements or cells inXi with value zero
upon completion of the value amplification step withti as input, and vice-versa.

We will first state two useful facts

Fact 2.(Chernoff bound [16]) LetY1,Y2, · · · ,Yl be independent Poisson trials such that,
for 1≤ i ≤ l , Pr[Yi = 1] = pi , where 0< pi < 1. Then forY = ∑l

i=1Yi , µ= E[Y] = ∑l
i=1 pi

and anyδ > 0,

Pr[Y > (1+δ)µ] <

[
eδ

(1+δ)(1+δ)

]µ

As above, letPr[Y > m] denote the probability that eventY occurs at leastm times
out of l > m independent trials, wherep denotes the probability of occurrence ofY in
any one trial. That ispi = p j for 1≤ i ≤ l . Similarly we definePr[Y′ > m] whereY′ is
associated with probabilityp′. The following useful fact is immediate.

17

Fact 3.Pr[Y > m] > Pr[Y′ > m] wheneverp > p′ for all l > 0 9

Using these facts, we can now prove

Lemma 1. In any single invocation of algorithmVALAMP with input value ti the (error)
probability that the number of elements xi is less thanc

2 logn,

Pr[xi <
c
2

logn]≤ 1
nĉ

for all n ≥ 2 and constantŝc andε that are design parameters.

Proof. Suppose ˆp, the probability of a per-step error during value amplification be
p̂= 1− 1

c′ for c′ > 1 a constant. Also, letyi = (clogn−xi), wherexi denotes the number
of elements or cells inXi with values identical toti . The expected values ofyi is denoted
by µ= c

c′ logn.

Now,

Pr[yi >
c
2

logn] = Pr[yi > (1+δ)
c
c′

logn] (1)

for (1+δ) =
c′

2
for constantc′.

From Fact 2

Pr[yi > (1+δ) logn] ≤

 e
c′
2 −1(

c′
2

)(c′
2

)


c
c′ logn

(2)

≤ 1
nĉ (3)

for any constant ˆc > 1, with an appropriate choice ofc andc′.
The error probability(1−p) = ε logn

n < 1
c′ for n = 2 andε < 2

c′ . Thereforeε logn
n <

(1−p) for anyn> 2 since logn is a decreasing function inn∈N+. From this and Fact 3,
the bound in inequality (2) above serves as an overestimate to the error probability.

Intuitively, the basic idea behind value amplification is that whenever the value at a
positionti is probabilistically tested and found it be 0, its value is “suspect”. In this case,
algorithmVALAMP performs repeated independent tests on the same bit, and sets the
outputbased on the majority of the tests. The result of an individual test will henceforth
be referred to as avote. Thedemocratic-votingalgorithm entitledMAJORITY (Figure 8)
accomplishes the goal of counting the total number of votes and setting theoutputbit
appropriately, based on a simple majority.

9 With my student Lakshmi N. Chakrapani, a new proof for the above relation has been devel-
oped, which does not use the conventional combinatorial technique.

18

Algorithm: MAJORITY

1. If the number of entries with the symbol 1
in X[i, j]: 1≤ j ≤ clog(n) is greater thanc2 log(n)
2. Then setoutputto 0 and terminate.
3. Else
4. setoutputto 1 and terminate.
5. End If

Fig. 8.Algorithm to count majority vote

Implementation-issues While a RABRAM implementation of algorithmVALAMP is
immediate—we will defer the discussion of implementing the iteration control to the
end of this section—it is interesting to consider an implementation of algorithmMA -
JORITY in some detail. Specifically, we will propose two alternate approaches for com-
pleteness.

The first approach “combines” an implementation of algorithmMAJORITY with
that of algorithmVALAMP . In this case, each primitiveBRANCH instruction will serve
two purposes, as shown in Figure 9. First it is used to test the bit in the input arrayT.
Second, whenever the input bit fromT is 0 and hence algorithmVALAMP is invoked
(by the overall algorithm referred to as algorithmPROBDVP), it is used to increment
the POINTERvalue that points to the location where the “next bit” is to be written
in arrayX[i, j]. The input valueCOUNT is used as a unary counter, realized as a sin-
gle BRANCH instruction which will terminate the iteration (Figure 9) when a zero is
detected inCOUNT afterclogn iterations.

Using this algorithm, it is easily verified inductively that for any value ofi, there
always exists âj ≥ 0 such thatX[i, j ′ ≤ ĵ]≡ 1 andX[i, j ′′ > ĵ]≡ 0. Informally, all the
“1 entries” in rowi of X[i, j] will be contiguous as shown in Figure 10. Thus, in this im-
plementation, the analysis from Lemma 1 immediately implies that upon completion of
value amplification, the “majority” test can be replaced by testing whether the location

X[i,1+
(

c
2logn

)
] has value 1.

Based on analysis identical to that developed in the proof of Lemma 1 above, it is a
simple exercise to verify that

Corollary 3. When considering input ti and after applying algorithmVALAMP , algo-

rithm MAJORITY sets out put to0 if and only if ti = 0 with probability pv ≥
(

1− 1
nĉ

)
for some constant̂c, a design parameter.

For convenience, this “one bit” test as well as the unary counter implementation
shown in Figure 9 above are presented to be deterministicBRAM implementations.
They can however be realized as probabilisticBRANCH instructions in aRABRAM by
“bootstrapping” on the value amplification notion.

19

Test input bit i
from T

bit ti = 0

bit ti = 1

Advance POINTER
to next location
by testing
COUNT

1,2,….c log n

X[i,j]

j

Repeat till value
amplification terminates

Fig. 9.A combinedRABRAM implementation of algorithmVALAMP and algorithmMA -
JORITY

11111110000000

1,2,….c log n

j

ĵ
X

Fig. 10.The structure of any rowi in X

20

The second approach to realizing algorithmsVALAMP and MAJORITY is to con-
sider separate implementations. Again, considering algorithmMAJORITY, we note that
a straightforward approach to determining the majority will involve a tree-structured
computation withclogn leaves, where the output of the root is a value of 1 if and only
if the number of entries in rowi of arrayX designatedXi is greater thanc2 logn. Each
“node” of the tree represents some constant number, sayr, of tests, such that a value of
1 is recorded iff both of its children are associated with a value of 1. The value ofr is
chosen so that with(1− p) = ε logn

n , we have an overall error probability bounded above
by 1

nĉ as in Corollary 3.

5 Analysis of Algorithm PROBDVP

The input lengthn is specified as a vector in unary ofn bits. The end of this counter
is detected10 by the transition from a bit with value 1 to one with value 0. Consider-
ing Algorithm PROBDVPfrom Section 4.2 above, we note that the counter that controls
the iteration over the input vector can also be implemented through a single branch for
each position till the “end-of-array” symbol is detected in the input vectorT to deter-
mine termination of the entire algorithm. To reiterate, for convenience, we assume that
the branch instruction associated with this test is deterministic. Thus in its final imple-
mentation algorithmPROBDVP is a “hybrid” algorithm with both probabilistic and de-
terministic steps. Thus its complexity characterized in Theorem 3 has deterministic and
probabilistic logical work components. We again note that the probabilistic techniques
outlined earlier can in fact be used to replace this deterministic test by a probabilistic
test leading to a “non-hybrid” fully probabilistic implementation. For completeness we
recall that each test in the “for” loop specified as Step-2 in algorithmPROBDVP (Fig-
ure 6) is implemented using a probabilistic branch, with an associated error probability
of p = ε log(n)

n .
With this as background, letα andβ denote the number of times that that the branch

used to realize Step-2 is executed incorrectly—α denotes the number of times that an
event of typeA, wherein the input vector has a value 0 and the branch determined it to
be erroneously 1 occurs, whereasβ denotes the number of times that an event of typeB
wherein an input value of 1 is erroneously determined to be 0. Similarly,λ denotes the
number of times this step is executed correctly, and the corresponding event is said to
be of typeΛ. Λ0 denotes an event of typeΛ with an input symbol of 0, withΛ1 defined
similarly.

Using the Chernoff bound (from Fact 2) once again, and using analysis similar to
that that used in the proof of Lemma 1, we can show that

Lemma 2. The probability thatα or β is greater than rlogn where r≤ 1
2, is bound

above by1
nĉ , for suitably chosen constantsĉ and c.

10 In the probabilistic case, the end of array symbol can be represented as a strong of logn bits
with value 0 followed by a corresponding string of logn bits with value 1; in the deterministic
case, a single bit with value 1 will suffice.

21

The Expected Logical Work Done by Algorithm PROBDVP Using the above devel-
opment as background, we are now ready to analyze the expected logical workLR
done by algorithmPROBDVP.

Fact 4.The value amplification in Step-5 of Algorithm PROBDVP is invoked iff events
of typeB or Λ0 occur in Step-2.

From the above fact, we have

Theorem 3. The expected logical workLR (PROBDVP,n) = 2n+logk n for some positive
constant k> 2 andL(PROBDVP,n) = 2n.

Proof. The logical work during each invocation of value amplification is triviallyclogn,
for some constantc. Furthermore, the number of such invocations due to events of type
Λ0 is bound above by logn from the definition of the input to theDVP. From Lemma 2,
the probability that the number of invocations of value amplification caused by events
of typeB will exceedr logn is no more than1

nĉ . This in turn implies an expected logical

work of r log2n from events of typeB. Also the number of steps (BRANCH) and hence
logical work that can be caused by events of typeΛ1 as well as typeA is cumulatively
bound above byn. By noting that a unary implementation of a counter in Step-1 of the
algorithm using deterministic tests can be realized usingn+ 1 branches, we have the
theorem.

Expected Energy Savings Using AlgorithmPROBDVP In earlier work [18], we have
shown that theL(P ,n) of any deterministicBRAM algorithmP for solving theDVP

problem is bound below by 2n− logn+ 1. From this lower bound, from Theorem 3,
and from Corollaries 1 and 2, we can claim that

Theorem 4. The expected savings in energy in Joules using AlgorithmPROBDVPover

any deterministic algorithm for solving theDVP grows asΩ
(

nlog
(

n
n−ε logn

))
Joules,

for constant0 < ε < 1, and is therefore monotone increasing in n.

5.1 Probability of Error of Algorithm PROBDVP

We note that errors can occur either due to events of typeA or of typeB. Based on the
probabilities these types of events, we have:

Theorem 5. The probability that AlgorithmPROBDVP will terminate correctly is at
leastp = (1− 1

nc) for c a constant and a design parameter.

Proof. We note that an incorrect termination occurs if and only if the input vector had
the value 1 in all of its positions and upon termination, the value ofoutputwas 0 (events
of typeB), which we will refer to asCase-1, and vice-versa, (events of typeA) which
we will refer to asCase-2.

Case-1:From algorithmPROBDVP, let us consider events of typeB. From Lemma 1
and Corollary 3, the probability of any one of these events settingout put= 0, ≤ 1

nĉ .

22

Since there are a total ofn positions and hence a maximum ofn such events, the ex-
pected number of such events isε logn. The probability that any one of theseε logn
setsout put= 0 after value amplification is trivially bound above by1

nĉ−1 and therefore

we are done withc = ĉ−1. (We note that performingclogl n trials, for a constantl ,
in the algorithmvalampinstead of theclogn used in this paper, simplifies the calcula-
tion of this bound, but does not affect the asymptotics of the energy complexity of the
algorithmPROBDVP. Further, using the bound onβ from Lemma 2 will yield a better
estimate ofc.)

Case-2:In this case there exists ati = 0. Then by the definition of theDVP, there
exist logn positions such thatt j = 0 at every one of these positions; letξ0 denote the
set of all such indicesj. Considering events of typeA, we note from Lemma 2 that the

probability thatα < logn is bound below by
(

1− 1
nĉ

)
. Therefore, there exists one index

j ′ ∈ ξ0 such that upon execution of Step-2 of algorithmPROBDVPwith t j ′ as input, the
resulting event is not of typeA with probabilityp′ ≥ 1− 1

nĉ . Therefore witht j ′ as input,
Step-5 and Step-6 of algorithmPROBDVPwould have been executed with probability
p′ and from Lemma 1.

6 Remarks and Conclusions

With the ever increasing emphasis on the energy consumed by computers and the need
to minimize it, our goal here is to develop a framework and a supporting complexity
(theory) that is technology independent, intending to parallel classical computational
complexity theory developed in the context of running-time and space (see Papadim-
itriou [21] for details concerning the classical theory of computational complexity). The
work presented here is one approach towards accomplishing this goal wherein energy
is the figure of merit—as opposed to traditional time or space. In this context, the mea-
sure of complexity introduced here and referred to as logical work serves to provide an
abstract, albeit representative measure of the energy consumed. Thus, while analyzing
an algorithm as demonstrated in the context of theDVP for example, the logical work
can be the figure of merit that one seeks to improve, which is then easily “translated” to
deduce energy gains, as demonstrated in Section 4.

The particular formulation presented here affords a clear separation of concerns
between the energy behavior of an algorithm across the logical and physical levels, by
introducing an “abstract” estimate of energy-consuming behavior through logical work,
which is independent of particular physical implementations. Subsequently, we provide
specific translations from the domain of logical work, through idealized physical models
of computing as summarized in Section 3, into the domain of energy.

Thus, using this framework, the specificphysicaldevices that implement the com-
puting elements can be changed, without perturbing the algorithm framework affecting
the design and analysis where the latter constitute thelogical components of our frame-
work. Furthermore, our particular choice of an idealized physical device abstracts away
dependencies on specific technologies, but nevertheless exposes the logical components
of the framework to the inherent limits to energy consumed—specifically the idealized

23

physical devices used here are based on statistical thermodynamics building on the his-
toric work of Maxwell [30], Boltzmann [2], and Gibbs [6], rather than being based in
a specific physical domain such as transistors of a particular feature size for example.
Furthermore, these idealized devices consume energy as they compute and once energy
is consumed, the complexity measure of logical workirreversiblycharges for this ex-
penditure; this is in contrast with thereversiblestyle of computing (see Feynman [5]
for a survey) which allows energy consumed to be recovered allowing, in theory, com-
putations to be realized with zero energy consumption.

From a utilitarian perspective of course, any framework such as that introduced in
this paper is “only as useful as the results that it can help achieve.” In this context, the
central thesis established in this paper that is used to validate the value of this framework
is: probabilistic techniques and algorithms—or, as referred to in the introduction and
in keeping with the theme of this symposium, “probabilistic proofs”—yield expected
energy savings, when compared to their deterministic counterparts.

Several directions of inquiry suggest themselves, given that the energy behavior
of algorithms in general and probabilistic algorithms in particular remains a largely un-
chartered domain. While deferring the cataloging of such “open questions”—computations
on finite-fields suggest themselves immediately as candidates for study—including those
aimed at developing an energy-based complexity theory to a future publication, we will
briefly comment on some of the more immediate questions here.

An obvious first step is to consider other interesting as well as more meaningful
candidate problems for demonstrating possible energy savings achieved through proba-
bilistic algorithms or proofs. In this regard, results similar to those presented for theDVP

in Section 4 have been derived by this author forstring matching. The classical prob-
abilistic algorithm for solving this problem based onfingerprintingis due to Karp and
Rabin [8]. Commenting on the specifics briefly, our energy savings are derived by ex-
tending the notion of value amplification (from Section 4.2) rather than through the use
of the Karp-Rabin fingerprints. It will be of interest to analyze fingerprinting from an
energy perspective using the framework provided by theBRAM and theRABRAM mod-
els, and to systematically compare the power and scope of this technique with that of
value amplification. Specifically, the error probability of value amplification is higher
than the error probability achieved through fingerprinting. The first interesting ques-
tion is to determine whether value amplification can yield the same error probability
as fingerprinting does. Assuming that the probabilities of error are different, it will be
interesting to determine whether energy can be used to separate the complexity of fin-
gerprinting from value amplification, even though both of then would yield algorithms
that run inO(n).

All of the results presented in this paper were using unary representations of num-
bers, as opposed to the more natural binary representation. This choice was deliberate
in that in a model such as aBRAM , the particular choice of representation has an impact
on the asymptotic energy behavior, and our interest in this (first) work is to understand
the energy behavior at the most elementary level possible. A basic question to consider
in this regard is that of implementing a binarycounterand its accompanying arithmetic,
and comparing it to the unary design used to implement iteration in realizing Algorithm
PROBDVPfor example.

24

A direction of inquiry that is only hinted at here but not elaborated upon, is the im-
plication of this work to novel physical computing devices that are probabilistic. As the
analysis in Section 4 demonstrated, such implicit randomization in the (abstract) device
can lead to energy improvements, even asymptotically. To reiterate, these improvements
are not due to faster running times that probabilistic algorithms might yield, but follow
from the following fundamental reason: using the idealized physical devices (from [17,
19]) referred to above, a physical interpretation of randomization allows computation
to be realized with higher thermodynamic-entropy (or Boltzmann-entropy) which is a
physical quantity, thus yielding energy savings. Pursuing realizations of such devices
and validating them in the context of implementing probabilistic algorithms promises
to be a particularly interesting direction for inquiry, which is being collaboratively pur-
sued [20]. Intuitively, a physical interpretation of probabilistic computing can be viewed
as “merely” riding the wave of naturally occurring thermodynamic phenomena, which
are best characterized statistically.

Acknowledgments

This work is supported in part by DARPA under seedling contract #F30602-02-2-0124

References

1. M. Blum. A machine-independent theory of the complexity of recursive functions.Journal
of the ACM, 14(2):322–326, 1967.

2. L. Boltzmann. Further studies on the equilibrium distribution of heat energy among gas
molecules.Viennese Reports, Oct. 1872.

3. G. J. Chaitin and J. T. Schwartz. A note on monte carlo primality tests and algorithmic
information theory.Communications on Pure and Applied Mathematics, 31:521–527, 1978.

4. S. A. Cook. The complexity of theorem proving procedures.The Third Annual ACM Sym-
posium on the Theory of Computing, pages 151–158, 1971.

5. R. Feynman.Feynman Lectures on Computation. Addison-Wesley Publishing Company,
1996.

6. J. W. Gibbs. On the equilibrium of heterogeneous substances.Transactions of the Connecti-
cut Academy, 2:108–248, 1876.

7. J. Hartmanis and R. E. Stearns. On the computational complexity of algorithms.Transactions
of the American Mathematical Society, 117, 1965.

8. R. Karp and M. Rabin. Efficient randomized pattern matching algorithms.IBM Journal of
Research and Development, 31(2):249–260, 1987.

9. R. M. Karp.Reducibility among combinatorial problems. Plenum Press New York, 1972.
10. R. M. Karp. Probabilistic analysis of partitioning algorithms for the traveling-salesman prob-

lem in the plane.Mathematics of Operations Research,(USA), 2(3):209–224, Aug. 1977.
11. H. Leff and A. F. Rex.Maxwell’s demon: Entropy, information, computing.Princeton Uni-

versity Press, Princeton, N. J., 1990.
12. L. A. Levin. Universal sorting problems.Problems of Information Transmission, 9:265–266,

1973.
13. Z. Manna. Properties of programs and the first-order predicate calculus.Journal of the ACM,

16(2):244–255, 1969.
14. Z. Manna.Mathematical theory of computation. McGraw-Hill, 1974.

25

15. J. D. Meindl. Low power microelectronics: Retrospect and prospect.Proceedings of IEEE,
pages 619–635, Apr. 1995.

16. R. Motwani and P. Raghavan.Randomized Algorithms. Cambridge University Press, 1995.
17. K. V. Palem. Thermodynamics of randomized computing: A discipline for energy aware

algorithm design and analysis. Technical Report GIT-CC-02-56, Georgia Institute of Tech-
nology, Nov. 2002.

18. K. V. Palem. Energy aware computation: From algorithms and thermodynamics to ran-
domized (semiconductor) devices. Technical Report GIT-CC-03-10, Georgia Institute of
Technology, Feb. 2003.

19. K. V. Palem. Energy aware computing through randomized switching. Technical Report
GIT-CC-03-16, Georgia Institute of Technology, May 2003.

20. K. V. Palem, S. Cheemalavagu, and P. Korkmaz. The physical representation of probabilistic
bits (pbits) and the energy consumption of randomized switching.CREST Technical report,
June 2003.

21. C. Papadimitriou.Computational Complexity. Addison-Wesley Publishing Company, 1994.
22. H. Putnam. Models and reality.Journal of Symbolic Logic, XLV:464–482, 1980.
23. M. O. Rabin. Degree of difficulty of computing a function and a partial ordering of recursive

sets. Technical Report 2, Hebrew University, Israel, 1960.
24. M. O. Rabin. Probabilistic algorithm for testing primality.Journal of Number Theory,

12:128–138, 1980.
25. M. O. Rabin and D. S. Scott. Finite automata and their decision problems.IBM Journal of

Research and Development, 3(2):115–125, 1959.
26. J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities.Journal

of the ACM, 27:701–717, 1980.
27. K.-U. Stein. Noise-induced error rate as limiting factor for energy per operation in digital

ics. IEEE Journal of Solid-State Circuits, SC-31(5), 1977.
28. R. C. Tolman.The Principles of Statistical Mechanics. Dover, 1980.
29. A. Turing. On computable numbers, with an application to the entscheidungsproblem. In

Proceedings of the London Mathematics Society, number 42 in 2, 1936.
30. H. von Baeyer.Maxwell’s Demon: Why warmth disperses and time passes. Random House,

1998.
31. von Neumann J.Mathematical foundations of quantum mechanics. Princeton University

Press, Princeton, N. J., 1955.
32. A. Whitehead and B. Russell.Principia Mathematica. Cambridge University Press, 1913.
33. W. H. Zurek. Algorithmic randomness and physical entropy.Physical Review A, 40(8):4731–

4751, 1989.

