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SUMMARY

“Probabilistic behavior of computing elements can be tolerated as well

as harnessed for low-energy and high-performance computation”

In this dissertation, we introduce a logic and arithmetic combined with probabilistic

behaviors. First, we define models of computation rooted in the resulting Probabilis-

tic Boolean Logic (pbl), and demonstrate a system-on-a-chip architecture based on

these models. Next, we extend pbl to arithmetic and study the properties of the re-

sulting arithmetic. In both cases (pbl gates as well as probabilistic arithmetic), the

introduction of probabilistic behavior yields significant gains in the in the physical

domain. These gains are in the energy consumed and the overall performance (speed)

of computing. These developments collectively offer theoretical and empirical proof

to support the thesis.

Parameter variations, noise susceptibility, and increasing energy dissipation of

complementary metal oxide semiconductor (cmos) devices (transistors) have been

recognized as major challenges in circuit and architecture design in the nanometer

regime. Among these, parametric variations and noise susceptibility increasingly

cause cmos devices to behave in an unreliable or “probabilistic” manner. This is true

for novel non-cmos materials as well, whose properties and manufacturing difficulties

cause logic elements to behave in a probabilistic manner. To address these challenges,

a shift in the design paradigm from current-day deterministic designs to statistical or

probabilistic designs is deemed inevitable.

In this context, it should be noted that advances in Boolean logic, an understand-

ing of its properties, and algorithms based on such properties have played a vital role

xii



in the design and synthesis of digital circuits. If an analogous approach were to be

adopted to theoretically characterize probabilistic logic elements, considerations of

probability need to be injected into Boolean logic.

Motivated by these facts and considerations, a Probabilistic Boolean Logic, whose

logical operators are by definition “correct” with a probability 1
2
≤ p ≤ 1 is intro-

duced. To characterize the meaning of a probabilistic Boolean formula (pbf) in this

logic, we introduce and study the concept of event sets. Event sets serve as a basis for

developing the laws of probabilistic Boolean logic. While most of the laws of Boolean

logic can be naturally extended and shown to be valid in the case of probabilistic

Boolean logic, there are some surprising differences. Based on probabilistic Boolean

logic, we study two models of computation: the probabilistic Boolean circuit, and the

probabilistic automaton whose transition function is computed by such a circuit.

To empirically demonstrate the utility and advantages of probabilistic Boolean

circuits, we introduce and study a novel family of probabilistic architectures: the

probabilistic system-on-a-chip (psoc) architecture. These are based on cmos devices

rendered probabilistic due to noise, which are referred to as probabilistic cmos or

pcmos devices. In addition to harnessing the probabilistic behavior of pcmos de-

vices, psoc architectures yield significant improvements, in terms of energy as well as

performance, in the context of probabilistic applications with broad utility. All of the

application and architectural savings are quantified using the product of the energy

and the performance denoted (energy × performance): the pcmos-based gains are as

high as a substantial multiplicative factor of over 560 when compared to a competing

energy-efficient realization.

Finally, we extend the consideration of probability of correctness from logic to

arithmetic through Probabilistic Arithmetic, where the magnitude of correctness of

an arithmetic operation may be traded for its energy; we can show that a relatively

small amount of error in the arithmetic operators can be traded for significant energy

xiii



savings. This work provides the theoretical basis for the energy savings reported in

the video decoding and radar processing applications, performed using digital filters

realized using probabilistic arithmetic operations, that has been demonstrated by

George et. al. [66].
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CHAPTER I

INTRODUCTION

“Probabilistic behavior of computing elements can be tolerated as well as

harnessed for low-energy and high-performance computation”

Automated computing, ranging from abstract machine models such as Turing ma-

chines [187] to practical programming languages, has its roots in the study and ad-

vances in logic1. For example, two-valued Boolean logic is at the heart of the spec-

ification, automated construction and verification of silicon-based digital very large

scale integrated (vlsi) circuits, which are the bedrock of the information technology

revolution. The advances in logic and models of computation based on such logics,

have had a significant impact on the design and construction of computing devices

due to a correspondence between logical constructs and physical primitives that these

computing devices are composed of. For example, there is a correspondence between

Boolean operators and physically implemented logic gates in vlsi and by extension,

between Boolean circuits and physically implemented circuits in vlsi. So far, the

physical primitives such as transistors and logic gates used in building computing

devices were (or for all practical purposes treated to be) deterministic at the macro-

scopic level and correspondingly, the logical constructs used to study them have been

deterministic as well.

1The reader is referred to Davis [43] for an excellent overview and a historical perspective, which
relates advances in logic to the birth of modern computers and computer science in its present form.
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However, the miniaturization of computing devices through technology scaling,

popularly anticipated by Moore’s law [123], has challenged this assumption of de-

terminism. Phenomena such as noise, parametric variations and other device per-

turbations [130, 169, 94] are increasingly introducing “statistical” or “probabilistic”

behavior into transistors and logic gates. The current methodology of addressing

these challenges by designing vlsi systems through conventional techniques rooted in

deterministic logics and deterministic models of computation, and addressing proba-

bilistic behavior in the realm of vlsi mainly in the form of rigorous test methodologies,

are unlikely to be adequate for future technology generations [15, 16]. This is true

for novel non-complementary metal oxide semiconductor (non-cmos) materials such

as molecular electronics [186] as well, where the material properties, perturbations

and manufacturing difficulties cause physical primitives to behave in a probabilistic

manner [79].

To accommodate this probabilistic behavior, it has been speculated that a shift

in the design paradigm—from the current-day deterministic designs to statistical or

probabilistic designs—would be necessary [82, 14]. For example, the international

technology road-map for semiconductors (itrs) forecasts [82] “Relaxing the require-

ment of 100% correctness for devices and interconnects may dramatically reduce costs

of manufacturing, verification, and test. Such a paradigm shift is likely forced in

any case by technology scaling, which leads to more transient and permanent failures

of signals, logic values, devices, and interconnects.” This probabilistic behavior of

building blocks in future technology generations, and its likely impact on comput-

ing devices has been recognized by leaders in industry: To cite an example, Borkar

notes [14] “We will shift from the deterministic designs of today to probabilistic and

statistical designs of the future· · · So we now say, ‘If I do this in the design, the tran-

sistors and therefore the chip will perform in this way.’ In the future, we will say, ‘If

I design with this logic depth or this transistor size, I will increase the probability that

2



a given chip will perform in this way.’ ”

This prescription of “relaxing the requirement of 100% correctness” and “proba-

bilistic and statistical designs” has several profound implications and challenges. The

first challenge is rooted in the fracture of the correspondence between the proba-

bilistic physical primitives and the deterministic logical constructs used to study and

design computing devices based on these primitives. To remedy this fracture, a logic

which incorporates probability, and whose constructs maintain a correspondence with

physical primitives, needs to be developed and studied.

The notion of probability in logics and models of computation based on such log-

ics is not new. While initial developments in logic and models of computation based

on logic were deterministic, the notion of probability, when coupled with models of

computation derived from logic, have proved to be very effective in realizing highly

efficient algorithms for computing [157, 172]. Historically, probabilistic behavior was

realized by adding an external source of randomness to conventional logic-based con-

structs, such as gates and automata, to induce randomness and hence probabilistic

behavior [125]. To achieve this, pseudo-random bits are coupled with deterministic

mechanisms. We refer to this as an explicit style of realizing probabilistic comput-

ing. Such an explicit style of realizing probabilistic computing has proved useful in

the context of the design and implementation of efficient algorithms on determin-

istic computing devices. By contrast, to maintain a tight correspondence between

probabilistic physical primitives and logic constructs, an implicit approach to realiz-

ing probabilistic computing needs to be introduced and studied. Characterizing this

implicit approach to probabilistic computing and logic formally, and distinguishing

it from its explicit counterpart, serve as the overarching philosophical themes of the

first part of this work.

To this end, we introduce a novel Probabilistic Boolean Logic (pbl) as well as

a model of computation—essentially a probabilistic automata (pa) in the Rabin

3



sense [156]—whose transition functions are realized through pbl. In pbl, the canon-

ical operations—disjunction, conjunction, and negation, ∨p,∧q,¬r—have an associ-

ated probability p, q, r (1
2
≤ p, q, r ≤ 1) of being “correct”, and can be used to

construct probabilistic Boolean formulae (pbf). Akin to formulae in classical Boolean

logic, those in pbl can be constructed as compositions of probabilistic operators,

variables, and the constants {0, 1}. Informally, for any input assignment to the de-

terministic variables in a probabilistic Boolean formula, its value is the outcome of a

random experiment, whose sample space (for examples, see Feller [57]) is determined

by the input assignment to the variables in the formula, its structure, as well as the

associated probabilities of correctness of its constituent operators.

To formally characterize and “interpret” this informal notion of correctness of a

pbf, we introduce the foundational concept of an event set: It consists of a set of

events from a sample space, each of which is associated with a conventional deter-

ministic Boolean formula. Given an input assignment I to a pbf, its event set can

be used characterize the possible set of events associated with this input assignment.

This characterization helps us to unambiguously determine the correctness and truth

of the pbf in a unified way. Thus, we note that in pbl, the assignment I is determin-

istic, and the probabilistic behavior is induced entirely by the implicitly probabilistic

operators of the pbf.

This has to be contrasted with an approach to explicitly injecting probabilistic

behavior into conventional Boolean formulae with deterministic operators, by consid-

ering some of the elements of the input assignment to be random variables (ranging

over the set {0, 1}). Based on the event set semantics, we will distinguish the implicit

and explicit approaches of melding logic with probability. Furthermore, we define the

conditions under which two or more probabilistic Boolean formulae can be character-

ized as being equivalent using event sets. This formal notion of equivalence through

event sets is used to characterize the significant identities or properties of pbl.
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The properties of pbl for the most part correspond to those of classical Boolean

logic. However, intriguingly, pbl does not preserve distributivity and associativity. In

the latter context, a novel contribution of our work is to help quantify the “amount”

by which a formula is non-associative. When we consider reassociations of the same

formula, the probability with which it is satisfied varies. We use this variation as

a basis for quantifying the degree of non-associativity of pbl. Specifically, we show

that there exist formulae of length n → ∞ such that the degree of non-associativity

grows as Ω(n) where the probability of correctness of individual operations, p =

1−1/nc. Conversely, the degree of non-associativity demonstrates how the probability

of correctness of a given pbf F may be improved through considering reassociations

of F , without compromising cost along other dimensions such as the size of the

associated circuit.

To relate pbf to computing structures which can be implemented using proba-

bilistic physical primitives, we introduce and study Probabilistic Boolean Circuits, a

model of computing based on pbl, and characterize its relationship to conventional

explicitly probabilistic circuit constructs from computer science that have randomness

injected into them as “coin tosses”2. It might seem natural to view these implicit and

explicit formulations as being equivalent and consequently, the probabilistic Boolean

circuit model based on pbl and the classical randomized circuit model as being inter-

changeable. While pbl and the associated constructs in the implicit context might

be closely related to randomized circuits employing explicit randomness in terms of

conventional complexity measures such as size or depth, we will infer that the implicit

2In this work, we distinguish between the terms probabilistic and randomized and hence the
corresponding Boolean circuits. We use the terminology “probabilistic Boolean circuits” to refer
to Boolean circuits whose gates correspond to one of the three probabilistic operators of pbl and
hence are implicitly probabilistic. On the other hand, we use the terminology “randomized Boolean
circuits” to refer to conventional Boolean circuits, some of whose inputs may be random variables
and hence have probabilistic behavior explicitly injected into them.
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variety is more efficient or less expensive, through the measure of energy consump-

tion. Thus, physical energy consumption provides a novel approach to distinguishing

explicit and implicit approaches beyond semantic and structural differences.

This characterization of the difference between physically realized implicitly prob-

abilistic and explicitly random constructs based on energy considerations, builds on

prior foundational work [138, 139] and work done in the context of cmos devices

rendered probabilistic by thermal noise, referred to as probabilistic cmos or pc-

mos [35, 101, 102]. Finally, moving beyond circuit-based models and considering

computational models with a notion of state in the form of a pa, we show that these

gains, or energy advantages, persist. To demonstrate this, we consider the transition

function of a pa and show that any transition function of such an automaton real-

ized as an implicitly probabilistic circuit, consumes less energy than an equivalent

explicitly realized circuit.

The second challenge is the construction of computing architectures using prob-

abilistic physical primitives, based on the principles and properties of pbl. This

includes defining a design and empirically demonstrating the usefulness as well as the

advantages of such a design. In this context, the massive investments in legacy de-

signs, design methodologies and tools dictate that such architectures, at least initially,

cannot depart radically from current-day conventional architectures.

To respond to this critical challenge, we introduce and study a novel family of

probabilistic architectures which we refer to as the probabilistic system-on-a-chip (or

psoc) architecture. In our current context, psocs are based on pcmos devices. Our

psoc architecture, where an energy efficient (deterministic) general purpose processor

like the StrongARM processor [174] is coupled to an application-specific probabilistic

co-processor, resembles the ubiquitous host and co-processor (or accelerator) style of

system-on-a-chip architectures [59].
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We demonstrate that psoc architectures yield significant improvements, both in

the energy consumed as well as in the performance, in the context of probabilistic

applications with broad utility. All of our application and architectural savings are

quantified using the product of the energy and the performance denoted (energy ×

performance): the pcmos-based gains are as high as a substantial multiplicative factor

of over 560 when compared to a competing energy-efficient realization. Since design

considerations for psoc architecture differ from those of conventional system-on-a-

chip (soc) architectures, we introduce and employ a novel algorithm-architecture-

technology (A2T) co-design methodology to design efficient psoc implementations.

Our architectural design is application-specific and involves navigating the design

space spanning the algorithm (the application), its architecture (the psoc) and the

probabilistic technology (pcmos).

A third challenge in considering the role of probabilistic behavior in computing

and architectures, is to reason about constructs based on logic, at a higher level of

abstraction than logical operations. Specifically, in the deterministic context, arith-

metic primitives, notably addition and multiplication have been widely studied and

employed as architectural building blocks of algorithms [95]. Though all arithmetic

operations are composition of logical operations, it is conceptually more tractable

to reason about algorithms and computing structures directly at the granularity of

arithmetic primitives. In the probabilistic context, we introduce a novel notion of

probabilistic arithmetic and provide a rigorous framework to analyze the relationship

between the (energy) cost and the probability of correctness for probabilistic addition.

Probabilistic addition operation of two n bit numbers is realized using n proba-

bilistic addition primitives (or primitives for short), where each primitive is correct

with a probability 1
2
≤ pi ≤ 1. In addition, a cost model which relates the probability

of correctness of a primitive to is cost, is specified. The cost of probabilistic addition

of two n bit numbers is the sum of the costs of its n constituent primitives. The cost
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of a primitive (and hence its probability of correctness) may be different from that of

another primitive within the same n bit probabilistic addition operation.

In this context, we mathematically characterize the trade-off between (energy)

cost and magnitude of error of probabilistic arithmetic. Since the costs of individual

probabilistic primitives may differ, we study the impact of variable investment in the

individual primitives on the magnitude of correctness of probabilistic addition. We

show that for an n bit ripple carry adder, if the energy is invested equally across all

the primitives—irrespective of the value or the significance of the bit they compute—

the expected magnitude of error of addition grows as Ω(
√

2n). Furthermore, we prove

that in the exponentially biased (unequal) investment case—where primitives which

compute bits of a higher significance have a higher probability of correctness—the

expected magnitude of error grows as O(n3).

We continue by studying various concerns which relate to the practical implemen-

tation of probabilistic arithmetic, since the cost of the design can also grow with the

number of distinct energy values being invested: (i) The effect of binning—where the

number of different energy values being considered for investment does not grow as

n but is limited 3 to some value b < n—on the energy savings, (ii) the effect of trun-

cation; where no energy is invested on any of the primitives which compute t least

significant bits.

As an empirical evidence of the utility of probabilistic arithmetic, we revisit the

work of George et al. [66], where probabilistic arithmetic operations realized through

pcmos, have been used to implement the fast Fourier transform (fft) and hence a

synthetic aperture radar (sar) processing application [167]. The probabilistic arith-

metic operations implemented in this work include adders and multipliers, whose

constituent probabilistic primitives—the full adders—have varying probabilities of

3For example, b can be log(n) or a constant c, a natural number.
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correctness. In particular, the full adders which compute bits of a higher signifi-

cance have a higher probability of correctness and hence higher energy investment in

the form of higher supply voltages. This scheme of non-uniform operating voltages

(which corresponds to the exponential investment scheme in probabilistic arithmetic),

is termed as the biased voltage scheme or bivos. George et. al. demonstrate an en-

ergy savings of over a factor of 5.6 in the context of the sar application for a visually

imperceptible degradation in the quality of solution [66].

1.1 Reading Guide and Roadmap

This dissertation is organized as follows: In Chapter 2, we provide a historical perspec-

tive and summarize prior work by others, as relevant background to the theoretical

as well as the empirical aspects of the dissertation. In Section 2.1, we sketch the in-

fluence of logic on computing and remark on the role of probability in algorithms and

models of computation. In Section 2.2.1, we outline the frequentist interpretation of

probability which will serve as a background for defining the “meaning” of a pbf in

probabilistic Boolean logic. In Section 2.3, we sketch a brief history of thermodynam-

ics and explain the role of probability in thermodynamics. The statistical explanation

for thermodynamic entropy led to Maxwell’s thought experiment, and thus provided

an explanation, rooted in thermodynamics, for the energy cost of computing [104].

This was extended by Palem to quantify the energy cost of probabilistic computing

and a brief summary is provided in Section 2.3.1. The physical manifestation of the

energy cost of probabilistic computing can be studied in the context of probabilistic

cmos devices and as background, we summarize the main results in Section 2.4.1.

We shall use these results to quantify the energy efficiency of probabilistic Boolean

circuits as well as to implement psoc architectures.

We summarize the background work related to the empirical parts of the dis-

sertation in Section 2.4 under three categories: (i) Techniques for energy efficient
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computing and techniques for the trade-off between energy and quality of solution in

Section 2.4.2, (ii) the possible use of “statistical” computing elements and theoretical

approaches to computing in the presence of faults in Section 2.4.4 and (iii) practical

approaches to computing in the presence of faults in Section 2.4.5. The material in

Chapter 2 is of a general interest to a broad audience.

In Chapters 3, 4 and 5 we define probabilistic Boolean logic, provide a formal

model for this logic, study its properties and define a model of computation based

on pbl. In Chapter 3, we introduce pbl, define the operational meaning of a pbf

and define the equivalence of two probabilistic Boolean formulae. In Section 3.3, we

define the formal model for pbl and this is primarily of interest to logicians and

readers interested in mathematical logic. Based on the notion of equivalence of two

pbf, in Chapter 4, we study some interesting properties of pbl. In Chapter 5 we

describe the models of computation based on pbl. For readers interested only in the

use of circuits based on pbl, Sections 3.1 and 5.0.5.1 are of interest and the rest of

Chapters 3, 4 and 5 may be skipped.

In Chapter 6, we describe an architecture for implementing the models of com-

putation rooted in pbl and show empirical results. This chapter is of interest to

computer architects and circuit designers.

We define probabilistic arithmetic in Chapter 7 and report on its utility in Sec-

tion 7.5. We expect this work to be of interest to computer scientists and electrical

engineers considering the impact of nano-scale devices on future computing systems

and their principles. Finally we remark and conclude in Chapter 8.
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CHAPTER II

HISTORICAL PERSPECTIVE AND BACKGROUND

Our work is based on results from logic, probability and energy cost of computing,

and has connections to three distinct areas: mathematical logic, computer science,

and applications to electrical engineering. The developments in thermodynamics,

probability theory, logic and computing are intimately related, with advances in each

field spurring advances and developments in the others, with results derived in one

field, frequently yielding deep insights into the others. In Section 2.1 and Section 2.3,

we sketch relevant aspects of these relationships: The development of logic and prob-

ability and its influence on computing, and the developments in thermodynamics and

the corresponding understanding of the energy cost of computing. Building on Sec-

tion 2.3, in Section 2.3.1 we briefly summarize the results which quantify the energy

cost of probabilistic computing in a theoretical context. We will frequently refer to

this section in the subsequent chapters of this dissertation. Section 2.4 has an em-

phasis on electrical engineering, and provides a background for the empirical aspects

of this dissertation.

2.1 Logic, Computing and Probabilistic Algorithms

Right from the birth of modern logic, its development was directed towards defin-

ing and characterizing automated computation. Gottfried Leibniz is regarded as

the father of modern logic, though all of his work on logic was published posthu-

mously [62]. Leibniz’s motivation was to perfectly represent “the relationships be-

tween our thoughts” (see [145]pp-105) in a symbolic framework. Leibniz further

postulated that such a symbolic representation was necessary to produce the calculus

ratiocinator, an algebra through which mechanical calculations could be performed
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to automate the process of logical deduction. Leibniz praised the development of

such a logic thus: “How much better will it be to bring under mathematical laws

human reasoning, which is the most excellent and useful thing to have” (see [43]).

However, Leibniz’s attempts at defining such a logic would prove futile and Leibniz

himself noted “After so many logics the logic I dream of has not yet been written”

(see [62]pp-5).

Boole successfully derived an algebra that could represent logical operations and

principles [12]. For example, if x, y represent two sets of objects, xy would represent

objects in both sets. Boole showed that if 0 were taken to denote the empty set and

1, the universal set, then x(1 − x) = 0, which perfectly represents the the principle

of contradiction: the set of statements which are true and untrue at the same time is

empty [12]. Through the development of Boolean algebra, Boole demonstrated that

logical deduction could be formalized as a system of algebra. Shannon demonstrated

that Boolean logic operators could be implemented through electrical relays (electrical

relays could implement the conjunction, disjunction and negation operators) and

hence an electrical circuit could perform logical and numerical calculations [177].

Thus, the development of logic resulted in the development of computing.

The initial developments in the models of computing such as Turing machines [187]

or the circuit model of computing were deterministic. Curiously and counter-intuitively,

the notion of probability, when coupled with models of computing derived from logic,

have proved to be very effective in realizing highly efficient algorithms for computing.

Rabin’s introduction of probabilistic automata [156] and randomized algorithms are

pioneering examples which introduced considerations of probability in models of com-

puting. Their impact was eloquently anticipated by Schwartz [172]—“The startling

success of the Rabin-Solovay-Strassen algorithm (see Rabin [157]), together with the

intriguing foundational possibility that axioms of randomness may constitute a useful

fundamental source of mathematical truth independent of, but supplementary to, the
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standard axiomatic structure of mathematics (see Chaitin and Schwartz [23]) suggests

that probabilistic algorithms ought to be sought vigorously.”. These contributions have

led to vast areas of study that explore the power that probability and randomness

add to computing. Correspondingly, for philosophical and ontological reasons, prob-

abilities have been associated with logics in the past, with probable inference as one

of the main motivators [42].

2.2 Frequentist Interpretation of Probability and
Probability in Logics

As a background to probable inference, we first consider the rule of inference in

propositional logic. In propositional logic, if P and Q are sentences and if P implies

Q (denoted P → Q) then by the rule of Modus ponens [121] ((P → Q), P ) logically

entails Q. Informally, by the rule of Modus ponens, the fact P implies Q and the fact

P is true can be used to deduce that Q is true. Certain real-world situations merit the

question, If P is not known to be true with certainty, is Q true? [41] For example, in

several artificial intelligence applications, rules of inference and data are not known

with certainty and only strongly indicated by evidence. With this as motivation,

several researchers (see Cox [42], Nilsson [135], Fagin and Halpern [55], Fagin, Halpern

and Megiddo [56], for example) have generalized logic to deal with uncertainties. In

a dual sense, the relevance of the theory of probability to the theory of probabilistic

inference, has had an influence on the interpretation of probability itself. In this

section, we briefly summarize the frequentist interpretation of probability and logics

which have incorporated probability.

2.2.1 The Frequentist Interpretation of Probability

The concept of probability has had differing interpretations, where the two important

interpretations have been the frequentist approach, championed by Venn [190], von

Mises [191], Reichenbach [165], and others, and the Bayesian interpretation, of which
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de Finetti [45], Ramsey [161], Jaynes [85] and others are prominent proponents (for

a detailed discussion, please see Cox [41] and Bergmann [9]). The word “frequentist”

is used to refer to the proponents as well as to the frequency theoretic interpretation

of probability, and is attributed to Kendall [91]. Efron [52] outlines the controversies

between the Bayesian interpretation and the frequentist interpretation). The no-

tion of probability under the frequentist interpretation, is outlined elegantly by von

Mises [191] “It is possible to speak about probabilities only in reference to a properly

defined collective” and Bergmann [9] “Probability theory deals with mass phenomena

and repetitive events”. Whereas, the interpretation of probability according to the

Bayesian approach, quoting Cox is “A relation between a hypothesis and a conclusion,

corresponding to the degree of rational belief and limited by the extreme relations of

certainty and impossibility” (see Cox [41] pp-4) .

The frequentist approach, broadly speaking, defines the probability of an event

A in a sequence of trials as simply the ratio of the number of occurrences of A to

the total number of trials, as the number of trials tends to infinity. For example, the

probability of occurrence of heads in any toss of a coin would simply be the ratio of

the number of occurrences of heads to the total number of trials in an infinite sequence

of trials. This interpretation, while satisfying the requirement of ascertainability—in

principle, probabilities can be assigned to each event—introduces paradoxes. One of

the paradoxes is the paradox of finite sequences. Considering the extreme case of one

trial of a fair coin, only a relative frequency of either 0 or 1 for the probability of

occurrence of heads can be obtained. The possible number of distinct relative fre-

quencies increase with the number of trials and is limited by the number of trials. As

a result, frequentists define ascertainable probability ratios only on infinite sequences.

This interpretation, in turn, introduces paradoxes. In particular, re-ordering count-

ably infinite sequences could give rise to different relative frequencies. As an example,

a countably infinite sequence of equal number of heads and tails can be re-ordered
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to have heads as the outcome of every tenth trial—the rest of the trials being tails—

thereby attributing a relative frequency of 1
10

(instead of 1
2
) to heads.

von Mises addresses these concerns through the axiom of convergence and the

axiom of randomness. In particular, the axiom of convergence states that the limiting

relative frequency of any event exists in a sequence of infinite trials. The axiom of

randomness states that this limiting relative frequency of any event in an infinite

sequence and the limiting relative frequency in any infinite sub-sequence are the

same, thereby attributing some property of uniform “randomness” to the infinite

sequence under consideration. This notion of “similarity” of an infinite sequence to

any infinite sub sequence was formalized by Church [38] and ultimately refined by

Kolmogorov [100] and Chaitin [24].

Our motivation in choosing the frequentist approach is based on the fact that

we wish to apply methods based on our interpretation of pbl, to derive techniques

not only for designing and synthesizing integrated circuits, but also for verifying

them. Here, measurement to ascertain the behavior of probabilistic Boolean circuits

is crucial. Ascertaining the behavior would typically involve testing the circuit not

only over a large number of inputs, but also over a large number of trials without

using known priors1, resulting in a sequence of outcomes which are elements of the

“event set”.

2.2.2 Probability in Logics

The two notable approaches towards incorporating probability in logics, involve asso-

ciating confidences with sentences, and where the truth value of the sentence ranges

over the interval [0, 1] and is therefore many-valued. These approaches have a long

and distinguished history (see Keynes [92] and Reichenbach [165] as good introduc-

tions). Relatively recently, considerations of probability in first order languages were

1For an eloquent defense of the use of known priors, please see Jaynes [85], whose book is reviewed
in a most stimulating manner by Diaconis [47].
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treated by Scott and Kraus [173] who attribute Gaifman’s investigation of probabil-

ity measures [63] on (finitary) first-order languages as an inspiration2. Hailperin [73]

and Nilsson [135] also consider variations of these notions, again with quantifiers

and the confidence of the sentence associated with probability measures. The former

author also offers an excellent historical analysis of this work. The work of Fagin

and Halpern, and Fagin, Halpern and Megiddo continues in this rich tradition and

represents a significant milestone [55, 56].

In contrast with all of this distinguished prior work, the individual variables in pbl

are associated with truth values from the set {0, 1}, and are deterministic, while prob-

ability is incorporated into pbl through probabilistic operators. Our dual approach

to the treatment of probability and logic stems in part from differing motivations.

Whereas the former work has been motivated by inference in the presence of im-

precise knowledge, our work has been motivated by the characterization of models

of computing, (more specifically Boolean circuits) elements (such as gates) of which

may exhibit probabilistic behavior.

2.3 Thermodynamics and the Energy Cost of Computing

Sadi Carnot is widely regarded as the father of modern thermodynamics. Carnot’s

study [22] of heat engines was motivated by the desire to improve their efficiency. To

model the problem, Carnot proposed an ideal heat engine as a thought experiment,

and for the first time showed that the efficiency of any heat engine is limited by the

temperatures of the source of heat and the “sink”—where the heat is eventually ab-

sorbed to keep the temperature of the engine under control—that any heat engine

should possess. He identified that there was a difference between heat-energy and

temperature and it is the heat-energy that is conserved in thermodynamic processes

2The Scott-Kraus development extends it to infinitary languages.

16



and converted to work, and not the temperature. Carnot’s engine served as a founda-

tion upon which Clayperon introduced the concept of thermodynamic reversibility. In

thermodynamics, a reversible process is a process, where the initial state of the ther-

modynamic system can be restored by means of infinitesimal changes in its properties

in the reverse direction, without loss or dissipation of energy. In 1848, Lord Kelvin

developed the absolute scale of temperature which simplified the expression for the

efficiency of Carnot engine [90]. In 1854, Clausius, based on Kelvin’s and Carnot’s

work identified a quantity which he termed entropy, which quantified the amount

of heat energy in any heat engine that could not be converted to useful work [39].

Clausius further postulated that the entropy of the universe monotonically increases.

This is the famous second law of thermodynamics.

The development of atomic theory of matter, led to the development of kinetic

theory of gases and attempts were made to explain the macrostate of a system—

the macrostate is characterized by the observable properties of the system, such as

temperature, volume and pressure—on the basis of its microstate (or the behavior and

properties of constituent molecules). Properties of a thermodynamic system, such as

pressure, volume and temperature could successfully be explained by the behavior of

the constituent molecules. However, entropy defied explanation. In mechanics, the

kinetic energy of any moving body could, in principle, be completely converted to

work. According to the postulates of the kinetic theory, any ideal gas was a collection

of moving molecules and hence, by extension, the collective kinetic energy of the

molecules (or equivalently their heat energy) could completely be converted to work.

However, this is an apparent contradiction to the law of entropy, which postulates

that some of this heat energy could never be converted to work.

In a significant advance, Boltzmann related the amount of randomness, or uncer-

tainty of the direction of motion and position of the constituent molecules, to the

amount of entropy of the system [11]. Informally, considering a six-dimensional phase
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space of any container of gas with n molecules—with three dimensions representing

momentum of the constituent molecules and the other three dimensions representing

their position—the position and momentum of all the molecules can simultaneously

be represented by n points in this phase space. Given E, the energy of the system,

several sets of n points—say W sets—are valid microstates of the system. Given the

pressure, volume and temperature of a container of gas, the molecules in the con-

tainer could be in any one of the W microstates, and hence there is an uncertainty

about the microstate of the system. Boltzmann showed that the natural logarithm of

this uncertainty, lnW , is proportional to the entropy S of the system. Boltzmann’s

famous equation S = k lnW where, k is the Boltzmann constant, formalized this

relationship. Further contributions to this field of statistical mechanics were made by

Gibbs [68], Maxwell and others.

Maxwell, in his book “Theory of Heat,” introduced the notion of the Maxwell’s

demon [116], as a thought experiment to challenge the second law of thermodynamics.

Even though entropy could be explained through the statistical uncertainty of the

state of the constituent molecules, a violation of the second law of thermodynamics

was seemingly possible by an intelligent being capable of observation and action at

the molecular scale. In Maxwell’s own words [116] “Let us suppose a vessel is divided

into two portions A and B, by a division in which there is a small hole, and that a

being, who can see the individual molecules opens and closes this hole, so as to allow

only the swifter molecules to pass from A to B and only the slower one to pass from

B to A. He will thus, without expenditure of work, raise the temperature of B and

lower that of A, in contradiction to the second law of thermodynamics”. The solution

to this contradiction defied explanation for several years [105]. Notable contribution

was made by Szilard, who showed how the intelligent being could be replaced by

a mechanical device [105]. Interestingly, this mechanical device had two states, to

indicate whether a molecule was in the left side of the container or in the right side.
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Thus, Szilard ought to be widely credited for having inspired the modern notion of a

“bit” and a machine with two “states”.

Landauer was the first to provide a satisfactory explanation of the Maxwell’s

demon by relating computation to energy [104]. Landauer demonstrated that any

mechanical (or a computer-based) Maxwell’s demon had to possess memory, which

could be a container of gas, or more generally a bistable well, with a single molecule.

The position of the molecule could encode either a 0 or a 1. Initially, if each cell in this

memory associated with a single molecule were set to say, 0, subsequent observations

of the random molecules by the demon, would encode the position of these molecules

in the memory. Hence at the end of its operation, the memory would be filled with

a random string—essentially transferring the randomness of the container of the gas

into the memory—which needs to be erased to restore the memory to its original

state.

The process of erasure, or the process of restoring the random states of the

molecules which encode the bits in the memory to a known state, would consume

kT ln 2 joules of energy. Hence, in effect, the demon would have expended energy

to bring order to the container of gas, and hence does not violate the second law of

thermodynamics.

Landauer went on to conjecture that any elemental step of any computation would

need to expend kT ln 2 joules of energy. This was shown to be false by Bennett [8]

who showed that only logically irreversible steps of computation—a NOT function

is logically reversible, since the input can be deduced from the output, whereas an

AND function is irreversible, since if the output is 0, the input could be (0, 0), (0, 1)

or (1, 0)—need to consume energy. He further demonstrated how all functions could

be computed reversibly, and hence, in principle, be implemented through reversible

thermodynamic processes which consume no energy. Later Friedkin and Toffoli [60]

showed how all logical operations may be realized through reversible logic gates.
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Today, computing is implemented using complementary metal oxide semiconduc-

tor (cmos) based very large scale integrated (vlsi) circuits through non-recovering

and irreversible processes, where energy, once expended, is not recovered. Meindl and

Davis [119] showed that kT ln 2 joules of energy needs to be expended per switching

step in cmos transistors where T is the temperature of operations and k is the

Boltzmann constant [11]. However, statistical phenomena such as the thermal noise

in deeply scaled vlsi devices, further influence the energy consumption of practical

implementation of computing.

Hence, the notion of probability and randomness formalized the notion of entropy

in thermodynamics, inspired the Maxwell’s demon, and thus, thermodynamics serves

as the basis for the energy cost of computing.

2.3.1 The Energy Cost of Probabilistic Computing

With the general development and the interplay between probability, computing and

energy cost of computing as a background, we now detail an aspect that is extensively

referred to in the rest of the dissertation: the theoretical relationship between prob-

abilistic computing and energy consumption. The theoretical relationship between

probabilistic computing and energy consumption is referred to in the context of the

energy efficiency of the models of computing based on pbl. When such a model

of computing—the probabilistic Boolean circuit—is implemented in vlsi, we utilize

the relationship between probability of correctness and the energy cost of computing

presented in Section 2.4.1 to reason about and to empirically demonstrate the energy

efficiency of such circuits realized through vlsi.

Probabilistic switches, introduced by Palem [139], relate probabilistic behavior

of switches to their energy consumption. A probabilistic switch is an object which

realizes a probabilistic one-bit switching function. As illustrated in Figure 1(a), the

four deterministic one bit switching functions—the four possible one bit input one
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Figure 1: Following Palem [139], (a) deterministic one bit switching functions and
(b) their probabilistic counterparts with probability parameter (probability of cor-
rectness) p

bit output functions—have a probabilistic counterpart (Figure 1(b)) with an explicit

probability parameter (probability of correctness) p. He considered an abstract proba-

bilistic switch sw to be the one which realizes one of these four probabilistic switching

functions. Such elementary probabilistic switches may be composed to realize primi-

tive Boolean functions, such as and, or, not functions [139].

While a switch that realizes the deterministic non-trivial switching function con-

sumes at least kT ln 2 Joules of energy [119], a probabilistic switch can realize a

non-trivial switching function with kT ln(2p) Joules of energy in an idealized setting.

Networks of such switches may be considered as a computational model and hence

the energy consumption (or energy complexity) of a network of such switches may be

studied.

While the network of switches provide a model of computation without state, as an

analog to the parallel random access machine (pram) model of computing [67], Palem

introduced the bit-level random access machine (bram) model of computing [138].

The probabilistic counterpart to bram model of computing is the randomized bram

or the rabram model of computing. Palem showed [138] that probabilistic algo-

rithms implemented on the rabram model of computing are more efficient than

21



their deterministic counterparts of identical time complexity. In this context, if T is

the temperature at which switching takes place and k is the Boltzmann constant [11]

and p is probability of correctness, independent of the implementation technology,

Theorem 1 ( [139]) The potential for saving through probabilistic switching over

deterministic switching is kT ln1
p

per switching step.

This theorem relates the energy consumed to the probability of correctness p.

Extending this to a full fledged model with state (and memory), if for a state si, the

cardinality set of the possible next states are F (si),

Theorem 2 ( [138]) The energy consumed in evaluating the transition function in

the context a state pci of any bram program P is at least kT ln(F (s)i)) Joules, fur-

thermore, the energy consumed in evaluating the transition function in the context a

state pci of any rabram program PR can be as low as kT ln(F (si)p) Joules, where p

is the probability parameter.

2.4 Current Technology Challenges

With these historical developments as background, we survey current technology chal-

lenges [118, 136, 14, 44], with an emphasis on energy consumption and statistical

behavior, and outline some approaches towards addressing these challenges.

While the Meindl and Davis [119] fundamental limit of cmos energy consump-

tion is kT ln 2, Stein took into account the perturbation and error probability of

cmos based inverters, and showed that at least 165kT joules of energy needs to be

expended per switching step to achieve a reliability of at most one error per 1019

switchings [184]. Correspondingly, in practical implementations, to keep the noise

margins high, the supply voltage of transistors may not scale at a rate concomitant

to their size [44]. Thus, in keeping with Moore’s law, as transistor sizes decrease

(resulting in increased density of integration) and their frequency of operations in-

crease (resulting in increased energy consumption per unit time), the power density
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or the amount of energy consumed per unit area per unit time increases. This leads

to increased thermal density with associated reliability and cooling problems, which

impact the reliability, size, mobility and operating costs of computing platforms. This

has a major impact on the design of microprocessors [14].

Variation in the behavior of highly scaled cmos devices is another major challenge.

The spatial variations in the behavior of cmos devices (where two devices are non-

identical) can be classified into systematic variations and random effects [185]. For

example, lithographic lens aberration is a systematic variation while random dopant

fluctuation is a random effect. In highly scaled cmos devices, a few hundred dopant

atoms control the electrical behavior of the transistor. In this scenario, a small change

in the distribution and placement of these atoms causes a huge variability in the device

behavior [136, 21]. The impact of such parametric variations on circuit design has

been widely studied [15, 44, 16, 170]. While spatial variations are caused due to

material properties and manufacturing difficulties, temporal perturbations in cmos

devices include various type of noise [130, 169, 94, 48].

With this and the energy cost of probabilistic computing presented in Section 2.3.1

as background, we now summarize the relationship between probability of correct-

ness and energy cost of computing in the cmos-based vlsi domain, studied by Ko-

rkmaz [101].

2.4.1 Probabilistic Complementary Metal Oxide Semiconductor
Devices

Probabilistic complementary metal oxide semiconductor devices (pcmos) devices are

cmos devices whose behavior is probabilistic. Of the several possible techniques for

realizing pcmos devices (some of which are described in [141]), it has been demon-

strated that ambient thermal noise can be used to randomize the behavior of a con-

ventional cmos device [102]. The relationship between the probability of correctness

of switching and the energy consumption of pcmos devices was established through
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Figure 2: The models from [2] of (a) a pcmos switch and (b) representation of
digital values 0 and 1 and the probability of error for a pcmos switch

analytical modeling and HSpice based simulations [35, 102, 28] as well as actual mea-

surements of fabricated pcmos based devices [101]. Assuming a supply voltage of

Vdd, a noise rms value of σ, and a capacitance C, if the thermal noise is modeled

as an output coupled voltage source with a Gaussian distribution, as illustrated in

Figure 2, errors occur—a digital 1 is treated as a 0 or vice versa—if the output volt-

age levels are in the gray shaded area of Figure 2(b). The relationship between noise

magnitude σ, the switching voltage Vdd, and the probability of error can be obtained

by calculating the area under the curve shaded by gray. Since the switching energy

E = CV 2
dd

Law 1: Energy-probability Law: (from [2]) For any fixed technology gen-

eration (which determines the capacitance C = Ĉ) and constant noise magnitude

σ = σ̂, the switching energy ÊĈ,σ̂ consumed by a probabilistic switch grows with p.

Furthermore, the order of growth of ÊĈ,σ̂ in p is asymptotically bounded below by an

exponential in p.

Extending this relationship to a Boolean gate, we illustrate in Figure 3(a) the

relationship between the energy consumption per switching step to the probability of

correctness for a nand gate and an inverter at 90nm technology, whereas we compare

the relationship between the energy consumption per switching step to the probability
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Figure 3: (a) The relationship between energy per switching step and probability
of correctness for a nand gate and an inverter at 90nm technology, and (b) the same
relationship at 65nm technology (from [101])

of correctness for the nand gate and the inverter at 65nm technology, in Figure 3(b).

Both of these were obtained by analytical modeling. Further details of the modeling

and HSpice based simulation results are presented elsewhere [101].

While we have presented a brief overview of the challenges posed by variability

with a cmos-centric view, the problems of reliability and variation are present in non-

cmos devices as well [79]. We now briefly survey the techniques adopted to overcome

these challenges posed by energy consumption and variability.

2.4.2 Techniques for Energy Efficient and Error-free Computing

Energy efficient error free computation is a vast area of research. This problem has

been studied at several levels: at the level of circuits, micro-architecture, memory,

operating systems, algorithms, applications and compilers [147, 71, 154, 155]. The

domain of digital signal processing (dsp) offers a good illustration for these techniques

and hence we shall survey techniques relevant in the context of this dissertation, with

an emphasis on dsp.

Energy efficient digital signal processing is a large area in its own right [32]. At

the circuit level, the use of voltage scaling for reduced energy consumption has been
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explored. In these techniques, increased propagation delay was considered to be

the primary drawback to voltage overscaling. To maintain circuit performance and

correctness while simultaneously realizing energy savings through voltage scaling,

several researchers employ the use of multiple supply voltages by operating elements

along the critical path at nominal voltage and reducing supply voltages along non-

critical paths [33, 112, 200, 201]. Other techniques involve detecting and correcting

switching errors due to voltage overscaling [54]. Supply voltage scheduling along with

task scheduling to match application demand with the speed of operation has been

studied as well [93].

Offering a contrasting approach, in [77, 178, 193], propagation delay errors are

removed through error correction in a collection of techniques named “algorithmic

noise-tolerance”. In [77], difference-based and prediction-based error correction ap-

proaches are investigated and in [193], adaptive error cancellation is employed using

a technique similar to echo cancellation.

2.4.3 The Trade off between Energy, Error and Quality of Solution

As opposed to techniques described in Section 2.4.2, where application level cor-

rectness (or quality of solution) is maintained, techniques which trade-off energy for

quality of solution have been investigated. Historically, techniques which do not trade

quality, use better algorithms, replace complex operations such as multiplications

with simpler operations such as additions and eliminate redundant computations.

The techniques which trade quality of solution for energy efficiency, rely on the fol-

lowing observation: digital signal processing, by its very nature involves discretization

of signals and coefficients, and quantization of signals. Such discretization and the

limitation of the precision of the coefficients used, impact the quality [198] and afford

an opportunity for optimizations that yield energy efficiency.

For example, the Poorman’s transform uses approximate values for the complex
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exponential coefficients involved in multiplications in the discrete Fourier transform

(dft) algorithm. These approximate values allow for the replacement of multipli-

cations with additions [103]. This ultimately produces errors, but yields energy effi-

ciency. Similarly, the number of complex multiplications needed to perform a discrete

Fourier transform may be reduced through varied techniques [164, 5, 17]. A comple-

mentary approach towards reducing the number of arithmetic operations is to apply

coarse quantization to the signal values instead of approximating the coefficients,

and by exploiting the overlap between signal frames [132]. Other adaptive and non-

adaptive techniques utilize precision requirements along with incremental refinement

(where more operations produce better results) [133, 3, 4, 181, 131], adjust the length

of filter chain [107], adjust the values of the filter coefficients dynamically [195], or

adjust the filter order dynamically based on input data [108, 146].

As a radical departure from these techniques, George et. al. [66], demonstrated

how the correctness of arithmetic primitives may be traded off for energy consumed,

while providing an acceptable or “good enough” solution. The principle that enables

such an opportunity, is the relationship between energy and the probability of cor-

rectness in highly scaled, noise susceptible (future) cmos technologies [101]. Our

probabilistic arithmetic provides the theoretical framework for this counter intuitive

example, and the results of George et. al. are surveyed in Section 7.5.

2.4.4 Theoretical Approaches to Computing in the Presence of Faults

Utilizing implicitly probabilistic logic elements for reliable computing is a concept

which dates back to von Neumann’s seminal work, where he studied techniques

such as nand multiplexing and majority voting to increase reliability of faulty logic

gates [192]. von Neumann showed that if the failure probability of gates were sta-

tistically independent and low, computation can be performed reliably with a high
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probability. Other researchers have improved upon von Neumann’s techniques to cal-

culate the necessary and sufficient amount of redundancy to perform Boolean func-

tions [50, 51]. These results were improved upon by Pippenger who showed how

Boolean functions may be computed reliably (with constant multiplicative redun-

dancy) by gates susceptible to noise [153, 150, 151].

In the context of parallel random access machines (prams) [67], a different model

of computation than circuits, algorithms and techniques for deterministic computa-

tion in the presence of processor and memory faults have been studied extensively

in theory. Faults are modeled as events with some probability distribution. Most of

these techniques involve fault correction based on redundancy or faults detection and

re-execution [159, 109, 89, 36].

2.4.5 Practical Approaches to Computing In the Presence of Faults

Practical designs which exploit redundancy to achieve reliability at the circuit-level

while utilizing faulty circuit elements (noise susceptible cmos gates for example) have

been demonstrated as well. In the domain of cmos, the “probability of correctness”

of a cmos device originates from the probabilistic nature of charge transport as well

as extraneous events like hits from energetic particles [127]. Bahar et al. demonstrate

methods for improving the noise immunity of logic circuits by adopting design styles

based on Markov Random Fields [6, 134]. Energy efficiency, performance and im-

plementing probabilistic application are not the main considerations of this work. In

addition, a large body of literature has covered circuit, architecture and software tech-

niques for robustness in the presence of single event upset [204] caused by radiation

interferences [203]. These techniques are analogous to those surveyed in a theoretical

context in Section 2.4.4, which achieve reliable computation in the presence of faulty

logic elements.

At the architecture level, the architecture vulnerability factor [129] (which is the
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ratio of the number of bits required for the architecturally correct execution of the

program to the total number of bits in the structure) quantifies the susceptibility of

the architecture to perturbations. Architecture-level fault tolerance techniques range

from duplication of instructions at the software and hardware levels [163, 166] to the

duplication of threads [128] and the entire hardware [202]. These techniques are anal-

ogous to those surveyed in a theoretical context in the pram model of computation.

Broadly, these approaches can be divided into fault tolerance and fault avoidance.

Whereas the former seeks to detect and rectify faults dynamically, the latter relies

on apriori testing to eliminate defective elements. Conventional approaches to fault

tolerance have included designing redundant systems with reliable arbitrators [179].

Fault tolerance approaches include techniques like speculative execution on faster

(but less reliable) logic elements and verification by slower and more reliable logic

elements [84]. Fault avoidance approaches have been studied in the context of recon-

figurable architectures, where faulty blocks are not utilized for computing [69].

As a contrast, the empirical parts of this dissertation use no redundancy and

trade-off energy for quality of solution to achieve computation in the presence of

probabilistic behavior of logical and arithmetic primitives.
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CHAPTER III

A PROBABILISTIC BOOLEAN LOGIC AND ITS

MEANING

In this chapter, we incorporate considerations of probability into logic and introduce

Probabilistic Boolean Logic (pbl). Probabilistic Boolean logic captures attributes of

Boolean logic as well as probability in a unified model, through a probabilistic exten-

sion to Boolean logic where the three canonical operators—conjunction, disjunction

and negation—have an associated probability p: (1
2
≤ p ≤ 1) of “correctness”.

The study of such a logic which incorporates probability in an “implicit” manner,

is interesting in its own right. In this context, we define the meaning of any formula

in pbl and study several interesting properties of pbl, some of which are analogous

to those of Boolean logic, and unearth some interesting differences. Motivated by

our desire to study computational models based on pbl, we introduce and study

Probabilistic Boolean Circuits, and relate them to classical models of computation.

We explicitly introduce state and relate this model of computation to the celebrated

probabilistic automata model of Rabin [156]. We provide theoretical evidence, rooted

in thermodynamics, that computation implemented using such implicitly probabilistic

models of computing are likely to be more efficient than their deterministic counter

parts as well as their counterparts implemented using explicitly probabilistic models

of computing.

This implicit approach to realizing probabilistic computing could be based on

using naturally probabilistic phenomena, and thus, there is no need for an exter-

nal random source. Here, sources of randomness could include various types of
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noise [35, 130, 169]—an increasingly perceptible phenomenon in physically deter-

ministic devices [94]—and others. We note in passing that probabilistic behavior of

the implicit type is anticipated increasingly in cmos devices, gates and circuits—the

building blocks of modern computers—and are caused by manufacturing deficien-

cies and noise susceptibility [82] as physical sizes of individual transistors approach

20nm. This is viewed as an impediment to realizing deterministic switches and hence

to Moore’s law [123]. Characterizing this implicit approach to probabilistic comput-

ing and logic formally, and providing an approach to distinguishing it from its explicit

counterpart, serve as the themes of Chapter 3, Chapter 4 and Chapter 5.

3.1 Probabilistic Boolean Logic and Well-Formed Formulae

Informally, probabilistic Boolean formulae—like their deterministic counterparts—

can be constructed from the Boolean constants 0, 1, Boolean variables, and prob-

abilistic Boolean operators: probabilistic disjunction, probabilistic conjunction and

probabilistic negation. Probabilistic disjunction, conjunction and negation will be

represented by the symbols ∨p,∧q and ¬r respectively, where p, q, r are the corre-

sponding probability parameters or probabilities of correctness. The probabilities of

correctness associated with the disjunction, conjunction and negations operators are

such that 1
2
≤ p, q, r ≤ 1 and p, q, r ∈ Q, the set of rationals. Initially, for clarity of

exposition and for a model of finite cardinality, we consider only rational probabilities

of correctness. We seek the indulgence of the reader and will defer a more detailed

discussion of the justification underlying our choice of considering rational probabili-

ties, to Section 3.2. A pair of probabilistic operators, say in the case of probabilistic

disjunction, ∨p,∨p̂, will be deemed identical whenever p = p̂. They will be considered

to be comparable whenever p 6= p̂; similarly for probabilistic conjunction and nega-

tion. Analogous to well-formed Boolean formulae, well-formed probabilistic Boolean

formulae are defined as follows:
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1. Any Boolean variable x, y, z, · · · and the constants 0,1 are well-formed proba-

bilistic Boolean formulae1.

2. If F , G are well-formed probabilistic Boolean formulae, (F ∨pG), (F ∧pG) and

(¬pF ) are well-formed probabilistic Boolean formulae.

Henceforth, we will use the term probabilistic Boolean formula, or pbf to refer to

a well-formed probabilistic Boolean formula and the term Boolean formula (bf) to

refer to a classical well-formed Boolean formula (which is deterministic). In addition,

the length of a probabilistic Boolean formula is the number of operators n in the

formula. Given a pbf F , we will use varF to denote the set of variables in F . If

varF = φ, that is if F is a formula over Boolean constants, F will be referred to as

a closed well-formed probabilistic Boolean formula or a closed pbf.

3.1.1 Boolean Logic Preliminaries

For any Boolean formula or bf J consider the set of its constituent Boolean variables,

{x1, x2, x3, · · · , xk} denoted by bvarJ where |bvarJ | = k. Consider any assignment

I ∈ 〈0, 1〉k. Let JI be the closed formula obtained by replacing each variable of J with

the Boolean constant it is assigned. The value of the formula J , when xi is assigned

the ith element (bit) of I, or equivalently, the value of the formula JI , will be referred

to as the truth value of J with (input) assignment I and will be denoted by T (JI).

Given two Boolean formulae J,K, without loss of generality, let bvarK ⊆ bvarJ . If

I is an assignment to variables in J , I ′ is a consistent assignment to variables in K if

and only if whenever xi ∈ varK , xi is assigned to the same Boolean constant under

the assignments I and I ′.

Two Boolean formulae J and K where |bvarJ | = k are considered to be equiv-

alent, whenever T (BI) = T (CI′) for all input assignments. We recall that one ap-

proach to specifying the truth value of Boolean formulae is through a Boolean truth

1Typically we shall denote Boolean variables using lower case alphabets.
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Figure 4: A Boolean truth table for the formula (((x ∧ y) ∨ (x ∧ z)) ∨ (y ∧ z))

table. A truth table with 2k, k > 0 rows and two columns is illustrated in Fig-

ure 4. Conventionally, the first column of each row contains the input assignment,

where the nth row, 0 ≤ n < 2k, corresponds to the k bit binary representation of

n, which we denote by N . The second column of each row contains an element of

{0, 1} where the symbols 1 and 0 denote the true and false values respectively. Refer-

ring to the example in Figure 4, the truth table corresponds to the Boolean formula

(((x ∧ y) ∨ (x ∧ z)) ∨ (y ∧ z)). The third row of the table with the input 010, is

interpreted as the assignment 〈x = 0, y = 1, z = 0〉, and yields the truth value of the

formula to be 0 and hence the second column of this row contains a 0. In contrast,

the fourth row which contains the input 011, with the symbol 1 in the second column,

implying that the value of the formula for this assignment is 1.

3.1.2 The Operational Meaning of Probabilistic Boolean Operators

Let F,G,H denote (x∨p y), (x∧q y) and (¬rx) respectively, and let T (Fα), T (Gβ) and

T (Hγ) denote their truth value under the assignments α, β and γ respectively. Then

an informal operational approach to assigning or determining “truth” in the case of
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a pbf is

T (Fα) =


Truth value of (x ∨ y) under the input assignment α with probability p

Truth value of ¬(x ∨ y) under α with probability (1− p)

T (Gβ) =


Truth value of (x ∧ y) under the input assignment β with probability q

Truth value of ¬(x ∧ y) under β with probability (1− q)

T (Hγ) =


Truth value of (¬x) under the input assignment γ with probability r

Truth value of (x) under γ with probability (1− r)

3.1.3 Probabilistic Boolean Formulae and their Truth Tables

Let us now extend this notion of truth with associated probability to arbitrary for-

mulae in pbl. Our initial approach will be through a probabilistic Boolean truth table.

As shown in Figure 5 and analogous to conventional truth tables, in a probabilistic

truth table with l = 2k (k > 0) rows and three columns, the first column of the

nth row contains N , the k bit binary representation of n, 0 ≤ n < 2k. The second

and the third columns of the nth row contain rational numbers 0 ≤ pn, qn ≤ 1 where

pn + qn = 1. The first column of the nth row, which contains the binary representa-

tion N of n, is an assignment of Boolean constants to the variables in the formula

as shown in the Figure 5. The second column of the nth row, which is labeled pn,

represents the fact that the probability that value of the formula FN is 1 is pn for the

assignment N , whereas the third column labeled qn is the probability that the value

of the same formula for the same input assignment is 0. For example, if F is a pbf

over the variables x, y, z, and considering the row of the table with the assignment

010, the probability that the value of F is 1 for this assignment is p2 = 1/4 whereas

the probability that the value of F is 0 is q2 = 3/4.
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Figure 5: A probabilistic Boolean truth table for the pbf (((x ∧1 y) ∨1 (x ∧1 z)) ∨1

(y ∧3/4 z))

3.2 The Event Set Semantics of Probabilistic Boolean Logic

In Section 3.1.2, we have introduced an operational meaning of pbl and established

the fact that probabilistic Boolean formulae in this logic can be represented by prob-

abilistic Boolean truth tables. Given a pbf, intuitively, for any assignment of values

to the variables in the pbf, the value of the pbf is determined by (i) the operators

(probabilistic disjunction, conjunction or negation) in the pbf and (ii) the probabili-

ties of correctness of each of the operators. Whereas the former captures the notion

of the “underlying” deterministic Boolean formula, the latter characterizes the prob-

ability that the truth value of the pbf matches that of the underlying deterministic

Boolean formula. Note that this probability might vary with the input assignments,

and in general, indeed it does. Based on these two observations, we will formalize the

meaning of pbf in pbl based on the meaning of Boolean logic, and the frequentist
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interpretation of probability [191], for a given input I.

Sequence of events which characterizes to (1 Vp 0) = 1

Denotes ⎤ (1 V 0) = 0 Denotes (1 V 0) = 1
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r 
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2. (1 V 0) = 1

3. (1 V 0) = 1

4. ⎤ (1 V 0) = 0

True 
Events
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Figure 6: (a) A frequentist interpretation of a sentence (1∨ 3
4
0)

r
== 1 in pbl through

an infinite sequence of events and (b) a succinct representation of this sequence as an
event set

3.2.1 A Frequentist View of Probabilistic Boolean Logic

If F is any pbf and I is an assignment to variables in F , then FI will be used to

denote the closed pbf where every variable in F is replaced by the Boolean constant

it is assigned. We will use the symbol
r

== to mean “is equal to with a probability

r”. Also, for any assignment I to the variables in F , we will use SI to denote the

sentence FI
r

== 1 (and S̄I to denote the sentence FI
r̄

== 0). Our goal is to provide a

semantic framework that gives meaning to sentences formally. To this end, consider a

closed pbf FI of the form (1∨p 0) where p = 3/4. We recall that from the operational

meaning given to the ∨p operator, the probability that the truth value of FI is equal

to T (1 ∨ 0) is 3/4, whereas the probability that the truth value of FI is equal to

T (¬(1 ∨ 0)) is 1/4. Since the symbol
r

== means “is equal to with a probability r”, the
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sentence SI which denotes (1 ∨p 0)
r

== 1 is valid if and only if p = r; SI is an invalid

sentence otherwise.

Considering SI , under the frequentist interpretation of probability, an infinite

sequence Υ consists of two types of events, each associated with a sentence in classical

(deterministic) Boolean logic as follows: in our example (Figure 6(b)), one type of

event corresponds to those instances where FI “behaves like” (1 ∨ 0) and hence the

event is associated with the sentence in Boolean logic (1 ∨ 0) = 1, whereas the latter

corresponds to those instances where FI “behaves like” ¬(1∨ 0) and hence the event

is associated with the sentence ¬(1∨0) = 0. This concept is illustrated in Figure 6(a)

which shows the infinite sequence of events, each associated with a sentence. With

p = 3/4, we note that the relative frequency of the events which correspond to

sentences of the form (1 ∨ 0) = 1 is 3/4. Thus, our semantic interpretation of the

validity of a sentence in our example, is based on the validity (and the ratio) of the

two types of sentences in Boolean logic, (1∨0) = 1 and ¬(1∨0) = 0. The first type of

event is characterized by the sentence (1∨0) = 1 being valid whereas the second type

of event is characterized by the validity2 of the sentence ¬(1∨0) = 0. The probability

parameter p determines the relative frequency of these events as n, the number of

events →∞.

Rather than considering the infinite sequence of events Υ, we will use its finite

representation or encoding of probability parameter, as follows: in our example, we

consider a set (an “event set”) of 4 distinct events, three of which correspond to the

sentence in Boolean logic, (1∨0) = 1 and one event which corresponds to ¬(1∨0) = 0.

Such a succinct representation for the infinite sequence in Figure 6(a) is shown in

Figure 6(b). To reinforce this point further, consider longer formulae, say H, of the

form ((x∨p y)∨q z) where p = 3/4 and q = 5/6. Again, we will consider the sequence

2For a notion of validity of sentences and the semantics of Boolean logic—in fact the whole of
predicate calculus—please see Mendelson [121].
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which corresponds to the sentence S ′
I which denotes H

r
== 1 where I denotes the

assignment 〈x = 1, y = 0, z = 1〉. The sequence Υ′ associated with S ′
I would consist

of events ((1∨0)∨1) = 1, (¬(1∨0)∨1) = 1, ¬((1∨0)∨1) = 0 or ¬(¬(1∨0)∨1) = 0

with relative frequencies of 15/24, 5/24, 3/24 and 1/24 respectively. This infinite

sequence may be represented in a succinct manner with a set of 24 elements, 15

of which are copies3 of the sentence ((0 ∨ 1) ∨ 0) = 1, 5 elements being copies of

(¬(0∨ 1)∨ 0) = 0, 3 elements being copies of ¬((0∨ 1)∨ 0) = 0 and a single element

of the form (¬(0 ∨ 1) ∨ 0) = 0. From such a succinct representation, the sequence

Υ′ may be generated by picking elements uniformly at random and constructing an

infinite sequence of such trials. Since events are picked at random, the sequence

Υ′ satisfies both the axiom of convergence and the axiom of randomness (please see

Reichenbach [165] and Section 2.2.1) in the frequentist interpretation of probability.

A motivation towards developing pbl is to design efficient algorithms to synthesize

implicitly probabilistic circuits and the computational efficiency of such algorithms is

dependent on the size of the event sets. Therefore, we expect that it is advantageous

to represent the sequence Υ′ as a finite set, which is the basis for restricting the

probability parameter of the operators of pbl to be the member of the set of rationals

Q. We note that if probabilities are drawn from the unit interval [0, 1], the cardinality

of the event set will not be finite and a notion of probability measure [99] has to be

introduced. However, we note that the subsequent development of the semantics of

pbl can be extended naturally to the case where the probability parameters of the

operators are chosen from the interval [0, 1].

3Since our intention is to characterize the elements as a set, for element distinctness, we ensure
that the copies of each sentence is indexed uniquely from the set of naturals {0, 1, 2, . . .}, and thus
individual copies can be distinguished from each other through this index. For ease of exposition, we
will omit these indices in the body of this and subsequent chapters, but will include it in a rigorous
formulation of these concepts in Section 3.3.
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3.2.2 An Interpretation of a Probabilistic Boolean Formula for a Fixed
Assignment Through Event Sets

With the frequentist interpretation of probability as a background, we will define the

succinct representation of the infinite sequence of trials which characterizes a sentence

in pbf. Revisiting the example in Figure 6, let SI denote (1 ∨p 0)
r

== 1 and Υ is the

sequence which characterizes SI . We will refer to ES ,I , the succinct representation of

Υ as an event set of SI . In our example, any event E ∈ ES ,I will be associated with

either the sentence (1∨ 0) = 1 in Boolean logic, or with the sentence ¬(1∨ 0) = 0. If

p = m/n (p ∈ Q), ES ,I is a set of n elements (each element referred to as an event),

m of which correspond to (1 ∨ 0) = 1 and the rest to ¬(1 ∨ 0) = 0. We will refer

to the former type of events as being true whereas the latter type of events will be

deemed to be false. Intuitively, the true events are witnesses to the formula under

assignment I yielding a value of 1 whereas the false events correspond to those which

yield a value of 0. Let ψ(ES ,I) represent the fraction of the event set made up of

copies of true events, the sentence (1 ∨ 0) = 1.

Revisiting Figure 6, if r = 3/4, SI is a valid sentence and it is invalid otherwise.

We can either say “r = 3/4 is the value for which the sentence FI
r

== 1 is valid”, or

this fact can be stated as “F is satisfied with probability r = 3/4 for the assignment

I”. Given the event set ES ,I the rational number r and the Boolean constant 1, they

are said to be in a relationship R, that is (1, r,ES ,I) ∈ R, if and only if ψ(ES ,I) = r.

If (1, r,ES ,I) ∈ R, then the sentence (1 ∨p 0)
r

== 1 is said to be valid under our

interpretation; it is invalid otherwise.

Now consider the assignment Ī which denotes 〈x = 0, y = 0〉. As shown in

Figure 7(a), a majority of the events in the event set are false events. In this context,

it is more natural to reason about the validity of the sentence S̄Ī , which denotes

FĪ
r̄

== 0 or (0 ∨p 0)
r̄

== 0. If ψ̄(ES̄ ,Ī) is the fraction of events in ES̄ ,Ī which are

copies of false events, S̄Ī is a valid sentence if and only if r̄ = ψ̄(ES̄ ,Ī). In this case,
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r̄ = 3/4 is the value for which the sentence FĪ
r̄

== 0 is valid. Equivalently, we can

say that F is unsatisfied with probability r̄ = 3/4 for the assignment Ī. We note that

ψ̄(ES ,I) = 1 − ψ(ES ,I) and therefore, a sentence FI
r

== 1 is a valid sentence if and

only if FI
r̄

== 0 is a valid sentence, where r̄ = (1 − r). For ease of exposition, and

unless specified otherwise, we consider only sentences of the form FI
r

== 1, and reason

about the probabilities with which F is satisfied. A rigorous formulation of validity

of sentences in each case—sentences of the form FI
r

== 1 as well as those of the form

FĪ
r̄

== 0—is treated in a complete manner in Section 3.3.

1.  (0V0)=0 
2.  (0V0)=0 
3.  (0V0)=0 
4. ⎤(0V0)=1 

1.  (0V1)=1 
2.  (0V1)=1 
3.  (0V1)=1 
4. ⎤(0V1)=0 

1.  (1V0)=1 
2.  (1V0)=1 
3.  (1V0)=1 
4. ⎤(1V0)=0 

1.  (1V1)=1 
2.  (1V1)=1 
3.  (1V1)=1 
4. ⎤(1V1)=0 

Event set

(b)

(a)

1.  (0V0)=0 
2.  (0V0)=0 
3.  (0V0)=0 
4. ⎤(0V0)=1 

Event set

Event set

Event set

Event set

(0 V¾ 0) = 0¾

(0 V¾ 1) = 1
¾

(1 V¾ 0) = 1¾

(0 V¾ 0) = 1¼

(1 V¾ 1) = 1¾

Figure 7: (a) The event set for the valid sentence (0 ∨ 3
4

0)
3
4== 0 and (0 ∨ 3

4
0)

1
4== 1

(b) three valid sentences and their event sets for the three remaining assignments to
(x ∨ 3

4
y)

We observe that, as illustrated in Figure 7(b), for a formula F , for each of the
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(1V0)=1
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True 
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False
Event
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●
●
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((1 V3/4 0) V5/6 1) = 1
r

(b)(a) (c) (d)

Figure 8: (a) Event set ES ′,I′ of (1 ∨ 3
4

0)
r′

== 1 (b) event set ES ′′,I′′ of (1)
r′′

=== 1 (c)

Ẽ = ES ′,I′ × ES ′′,I′′ (d) constructing the event set for ((1 ∨ 3
4

0) ∨ 5
6

1)
r

== 1 from Ẽ.

three remaining assignments I ∈ {〈x = 0, y = 1〉, 〈x = 1, y = 0〉, 〈x = 1, y = 1〉},

three valid sentences, each of the form FI
r

== 1 can be constructed, and each sentence

is associated with its own event set. The collection of events sets and the notion of

validity provides a model [121] in the sense of symbolic logic.

Consider any pbf G of the form (z) where z is a Boolean variable. For the

assignment I which assigns 0 to z, if SI is the sentence GI
r

== 1, the event set ES ,I

consists of one event determined by the sentence in Boolean logic, (0) = 0. Similarly,

for the assignment I ′ which is 〈z = 1〉, the event set ES ,I′ consists of one event

determined by the sentence (1) = 1.

We will now consider the event set of a pbf H of length k + 1 where k ≥ 0.

To illustrate the way in which event sets of sub-formulae combine, we consider an

example where F and G are the formulae (x∨q y) and (z) respectively, where H is of

the form (F ∨p G), q = 3/4 and p = 5/6. We will consider the assignment I = 〈x =

1, y = 0, z = 1〉 to the variables in H, where I ′ = 〈x = 1, y = 0〉 and I ′′ = 〈z = 1〉 are

41



the corresponding consistent assignments to F and G. Consider the valid sentences

SI ,S ′
I′ ,S

′′
I′′ which denote HI

r
== 1, FI′

r′
== 1 and GI′′

r′′
=== 1 respectively, where

ES ,I , ES ′,I′ and ES ′′,I′′ are the event sets of SI , S ′
I′ and S ′′

I′′ respectively. Referring

to Figure 7, the event set of S ′
I′ consists of 4 events, 3 of which are true Boolean

sentences (0 ∨ 1) = 1 and one false Boolean sentence ¬(0 ∨ 1) = 0. This is shown in

Figure 8(a), where for the ease of exposition, we omit the indices of the events. With

z = 1, as shown in Figure 8(b), the event set of S ′′
I′′ has one true event associated

with the Boolean sentence (1) = 1. Let Ẽ = ES ′,I′×ES ′′,I′′ . As shown in Figure 8(c),

we note that |Ẽ| = 4 × 1 = 4, and any element of Ẽ is of the form (B = c, B̂ = ĉ),

where B, B̂ are closed bf and c, ĉ ∈ {0, 1}. For each element of Ẽ, as shown in

Figure 8(d), we create 5 copies (since p = 5/6) each of the form (B ∨ B̂) = T (c ∨ ĉ)

and 1 element of the form ¬(B ∨ B̂) = T (¬(c∨ ĉ)) to get ES ,I . Hence it follows that

|ES ,I | = 6× |Ẽ| = 24, of which 20 events are true and the rest are false. Therefore,

whenever r = 5/6, SI is a valid sentence, since PH = ψ(ES ,I) = 20/24 = 5/6. A

rigorous formulation can be found in Section 3.3. We will however describe some

attributes of the event sets for sentences which correspond to arbitrary formulae and

assignments. These attributes will be used in Chapter 4 to characterize some of the

properties of pbl.

In general, let H be of the form (F ∨p G) where p = m/n. To reiterate, for any

assignment I to H, let I ′ and I ′′ denote the corresponding consistent assignment to

variables in F and G respectively. Let the number of events in ES ′,I′ be denoted by

the symbol a, and let |ES ′,I′| = b. Similarly, let the number of true events in ES ′′,I′′

be denoted by the symbol c, and let |ES ′′,I′′| = d.

Observation 3.2.2.1 Under assignment I, |ES ,I | is (bdn) where ES ,I has (acm +

a(d − c)m + (b − a)cm + (b − a)(d − c)(n − m)) true events. Therefore, if PF , PG

and PH denote the probabilities with which FI′ , GI′′ and HI are respectively satisfied,

PH = (PF )(PG)p+ (1− PF )(PG)p+ (PF )(1− PG)p+ (1− PF )(1− PG)(1− p).
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Proof. Based on the frequentist interpretation of pbl and the event set semantics,

we know that the probability thatH is satisfied for the assignment I, is the ratio of the

number of true events to the total number of events in ES ,I . Hence PH = ψ(ES ,I).

Similarly, PF = ψ(ES ′,I′) = a/b, PG = ψ(ES ′′,I′′) = c/d. The number of true events

in ES ,I is (acm+ a(d− c)m+ (b− a)cm+ (b− a)(d− c)(n−m)) and |ES ,I | = (bdn)

(from Observation 3.3.0.4 in Section 3.3). Hence,

ψ(ES ,I) =
(acm+ a(d− c)m+ (b− a)cm+ (b− a)(d− c)(n−m))

bdn
or

PH = ψ(ES ,I) = (PF )(PG)p+ (1− PF )(PG)p+ (PF )(1− PG)p

+(1− PF )(1− PG)(1− p)

Note: Again, we note that there might exist an assignment I, such that a majority

of events in ES ,I may be false events (and hence PH < 1/2). In this context, it is more

natural to reason about the validity of the sentence S̄I which denotesHI
r̄

== 0, and the

probability with which HI is unsatisfied rather than PH , the probability with which

it is satisfied. However, since Observation 3.2.2.1 is only a combinatorial relation

between the event sets of S ′
I′ ,S

′′
I′′ , the probability parameter p, and the event set

of SI , we have derived a relation using the function ψ. In combinatorial arguments

such as in Observation 3.2.2.1, it is sufficient to use the function ψ without having to

explicitly invoke ψ̄ keeping in mind that for any event set E, ψ(E) = (1− ψ̄(E)).

Akin to Observation 3.2.2.1, similar relationships between the event sets can be

established for pbf of the form H = (F ∧p G) and H = ¬F as follows:

Observation 3.2.2.2 If H denotes (F ∧p G), |ES ,I | = (bdn) where acm + (b −

a)c(n −m) + (b − a)(d − c)(n −m) + (a)(d − c)(n −m) events in ES ,I are correct

events. Furthermore, with PF = ψ(ES ′,I′) = a/b and PG = ψ(ES ′′,I′′) = c/d, PH =

ψ(ES ,I) = (PF )(PG)p + (1 − PF )(PG)(1 − p) + (PF )(1 − PG)(1 − p) + (1 − PF )(1 −

PG)(1− p).
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Observation 3.2.2.3 If H denotes (¬pF ), |ES ,I | = bn where a(n−m)+ (b− a)(m)

events in ES ,I are correct events. Furthermore with PF = ψ(ES ′,I′) = a/b, PH =

ψ(ES ,I) = (PF )(1− p) + (1− PF )p.

3.2.2.1 Equivalence of pbf Through Event Sets

Consider two formulae H and H ′ where varH ⊆ varH′ (or vice-versa). Then H and

H ′ are equivalent under the assignment I (where I ′ is the corresponding consistent

assignment) if and only if

ψ(ES ,I) = ψ(ÊS ′,I′)

Finally pbf H and H ′ are equivalent, denoted H ≡ H ′, if they are equivalent for

every assignment I ∈ I (we claim without proof that the individual event sets ES ,I

for a sentence S and its input I ∈ I can be combined across all the inputs to yield a

single finite representation common to all inputs.

3.3 A Formal Model for Probabilistic Boolean Logic

We now present a formal model for the language of probabilistic Boolean logic. Let

L denote the language of pbl, which is a set of well formed sentences in pbl. The

signature of L consists of

• A countable set var of variables.

• A countable set P of probability parameters.

• The connectives ∨p,∧p′ ,¬p′′ where p, p′, p′′ ∈ P .

• The punctuation symbols ( and ).

• The set of constants {c0, c1}.

• Denumerable set of predicate letters
r

== where r ∈ P .
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Any well formed sentence S [I] in this language is of the form FI
r

== c1 or FI
r̄

== c0

where F is a well formed pbf, r, r̄ ∈ P , and I is an assignment which assigns one of

{c0, c1} to any variable x ∈ varF ⊆ var.

The model M for this language consists of

• The punctuation symbols ( and ).

• The set N = {0, 1, 2, . . .}, of natural numbers.

• The set C = {0, 1} of Boolean constants.

• A set B of valid closed sentences from classical Boolean logic of the formB = 1 or

B = 0, whereB is a closed well formed formula in Boolean logic. Conventionally,

the former sentences will be called true sentences and the latter are called false

sentences.

• the set Q, of non-negative rationals.

• A set E where any ES ,I ∈ E is referred to as an event set where E ⊆ N × B,

and any (i,B) ∈ ES ,I will be called an event (the index i ∈ N and Boolean

sentence B ∈ B). Furthermore, if the classical Boolean sentence B is true, the

event (i,B) will be referred to as a true event; it is a false event otherwise.

• Let SI denote HI
r

== ĉ where H is a well formed pbf and ĉ ∈ {c0, c1}. If H is of

length 0, H is of the form (x) where x is a Boolean variable. For the assignment

I which denotes 〈x = c1〉, ES ,I consists of one event of the form (0, (1) = 1).

Similarly for the assignment Î which denotes 〈x = c0〉, ES ,Î consists of one

event of the form (0, (0) = 0).

Let H be a pbf of length k ≥ 1, and let H be of the form (F ∨p G) where

F and G are pbf of length k − 1 or less. For an assignment I to H and the

corresponding consistent assignments I ′, I ′′ to F and G respectively, let S ′
I′ ,S

′′
I′′
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respectively denote FI′
r′

== c′ and GI′′
r′′

=== c′′, c′, c′′ ∈ {c0, c1}. Let ES ′,I′ , ES ′′,I′′

be the event sets of S ′
I′ and S ′′

I′′ respectively. Let pM = m/n where m,n are

relatively prime and Ẽ = (ES ′,I′ × ES ′′,I′′). For any ((i,B′), (j,B′′)) ∈ Ẽ let

B′ denote B′ = t′ and let B′′ denote B′′ = t′′, where B′, B′′ are well formed

closed Boolean formulae and t′, t′′ ∈ {0, 1}. Let the number of true events in

ES ′,I′ be denoted by the symbol a, |ES ′,I′| = b. Similarly, the number of true

events in ES ′′,I′′ is c and |ES ′′,I′′| = d. Then,

ÊS ,I = { for 0 ≤ k < m, (f, (B′ ∨B′′) = T (t′ ∨ t′′)) : ((i,B′), (j,B′′)) ∈ Ẽ} (1)

where f = (di+ j) ∗ n+ k

ˆ̂
ES ,I = { for m ≤ k < n, (g, (B′ ∨B′′) = T (¬(t′ ∨ t′′))) : ((i,B′), (j,B′′)) ∈ Ẽ}(2)

where g = (di+ j) ∗ n+ k

ES ,I = ÊS ,I ∪ ˆ̂
ES ,I

• A function ψ : E → Q such that ψ(ES ,I) is the ratio of the number of true

events in ES ,I to |ES ,I |. A function ψ̄ : E → Q where ψ̄(ES ,I) is the ratio of

the number of false events in ES ,I to |ES ,I |.

• A relationship R ⊆ C×Q×E where (1, r,ES ,I) ∈ R if and only if ψ(ES ,I) = r

and (0, r̄,ES ,I) ∈ R if and only if ψ̄(ES ,I) = r̄.

Observation 3.3.0.4 Under the assignment I, |ES ,I | = bdn where the number of

true events in ES ,I is (acm+ a(d− c)m+ (b− a)cm+ (b− a)(d− c)(n−m)).

Proof. We recall that the number of true events in ES ′,I′ is a, |ES ′,I′| = b, the

number of true events in ES ′′,I′′ is c and |ES ′′,I′′| = d. We know that T (1 ∨ 0) =

T (1∨1) = T (0∨1) = 1. From this, and from (1), (ad+(b−a)c)m events in ÊS ,I are

true events. Furthermore T (¬(0∨ 0)) = 1, and hence from (2), (b− a)(d− c)(n−m)
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events in
ˆ̂
ES ,I are true events. Hence the number of true events in ES ,I is (ad+(b−

a)c)m+ (b− a)(d− c)(n−m) = (acm+ a(d− c)m+ (b− a)cm+ (b− a)(d− c)(n−

m)). Furthermore, from (1), the number of events in ÊS ,I is bdm and from (2), the

number of events in
ˆ̂
ES ,I is bd(n−m). Hence the total number of events in ES ,I is

bdm+ bd(n−m) = (bdn).

Given any well formed sentence S [I] ∈ L of the form FI
r

== c, the interpretation

of the sentence S [I] in the model M, maps

• The constants c0 to 0, c1 to 1, c to cM ∈ {0, 1}.

• The probability parameters p, q, · · · to pM, qM, · · · ∈ Q where 1/2 ≤ pM, qM, · · · ≤

1.

• The probability parameter r of the predicate symbol to rM ∈ Q such that

0 ≤ rM ≤ 1.

• The sentence S [I] to an event set ES ,I .

• The sentence S [I] is valid under this interpretation if and only if (cM, rM,ES ,I) ∈

R.

As an example consider a sentence S [I] ∈ L of the form (x ∨p y)
r

== c1 where

the assignment I denotes 〈x = c0, y = c1〉. Then under the interpretation M, c0 is

mapped to 0, c1 to 1, p to some pM ∈ Q, where 1/2 ≤ pM ≤ 1 and r to rM ∈ Q such

that 0 ≤ rM ≤ 1. Let pM = m/n for positive, relatively prime integers m,n. Then

the number of true events in the event set ES ,I of S [I] is m and these elements are

(0, (0 ∨ 1) = 1), (1, (0 ∨ 1) = 1), · · · , (m − 1, (0 ∨ 1) = 1) and the number of false

events in ES ,I is (n−m) and these events are (m,¬(0 ∨ 1) = 0), (m+ 1,¬(0 ∨ 1) =

0), · · · , (n− 1,¬(0 ∨ 1) = 0). The sentence S [I] is valid under this interpretation if

and only if (1, rM,ES ,I) ∈ R, or equivalently, if and only if ψ(ES ,I) = rM.
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Similarly if H is of the form (F ∧p G) and as before pM = m/n,

ÊS ,I = { for 0 ≤ k < m, (f, (B′ ∧B′′) = T (t′ ∧ t′′)) : ((i,B′), (j,B′′)) ∈ Ẽ}

where f = (di+ j) ∗ n+ k

ˆ̂
ES ,I = { for m ≤ k < n, (g, (B′ ∧B′′) = T (¬(t′ ∧ t′′))) : ((i,B′), (j,B′′)) ∈ Ẽ}

where g = (di+ j) ∗ n+ k

ES ,I = ÊS ,I ∪ ˆ̂
ES ,I

Similarly if H is of the form ¬p(F ),

ÊS ,I = { for 0 ≤ k < m, (i ∗ n+ k,¬(B′) = T (¬(t′))) : (i, (B′ = t′)) ∈ ES ′,I′}

ˆ̂
ES ,I = { for m ≤ k < n, (i ∗ n+ k, (B′ = t′)) : (i, (B′ = t′)) ∈ ES ′,I′}

ES ,I = ÊS ,I ∪ ˆ̂
ES ,I
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CHAPTER IV

PROPERTIES OF PROBABILISTIC BOOLEAN LOGIC

Through the construct of event sets and the accompanying notion of equivalence of

pbf, we will now characterize some identities of pbl in Section 4.1. Specifically, we

show that several of the identities of conventional Boolean logic, such as commutativ-

ity, are preserved in pbl. Also, identities such as that introduced by DeMorgan [194],

which relate pairs of dual logical operators—∨ and ∧ in conventional Boolean logic

for example—are preserved in a suitably modified manner as described below. Prop-

erties such as distributivity and associativity are not preserved. We will use the

letters, p, q, r, a, b, c to denote probabilities where as before, 1/2 ≤ p, q, r, a, b, c ≤ 1

and p, q, r, a, b, c ∈ Q.

4.1 Classical Identities That are Preserved

We have enumerated the significant identities of pbl in Table 4.1. As an illustrative

example, let us consider commutativity (identity (1) in Table 4.1). Now, consider

F and G which denote (x ∨p y) and (y ∨p x) respectively, where p = m/n. For any

assignment I, in particular 〈x = 1, y = 0〉, let EF,I be the event set of F . In EF,I ,

m events are associated with (1 ∨ 0) = 1 and hence associated with (0 ∨ 1) = 1

since (1 ∨ 0) ≡ (0 ∨ 1) in classical Boolean logic. Similarly, n−m events in EF,I are

associated with the ¬(1 ∨ 0) = 1 and hence ¬(0 ∨ 1) = 1. Similarly for each possible

input assignment I ∈ {〈x = 0, y = 0〉, 〈x = 0, y = 1〉, 〈x = 1, y = 0〉, 〈x = 1, y = 1〉}.

Hence, from the definition of equivalence of pbf, (x ∨p y) ≡ (y ∨p x), or the operator

∨p is commutative1.

1A straight forward induction will allow us to extend this to pbf of arbitrary length.
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1. Commutativity
(x ∨p y) ≡ (y ∨p x)
(x ∧p y) ≡ (y ∧p x)

2. Double Complementation
¬q(¬px) ≡ ¬p(¬qx)

¬p0 ≡ ¬1(¬p1)
¬p1 ≡ ¬1(¬p0)

3. Operations with 0 and 1

(0 ∧p x) ≡ (¬p1)
(1 ∧p x) ≡ ¬1(¬px)
(0 ∨p x) ≡ ¬1(¬px)

(1 ∨p x) ≡ (¬p0)

4. Identity
(x ∨p x) ≡ ¬1(¬px)
(x ∧p x) ≡ ¬1(¬px)

5. Probabilistic Tautology
(x ∨p (¬1x)) ≡ ¬p0
(x ∧p (¬1x)) ≡ ¬p1

6. Probabilistic DeMorgan Identity
¬p(x ∨q y) ≡ (¬1x) ∧r (¬1y)
¬p(x ∧q y) ≡ (¬1x) ∨r (¬1y)

where r = pq + (1− p)(1− q)

Table 1: Identities of pbl

4.2 Identities that are not Preserved

Surprisingly, not all properties from conventional Boolean logic can be extended to

the probabilistic case. In particular, associativity, distributivity and absorption as

stated in Boolean logic are not preserved in pbl.

4.2.1 Associativity

Let F andG denote (x∨p(y∨pz)) and ((x∨py)∨pz) respectively, where var = {x, y, z}

is the set of variables in F as well as in G.

Theorem 3 There exists an assignment I to var such that ψ(EF,I) 6= ψ(EG,I) and

therefore F 6≡ G. Hence pbl is not associative.

Proof. Consider the assignment I which denotes 〈x = 1, y = 0, z = 0〉. If EF,I and

EG,I are the event sets of FI and GI respectively, it follows from the definition of event

sets, that ψ(EF,I) = p2 whereas ψ(EG,I) = p2 + (1 − p)2 (from Observation 3.2.2.1).

Hence there exist values of p, 1/2 ≤ p ≤ 1 such that EF,I 6' EG,I , and therefore

F 6≡ G.
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4.2.2 Distributivity

Consider as a natural extension of distributivity in the pbl context, expressed as

(x ∨p (y ∧q z)) ≡ ((x ∨a y) ∧b (x ∨c z))

We shall now show that this identity does not hold for pbl.

Theorem 4 There exist p, q, 1/2 < p, q < 1 such that (x ∨p (y ∧q z)) 6≡ ((x ∨a y) ∧b

(x ∨c z)) for any 1/2 ≤ a, b, c ≤ 1, and therefore ∨p does not distribute over ∧q.

Proof. Without loss of generality, let F represent (F ′ ∨p F
′′) where F ′, F ′′ re-

spectively denote (x), (y ∧q z), and G denotes the formula ((x ∨a y) ∧b (x ∨c z)). In

particular, let 1/2 < p, q < 1. Also, let I, J , the input assignments to F , repre-

sent 〈x = 1, y = 0, z = 0〉, 〈x = 0, y = 1, z = 1〉 respectively where I ′′, J ′′ are the

corresponding consistent assignments to F ′′.

We will first show that ψ(EF,I) 6= ψ(EF,J). Suppose ψ(EF,I) = ψ(EF,J). Since

〈x = 1〉 in I, from the definition of probabilistic disjunction operator, ψ(EF,I) = p.

Furthermore, since 〈y = 1, z = 1〉 in J , from the definition of the probabilistic

conjunction operator, ψ(EF ′′,J ′′) = q and from Observation 3.2.2.1, ψ(EF,J) = pq +

(1− p)(1− q). Since, ψ(EF,J) = ψ(EF,I),

pq + (1− p)(1− q) = p or

(1− 2p)(1− q) = 0

Then, (1 − 2p) = 0 or (1 − q) = 0 or both, which contradicts the fact that

1/2 < p, q < 1.

Now, let F ≡ G. Then from the definition of equivalence of pbf, it must be the

case that ψ(EF,I) = ψ(EG,I) and ψ(EF,J) = ψ(EG,J). Furthermore, we have shown

that ψ(EF,I) 6= ψ(EF,J) and hence ψ(EG,I) 6= ψ(EG,J).
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For the assignments I and J , and from the definition of a probabilistic disjunction

and Observation 3.2.2.2,

ψ(EG,I) = ψ(EG,J) = 1− b− ac+ 2abc

which is a contradiction

4.3 Degree of Non-Associativity

We know from Section 4.2 and Theorem 4 that formulae in pbl are not associative.

We will now quantify the degree to which a pbf is non-associative. Besides inherent in-

tellectual interest, such a characterization is of interest from a pragmatic perspective,

since tools for synthesizing logic circuits from formulaic specifications (logic synthe-

sis tools), use “reassociation” as a ubiquitous transformation for optimizing digital

logic circuits [122]. This transformation is legal or valid in the Boolean logic context,

since associativity is truth preserving. Typically, this transformation is applied to

improve the performance (time) while preserving the cost (size) of a Boolean circuit.

In contrast to Boolean logic, in the case of pbl, a reassociation can result in a sig-

nificant change to the probability with which the formula is satisfied, depending on

the input assignment. As a simple example, consider Figure 9(a), where we illustrate

a pbf F and its reassociation F ′ in Figure 9(c). For those who are computation-

ally minded, F and F ′ are depicted as trees, explicitly indicating the order in which

their constituent operators would be evaluated. Continuing, for an input assignment

〈x1 = 1, x2 = 1, x3 = 1, x4 = 1〉, it is easy to verify that the probability that F is

satisfied is p whereas the probability that F ′ is satisfied is p2 + p2(1− p) + (1− p)3;

very different probability values for, 1/2 < p < 1.

More generally, let F be a maximal set of formulae where F, F ′ ∈ F if and only

if they are reassociations of each other. For F, F ′ ∈ F and for a particular input
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assignment2 I to F as well as to F ′, let the probabilities that FI and F ′
I are unsatisfied

be qI and q′I respectively. If I is the set of all input assignments to F (and F ′), we

can quantify the amount by which F and F ′ are non-associative as,

NA(F, F ′) = max∀I∈I

{
q′I
qI
,
qI
q′I

}
(3)

Building on this, we can quantify the non-associativity of the set F to be

ηF = max∀(F,F ′)∈F {NA(F, F ′)} (4)

The degree of non-associativity of pbl with formulae of length no greater than n,

∆n is

∆n = max∀F∈Fn {ηF} (5)

where F ∈ Fn if and only if the length of F is at most n for any F ∈ F.

4.3.1 Balanced Binary and Linear Probabilistic Boolean Formula

We will now consider two associations of the same base formula F , a “linear” formula

L (Figure 9(a)) and a “balanced binary” formula B(Figure 9(c)). In order to bound

∆n from below, we will bound the probability QL that L is not satisfied from below,

and the probability QB that B is not satisfied from above. Then we will use the fact

that ∆n ≥ QL/QB.

Consider n pbf, C1, C2, C3, · · · , Cn where Ci = (xi) and without loss of generality

let n = 2m for some positive integer m. For 1 ≤ i ≤ n/2, H i is (C2i−1 ∨p C
2i) and for

n/2 ≤ i ≤ n− 1, H i is of the form (Hj ∨p H
j+1) where j = (2i− n− 1). For exam-

ple, with four variables {x1, x2, x3, x4}, C1, C2, C3, C4 would be (x1), (x2), (x3), (x4)

respectively H1 would denote (x1 ∨p x2), H
2 would denote (x3 ∨p x4), and H3 or B

2Since F and F ′ are defined on (exactly) the same set of Boolean variables, the same assignment
I is valid in both cases.
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(a)
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( (x1Vp x2) Vp ( x3Vp x4 ) )

(c)

Vp

x3

Vp

x1 x2

Vp

x4

(d)

Figure 9: (a) A linear pbf over n variables in syntactic form (b) as a tree structure
illustrating the linear form (c) a reassociation of the same pbf (d) its balanced binary
representation in tree form

would be (H1 ∨p H
2) which is ((x1 ∨p x2) ∨p (x3 ∨p x4)) as shown in Figure 9(c),(d).

Thus, pbf B is of length 3 and height 2. For convenience, B denotes Hn−1. We shall

refer to B as a balanced binary probabilistic Boolean formula of height m and length

(n− 1), since, as illustrated in Figure 9(d), B is a balanced binary tree.

For the same set of n variables, we can construct the probabilistic Boolean formula

L, a reassociation of B, as follows: For some 1/2 ≤ p <≤ 1 (and q = (1 − p) as

before) construct the probabilistic Boolean formula L where L is defined as follows:

G2 = (C1∨pC
2) and for 2 < i ≤ n, Gi = (Gi−1∨pC

i) and for notational convenience,

we will use the symbol L to represent Gn, where L is a linear probabilistic Boolean

formula of length (n − 1), since topologically L is a linear structure with (n − 1)

probabilistic disjunction operators (as in Figure 9(b)).

We will now state a useful fact to be used subsequently in multiple contexts as we

estimate ∆n.
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Lemma 4.3.1 Given any pbf F of the form (F ′ ∨p F
′′) with an assignment I and

corresponding consistent assignments I ′, I ′′ to F ′ and F ′′, if QF , QF ′ and QF ′′ are the

probabilities that they are unsatisfied, QF = q +QF ′QF ′′(1− 2q).

Proof. This Lemma follows from the fact that PF = (1 − QF ), PF ′ = (1 − QF ′)

and PF ′′ = (1−QF ′′), and therefore from Observation 3.2.2.1,

QF = (q)(1−QF ′)(1−QF ′′) + (q)(1−QF ′)(QF ′′)

+(q)(QF ′)(1−QF ′′) + (1− q)(QF ′)(QF ′′) (6)

= q +QF ′QF ′′(1− 2q) (7)

Now, consider a balanced binary pbf of length n and consider Hi of length k

where n/2 ≤ i ≤ n − 1. From the definition of a Balanced binary pbf, H i is of the

form (Hj ∨p H
k), where j = (2i − n − 1), k = (2i − n). If Hj is satisfied with a

probability Pj, we observe from Lemma 4.3.1 that

Observation 4.3.1.1 The probability with which H i is satisfied is at least pPj

4.3.2 An Upper bound on the Probability of Unsatisfiability of a Bal-
anced Binary Probabilistic Boolean Formula

Lemma 4.3.2 Let QB be the probability that a pbf B of length (n−1), where n = 2k

for some integer k ≥ 2, is unsatisfied with an input assignment α, where α(x) = 1

for all x ∈ varB. Then QB <
∑log(n)

i=1 qi with q = (1− p).

Proof. We will prove the lemma by induction on the length of B. For the basis,

consider a balanced binary pbf B̂ of length 22 − 1 = 3 with 4 variables, where

B̂ = (B̂′ ∨p B̂′′). Now consider an input assignment α̂(xi) = 1 for 1 ≤ i ≤ 4. Since B′

and B′′ are identical in a balanced binary pbf, we have QB̂′ = QB̂′′ = q and therefore

from Lemma 4.3.1,

55



QB = q + q2(1− 2q)

and since q > 0

QB < q + q2 (8)

Now Consider B of the form (B′ ∨p B
′′), where B′ and B′′ are balanced binary

pbf of length (2k−1 − 1), k ≥ 3 and B is of length (2k − 1). By definition of α, an

identical value (of 1) is assigned to all the variables of B′ and B′′ and QB′ = QB′′ .

As an induction hypothesis, let QB′ = QB′′ <
∑k−1

i=1 q
i. From this hypothesis and

Lemma 4.3.1, we have

QB ≤ q +

(
k−1∑
i=1

qi

)(
k−1∑
i=1

qi

)
(1− q) = q +

(
k−1∑
i=1

qi

)
(q − qk)

hence

QB <
k∑

i=1

qi for q > 0

With k = log(n), we have the proof.

Building on this lemma, we will now determine an upper-bound on the probability

QB that a (balanced binary) pbf is not satisfied, when a constant fraction λ = nε for

0 < ε < 1 of its variables are assigned a value of 1 (and the rest are assigned a value

of 0) through an assignment3 α. We will continue to consider the case where all of the

probabilistic disjunction operators have the same associated probability parameter p

where n ≥ 4.

Theorem 5 Let QB be the probability that a balanced binary pbf B of length n− 1

is unsatisfied for an assignment α, where α(xi) = 1 for 0 < i ≤ λ, α(xi) = 0 for

3The symbol α is reused with varying constraints throughout this chapter, which entails some
abuse of notation
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λ < i ≤ n, and q log(n/λ) ≤ 1. Then, QB < (1+log(n
λ
))q for n ≥ 4 whenever n = 2k,

λ = 2l for l < k.

Proof. Let B be a balanced binary pbf of length n ≥ 4. Consider an assignment

α such that α(xi) = 1 for 0 < i ≤ λ, and α(xi) = 0 for λ < i ≤ n. Consider the

sub-formula Hm of B, with variables varHm = {x1, x2, x3, · · · , xλ}. Since λ = 2l,

from the definition of a balanced binary pbf, Hm is a balanced binary pbf and

m = (n+1−2n/λ). Let Pm be the probability that Hm is satisfied for the assignment

α.

Since λ ≤ n/2, there exists a sub formula Ho of B, which is of length 2λ− 1, such

that Ho = (Hm∨pH
m+1) and o = (n+1−n/λ). The probability that Ho is satisfied

(from Observation 4.3.1.1) is at least pPm. Continuing, a straight forward induction

will show that PB, the probability that B = Hn−1 is satisfied, is (at least) plog(n/λ)Pm.

IfQm is the probability thatHm is unsatisfied, from Lemma 4.3.2, Qm <
∑log(λ)

i=1 qi.

Since Pm = 1−Qm, Pm > 1−
∑log(λ)

i=1 qi = 1− (q−q(log(λ)+1))
(1−q)

,

PB > plog(n
λ

)Pm = (1− q)s

[
1− (q − qt)

(1− q)

]
= (1− q)s − (1− q)s−1(q − qt)

where s = log(n/λ) and t = log(λ) + 1

(1− q)s − (1− q)s−1(q − qt) > (1− q)s − (1− q)s−1(q)

since 0 < q < 1/2, and therefore

PB > (1− q)s−1(1− 2q) (9)

We get (1−q)s−1 =
[∑s−1

k=0

(
s−1
k

)
(−q)k

]
by using the binomial theorem4 to expand

(1 − q)s−1. There are s terms in the expansion and where we refer to 1 as the first

term, (s− 1)(−q) as the second term and so on. For convenience, the jth term when

j > s will be taken to be 0. Since λ ≤ n/2, s ≥ 1, and whenever 1 ≤ s ≤ 2,

4The interested reader is referred to [83] (page 86) where the binomial theorem is derived for
(a + b)n where a, b are elements of a commutative ring and n is any positive integer
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(1 − q)s−1 = 1 − (s − 1)q. Consider the case when s > 2, and let j be odd and

2 < j ≤ s, then the sum of jth and j + 1th term of the binomial expansion of

(1 − q)s−1 is uj = (s−1)!qj−1

(j−1)!(s−j)!
(1 − (s − j)q/j). Since sq ≤ 1, uj ≥ 0 and therefore

(1− q)(s−1) ≥ (1− (s− 1)q). Therefore, from (9),

PB > (1− (s− 1)q)(1− 2q)

QB = 1− PB < (1− (1− (s− 1)q)(1− 2q))

or

QB < (s+ 1)q

and hence

QB <
(
1 + log

(n
λ

))
q

We note in passing that due to symmetry, it is easy to see that the result derived in

Theorem 5 holds even if the last λ variables are set to 1 and the rest of the variables to

zero. In fact, it can be shown that the result derived in Theorem 5 holds irrespective

of the position of the “runs” of variables assigned a value 1, due to the inherent

symmetry in a balanced binary pbf.

4.3.3 A Lower bound on the Probability of Unsatisfiability of a Linear
Probabilistic Boolean Formula

We will now consider the case of a linear pbf L. Recall that L is of the form (((x1 ∨p

x2)∨p x3) · · · ∨p xn) where, again, the value 1 is assigned to xi if and only if 1 ≤ i ≤ λ

and the value 0 to xi whenever λ < i ≤ n.

Theorem 6 Given a linear pbf L, of length n− 1, where QL is the probability that

L is unsatisfied with the input assignment α where α(xi) = 1 if 1 ≤ i ≤ λ < n and 0
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otherwise,

QL ≥ max{0, (n− λ+ 1)q − (n− λ)(n− λ+ 1)q2}

Proof. Let λ+ k = n. Since λ < n, it follows that k ≥ 1. Consider the case when

k = 1. Then the pbf L is of the form (L′ ∨p xλ+1), where L′ is a linear pbf of length

λ− 1 with varL′ = {x1, x2, x3, · · · , xλ}. If QL is the probability that L is unsatisfied

by the assignment α, using Lemma 4.3.1 and recalling that xi = 1 for 1 ≤ xi ≤ λ and

0 otherwise,

QL = q +QL′(1− 2q)

= q + q(1− 2q)

= 2q − 2q2

Hence the theorem is true whenever k = 1 (since n− λ = k = 1).

Let k ≥ 2 and let us suppose that the theorem is false. Furthermore, let L̂ be

the shortest sub-formula of L, for which the theorem is false and therefore QL̂ <

max
{

0, (k̂ + 1)q − (k̂ + 1)(k̂)q2
}

. If the length of L̂ is λ + k̂, where the set varL̂ of

variables of L̂ is {x1, x2, x3, · · · , xλ+k̂+1}, it must be the case that k̂ > 1 (since we

have shown to theorem to be true for k̂ = 1). From the definition of a linear pbf,

L̂ is of the form (
ˆ̂
L ∨p xλ+k̂+1) where

ˆ̂
L is of length λ + k̂ − 1. From the hypothesis,

the theorem is true for
ˆ̂
L, or equivalently Q ˆ̂

L
≥ max

{
0, q +

[
(k̂)q − (k̂)(k̂ − 1)q2

]}
.

From Lemma 4.3.1, it follows that

QL̂ = q +Q ˆ̂
L
(1− 2q) ≥ max

{
0, q +

[
(k̂)q − (k̂)(k̂ − 1)q2

]
(1− 2q)

}
and hence

QL̂ ≥ max
{

0, (k̂ + 1)q − (k̂ + 1)(k̂)q2
}

A contradiction.
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4.3.4 The Degree of Non-associativity of Probabilistic Boolean Logic

Theorem 7 There exist two probabilistic Boolean formulae B and L, both of length

(n−1) →∞ and n ≥ 4 such that B is a reassociation of L and furthermore NA(B,L)

grows as Ω(n).

Proof. Consider n = 2m, m ≥ 2 variables {x1, x2, x3, · · · , xn} where B and L

are respectively the balanced binary Boolean formula and the linear probabilistic

Boolean formula over this set of variables. From Theorem 5, for the assignment α

and 1/2 ≤ p < 1 and q = (1− p), a λ exists such that

QB ≤
(
1 + log

(n
λ

))
q (10)

And furthermore, from Theorem 6 also for the same assignment α, and the value

λ,

QL ≥ max{0, (n− λ+ 1)q − (n− λ)(n− λ+ 1)q2} (11)

Consider

Q =
(n− λ+ 1)q − (n− λ)(n− λ+ 1)q2

(1 + log(n
λ
))q

=
(n− λ+ 1)− (n− λ)(n− λ+ 1)q

(1 + log(n
λ
))

since q 6= 0

For all n ∈ N+, n ≥ 4, q = 1
nc for c ≥ 2, and λ = n/2,

Q =
n

4
+

1

2
− 1

4nc−1
− 1

8nc−2
> 0
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Recall from the definition of NA, the amount of non-associativity that

NA(B,L) = max∀I∈I

{
Q′

I

Q′′
I

,
Q′′

I

Q′
I

}
where Q′

I , Q
′′
I are respectively the probabilities that B and L are unsatisfied with

an input assignment I. Whenever Q > 0, it follows that

NA(B,L) ≥ QL

QB

≥ Q =
(n− λ+ 1)q − (n− λ)(n− λ+ 1)q2

(1 + log(n
λ
))q

Therefore, for any n ∈ N+, n ≥ 4, q = 1
nc for c ≥ 2, and λ = n/2,

NA(B,L) ≥ n

4
+

1

2
− 1

4nc−1
− 1

8nc−2
≥ n

4
= Ω(n)

Therefore, it immediately follows that

Corollary 8 The degree of non-associativity, ∆n of pbl grows as Ω(n)
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CHAPTER V

PROBABILISTIC BOOLEAN LOGIC AND MODELS OF

COMPUTING

We will now define models of computation based on pbl and distinguish the implicitly

and explicitly realized probabilistic behaviors—the latter referred to as randomized for

terminological clarity—using a measure based on the energy consumed in computing

the result by a computational step. We will use the background from Section 5.0.6

to separate probabilistic and randomized (implicit and explicit) Boolean circuits.

Building on this, in Section 5.0.7, we will extend this concept beyond combinational

(Boolean) logic to a model of computation with state. Here we distinguish implic-

itly realized pa with pbl as a foundation, from their explicitly realized counterparts

through explicit coin tosses, using the energy consumed by each state transition.

5.0.5 Thermodynamic Separation of Implicitly and Explicitly
Probabilistic Gates and The Circuit Model of Computation

We will define probabilistic Boolean circuits, a model of computing, based on pbl

and then distinguish them from their explicit counterpart, the randomized Boolean

circuit with coin tosses.

5.0.5.1 pbf and Probabilistic Boolean Circuits

Analogous to conventional Boolean circuits, a probabilistic Boolean circuit is defined

as follows: a directed acyclic connected graph Ĉ = (V̂ , Ê), where V̂ is the set of

vertices and Ê the set of directed edges. The vertices are of three kinds. Input

vertices, of in-degree 0 associated with Boolean variables (called input variables of

the circuit) or Boolean constants {0, 1}, internal vertices associated with one of three
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operators ∨p,∧q,¬r where 1/2 ≤ p, q, r ≤ 1 and one distinguished output vertex of

in-degree 1 and out-degree 0. Internal vertices associated ∨p and ∧q have in-degree

2 and out-degree 1, whereas those associated with ¬r have in-degree and out-degree

1. For any assignment of Boolean constants 0 or 1 to the input variables of the

circuit, the value of the input vertex is either the Boolean constant assigned to the

corresponding Boolean variable, or the Boolean constant directly associated with the

vertex. The value of any internal vertex u, is the value obtained by applying the

probabilistic Boolean operator associated with the vertex, to values associated with

its input edges. The value of a directed edge (u, v) ∈ Ê is the value associated with

the vertex u. Finally, the value computed by the probabilistic Boolean circuit is the

value associated with the output vertex. If the cardinality of the set of input vertices

is k, Ĉ computes a probabilistic Boolean truth table T with no more than 2k rows.

Observation 5.0.5.1 For any pbf F and the probabilistic truth table T it represents,

there exists a probabilistic Boolean circuit ĈF which computes T .

This observation is straightforward since a well formed pbf is obtained by the

application of the rules outlined in Section 3.1. An equivalent probabilistic Boolean

circuit can be constructed by creating input vertices for every Boolean variable and

constant in the pbf, and an internal vertex for every Boolean operator.

5.0.5.2 Randomized Boolean Circuits and Their Relationship to Probabilistic
Boolean Circuits

Randomized Boolean circuits have been used as a computational model to study ran-

domized algorithms [1, 125]. Analogous to conventional Boolean circuits, a random-

ized Boolean circuit is a directed acyclic connected graph C = (V,E). As before, V

can be partitioned into subsets, where the input vertices are associated with Boolean

variables (called input variables of the circuit), Boolean constants or Boolean random

variables. The internal vertices are associated with one of three operators or labels
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∨,∧,¬ from Boolean logic. Any internal vertex v ∈ V has the property that there is

at most one edge (u, v) such that u ∈ V is an input vertex associated with a Boolean

random variable. As before, there is one distinguished output vertex of in-degree 1

and out-degree 0. Notions of values associated with vertices and edges correspond to

those introduced in Section 5.0.5.1 above.

Observation 5.0.5.2 For probabilistic truth table T , there exists a randomized Boolean

circuit which computes it.

We will now establish the fact that any randomized Boolean circuit (or more

specifically its truth table) can be realized by a probabilistic Boolean circuit. Let

U ⊆ V denote input vertices associated with Boolean random variables in C. Consider

vertex u ∈ U and a set of internal vertices V ′ such that whenever v ∈ V ′, (u, v) ∈ C.

Let u be associated with Boolean random variable xu such that probability that xu = 1

is pu ∈ Q. The source of randomness in this case, which as part of an assignment

binding values to the variables labeling the vertices in U , is explicit. By this, we

mean that (informally) these bits are pseudo random and are produced by a suitable

combination of deterministic gates. We formalize this as an “hypothesis” as follows.

Hypothesis 1. Each input bit bound to the random variable xu where u ∈ U

is produced by a pseudo random source1 constituted of gates all with a probability of

correctness p = 1.

We will predicate the development in the sequel on Hypothesis 1 being valid.

Returning to the goal of relating randomized Boolean circuits to its probabilistic

counterpart, for any vertex u ∈ C as described above, let pu ≥ 1/2. We replace u

with a new input vertex u′′ associated with Boolean constant 0, a new internal vertex

1There is a rich body of work, which seeks to address the cost for producing a (pseudo) random bit
through techniques ranging from recycling of random bits [80], to techniques which extract random-
ness from weak random sources [37] and methods to “amplify” randomness through pseudo-random
number generators [10, 199]. While Hypothesis 1 is claimed only for pseudo random generators, we
opine that it is also valid for alternate sources of (pseudo) randomness.
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u′ associated with ¬p̂ where p̂ = pu, and a new edge (u′′, u′). Now for all edges (u, v)

where v ∈ V , we replace it with edge (u′, v) (when pu < 1/2, u′′ is associated with 1

and p = 1− pu). We shall refer to this circuit as C/{u}.

Lemma 5.0.3 The Boolean random variable xu representing the value of any edge

(u, v) in C, where v ∈ V , is equivalent to the Boolean random variable x̂u′ representing

the value of the edge (u′, v) in C/{u}.

Proof. Immediate from the definition of a probabilistic negation operator and the

equivalence of random variables.

Let Ĉ = C/U denote the probabilistic Boolean circuit derived from C by applying

the above transformation for all vertices u ∈ U .

Theorem 9 Given a randomized Boolean circuit C, there exists a probabilistic Boolean

circuit Ĉ such that C and Ĉ compute identical truth tables.

Proof. For any u ∈ U , from Lemma 5.0.3 and a straightforward induction on

the elements of U , it can be shown that C and C/U compute identical probabilistic

Boolean truth tables.

5.0.5.3 Energy Advantages of Probabilistic Boolean Circuits

Based on Theorem 9 and the manner in with Ĉ is constructed from C, we can claim

Claim 5.0.5.1 The energy consumed by the implicitly probabilistic circuit Ĉ = C/U ,

is less than that consumed by C which is explicitly randomized whenever the energy

cost for producing each (pseudo) random bit xu as an input to C is higher than that

of a probabilistic inverter realizing the probabilistic operation ¬pu.

We will subsequently see (in Section 5.0.6) that the energy cost of producing a

random (or pseudo random) bit is indeed higher than that of realizing a pbl operation
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¬p̂. This is true based both on thermodynamic principles and through empirical

studies based on physical realization of gates through randomness, thereby converting

the conditional claim 5.0.5.1 above into an unconditional claim in these two contexts.

5.0.6 Energy Considerations For Realizing Probabilistic and
Randomized Boolean Operators

The central result of Section 5.0.5 above, was to distinguish randomized and proba-

bilistic Boolean circuits of identical size and depth through a metric which quantifies

the energy consumed by these circuits. Referring back to Section 2.3.1, we call that in

the physical domain, probabilistic switches [139] serve as a foundational model relat-

ing the thermodynamic (energy) cost of computing, to the probability of correctness

of computing.

We recall from Section 2.4.1 that this theoretical evidence was substantiated em-

pirically, in the domain of switches implemented using complementary metal oxide

semiconductor (cmos) technology, where the relationship between the probability of

correctness of switching and its energy consumption was established through analyt-

ical modeling, as well as actual measurements of manufactured probabilistic cmos

(pcmos) based devices [34]. To reiterate, whenever Law 1 holds, given any random-

ized Boolean circuit C and its equivalent probabilistic Boolean circuit C, the energy

consumed by the latter is less than the energy consumed by the former.

5.0.7 Extending to Computational Model with State

pa in the Rabin sense [156], with incorporate probabilistic transition functions. A

pa over an alphabet Σ is a system 〈S,M, s0, Q〉 where S = {s0, · · · , sn} is a finite

set (of states), M is a function from (S ×Σ) into the interval [0, 1]n+1 (the transition

probabilities table) such that for (s, σ) ∈ (S × Σ), the transition function M(s, σ) =

(p0(s, σ), · · · , pn(s, σ)) where 0 ≤ pi(s, σ) and
∑
pi(s, σ) = 1. The initial state is

denoted by s0 where s0 ∈ S and Q ⊆ S is the set of designated final states.
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Figure 10: (a) A transition function encoded as a transition truth table (b) a proba-
bilistic circuit which computes this transition truth table (c) an equivalent randomized
Boolean circuit which computes the transition truth table

To establish that the distinction between the implicitly probabilistic and explicitly

randomized variants established in Section 5.0.5 persists, we consider a restricted

probabilistic automaton P over an alphabet Σ̂ = {0, 1}. Given a state ŝ ∈ Ŝ and

an input σ̂ ∈ Σ̂, the cardinality of the set of possible successor states (with non

zero transition probability) is at most two. That is for (ŝ, σ̂) ∈ (Ŝ × Σ̂), where

M̂(ŝ, σ̂) = (p̂0(ŝ, σ̂), · · · , p̂n(ŝ, σ̂)), there exist distinct indices i and j, 0 ≤ i, j ≤ n

such that p̂i(ŝ, σ̂) + p̂j(ŝ, σ̂) = 1 and for 0 ≤ k ≤ n, k 6= i and k 6= j, p̂k(ŝ, σ̂) = 0.

Furthermore, p̂i(ŝ, σ̂), p̂j(ŝ, σ̂) ∈ Q; Rabin’s formulation of pa is not restricted to

rational probabilities since pi(s, σ) can be any value in the unit interval.

We observe here without proof, illustrated for completeness through an example in
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Figure 10 that the transition function of any (restricted) pa P can be represented as a

probabilistic truth table. An example pa is illustrated in Figure 10 whose (transition)

truth table is shown in Figure 10(a), where Figure 10(b) is a probabilistic Boolean

circuit which computes this transition truth table, and Figure 10(c) is a randomized

Boolean circuit which computes the transition truth table (with the random source

labeled R). If each element of Ŝ is encoded in binary, any K ∈ (Ŝ × Σ̂) can be

represented by a binary string (with the state concatenated to the input alphabet).

For any state ŝ and an input alphabet σ̂, the two possible successor states ŝi, ŝj (with

non zero transition probabilities) can be represented by 0 and 1 respectively. Then,

the transition function M̂ can be represented by a probabilistic Boolean truth table,

with 2|Ŝ| rows and 3 columns, where the first column of the kth row contains K, the

binary representation of k where K is an element of (Ŝ× Σ̂). The second column con-

tains p̂ŝj ,σ̂. From Observation 5.0.5.2 and Theorem 9, the (transition) truth table of

P can be computed using a probabilistic or randomized Boolean circuit respectively.

This construction immediately allows us to extend the separation between probabilis-

tic and randomized Boolean circuits to be applicable to the pa P . Let ĈP and CP

respectively be the probabilistic and randomized Boolean circuit implementations of

the transition function of P . Then

Observation 5.0.7.1 The energy consumed by ĈP is less than that consumed by CP

whenever the energy cost for producing each (pseudo) random bit xu as an input to

CP is higher than that of a probabilistic inverter realizing the probabilistic operation

¬pu.

Again, based on the discussion in Section 5.0.6, we conclude that Claim 5.0.7.1

can be made unconditionally in the contexts when Theorem 1 or Law 1 are valid, in

conjunction with Hypothesis 1.
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CHAPTER VI

PROBABILISTIC ARCHITECTURES

As a key result of Chapter 5, we showed that the energy cost of a probabilistic

Boolean circuit which implements a probabilistic Boolean function, is less than that

of a randomized Boolean circuit of equivalent functionality. In this chapter, as an

empirical demonstration and as a vehicle to realize the energy benefits in a practical

context, we propose a system on a chip architecture, which we refer to as a proba-

bilistic system on a chip architecture. The central idea behind probabilistic system

on a chip (psoc) architectures is to harness the probabilistic behavior of pcmos de-

vices and logic gates based on such devices—these are the physical implementation

of logical operators of pbl—to design architectural primitives with well defined sta-

tistical behaviors 1. These primitives, in turn, implement key (probabilistic) steps of

probabilistic algorithms. Probabilistic algorithms, by definition are those which “toss

coins” or execute steps whose outcomes have probabilities associated with them. Ex-

amples of such algorithms include the celebrated test for primality [157, 183], used

as a key building block in RSA public-key cryptosystems. As we demonstrate in this

chapter, psoc implementations yield impressive energy and performance benefits at

the application level. These energy and performance benefits arise from two sources:

(i) The low voltage (and hence low energy) characteristics of pcmos technology. This

we characterized as the energy-probability relationship in the context of the logical

operators of pbl (ii) harnessing the implicit probabilistic behavior of pcmos devices

and pbl operators directly to perform useful computation rather than to overcome

this statistical behavior to achieve determinism—the conventional approaches toward

1In this context, the reader is referred back to Section 2.4.1, to recall the key characteristics of
pcmos technology.
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this end are rooted in redundancy or high voltage operation and inevitably lead to

energy and possibly performance penalties.

The rest of the chapter is organized as follows, we first describe the probabilis-

tic system on a chip architecture in Section 6.1. We then describe our metrics

(Section 6.2) which we use to study the performance of psoc architectures. The

energy and performance modeling methodology which we adopt to evaluate psoc

architectures, is described in Section 6.2.1. Our psoc co-design methodology—the

application-architecture-technology (A2T) co-design methodology—differs from con-

ventional co-design methodologies and is central to achieving the energy and per-

formance benefits reported here. This co-design methodology, the main technology

and algorithm characteristics which influence this methodology and the application

characteristics of psoc designs are elaborated in Section 6.3. We present results

(Section 6.3.2 and analyze the results to account for and explain the energy and

performance gains observed in psoc implementations in Section 6.3.3. We discuss

application optimization and psoc implementation in detail in Section 6.5.

6.1 Probabilistic System on a Chip Architectures

We envision psoc architectures are to consist of two parts as illustrated in Figure 11:

a host processor which consists of a conventional low energy embedded processor

such as the StrongARM sa-1100 [81] coupled to a co-processor which utilizes pcmos

technology. The co-processor is the practical implementation of the probabilistic

Boolean circuit based on pbl. As we shall see in the subsequent sections, such a host

- co-processor architecture affords several benefits. For a comparative study of the

benefits of psoc architectures with current designs, we consider three choices to be

competitors for a psoc.
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Figure 11: The canonical psoc architecture

• As shown in Figure 12(a), a conventional “host-only” architecture which exe-

cutes a deterministic algorithm; where a deterministic counter part of the prob-

abilistic algorithm executes completely on the host processor. This is illustrated

in Figure 12(a).

• A conventional “host-only” architecture which executes a probabilistic algo-

rithm, (case (b)) where the probabilistic algorithm of interest executes com-

pletely on the host processor. The probabilistic component utilizes well known

pseudo-random number generators implemented in software [144]. This style of

implementation is shown in Figure 12(b).

• As shown in Figure 12(c), A conventional soc, where a cmos based co-processor

implements the probabilistic parts of the application whereas the deterministic

parts are executed as software on the host processor. The cmos based co-

processor forms the randomized Boolean circuit considered in Chapter 5.

These cases encompass alternate implementations of the application. Throughout

this study, the co-processors illustrated in Figure 11 and Figure 12(c) are realizations

using pcmos and cmos respectively that are application specific.
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6.2 Energy and Performance Metrics for Probabilistic Sys-
tem on a Chip Architectures

To highlight and to analyze the benefits of pcmos technology, we now introduce

several metrics to study the gains possible from psoc implementations. In particular

we will consider the energy performance product or epp for short, as the chief

metric of interest. The epp metric has been chosen due to several considerations.

It captures the chief characteristics of interest, namely the energy as well as the

time needed for the execution of an application. In addition, given an architectural

design to implement an application, the application execution could potentially be

accelerated by replicating architectural blocks to exploit parallelism. In addition,

techniques like voltage scaling could be used to trade performance for energy efficiency.

It is our intention that the epp metric would remain invariant under replication as well

as voltage scaling as improvements in time would be off set by increase in energy and

vice-versa. Hence epp is a valuable metric to compare architectural implementations

across differing technologies. Given the epp of two alternate realizations, they can

be compared by computing the energy performance product gain

Energy performance product gain: ΓI is the ratio of the epp of the base-

line denoted by β to the epp of a particular architectural implementation I. ΓI is
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calculated as follows:

ΓI =
Energyβ × Timeβ

EnergyI × TimeI
(12)

Initially, to highlight the benefits of psoc over the case where there is no co-

processor, the baseline will correspond to the case where the entire computation is

executed on the sa-1100 host. For example, in the case of the randomized neural

network application which solves the vertex cover problem, the baseline will be the

case where the sa-1100 host computes both the probabilistic and deterministic parts

of the application (as illustrated in case (b) in Section 6.1) and I corresponds to the

case where the core probabilistic step is computed using a pcmos based co-processor

and the rest of the computation is performed using a sa-1100 host (as illustrated in

Figure 11). Later, to quantify the benefits of psoc implementations over conventional

cmos based soc implementations, the baseline will correspond to the case where the

sa-1100 host is coupled to a functionally identical cmos based co-processor (case (c)

in Section 6.1), where the co-processor computes the core probabilistic step. Wherever

we present the epp gain results, we will explicitly mention the baseline.

6.2.1 Performance and Energy Modeling of Probabilistic System on a
Chip Architectures

Energy consumed (in joules) and performance (in terms of running time in seconds)

as the application executes on a particular architecture, will be the chief attributes

of interest. Our energy and performance modeling is simulation based. However, the

energy consumed by the pcmos devices are derived from actual measurements from

a pcmos test chip. As shown in Figure 11 in a psoc architecture, the co-processors

are memory mapped and the communication is modeled through load and store

instructions executed by the host. A special instruction triggers the execution of the

application-specific pcmos co-processor.

To model the performance of an application executing on such a psoc, we have
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modified the Trimaran [78, 27] compiler and simulator to reflect the ISA of Stron-

gARM sa-1100 processor. The simulator records the trace of activity in the sa-1100

host processor, and access to the co-processors. This simulation is combined with the

performance models of the co-processor, typically obtained through HSpice simula-

tions, to yield the performance of the application in terms of the execution time.

The energy consumed by an application executing on such a psoc is the sum

of the energy consumed by the host, the energy consumed by the co-processor and

the energy consumed due to communication between these components. To measure

the energy of an application executing on such an architecture, we have incorporated

the analytical model of Jouletrack [180] into the Trimaran simulator. This model

is reported by its authors to be within 3% of the energy consumed by the actual

sa-1100 processor. Thus, apart from estimating the performance of an application,

the simulator is also used to estimate the energy consumed by the StrongARM host.

The latencies caused by the slower pcmos co-processor is accounted for as well. To

estimate the energy consumed by the co-processors, the co-processors were designed

and synthesized using and the associated energy consumption estimated using HSpice.

In addition, actual measurement data of fabricated devices also using TSMC 0.25µm

technology and their results are used as well. This, combined with the trace of the

activity in the co-processor (recorded by the simulator) yields the energy consumed

in the co-processor. Our performance and energy modeling techniques for a psoc

are illustrated in Figure 13. Since the applications of interest are probabilistic, at

least fifty distinct executions are used to calculate the energy and performance of an

application of various alternate realizations (listed in Section 6.1).

6.3 A Co-design framework

The gains obtained by leveraging pcmos technology is due to the inherent energy

advantages of probabilistic Boolean circuits over randomized Boolean circuits. These
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gains are realized at an application level using a unique co-design methodology that

exploits technology characteristics of pcmos as well as the algorithm characteristics

of the application drivers, to provide a “good fit” implementation in the form of a

psoc architecture. Since the co-design methodology is of a greater interest than a

detailed description of the application drivers and their implementation details, we

briefly introduce the applications of interest and their characteristics that play an

important role in co-design (a detailed description of each of the algorithms, the spe-

cific partitioning strategy for each of these applications and the corresponding psoc

implementation details are presented in Section 6.5). We then present the energy and

performance results obtained from the psoc implementation and a comparative study

using metrics introduced in Section 6.2. We analyze these gains and then describe

the algorithm and technology characteristics that influence the co-design.

6.3.1 A Brief Description of the Applications of Interest

We consider applications based on probabilistic algorithms, drawn from the cognitive

and security domain. The algorithms include Bayesian inference [110], Probabilistic

Cellular Automata [61], Random Neural Networks [64] and Hyper Encryption [49].

These algorithms would be referred to as bn, pca, rnn and he respectively. The

applications in which each of these algorithms are utilized and the applications studied

in this work are summarized in Table 2.
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Algorithm Application Sce-
narios

Implemented
Application(s)

Core Probabilistic
Step

Bayesian Infer-
ence [110]

SPAM Fil-
ters, Cognitive
applications,
Battlefield Plan-
ning [149]

Windows printer
trouble shooting,
Hospital Patient
Management [7]

Choose a value for a
variable from a set of
values based on its
conditional probabil-
ity

Random Neural
Network [64]

Image and pat-
tern classifica-
tion, Optimiza-
tion of NP-hard
problems

Vertex cover of a
graph

Neuron firing mod-
eled as a Poisson pro-
cess

Probabilistic
Cellular Au-
tomata [197]

Pattern classifi-
cation

String classifica-
tion [61]

Evaluating the prob-
abilistic transition
rule

Hyper-
Encryption [49]

Security Message encryp-
tion

Generation of a ran-
dom string and en-
cryption pad genera-
tion from this string

Table 2: The algorithms of interest, applications based on these algorithms and the
core probabilistic step for each algorithm
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The psoc implementation for each of the algorithms consists of a StrongARM

sa-1100 host and an application-specific co-processor as mentioned in Section 6.1.

The co-processor design for each of these applications involves the partitioning of

each of these applications between the host and the application specific pcmos based

co-processor. Once partitioned, pcmos based co-processors are designed by hand.

Though the specific manner in which these applications are partitioned vary and is

not (currently) automated, they follow a common theme. Common to these applica-

tions (and to almost all probabilistic algorithms) is the notion of a core probabilistic

step with its associated probability parameter p. For example, in probabilistic cellular

automata application that has been considered [61], this is the probabilistic transi-

tion of an automaton which decides its next state based on the current state and a

probability parameter p associated with the transition rule. The core probabilistic

step for each of the application of interest is presented in Table 2. For each of the

candidate applications, this core probabilistic step is identified by hand and pcmos

based co-processors designed for it. The deterministic parts of the application (for ex-

ample, choosing which transition rule to apply in the context of probabilistic cellular

automata) is implemented as software executing on the host processor.

6.3.2 Application Level Gains

Table 3 summarizes the application level EPP gains of psoc over the baseline, for each

of the applications of interest. Gains at the scope of an entire application range from

a factor of about 80 for the pca application, to a factor of about 300 in the context of

the rnn application. As mentioned earlier, the baseline implementation for bn, he,

pca and rnn applications is the StrongARM sa-1100 computing the deterministic as

well as the probabilistic content and I is a psoc executing an identical probabilistic

algorithm.

As seen from Table 3, the application level gains of each of the application vary.
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Algorithm ΓI
Min Max

bn 3 7.43
rnn 226.5 300
pca 61 82
he 1.12 1.12

Table 3: Maximum and minimum epp gains of pcmos over the baseline implemen-
tation where the implementation I has a StrongARM sa-1100 host and a pcmos
based co-processor

For example in the rnn case, a range of epp gains are observed whenever multiple data

points are available. This is attributed to the probabilistic nature of the applications:

their execution characteristics differ yielding different gains for different input sets

and sizes. In the sequel, we analyze the factors affecting gains in a systematic way.

6.3.3 An Analysis of Gains

Intuitively, the application level gain in energy and performance depend on two fac-

tors: (i) the “amount of opportunity” in the application to leverage the pcmos

based co-processor and (ii) the amount of gains afforded “per unit of opportunity”.

Broadly, the factors which influence gain can be studied under two categories Imple-

mentation independent characteristics (which include algorithmic characteristics like

the “amount of opportunity” inherent in an algorithm) and implementation depen-

dent characteristics (which includes technology and architecture characteristics which

influence the amount of gains afforded “per unit of opportunity”). These algorithmic,

architecture and technology characteristics in turn, influence the co-design methodol-

ogy (hence the name A2T co-design methodology); these considerations are outlined

in the sequel and the specific effect on the psoc design for each of the applications

of interest will be described in Section 6.5
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6.3.4 Implementation Independent Characteristics Influencing
Co-design

As mentioned before, the core probabilistic step of each application is implemented in

the pcmos based co-processor and one core probabilistic step will be regarded as one

“unit of opportunity”. The core probabilistic step for each of the application has been

presented in Table 2. Given this, it is natural to expect that higher the opportunity

to exploit pcmos technology for efficient implementations, higher will be the gains.

The “amount of opportunity” is formalized through the notion of Probabilistic Flux

F (or flux for short) where F of an algorithm is defined as the ratio of the core

probabilistic steps to the total number of operations of an algorithm during a typical

execution of the algorithm. The “total number of operations” in this context refers to

the total number of cycles consumed by the deterministic instructions executing on

the StrongARM processor. Informally, F can be regarded as ratio of the number of

times a psoc co-processor would be invoked to the number of times the host processor

is “invoked” (cycles executed by the host processor). Flux for various algorithms will

be presented in either the ratio form or in the form of a percentage.

With this as background and revisiting Table 3, we observe that the application

level gains of each of the application vary. For example in the bn case, a range of epp

gains are observed whenever multiple data points are available. The Table 4 presents

the flux as well as the Min and Max gains for each of the applications.

Algorithm Flux F (as percentage of total operations) ΓI
Min Max

bn 0.25%-0.75% 3 7.43
rnn 1.64%-1.97% 226.5 300
pca 4.19%-5.29% 61 82
he 12.5% 1.12 1.12

Table 4: Application level flux, maximum and minimum epp gains of pcmos over
the baseline implementation where the implementation I has a StrongARM sa-1100
host and a pcmos based co-processor
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Figure 14: Gain and flux for Bayesian network of various sizes

The variation in gain is attributed to the probabilistic nature of the applications

under consideration. Since these applications are probabilistic, their execution char-

acteristics (and hence the flux) depend on the input size and the actual inputs. To

understand the effect of flux, let us consider the bn application in detail. Figure 14

shows the gain for each network size and the corresponding flux F .

As is to be expected, as the flux increases from 0.25 % (for a Bayesian Network

size of 37) to 0.75 % (for a Bayesian Network size of 69), The corresponding gain

increases from a factor of 3 to a factor of 7.14. In general, for a specific application,

consider the energy consumed by the baseline implementation. This is a sum of the

energy consumed at the StrongARM host for executing the deterministic parts of

the application (Energydet,β) and the energy consumed at the StrongARM host for

executing the probabilistic part of the application (Energyprob,β).

Energyβ = Energydet,β + Energyprob,β
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Consider Energydet,β the energy consumed by the baseline for executing the deter-

ministic part of the application. If the average energy consumed per “invocation” of

the host processor (per cycle of the host processor) is Energycycle,host and the number

of invocations of the host processor is Cyclesdet,host

Energyβ = Energydet,β + Energyprob,β

= Cyclesdet,host × Energycycle,host + Energyprob,β

Consider Energyprob,β, the energy consumed by the baseline for executing the

probabilistic part of the application. Let the energy consumed per “invocation” of

the core probabilistic step be Energyflux,β. From the definition of Flux (F), the

number of invocations of the core probabilistic step is F × Cyclesdet,host and

Energyβ = Energydet,β + Energyprob,β

= Cyclesdet,host × Energycycle,host + Energyprob,β

= Cyclesdet,host × Energycycle,host + F × Cyclesdet,host × Energyflux,β

Similarly the energy consumed by the psoc implementation EnergyI can be writ-

ten as

EnergyI = Cyclesdet,host × Energycycle,host + F × Cyclesdet,host × Energyflux,I

≈ Cyclesdet,host × Energycycle,host

The approximation arises due to the fact that the pcmos based co-processor

consumes almost negligible energy (this can be seen from Table 5; However, the actual

gains presented here consider the energy of the co-processor as well, the approximation

is used purely for explanation purposes). Similarly, we can derive an expression for
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Figure 15: Variation of gain with respect to flux for Bayesian network

performance as well and for a specific application, the gain ΓI can be characterized

as

ΓI =
Energyβ × Timeβ

EnergyI × TimeI

=

(
1 +

F × Energyflux,β

Energycycle,host

)
×
(

1 +
F × Timeflux,β

Timecycle,host

)
(13)

Reverting back to Section 6.3.3, we notice that the gains depend on Flux F , an im-

plementation independent algorithmic characteristic which determines the “amount

of opportunity”. Also the gains depend on Energyflux,β and Timeflux,β which are

implementation dependent technology and architecture characteristics. Counter in-

tuitively, the gains also depend on Energycycle,host and Timecycle,host, which capture

the efficiency of the host processor ! This will be further explored in Section 6.4

For the Bayesian Network application, Figure 15 shows how ΓI varies with the
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Figure 16: Variation of gain with respect to flux for randomized neural network

flux. The line is analytically calculated using Equation 13, and the points correspond

to actual values measured using the simulations. Two particular points of interest,

whose flux correspond to Bayesian network sizes of 37 nodes and 69 nodes respec-

tively are also shown in the figure. It can be seen that the simulation result matches

closely with that of the analytical model. Similarly, Figure 16 shows the variation of

ΓI with the flux for the randomized neural network application. Again, the line is

calculated analytically and the points correspond to gains obtained from simulation.

Thus, the flux F of an algorithm is an important characteristic that determines the

gains derived from a psoc implementation. Hence, given an algorithm, it is advanta-

geous to maximize opportunity (in this context increase the amount of probabilistic

steps whenever possible) and given an application, to leverage higher gains, it is ad-

vantageous to leverage an algorithm with the highest “probabilistic content” or flux.

These considerations influence the selection and optimization of the algorithm used
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Application gain over sa-1100 gain over cmos

bn 9.99× 107 2.71× 106

rnn 1.25× 106 2.32× 104

pca 4.17× 104 7.7× 102

he 1.56× 105 2.03× 103

Table 5: The epp gain of pcmos over sa-1100 and over cmos for the core proba-
bilistic step

for a particular application in our A2T co-design methodology.

6.3.5 Implementation Dependent Characteristics Influencing
Co-design

The application level gains not only depends on the flux of an application but on the

energy and performance gains afforded per “unit of opportunity”. Table 5 presents

the epp gain of pcmos based co-processor for the core probabilistic step of each of the

applications of interest. The second column in the table corresponds to the case where

β is the sa-1100 host without any co-processor and the third column corresponds

to the case where β is a sa-1100 host coupled to a conventional cmos based co-

processor. As can be seen from the table, a pcmos based co-processor is over five

orders of magnitude better in terms of epp when compared to a sa-1100 processor,

and over three orders of magnitude when compared to a cmos based co-processor

while executing the core probabilistic step of the he application.

For a given flux, the application level gain would increase with increase in the

energy as well as performance gain per unit flux. To illustrate this, let us revisit the

Bayesian Network application, and the gain ΓI where I is a psoc and the baseline is

a StrongARM sa-1100 host without a co-processor. In particular, let us consider the

case where the size of the Bayesian Network is 37 nodes and the corresponding flux is

0.25%. Now, higher the efficiency of pcmos (in the form of lesser energy and faster

execution) per invocation of the core probabilistic step, higher would be the gain.

That is, higher the energy and time saved per invocation of the core probabilistic
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Figure 17: For a fixed flux, variation of gain with respect to energy saved per unit
flux and time saved per unit flux by using pcmos

step, higher is the gain afforded by the psoc implementation. Figure 17 illustrates

the variation of ΓI with respect to the cycles per unit flux and energy per unit flux

expended by the baseline implementation. The point where the surface intersects the

z axis, presents the performance and energy consumption per unit flux which corre-

sponds to a gain of 3 and the point plots the performance and energy consumption

per unit flux for the Bayesian Network of size 37.

With that as background and revisiting Table 5, we observe that the energy and

performance gain afforded per unit of flux varies across applications. This is an

artifact of the functionality of the core probabilistic step as well as the characteristics

of pcmos technology. The technology characteristics of pcmos technology, which

influence the energy and performance gains per core probabilistic step is enumerated

below:

• pcmos Energy Efficiency - pcmos based switches are extremely efficient for

85



implementing logical operations with probabilities associated with their out-

comes. For example, the energy consumed for one probabilistic inversion (a

logical not operation with a probability of correctness p associated with it),

operation is 0.4 pico-joules [35] whereas emulating similar functionality using

a hardware based implementation of the Park-Miller algorithm consumes 2025

times this much energy. As would be expected, more complex core probabilistic

operations afford high gains per unit flux.

• pcmos Specialization Apart from efficient operation, pcmos devices can be

“tuned” to the desired probability parameter of any probabilistic step S. For

example, pcmos based primitives could be built for probabilistic inversion with

a probability of correctness p = 0.75. Further details as to how the probability

of correctness can be controlled is presented in [35].

Corresponding implementations in software or conventional cmos incurs a penalty

for non trivial probabilities (p 6= 0.5). This is because, say to achieve a prob-

ability parameter p = 0.75, typical implementations would generate a number

uniformly at random, say between 0 and 216 and compare it with 216 × 0.75.

This involves dilation of one bit to 16 bits captured by the notion of the Dila-

tion Factor D. Hence core probabilistic step with non-trivial probabilities afford

higher gains per unit flux.

• pcmos Replication Due to Specialization Whereas specialization to a par-

ticular probability parameter p has the advantage of avoiding penalty associated

with tuning and dilation, separate pcmos building blocks need to be imple-

mented for probabilistic operations that are similar but differ only in their prob-

ability parameter. For example, two different pcmos based primitives need to

be built for two probabilistic inversion operations with probability p = 0.75 and

p = 0.80 respectively. This replication of pcmos primitives due to specialization
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is captured by the metric Spread factor denoted by S and is a count of such

distinct probability parameters used by an application. Spread factor guides

application optimization by reducing the distinct probability parameters used

by an application, and architecture optimization by choosing a non-specialized

implementation if the spread factor is too high.

• pcmos Operating Frequency - Though pcmos devices are extremely (en-

ergy) efficient, the operating frequencies of our current implementations are

low [35], at about 1MHz. This acts as a potential limitation to the peak

rate with which probabilistic steps can be executed on the pcmos based co-

processor. Given this limitation, the peak rate with which a probabilistic step

S needs to execute on the co-processor so that the host processor is not stalled,

is a characteristic of interest. This peak rate henceforth be referred to as the

application demand rate for the probabilistic step S. Intuitively, the applica-

tion demand rate is dependent on algorithm characteristics and the operating

frequency of the host processor. If the application demand rate for a proba-

bilistic step S is higher than the operating frequency of the pcmos building

block which executes the step S, the host processor would need to stall till the

probabilistic steps finish execution. This is analogous to memory stall cycles

in modern microprocessors where there is a mismatch between the frequency of

operation of the data path and the memory subsystem. This limitation can be

remedied through parallelism; by replicating pcmos building block which exe-

cutes the step S. The number of replications is captured through the replication

factor R. The replication factor is a characteristic that guides application as

well as architecture optimization. On the application side, program transforma-

tions could be performed to better interleave the probabilistic steps with the

deterministic steps (which execute on the host processor) so that the peak ap-

plication demand rate is reduced. In addition, since the current implementation
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of pcmos devices do not allow them to be switched off when not needed (akin

to clock-gating techniques in conventional micro architecture design), increased

replication, which decreasing the time consumed to execute an application might

increase the energy consumption. This trade off needs to be taken into account

while replication pcmos building blocks.

• psoc Communication Costs There is an inherent cost of communication

between the host processor and the pcmos based co-processor which can po-

tentially reduce the gains. While partitioning the application, this should be

considered as well.

6.4 A Comparison of Implicitly Probabilistic and Explicitly
Random Circuits in the System on a Chip Context

We have demonstrated the utility of pcmos technology and psoc implementations of

selected applications by presenting the energy and performance gains of pcmos based

psoc designs over a conventional host only style of implementation. A more ambitious

and interesting comparison would be with that of a conventional soc design where

a functionally identical co-processor is designed with conventional cmos technology.

These form an empirical comparison of the energy efficiency of system on a chip

architectures in the implicit and explicit contexts. With the conventional cmos based

soc (explicit context) as the baseline, the gain ΓI where I is a pcmos based psoc

for he as well as pca application is 1.

This is in spite of high flux and gains per core probabilistic step in the corre-

sponding applications. To explain this, let us revisit Equation 13. We note that the

gains depend on the Flux F , the gains per core probabilistic step (approximately

Energyflux,β and Timeflux,β) which were studied and analyzed in the preceding sec-

tions. More importantly the gains depend on Energycycle,host and Timecycle,host as

well, which indicates that if the computation that is executed on the sa-1100 host
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dominates the energy and time consumption of the entire application, then the gains

from pcmos based psoc would be low. Hence, even though the proportion of the core

probabilistic steps in the entire application is high and the gains per core probabilistic

step is high, using a pcmos based co-processor has almost no impact at the appli-

cation level time and energy consumption. Thus gains through pcmos—the limits

being substantial as shown in Table 5—can be truly achieved only if the amount of

effort spend in the co-processor is comparable in terms of epp units to that spent in

the host.

To verify this hypothesis, a baseline soc architecture in which the host processor

and the co-processor are both custom asic architectures is considered. With this

notion, moving away from a StrongARM host processor to one realized from custom

asic logic, amount of energy and running time spent in the host is considerably

lower. Thus and perhaps counter intuitively, increasing the efficiency of the competing

approach enhances the value of pcmos gains at the application level. In the context

of the he application, and with this change to the baseline, the gain ΓI increases

to 9.38 - almost an order of magnitude. Similarly when a baseline with a custom

asic host is used, the ΓI value in the context of the probabilistic cellular automata

application increases to 561. In all of these comparisons, the cmos based co-processor

has been operated at an optimal frequency, that is the frequency which yield the

lowest energy consumption without degrading application performance. In addition,

the cmos based co-processors are assumed to leverage techniques like clock-gating

with no overhead. In this respect the gain estimates are conservative. We view this

fact as being extremely favorable for psoc based designs, as host processors become

more efficient with future technology generations, the gains of psoc architectures over

conventional soc architectures increase.
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6.5 The Suite of Applications, Partitioning, Optimization
and psoc
Implementation

In this section, we describe in detail the applications, their partitioning, optimization

and psoc implementation.

Bayesian Networks (BN) - Bayesian inference [110] is statistical inference tech-

nique. Hypotheses, their corresponding probability weights and evidences are central

characteristics of this technique. The probability weight p associated with a hypoth-

esis H is interpreted as the degree of belief in the hypothesis. Evidences support (or

discount) a hypothesis, thereby increasing (or decreasing) the associated probability

weight and hence the degree of belief in the hypothesis. Hypotheses whose probability

weights approach 1 are most likely and those whose probability weights approach 0

are very unlikely. A Bayesian network can be used to perform Bayesian inference. A

Bayesian network is a directed acyclic graph G of nodes V which represent variables

and edges E ⊆ V × V which represent dependence relations between the variables.

Each node vx ∈ V can be associated with a value from a finite set of values Σx. The

set Σx will be referred to as the set of possible values associated with vx.

Without loss of generality, let v1, v2, v3, · · · , vk be the k parents of vx. Let Σ1 be

the set of possible values associated with v1; similarly let Σ2,Σ3, · · · ,Σk be associated

with v2, v3, · · · , vk respectively. Each value σ ∈ Σx, has a conditional probability

p(σ/σ′ ∈ Σ′
x) associated with it; where Σ′

x = Σ1 ×Σ2 ×Σ3 · · ·Σk. In essence σ′ is the

string of values of the variables represented by the k parents of the node vx and Σ′
x is

the set of all possible strings. Variables whose values are known apriori are called as

evidences and based on evidences, other variables can be inferred. Based on network

topology and conditional probabilities associated with the variables, various cognitive

tasks can be performed. The particular Bayesian networks considered in this study

are a part of the following applications: Hospital patient monitoring system [7] and
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a printer trouble shooting application for the Windows operating system.
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Figure 18: The co-processor architecture for a psoc implementing Bayesian Infer-
ence

Partitioning, Optimization and psoc Implementation We choose the like-

lihood weighting algorithm [149] for Bayesian inference. To illustrate, consider a

node vx ∈ V with Σx = {0, 1, 2}. As before, let Σ′
x be the set of all possible strings

of values associated with the parents of x. Let 0 ≤ p(0/σ′), p(1/σ′), p(2/σ′) ≤ 1

where p(0/σ′) + p(1/σ′) + p(2/σ′) = 1, be the conditional probabilities associated

with 0, 1, 2 ∈ Σx respectively, given that σ′ is the string formed by the outputs of the

parents of the node vx. The inference process performs a random experiment with

three possible outcomes 0, 1 or 2 with the associated probability p(0/σ′), p(1/σ′) and

p(2/σ′) respectively.

In our psoc architecture, Bayesian inference will be performed by three pcmos

switches A,B and C which corresponds to 0, 1, 2 respectively. The inputs for these

switches are fixed at 0 and the probability of correctness associated with A,B,C is by

design, p(0/σ′), p(1/σ′)
1−p(0/σ′)

and 1 respectively. Thus, when the switches are inspected

in the order < A,B,C >, the value which corresponds to the leftmost switch whose

output is the value 1 is the value inferred by the node. In the psoc design, the set

of switches {A,B,C} will be referred to as a row. A row of switches is associated
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with each member of the set Σ′
x, hence at least |Σ′

x| rows are required for a node vx.

These set of rows associated with a node vx will be referred to as a module which

corresponds to the node vx.

As shown in Figure 18, the pcmos module which corresponds to a node vx im-

plements a table. Rows in this module are indexed by a particular string σ′ of values

associated with the parents of vx. The number of columns in the module is |Σx|,

where each column corresponds to a value from the set Σx; in our example, |Σx| = 3

(and in the figure, it is 7). A switch in the module, identified by <row, column>

is a specialized pcmos switch whose probability of correctness is computed as indi-

cated above. Finally a conventional priority encoder is connected to the outputs of

a row to determine the final result of the random experiment; it performs the func-

tion of inspecting the values of a row and choosing the final output associated with

vx. The random experiment (used for inference) in this probabilistic algorithm, is

implemented in the pcmos co-processor (which consists of several modules), with the

remainder implemented as software executing on the host.

Random Neural Network (rnn) Following Gelenbe [64], a random neural

network consists of neurons and connections between the neurons. Information is

exchanged between the neurons in the form of bipolar signal trains. Neurons have

potentials associated with them, which are defined to be the sums of incoming sig-

nals. This potential in turn, influences the rate of firing. A random neural network

can be modeled as an undirected graph G of nodes (neurons) V and directed edges

(connections) E ⊆ V × V . Each node has an associated potential ψ which is incre-

mented (decremented) by incoming (outgoing) firings. The firings occur with a con-

stant rate with exponentially distributed intervals. When a node fires, its potential

is decremented by one and the polarity and destination of the firing are determined

by probability parameters pi and pd respectively. Through a suitable combination of
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network topology, probability parameters and firing rates, several optimization prob-

lems can be solved. The particular neural network considered in this study is used to

heuristically determine the vertex-cover of a graph due to Gelenbe and Batty [65].

Partitioning, Optimization and psoc Implementation The Poisson process

which models the “firing” of a neuron is implemented in the pcmos co-processor,

with the rest of the computation (distributing the firings, updating the potentials)

implemented to execute on the host processor. To realize the Poisson process charac-

terizing a neuron firing, the Bernoulli approximation of a Poisson process [57] is used.

As an example of a methodological step in our A2T co-design approach, since the rate

at which neuron firings need to be modeled exceeds the rate at which pcmos based

switches can compute, the pcmos based devices which model the Poisson process are

replicated to match the required rate. In the interests of efficiency, and as another

example of our A2T methodology, the application is restructured to reduce the repli-

cation factor R, by interleaving the modeling of neuron firings (in the pcmos based

co-processor) and the processing of these firings (in the host processor)—distributing

the firings more evenly over the course of the entire application’s execution. This has

the effect of reducing the peak application demand bandwidth.

Probabilistic Cellular Automata are a class of cellular automata used to

model stochastic processes. Cellular automata consist of cells with local (typically

nearest neighbor) communication. Each cell is associated with a state and a simple

transition rule which specifies the next state of a state transition based on its current

state and the states of its neighbors. In the probabilistic string classification algo-

rithm [61], the state of each cell is either 0 or 1. The next state of a cell depends

on its current state and the current states of its left and right neighbors. Thus there

are 8 possible transition rules where each rule has two possible outcomes 0 or 1. In

addition, the transition rules are probabilistic: for a transition rule τi (0 ≤ i ≤ 7)

probability that the output state of the rule is 0 is denoted by pi,0 and probability
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that the output state is 1 is denoted by pi,1.

Partitioning, Optimization and psoc Implementation Each transition rule

is implemented by a pcmos inverter whose input is a 0. The ith inverter corresponds to

the ith transition rule and the probability of correctness associated with the ith inverter

is pi,1. The control-intensive part of choosing transition rule (based on the state of a

cell and the states of its neighbors) and updating the states is implemented on the host

processor. Since the rate at which the transition rules need to be evaluated exceeds

the frequency of operation of the pcmos devices (choosing between the transition

rule and updating the current state can be executed very fast on the sa-1100 host),

this structure is replicated many times.
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Figure 19: The Custom asic host and pcmos co-processor architecture for a psoc
implementing a probabilistic cellular automata algorithm

In addition, a custom cmos based asic can be designed to implement the deter-

ministic part of the algorithm. As shown in Figure 19, the asic consists of an n bit

buffer and n 8× 1 multiplexers, one for each cell. The “select” input of the jth mul-

tiplexer 0 < j < n+ 1 is the current state of the jth cell and the states of its left and

right neighbors. The inputs of the multiplexers are from pcmos inverters specialized

to the corresponding probability parameters. The transitions are stopped as soon as

all the cells have identical states. This is detected by an n input or and an n input
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and gate. The energy of this custom asic is obtained through HSpice simulations

with the energy of pcmos inverters obtained from actual chip measurements.

6.6 Some Practical Considerations

We now address certain practical considerations towards implementing the psoc de-

signs described in this chapter. We first consider the problem of multiple voltage

levels and then remark on the effect of the quality of randomization on the applica-

tions implemented using psocs.

6.6.1 Reducing Multiple Voltage Levels

In the designs described in this work, the probability p of correctness need to be varied

on an application specific basis. In addition, an application may use several distinct

probability parameters. This, as described in Section 6.3.5, increases the Spread

factor due to replication caused by specialization. In addition, since the probability

parameter p is controlled by varying the voltage, a high spread factor implies that

several distinct voltage levels are needed to operate the pcmos devices in the chip.

Supplying distinct voltage levels on a chip requires voltage regulators which are costly

in terms of area as well as energy. We make two observations towards addressing this

problem (i) The distinct probability parameters are a requirement of the application

and the application sensitivity to probability parameters is an important aspect. That

is, if an application, uses probability parameters p1, p2, p3, it might be the case that

the application level quality of solution is not degraded much when only p1, p2 are

used. This, however can be determined only experimentally. (ii) Given a probability

parameter p1 and p2 through logical operations, other probability parameters might

be derived. For example, if the probability of obtaining a 1 from one pcmos device is

p and the probability of obtaining a 1 from a second pcmos device is q, a logical and

of the output of the two pcmos devices produces a 1 with a probability p.q. Using

this technique, in the context of an application (the case of Bayesian inference is used
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here), the spread factor may be reduced by producing several probability parameters

using a few probability parameters. The formulation of such an optimization problem

is described below.

Consider a tree (the composition tree) with directed edges G ≡ (V,E), where V

is a set of vertices and E ⊆ (V × V ) a set of directed edges. This tree describes the

set of logical operations required to derive the probability parameters required by an

application.

Let V = I∪C∪O where I∩C = C∩O = I∩O = φ and |O| = 1. Let I be the set

of input vertices, C be the set of computing vertices and o ∈ O the output vertex. The

input vertices are pcmos devices, the computing vertices are the logical operations

and the output of the output vertices yield the probability parameters required by

the application. Given an edge e ≡ (u, v) ∈ E where u, v ∈ V , the value associated

with the edge, val(e) is the value associated with the vertex u. Or, in other words,

val(e) = val(u) where e = (u, v).

• Set I: For any vertex v ∈ I, val(v) ∈ <+.

• Set O: For the vertex o ∈ O, val(v) = val(e) where e is the incoming edge

incident on o.

• Set C: Any vertex v ∈ C is of one of three types and, or, not. For all vertices

of type and, or, the in-degree is two and out-degree is one. For all vertices of

type not, the in-degree is one and out degree is one.

– For any vertex v ∈ C and v of type and with incoming edges ei, ej, the

value associated with v, val(v) = val(ei)× val(ej).

– For any vertex v ∈ C and v of type or with incoming edges ei, ej, the

value associated with v, val(v) = 1− (1− val(ei))× (1− val(ej)).

– For any vertex v ∈ C and v of type not with incoming edge ei, the value

associated with v, val(v) = 1− val(ei).
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Consider a set P such that P ≡ {p1, p2, p3, · · · , pk} where pi ∈ <+ and Q such that

Q ≡ {q1, q2, q3, · · · , ql} where qi ∈ <+. Let P be called as the set of input probabilities

and Q be called as the set of application-required probabilities.

A composition tree Gi is said to compute qi ∈ Q with input probabilities P , if

for each input vertex v of G, val(v) ∈ P and the value of the output vertex of G,

val(o) ≈ qi where x ≈ y if for some ε, y− ε ≤ x ≤ y+ ε. That is, when elements from

set P are input to the composition tree Gi, the value of the output vertex ≈ qi

For a composition tree Gi which computes qi given P , Gi is defined to be the

minimal composition tree, if 6 ∃G′
i such that G′

i computes qi given P and the number

of vertices in G′
i is less than the number of vertices in Gi. Henceforth, “composition

tree” would refer to the minimal composition tree.

To compute the application required probability parameters from a set of input

probability parameters, the cost includes the cost of the pcmos devices, the cost of

the logic in the composition tree and the cost introduced due to multiple (though

reduced) probability parameters of the input.

The cost of computing qi given a set of input probabilities P , denoted by CP (qi)

is the number of vertices in composition tree Gi which computes qi given P . The cost

of computing the set Q given P is denoted by CP (Q) is Σqi∈QCP (qi). The cost of the

set of input probabilities, denoted by C̄P is C̄P = k × |P | where k is some constant.

Question: Given a Q, compute P and the composition trees such that CP + C̄P

is minimum over all possible P .

This optimization problem might be solved using a combination of linear pro-

gramming and heuristics. As an illustration, an (unoptimized) hand implementation

of deriving twenty probability parameters from two input probability parameters is

described below in the Table 6 (note that the other ten probability parameters can

be obtained by the not of those in the table).

97



Application-required Probability Parameters Composition Tree

0.05 [[(0.4)and(0.5)]and(0.5)]and(0.5)
0.10 [(0.4)and(0.5)]and(0.5)
0.15 [(0.5)and[not(0.4)]]and(0.5)
0.20 (0.4)and(0.5)
0.25 (0.5)and(0.5)
0.30 (0.5)and[not(0.4)]
0.35 [not[(0.5)and[not(0.4)]]and0.5
0.40 0.40
0.45 [not[[(0.4)and(0.5)]and(0.4)]]
0.50 0.50

Table 6: The probability parameters required by the application, and the composi-
tion tree for generating them using two voltage levels

6.6.2 Quality of Randomization

In any implementation of applications which leverage probabilistic algorithms the

quality of the implementation is an important aspect apart from the energy and run-

ning time. In conventional implementations of probabilistic algorithms—which usu-

ally leverage hardware or software based implementations of pseudo random number

generators to supply pseudo random bits which serve as “coin tosses”—it is a well

known fact that random bits of a “low quality” affect application behavior, from the

correctness of Monte Carlo simulations [58] to the strength of encryption schemes.

To ensure that application behavior is not affected by low quality randomization, the

quality of random bits produced by a particular strategy should be assessed rigor-

ously. The problem of “quality assessment” of random sequences has been well studied

and is rooted in the very concept of “randomness”. Kolmogorov considers a finite

sequence to be random if there is no appreciably shorter sequence that describes it

fully, in some unambiguous mathematical notation (from [70]). However the problem

of determining the shortest sequence which describes a finite sequence of numbers,

is in general, undecidable [24]. A more practical definition of “pseudo-randomness”
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was introduced by Yao, where informally, a sequence is pseudo-random if there is no

polynomial time algorithm which can distinguish that sequence from a truly random

one [199]. However, it is impractical to test for pseudo-randomness since there are

an infinite number of polynomial time algorithms. Hence the current strategy is to

leverage statistical tests to test for the quality of randomness. To study the statistical

properties of pcmos devices in a preliminary way, we have utilized the randomness

tests from the NIST Suite [162] to assess the quality of random bits generated by

pcmos devices. Preliminary results indicate that pcmos affords a higher quality of

randomization; A future direction of study is to quantify the impact of this quality

on the application level quality of solution.
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CHAPTER VII

PROBABILISTIC ARITHMETIC

Efficient execution of arithmetic operations is of paramount importance for high per-

formance and low energy implementation of algorithms, where arithmetic operations

dominate. Examples of such algorithms include those in the domain of digital signal

processing (dsp). In the context of vlsi-based implementation of arithmetic opera-

tions, efficient implementations, including those which perform various trade-offs—

time of execution for the size of the implementation for example—have been studied

extensively (see [46] for example). Typically, these techniques exploit properties at

the algorithmic level (the relationship between size of implementation and speed of

implementation for example) and the vlsi level (like the traditional energy-switching

time relationship). The principles of pbl and the relationship between energy and

probability of correctness, introduces a new trade-off which may be studied in the

context of arithmetic.

In this chapter we extend the constructs rooted in pbl to reason about probabilistic

arithmetic. To do this, we first consider a technique of addition, and in Section 7.1.1

define a model which characterizes deterministic addition of two polynomials. In

Section 7.1.2, we define probabilistic addition and error vectors, the elements of which

correspond to the probability of correctness of individual probabilistic primitives.

The relationship between the cost and the probability of correctness of primitive

operations which constitute addition, will be based on the analytical model of cmos

energy consumption described in [35] and summarized in Section 2.4.1. In Section 7.2,

we relate the cost of a probabilistic addition to the expected magnitude of error of

such an addition. In Section 7.3, we present our main result.
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We show that polynomials exist, such that for the same cost of addition under two

error vectors P, P̂ , the relative magnitude of error—the ratio of the expected mag-

nitudes of errors for addition under P, P̂—can grow as Ω(2n/(2+ε)) for some positive

ε << 1. We relate this result to the case when the polynomials are chosen uniformly

at random. We study certain interesting contexts, relevant to practical implementa-

tion of probabilistic arithmetic in Section 7.4: (i) that of binning where the cost of

m successive probabilistic primitives are equal and (ii) truncation, where the cost of

the probabilistic primitives which compute the t least significant bits is set to 0.

7.1 Abstracting a Mathematical Model

We first define a mathematical model for relating the magnitude of error to a partic-

ular scheme of energy investment and total energy consumption based on ripple-carry

of addition. Given the probability of correctness of individual bit-level addition, the

magnitude of error of the addition of two n bit binary numbers is an attribute of

interest.

As an informal example, consider the 8 bit binary addition of two binary numbers

A and B, where A = 01001010 and B = 01000110. The least significant bit (the

“first” bit) is written on the right and the most significant bit (the “eighth bit”) on

the left. As illustrated in Figure 20(a), we notice that the addition of the second bit

generates a carry, which is added to the third bit, which in turn produces a carry bit

of 1 and hence propagates the carry bit, and when added to the fourth bit, produces a

1 as the carry-bit and sets the result of the addition of the fifth bit to 1. We shall call

this a carry chain of length 3 originating at position 2. In this example, there is also a

carry chain of length 1, originating at position 7. If this carry originating at position

2 were to be computed incorrectly (say, by implementing the carry generation circuit

using operators from pbl), due to the carry chain, the 3rd, 4th and 5th bits would be

computed incorrectly, but the error magnitude 22 = 4 is dependent only the position
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0  1  0  0  1  0  1  0          A
0  1  0  0  0  1  1  0          B

1111

1  0  0  1  0  0  0  0

(a)

Sum (correct)

Sum (incorrect) 1  0  0  0  1  1  0  0

0  0  0  1  0  1  0  1          A
0  0  0  0  1  0  1  1          B

1 111

0  0  1  0  0  0  0  0

1

0  1  0  1  0  1  0  0          A
0  0  1  0  1  1  0  0          B

1 111

1  0  0  0  0  0  0  0

1

0  1  1  1  1  0  0  0 0  0  0  1  1  1  1  0

Error magnitude 4 8 2

(b) (c)

Figure 20: (a) Correct sum of A and B and incorrect sum when the carry at position
2 is computed incorrectly (b) correct sum of A and B and incorrect sum when the
carry at position 3 is computed incorrectly (c) correct sum of A and B and incorrect
sum when the carry at position 1 is computed incorrectly

at which this carry originated. This illustrates the first attribute of our mathematical

model: The magnitude of error is independent of the length of the carry chain.

Consider Figure 20 (b) where the length of carry chain is 5, and the case where

the carry originating at position 3 is computed incorrectly. The error magnitude is

8. Similarly, consider the case when the inputs are 00010101 and 00001011 (Fig-

ure 20(c)). Even though the length of the carry chain is 5—the same length as the

case described in Figure 20(b)—since the carry chain originates in a less significant

position, the error magnitude is 2 and is lower in this case. This illustrates a second

attribute characterized by our mathematical model: Errors in the carry produced by

bits of a higher significance give rise to higher magnitude of error when compared to

errors in the carry produced by bits of a lower significance.

7.1.1 A Mathematical Model for Deterministic Addition

We now define our mathematical model for deterministic addition. Consider a variable

x and a polynomial of degree n whose coefficients are chosen from the set {0, 1}. For

example, let A denote a polynomial anx
n + an−1x

n−1 + · · · + a0x
0 such that ai ∈

{0, 1}. The index of any coefficient (or equivalently, the degree of the corresponding
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monomial) will be referred to as its position. The evaluation of this polynomial at

x = 2 denoted by A(2) will be considered to be the value of this polynomial. The

polynomial A is a binary representation of the integer A(2) and this integer will be

referred to as the integer represented by A. Given two polynomials A,B, the distance

between A and B is defined to be |A(2)−B(2)|, which is the absolute value difference

between the integers represented by A and B.

Consider two polynomials A,B, of degree n where A represents anx
n +an−1x

n−1 +

· · ·+a0x
0 and B represents bnx

n +bn−1x
n−1 + · · ·+b0x0 where ai, bi ∈ {0, 1}. Let C be

a Boolean function C : {0, 1}3 → {0, 1} where C(a, b, c) is defined to be (a∧b)∨(a∧c)∨

(b∧ c) where ∨,∧,¬ are the Boolean conjunction, disjunction and negation operators

respectively, and a, b, c ∈ {0, 1}. Then the operator � will be defined as follows: Let

C = A�B where C denotes the polynomial cn+1x
n+1 + cnx

n + · · ·+ c1x
1 + c0x

0, and

ci =


0 if i = 0

C(aj, bj, cj) for 1 ≤ i ≤ n+ 1, where j = i− 1

Here ci will be referred to as the carry bit computed at position i− 1. Informally,

the coefficients of the polynomial C represent the carry bits produced by the binary

addition of the coefficients of the polynomials A and B. Figure 21 illustrates the A�B

where the coefficients of A, 〈an, an−1, · · · , a0〉 = 〈0, 1, 0, 0, 1, 0, 1, 0〉 and the coefficients

of B, 〈bn, bn−1, · · · , b0〉 = 〈0, 1, 0, 0, 0, 1, 1, 0〉. As a slight variation of Pippenger [152],

we define a position i to generate a carry if ai = bi = 1 and a position i propagates

a carry if exactly one of ai, bi equals 1. A carry chain of length k is said to originate

at position i if the ith position generates a carry, and k − 1 subsequent positions

propagate a carry and the k + 1th subsequent position does not propagate a carry.

A set of k consecutive positions {i − 1, i − 2, · · · , i − k} will be referred to as an

active-block of size k at position i, if the (i−k)th position does not propagate a carry

and all of the remaining (k− 1) positions and the ith position propagate a carry. For
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0  1  0  0  1  0  1  0          Coefficients of A
0  1  0  0  0  1  1  0          Coefficients of B

1111

A = 0x7 + 1x6 + 0x5 + 0x4 + 1x3 + 0x2 + 1x1 + 0x0

B = 0x7 + 1x6 + 0x5 + 0x4 + 0x3 + 1x2 + 1x1 + 0x0

C=A ⋅ B = 0x8 + 1x7 + 0x6 + 0x5 + 1x4 + 1x3 + 1x2 + 0x1 + 0x0 0 1  0  0  1  1  1  0  0          Coefficients of C

Carrys

Figure 21: The coefficients of C = A�B

any position j that does not propagate a carry, the active block at position j is the

set {} (in the special case under which the ith position propagates a carry and the

positions i − 1, i − 2, · · · , 0 propagate a carry as well, the active block at position i

would be {i− 1, i− 2, i− 3, · · · , 0}).

Given two polynomials A,B, the vector K = 〈kn, kn−1, · · · , k0〉, where ki denotes

the length of the active block at position i, will be referred to as the “chain vector of

A,B”. Given the polynomials A,B and a position j, 0 ≤ j ≤ n, let A0
j denote the

polynomial whose coefficient at the jth position is 0 and the rest of the coefficients

are identical to those of A. Similarly let A1
j denote the polynomial whose coefficient

at the jth position is 1 and the rest of the coefficients are identical to those of A. The

polynomials B0
j and B1

j are defined similarly. If C ′ = A0
j�B0

j and C ′′ = A1
j�B1

j , then

the carry produced at position j is said to affect the carry produced at position i,

j < i if and only if c′′i+1 6= c′i+1.

Observation 7.1.1.1 If A and B are two polynomials of degree n, whose chain vector

is K = 〈kn, kn−1, · · · , k0〉, and if C = A�B, then ci+1 is not affected by the carries

generated by the positions i− ki − 1, · · · , 0.

Proof. Suppose the carry bit ci+1 generated by the ith position is affected by a

carry generated by a position 0 ≤ j ≤ i − ki − 1. Then it must be the case that

am, bm,where m = i − ki, propagates a carry. Hence, it must be the case that the

length of active block at i is greater than ki. Which is a contradiction.

We have characterized the notion of carry coefficients, carry chains and active

blocks. Based on these, we will now develop a mathematical model for the sum
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of two polynomials. Let S be a Boolean function S : {0, 1}3 → {0, 1} such that

S(a, b, c) = (a ∧ (¬b) ∧ (¬c)) ∨ (c ∧ (¬a) ∧ (¬b)) ∨ (b ∧ (¬c) ∧ (¬a)) ∨ (a ∧ b ∧ c) for

a, b, c ∈ {0, 1}. If C = A�B and C denotes c0x
0 + c1x + c2x

2 + · · · + cn+1x
n+1, the

sum of the polynomials A and B will be denoted D = A⊕B, where D denotes the

polynomial dn+1x
n+1 + dnx

n + · · ·+ d0x
0, and

di =


ci if i = n+ 1

S(ai, bi, ci) for 0 ≤ i < n+ 1

We shall refer to di as the sum bit computed at the ith position.

7.1.2 A Mathematical Model for Probabilistic Addition

We shall now define a mathematical model for probabilistic addition, where the sum

of two polynomials may be computed incorrectly. We consider the case where the

carry bit computed at any position i is correct with a probability pi, 1/2 ≤ pi ≤

1. First, we define a function Ĉ such that Ĉ(a, b, c, p) = C(a, b, c) with probability

p, and Ĉ(a, b, c, p) = ¬C(a, b, c) with probability (1 − p) where a, b, c ∈ {0, 1} and

1/2 ≤ p ≤ 1. Since carry bits at different positions may be computed with different

probabilities of correctness, we consider P , the “error vector” of length n+ 1, which

denotes 〈pn, pn−1, · · · , p1, p0〉, 1/2 ≤ pi ≤ 1. We will refer to pi as the local-error at

position i. Then the probabilistic carry operator �P is defined as follows: If Ĉ =

A�PB, and as before, A,B, Ĉ represent the polynomials anx
n+an−1x

n−1+ · · ·+a0x
0,

bnx
n + bn−1x

n−1 + · · ·+ b0x
0 and ĉn+1x

n+1 + ĉnx
n + · · ·+ ĉ1x

1 + ĉ0x
0, respectively

ĉi =


0 if i = 0

Ĉ(aj, bj, ĉj, pj) for 1 ≤ i ≤ n+ 1, where j = i− 1

The probabilistic sum of the polynomials A and B will be denoted D̂ = A⊕PB

where D̂ denotes the polynomial d̂n+1x
n+1 + d̂nx

n + · · ·+ d̂0x
0, and

105



d̂i =


ĉi if i = n+ 1

S(ai, bi, ĉi) for 0 ≤ i < n+ 1

Observation 7.1.2.1 If the error vector P of length n + 1 denotes 〈1, 1, 1, · · · , 1〉,

then for arbitrary polynomials A and B of degree n, if D = A⊕B and D̂ = A⊕PB,

D(2) = D̂(2).

The error vector, where the local-error at each position is the same, will be re-

ferred to as a uniform error vector. That is, a uniform error vector P̂ is a vector

〈p̂n, p̂n−1, · · · , p̂1, p̂0〉, where 1/2 ≤ p̂i < 1 and p̂i = p̂j for all p̂i, p̂j ∈ P̂ .

The energy cost of computing a carry bit is related to its probability of cor-

rectness in cmos based implementations through its operating voltage. In practical

implementations, it is infeasible (or very expensive) to implement many distinct levels

of supply voltages and hence probabilities of correctness. Hence in practical imple-

mentations, we may consider “binning” of error vectors. That is, for any error vector

P = 〈pn, pn−1, · · · , p1, p0〉 with m bits in each bin, m successive local-errors are equal.

That is pi = pj if bi/mc = bj/mc.

Another interesting case is addition with decreased precision. That is, for proba-

bilistic addition of two polynomials A,B of length n, the least significant t coefficients

of the carry polynomial could be guessed uniformly at random from the set {0, 1}

and rest of the coefficients could be added under a error vector P̂ . A error vec-

tor P̂ = 〈p̂n, p̂n−1, · · · , p̂0〉, is truncated at t if p̂0 = p̂1 = · · · = p̂t−1 = 1/2 and

p̂t = p̂t+1 = · · · = p̂n > 1/2.

7.2 Cost and Magnitude of Error of Probabilistic Addition

The cost of performing an arithmetic operation, like the ripple-carry addition, is an

attribute of interest. Typically, the cost of arithmetic operations have been studied
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in terms of their implementation costs. In the context of vlsi-based implementa-

tions, the area cost of the circuit and the time required to perform the corresponding

arithmetic operations (usually taken to be proportional to the “depth” of the circuit)

have been the chief cost metrics [18]. However, we depart from these traditional cost

metrics and consider the energy consumption of the cmos based implementation as

an attribute of interest. Our model is based on the relationship between the energy

cost of an operation and its probability of correctness [35, 28, 101].

Definition 10 Energy Cost of Probabilistic Addition: For any error vector P of

length (n + 1) which denotes 〈pn, pn−1, · · · , p1, p0〉, where 1/2 ≤ pi < 1, the energy

cost E(P ) of an addition operation ⊕P is defined to be

E(P ) =
n∑

i=0

log

(
1

2− 2pi

)
Two error vectors P and P ′ are said to be of equal energy (or a re-investment of each

other) if E(P ) = E(P ′).

7.2.1 Error Magnitude of Probabilistic Addition

Given two polynomials A and B of degree n, and an error vector P , if D = A⊕B

is taken to be the correct result of the addition of A and B, then D̂ = A⊕PB is

likely to be incorrect or erroneous. We now seek to quantify this magnitude of error,

defined as the distance between D̂ and D. That is, if D = A⊕B, and D̂ = A⊕PB the

magnitude of error, Err(D̂) = |D(2)− D̂(2)|. Since the operator ⊕P is probabilistic,

A⊕PB is D̂1 with probability q1, D̂2 with probability q2 and so on, where
∑
qi = 1.

The expected magnitude of error of A⊕PB is the expectation of Err(A⊕PB) which is

q1|D(2)− D̂1(2)|+ q2|D(2)− D̂2(2)|+ · · · and is denoted by Experr(A⊕PB). We will

now bound the expected magnitude of error of A⊕PB from above and below.
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Lemma 7.2.1 For any two polynomials A and B and the error vector P , if K =

〈kn, kn−1, · · · , k0〉 is the chain vector of A,B, the expected magnitude of error

Err(A⊕PB) ≤
n∑

i=0

2i+1

(
1−

i−ki∏
j=i

pj

)

Furthermore, if for all i, ki ≤ λ, and pi ≥ pj whenever i > j,

Err(A⊕PB) ≤ 2λ+1 +
n∑

i=λ

2i+1
(
1− (pi−λ)

λ+1
)

Proof. Let D̂ = A⊕PB, Ĉ = A�PB, D = A⊕B and C = A�B. Then the

magnitude of error, Err(A⊕PB), is

Err(A⊕PB) =
∣∣∣D(2)− D̂(2)

∣∣∣ =

∣∣∣∣∣
n+1∑
i=0

di2
i −

n+1∑
i=0

d̂i2
i

∣∣∣∣∣ =

∣∣∣∣∣
n+1∑
i=0

2i(di − d̂i)

∣∣∣∣∣
and hence

Err(A⊕PB) ≤
n+1∑
i=0

2i
∣∣∣(di − d̂i)

∣∣∣
Since di = S(ai, bi, ci) and d̂i = S(ai, bi, ĉi), it follows that di 6= d̂i if and only if

ci 6= ĉi. Hence
∑n+1

i=0 2i|(di − d̂i)| =
∑n+1

i=0 2i|(ci − ĉi)|. Therefore,

Err(A⊕PB) ≤
n+1∑
i=0

∣∣2i(ci − ĉi)
∣∣ =

n+1∑
i=1

2i |(ci − ĉi)| since c0 = ĉ0

The expected magnitude of error Experr(A⊕PB) over many probabilistic addi-

tions of A and B is

Experr(A⊕PB) = Exp[Err(P )] ≤ Exp

[
n+1∑
i=1

2i|(ci − ĉi)|

]
=

n+1∑
i=1

(
2iExp [|ci − ĉi|]

)
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Whenever ci = ĉi, |(ci − ĉi)| = 0 and whenever ci 6= ĉi, |(ci − ĉi)| = 1. Therefore,

if ri is the probability that ci 6= ĉi, Exp [|ci − ĉi|] = ri. Therefore,

Experr(A⊕PB) ≤
n+1∑
i=1

2iri (14)

From Observation 7.1.1.1, it follows that ĉi+1 = ci+1 if for all i ≤ j ≤ i − ki,

Ĉ(aj, bj, ĉj, pj) = C(aj, bj, cj). Hence, the probability that ci+1 = ĉi+1 is at least∏i−ki

j=i pj. Therefore, it follows that ri+1 ≤ 1−
∏i−ki

j=i pj, and from (14)

Experr(A⊕PB) ≤
n∑

i=0

2i+1

(
1−

i−ki∏
j=i

pj

)
(15)

since ki ≤ λ

Experr(A⊕PB) ≤
λ−1∑
i=0

2i+1

(
1−

0∏
j=i

pj

)
+

n∑
i=λ

2i+1

(
1−

i−λ∏
j=i

pj

)

since pi ≥ pj whenever i > j

Experr(A⊕PB) ≤ 2λ+1 +
n∑

i=λ

2i+1
(
1− (pi−λ)

λ+1
)

(16)

Lemma 7.2.2 For any two polynomials A and B and the error vector P , the expected

magnitude of error of ⊕P is at least

2n+1(1− pn)
n−1∏
i=0

pi

Proof. Let C = A�B, D = A⊕B, Ĉ = A�PB and D̂ = A⊕PB. We know from

Markov’s inequality [57] that

Experr(A⊕PB) = Exp [Err(A⊕PB)] ≥ 2n+1Pr
[
Err(A⊕PB) ≥ 2n+1

]
where Pr [Err(A⊕PB) ≥ 2n+1] is the probability that |D(2) − D̂(2)| is greater

than or equal to 2n+1. Let E be the event such that, for all 0 ≤ i ≤ n, d̂i = di and

d̂n+1 6= dn+1 and let Pr[E] be the probability that event E occurs. Then trivially,
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Pr
[
Err(A⊕PB) ≥ 2n+1

]
≥ Pr[E]

Since di = S(ai, bi, ci) and d̂i = S(ai, bi, ĉi), for 0 ≤ i ≤ n, di 6= d̂i if and only if

ci 6= ĉi. Hence, if E ′ is the event that for all 0 ≤ i ≤ n, ĉi = ci and ĉn+1 6= cn+1 and

if Pr[E ′] is the probability that event E ′ occurs, then Pr[E] = Pr[E ′]. Therefore,

Pr
[
Err(A⊕PB) ≥ 2n+1

]
≥ Pr[E ′]

Since ĉi+1 = Ĉ(ai, bi, ĉi, pi), and since whenever ĉi = ci, the probability that

Ĉ(ai, bi, ĉi, pi) = Ĉ(ai, bi, ci) is pi,

Pr[E ′] = (1− pn)
n−1∏
i=0

pi

Therefore, Experr(A⊕PB) ≥ 2n+1(1− pn)
∏n−1

i=0 pi

From Lemma 7.2.2 it is immediate that

Corollary 11 For any two polynomials A and B and the uniform error vector P̂ ,

the expected magnitude of error of ⊕P̂ is at least

2n+1(1− p̂0)p̂
n
0

7.3 Relative Magnitude of Error

From Definition 10 we note that the energy cost of a probabilistic addition is deter-

mined by the error vector P . In addition, from Lemma 7.2.1 and Lemma 7.2.2, it

is evident that the expected magnitude of error of any probabilistic addition of two

polynomials A,B, is determined by the error vector P and the chain vector K. We

show that given two error vectors P, P ′ such that they are re-investments of each
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other, the expected magnitude of error of the addition of two polynomials differs.

We quantify this difference as the relative magnitude of error. That is, if A,B are

two polynomials of degree n and P, P ′ are error vectors of length n + 1 such that

E(P ) = E(P ′), the relative magnitude of error is

RE(P, P ′) = max

{
Experr(A⊕PB)

Experr(A⊕P ′B)
,
Experr(A⊕P ′B)

Experr(A⊕PB)

}
If P is a set of error vectors of length n + 1 such that for all P, P ′ ∈ P , E(P ) =

E(P ′), then the maximum relative magnitude of error is defined to be

Γn = maxP,P ′∈P {RE(P, P ′)}

We show that there exists polynomials A,B of degree n such that as Γn =

Ω(2n/(2+ε)) for some positive ε << 1. We consider a pair of polynomials A,B such

that each element of their chain vector is of constant length, and a pair of error vectors

P, P ′ of equal energy such that P ′ is the uniform error vector. We use Lemma 7.2.1

and Lemma 7.2.2 to bound the expected magnitude of error from below and above to

get an estimate of Γn. We define an exponential error vector P to be a error vector

such that P = 〈pn, pn−1, · · · , p0〉 where pi = 1− (1/2)i+1. Then

Lemma 7.3.1 If P is an exponential error vector of length n+1 and P̂ = 〈p̂n, p̂n−1, · · · , p̂0〉

is a uniform error vector of length n+1 such that E(P ) = E(P̂ ), then for all 0 ≤ i ≤ n,

p̂i = 1− 1/2(1+n/2)

Proof. From the definition of an exponential error vector, we know that P denotes

the vector 〈pn, pn−1, · · · , p0〉 where pi = 1− (1/2)i+1. Hence, E(P ) =
∑n

i=0 log(1/(2−

2pi)) and therefore,

E(P ) =
n∑

i=0

log

(
1

2− 2
(
1− 1

2i+1

)) =
n∑

i=0

log
(
2i
)

hence

E(P ) =
(n)(n+ 1)

2
(17)
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Since in a uniform error vector P̂ , p̂i = p̂j for all p̂i, p̂j ∈ P̂ , the energy cost of

probabilistic addition under a uniform error vector is

E(P̂ ) =
n∑

i=0

log

(
1

2− 2p̂i

)
= (n+ 1) log

(
1

2− 2p̂0

)
(18)

From the fact that E(P̂ ) = E(P ), (17) and (18),

(n+ 1) log

(
1

2− 2p̂0

)
=

(n)(n+ 1)

2

or

1

2− 2p̂0

= 2
n
2

and hence

p̂0 = 1−
(

1

2

)(1+n
2
)

therefore, for all 0 ≤ i ≤ n, p̂i = 1− (1/2)1+(n/2)

Theorem 12 There exist polynomials A,B of degree n such that the relative magni-

tude of error Γn = Ω(2n/(2+ε)) for some positive ε << 1.

Proof. Consider two polynomials A,B of degree n such that their chain vector

K is of the form 〈kn, kn−1, kn−2, · · · , k0〉 such that for all 0 ≤ i ≤ n, ki ≤ 3. Such

polynomials exist, ai = 1, bi = 0 for all 0 ≤ i ≤ n is a trivial example. Let P be an

exponential error vector of length n+ 1. Then from Lemma 7.2.1 Equation (16),

Experr(A⊕PB) ≤ 16 +
n∑

i=3

2i+1
(
1− (pi−3)

4)

Since pi = 1−(1/2)(i+1), it follows that for 3 ≤ i ≤ n, pi−3 = 1−(1/2)(i−2). Expanding

(pi−3)
4 using the Taylor series and approximating,
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Experr(A⊕PB) < 16 +
n∑

i=3

2i+1

(
1−

(
1− 4

2i−2

))
= 16 + 32(n− 2) (19)

If P̂ = 〈p̂n, p̂n−1, · · · , p̂0〉 is a uniform error vector such that E(P̂ ) = E(P ), from

Lemma 7.3.1, for all 0 ≤ i ≤ n, p̂i = 1− 1/2(1+n/2). Furthermore, from Corollary 11,

Experr(A⊕P̂B) > 2n+1(1− p̂0)p̂
n
0 and therefore,

Experr(A⊕P̂B) ≥ 2n+1

(
1

2

)1+n
2
(

1− 1

2(1+n
2 )

)n

expanding using Taylor series

Experr(A⊕P̂B) > 2
n
2

(
1− n

2(1+n
2 )

)
and hence

Experr(A⊕P̂B) >
√

2n − n

2
(20)

Recall that the relative magnitude of error

Γn ≥ max

{
Experr(A⊕PB)

Experr(A⊕P̂B)
,
Experr(A⊕P̂B)

Experr(A⊕PB)

}
hence

Γn ≥
Experr(A⊕P̂B)

Experr(A⊕PB)
>

√
2n − n

2

16 + 32(n− 2)

Hence Γn = Ω
(
2n/(2+ε)

)
It is immediate from the theorem that

Corollary 13 If A and B are polynomials and K = 〈kn, kn−1, kn−2, · · · , k0〉 is the

chain vector of A,B such that ki ≤ log(n), and P is the exponential error vector,

Experr(A⊕P̂B) = O(n2 log(n)).
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We note that if the coefficients of A and B are chosen uniformly at random from

the set {0, 1}, and if K is the chain vector of A,B, then Pr[ki = c], the probability

that the length of active block at position i is c is 1/2c. Hence the expected length

of an active block, or equivalently, the expected value of ki, is 2.

Lemma 7.3.2 If P is an exponential error vector of length n and EP is the expected

magnitude of error of the probabilistic sum of polynomials A and B of length n, whose

chosen uniformly at random from the set {0, 1}, then EP = O(n3).

Proof. Given polynomials A,B, if K is the chain vector of A,B, we know from

Lemma 7.2.1 that

Err(A⊕PB) ≤
n∑

i=0

2i+1

(
1−

i−ki∏
j=i

pj

)

Hence, it follows that

EP ≤
n∑

i=0

2i+1

(
i∑

m=0

Pr[ki = m]

(
1−

i−m∏
j=i

pj

))

since Pr[ki = c] = 1/2c,

EP ≤
n∑

i=0

2i+1

(
i∑

m=0

1

2m

(
1−

i−m∏
j=i

pj

))

EP <

n∑
i=0

2i+1

(
i∑

m=0

1

2m

(
1− (pi−m)m+1

))

expanding using Taylor series

EP <

n∑
i=0

2i+1

(
i∑

m=0

1

2m

(
m+ 1

2i−m+1

))

hence

EP <
(n+ 1)2(n+ 2)

2
= O(n3)
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7.4 Some Practical Considerations

We now consider the case of “binned” error vectors. We recall that any error vector

P = 〈pn, pn−1, · · · , p1, p0〉 is defined to be binned with n/m bins, if m successive local-

errors are equal. A exponential error vector of length n with n/m bins is defined

to be an error vector P = 〈pn, pn−1, · · · , p0〉 such that m divides n + 1 and pi =

1− 1/(2mbi/mc+1).

We analyze binning and show that for addition under the exponential error vector

P with n/ log(n) bins, the expected magnitude of error is O(n2 log(n)). Furthermore,

if P̂ is a uniform error vector such that E(P ) = E(P̂ ), we show that the expected

magnitude of error for addition under P̂ is Ω(2(n/(2+ε))) for some positive ε < 1.

Claim 7.4.0.1 If P is an exponential error vector of length n with n/m bins whereas

P̂ = 〈p̂n, p̂n−1, · · · , p̂0〉 is a uniform error vector of length n such that E(P ) = E(P̂ ),

then for all 0 ≤ i ≤ n, p̂i = 1− 1/2(1+t/2) where t = n(n+m)/(n+ 1).

Proof. We know that E(P ) =
∑n

i=0 log(1/(2 − 2pi)) and pi = 1 − 1/(2mbi/mc+1).

Hence,

E(P ) =
n∑

i=0

log

 1

2− 2
(
1− 1

2mb i
m c+1

)
 =

n/m∑
j=0

m log
(
2mj
)

hence,

E(P ) =
n(n+m)

2
(21)

From the fact that E(P̂ ) = E(P ), (21) and (18),

(n+ 1) log

(
1

2− 2p̂0

)
=

(n)(n+m)

2

or

p̂0 = 1−
(

1

2

)(1+ t
2
)
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where t = n(n+m)/(n+ 1). Therefore, for all 0 ≤ i ≤ n, p̂i = 1− (1/2)1+(t/2)

Lemma 7.4.1 If P is a exponential error vector of length n with n/m bins, A and

B are polynomials of degree n − 1 and K = 〈kn, kn−1, kn−2, · · · , k0〉 is the chain

vector of A,B such that ki ≤ m, then Experr(A⊕P̂B) is O(nm2m). Furthermore, if

m = log(n), Experr(A⊕P̂B) is O(n2 log(n)).

Proof. From Lemma 7.2.1, (16) the expected magnitude of error

Experr(A⊕PB) < 2m+1 +
n∑

i=m

2i+1
(
1− (pi−m)m+1

)
since pi = 1− 1/(2mbi/mc+1)

Experr(A⊕PB) < 2m+1 +m

n/m∑
j=1

2mj+1

(
1−

(
1− 1

2mj−m+1

)m+1
)

< 2m+1 +m

n/m∑
j=1

2mj+1

(
1−

(
1− m+ 1

2mj−m+1

))
hence,

Experr(A⊕PB) < 2m+1 + (n)(m+ 1)2m

Hence, it is immediate that for m = log(n), Experr(A⊕PB) is O(n2 log(n)).

Lemma 7.4.2 If P is a exponential error vector of length n with n/m bins, whereas

P̂ = 〈p̂n, p̂n−1, · · · , p̂0〉 is a uniform error vector of length n, such that E(P ) = E(P̂ ),

and if A and B are polynomials of degree n− 1, Experr(A⊕P̂B) is Ω(2(n−m)/2). Fur-

thermore if m = log(n), Experr(A⊕P̂B) is Ω(2(n/(2+ε))) for some positive ε < 1.

Proof. From Claim 7.4.0.1, for all 0 ≤ i ≤ n, p̂i = 1 − 1/2(1+t/2) where t =
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n(n+m)/(n+ 1). From Corollary 11

Experr(A⊕P̂B) > 2n+1

(
1

21+ t
2

)(
1− 1

21+ t
2

)n

since (n+m) > n(n+m)/(n+ 1),

Experr(A⊕P̂B) > 2n+1

(
1

21+
(n+m)

2

)(
1− n

21+ t
2

)
hence,

Experr(A⊕P̂B) > 2
n−m

2

(
1− n

21+ t
2

)
Since m ≥ 1, (n−m)/2 < n(n+m)/(2(n+ 1)). Hence,

Experr(A⊕P̂B) > 2
n−m

2 − n

Hence, it is immediate that when m = log(n), Experr(A⊕P̂B) is Ω(2(n/(2+ε))).

7.4.1 Truncation in Probabilistic Arithmetic

Another implementation alternative is addition with decreased precision. That is

for probabilistic addition of two polynomials A,B of length n, the least significant

t coefficients of the sum could be guessed uniformly at random from the set {0, 1}

and rest of the coefficients could be added under a uniform error vector P̂ , thereby

investing more energy in bits of a higher significance when compared to bits of a lower

significance.

Consider a exponential error vector P of length n+ 1 and a uniform error vector

P̂ = 〈p̂n, p̂n−1, · · · , p̂0〉, of length n+1, where p̂0 = p̂1 = · · · = p̂t−1 = 1/2, p̂t = p̂t+1 =

· · · = p̂n and E(P ) = E(P̂ ). In the uniform error vector case, the least significant t

coefficients of A⊕PB are correct with a probability 1/2 and hence, can be guessed

from the set {0, 1}. Hence, we will refer to P̂ as a uniform error vector truncated

at t. We show that for a truncated uniform error vector where constant number of

elements are truncated, the expected magnitude of error is Ω(2n/c) for some positive

constant c.
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We know from (17) that E(P ) = (n)(n+1)
2

. Since E(P ) = E(P̂ ),

Claim 7.4.1.1 For t ≤ i ≤ n, p̂i = 1−(1/2)s where s = 1+(n)(n+1)/(2(n− t+1)).

Proof. We know that

E(P̂ ) =
n∑

i=0

log

(
1

2− 2p̂i

)
=

n∑
i=t

log

(
1

2− 2p̂i

)
= (n− t+ 1) log

(
1

2− 2p̂i

)
Since E(P ) = E(P̂ ), for t ≤ i ≤ n, p̂i = 1 − (1/2)s where s = 1 + (n)(n + 1)/(2(n −

t+ 1)).

Lemma 7.4.3 For any two polynomials A,B of degree n−1, and a exponential error

vector P , if P̂ is a uniform error vector truncated at t such that E(P ) = E(P̂ ), then

Experr(A⊕P̂B) is Ω(2n/c) where t, c are positive constants.

Proof. From Lemma 7.2.2,

Experr(A⊕PB) ≥ 2n+1(1− p̂n)
n−1∏
i=0

p̂i

Experr(A⊕PB) ≥ 2n+1 1

2s+t

(
1− 1

2s

)n−t

where s = 1 + (n)(n+ 1)/(2(n− t+ 1)). Hence,

Experr(A⊕PB) ≥ 2n+1−s−t

(
1− 1

2s

)n−t

Experr(A⊕PB) ≥ 2u/(2w) − n− t

2v/w−1

where u = n2+n−4nt+2t2, v = t(n+1)−t2, w = (n−t+1). Hence, Experr(A⊕PB) =

Ω(2n/c), for some positive constant c.
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Figure 5: Application level impact of our approach on SAR: (a) Original image of Downtown Los Angeles,
(b) image of Downtown Los Angeles with conventional voltage scaling yielding 2.5X energy savings with an
snr value of 0dB, and (c) image of Downtown Los Angeles with bivos based probabilistic arithmetic yielding
an acceptable snr of 28 dB and 5.6X energy savings.

Table 3: SAR Performance
Voltage Scaling Scheme SNR Energy Running Time epp epp / SNR

BIVOS 28dB 1/5.6X 2.5X 0.44X 15.7× 10−3

Uniform Voltage Scaling 0dB 1/2.5X 1.41X 0.56X +∞

2016 [9]. Coupled with this scaling of supply voltage, noise
levels will rise in future technology generations [8]. In a re-
cent work [27], noise levels are conservatively projected at
60mV based on simulation at a feature size of 70nm where
the experiments are conducted with supply voltage of 0.15V .
Based on an nsr value of 60mV

0.5V
= 0.12 in the case of a Vdd

value of 0.5V or nsr of 60mV
0.15V

= 0.4 in the case of a Vdd

value of 0.15V , we have studied the relative effect of noise
on future technology generations. This translated to a sup-
ply voltage range of 1.1V to 2.5V and a noise rms ranges
of 0.3V to 0.4V . Under these operating conditions, namely,
with a noise rms value of 0.3V and 0.4V , the E−p relation-
ship of a noise-induced pcmos adder is shown in Figure 6(b).
In conclusion, as cmos transistor sizes scale down, they will
naturally behave as pcmos devices resulting in the corre-
sponding primitive having a probabilistic output.

7.2 Current Technologies and Over­scaling
We also investigate propagation delay as a source of noise

that is applicable to today’s technologies. Consider a 32-bit,
ripple-carry adder as an example. The output for a given
bit is the result of data propagating through a series of full
adders, up to 32 depending on the input set and the signif-
icance of the bit in question. In conventional cmos design,
this propagation delay along the critical path determines the
upper bound for the ripple-carry adder’s clock frequency.
Rather than determining the clock frequency based on criti-
cal path delay (which will be the delay for only a small frac-
tion of the input set), we propose setting the clock frequency
such that outputs will switch within the given clock period
with a probability, p. Thus propagation delay becomes the
source of error, and pcmos technology can be used to trade-
off energy consumption versus error rate through the novel
approach of computing at a clock rate that is higher than
the speed at which devices might be switching.

Therefore, analogous to the case of noise-induced pcmos

devices (as seen from Figure 6(a)), pcmos devices can also
be made ‘probabilistic” due to voltage over-scaling. From

Figure 6(b), we see that an increased performance constraint
for a fixed energy budget (moving from point C to D as
shown in the figure) causes the probability of correctness to
decrease, namely, the E − p curve to shift to the left. This
effect is due to the fact that at a higher clock rate (moving
from 200MHz to 333MHz), the circuit will yield more errors
due to the switching speed of the arithmetic primitives being
slower than the clock speed, and hence the probability of
correctness will decrease.

8. REMARKS AND NEW RESEARCH DI­

RECTIONS
This work introduced an entirely novel notion of proba-

bilistic devices that are controlled by voltage scaling, yield-
ing a novel class of pcmos devices and building blocks.
Based on this, the concept of probabilistic arithmetic was
introduced and shown to be effective in realizing energy ef-
ficient signal processing, specifically for an fft. This led to
the novel bivos approach for designing pcmos based prob-
abilistic arithmetic primitives.

We have compared and shown the connection between
two phenomenons, namely noise-induced probabilistic be-
havior and delay-induced probabilistic behavior, in realiz-
ing energy-efficient pcmos designs in Section 7.2. Although
this paper has established the viability using noise-induced
models as opposed to using models for delay-induced er-
rors due to over-scaled cmos , our study shows the poten-
tial for over-scaled cmos to realize energy-efficient designs
in today’s technologies while we wait for the noise-induced
phenomenon in future technologies.

While delay, area, and power consumption are all de-
sign metrics that offer tradeoffs, bivos based pcmos designs
must further consider propagation paths of building blocks
in particular when propagation delay is the source of prob-
abilistic behavior. Comparing ripple-carry and carry-skip
adders for instance, carry-skip adders offer faster propaga-
tion delays, but at the expense of power consumption and die

Figure 22: Application level impact of probabilistic arithmetic on sar (a) conven-
tional error free operation, (b) uniform voltage scaling yielding 2.5x energy savings
(c) bivos based probabilistic arithmetic yielding an acceptable image and 5.6x energy
savings (from [66])

7.5 Case Study of Probabilistic Arithmetic in Digital Signal
Processing

The theoretical foundations developed in prior sections provide an alternate approach

towards realizing energy efficient digital signal processing dsp by implementing dsp

primitives through probabilistic arithmetic. In particular, the result in Lemma 7.3.2

shows that for polynomials of length n, whose coefficients are chosen uniformly at

random from the set {0, 1}, the expected magnitude of error for probabilistic addition

using the exponential error vector is O(n3). In this context, George et. al. [66] have

demonstrated significant energy savings in the synthetic aperture radar processing

algorithm by utilizing probabilistic arithmetic implemented using probabilistic cmos

(or pcmos) technology. In this section, we briefly summarize the results reported by

George et. al. [66].

In the domain of cmos, the energy consumption of a primitive switch is related

to its supply voltage. When these switches are used as building blocks to imple-

ment (Boolean) logic primitives, the probability of correct switching is determined

by the supply voltage of the constituent switches. This provides the basis for the

trade-off between energy and probability of correctness of cmos based implemen-

tation of Boolean logic primitives (gates). This relationship between the switching
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energy and the probability of correct switching in cmos is derived from first principles

by Cheemalavagu et al. [34]. When these probabilistic gates are used to implement

arithmetic primitives, such as a ripple carry adder, based on the insight from Theo-

rem 12, we know that probabilistic addition under a exponential error vector yields

a lesser expected magnitude of error when compared to probabilistic addition under

an uniform error vector. Such an implementation of a ripple carry adder in cmos,

where bits of higher significance are operated at higher supply voltages, (and hence,

have a higher probability of correctness) will be referred to as a biased voltage scaled

implementation or a bivos implementation. On the other hand, those implementa-

tions where the probability of correctness of full adders are the same—irrespective

of the significance of the bit they compute—will be referred to as the conventional

uniformly scaled voltage implementation.

To demonstrate the value of probabilistic arithmetic, George et. al. have consid-

ered the synthetic aperture radar (sar) application [167] using a satellite image of

Los Angeles County for experimentation. In this context bivos based probabilistic

arithmetic implementation results in significant energy savings with minimal impact

on application quality. This is illustrated in Figure 22 where Figure 22(a) is the image

derived from conventional (correct) processing. Figure 22(c) is the image obtained by

processing with probabilistic arithmetic operations with bivos scheme, which yields

5.6x in energy saving with no perceptible degradation. The image in Figure 22(b) is

obtained by processing with probabilistic arithmetic operations with uniformly scaled

voltage implementation for 2.5x in energy savings.

Thus, this empirical study of probabilistic arithmetic shows that (i) probabilistic

arithmetic can be an effective way for energy efficient computing and (ii) the theo-

retical study of investment techniques can help improve the quality of solution for a

fixed amount of energy savings.
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CHAPTER VIII

REMARKS AND FUTURE DIRECTIONS

We wish to note that pbl was developed as a logic throughout this work, thus di-

verging from the classical approach of treating Boole’s work on two-valued logic as

an algebra with a concomitant—often unspecified—axiomatization. This choice was

deliberate since we wished to introduce simple and explicit semantics to our particular

approach to introducing probability into logic on the one hand, and furthermore to

cast it in a form that is natural to the two application domains of interest: computer

science and electrical engineering. Recall that our own interest stemmed significantly

from the generally expected trend that gates and switches used to design circuits and

computing architectures are going to be probabilistic, since deterministic designs are

unlikely to be feasible as device (transistor) sizes approach ten nanometers.

We note that pbl is a significantly simple logic since it does not admit quantifi-

cation. So, a reasonable approach is to try and compare pbl to a suitable subset of

the richer logics which use the predicate calculus as a basis. The essence of the differ-

ence between the previous approaches (which can be broadly referred to as sentential

probability logics) on the one hand and pbl on the other, can be understood through

the event set semantics (Section 3.2). In particular, we draw the reader’s attention to

Observation 3.2.2.1 which clearly identifies the effect of the probability parameter p in

an identity of the form F ≡ (F ′∨pF
′′). The main point worth noting here is that the

event set of F is dependent on the parameter p associated with the operator ∨p, in

addition to the event sets associated with its constituent probabilistic formulae F ′ and

F ′′. It is important to note that this is not true of the previous approaches—in these

cases, the operators are always deterministic. Thus, based on previous approaches,
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the probability associated with a formula of the form G ≡ (G′ ∨ G′′) would entirely

depend on the probabilities associated with the two sub-formulae G′, G′′ and not on

the operator ∨.

Our work on pbl can be extended in the intellectual and practical contexts and

specific directions for future inquiry are expanded upon in [31]. In particular, the

case of a logic wherein each operator is associated with a probability interval, as

opposed to a definite probability value, would be of interest. We note that this

extension is also of considerable interest in the context of integrated circuit (ic)

design. Currently, logic synthesis is an extremely successful technology, where, given

an input specification as a formula, a (heuristically) optimized circuit is produced,

based on vlsi cost considerations [122]. Extending this to pbl to enable automated

circuit synthesis would be of great value. While circuit synthesis is interesting in its

own right, advances in the theory and practice of verification of probabilistic circuits

is indispensable for their large scale adoption.

The event set semantics of pbl suggest a probability attribute for each operator

(or gate) based on a set of trials associated with it. This implicitly connotes an

interpretation where the set of trials resulting in the events occur over time. However,

in the context of vlsi circuits, the observed statistical variations may occur spatially

across the transistors or gates on the surface of the chip, whereas individual transistors

or gates, once manufactured, need not exhibit randomness. While it is straightforward

to reinterpret the concept of an event set and the associated semantics to the case of

spatial variations, given its importance to the design of integrated circuits, detailing

this extension will be of immense value.

We also extended the notion of implicitly probabilistic operations from the domain

of logic to arithmetic, by incorporating considerations of probability into arithmetic

operations and demonstrated that the energy or more generally, cost advantages per-

sist. In this context, we wish to recall two important results from our development of
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pbl and draw analogies: (i) For an input assignment I to any pbf F , its probability

of correctness is an attribute of interest and can be quantified through the model

(or event set) of FI . The “correct” truth value of F is taken to be the truth value

of the “underlying classical Boolean formula” (or the deterministic restriction) of F

for the input assignment I. In the context of probabilistic arithmetic—specifically

addition—the magnitude of correctness (rather than the probability of correctness)

is an attribute of interest. For example, if the least significant bit of 8 bit addition

were to be computed incorrectly, the magnitude of error would be 1, whereas if the

most significant bit were to be computed incorrectly, the magnitude of error would be

128. (ii) Since pbl does not preserve associativity, for any pbf F , reassociations of

F may alter the probability of correctness of FI . Analogous to the non-associativity

result in pbl, for the same energy investment, we have shown that if the energy is

invested uniformly across all primitive logical operations of an addition, the expected

magnitude of error grows as Ω(
√

2n) whereas in the non-uniform investment case it

grows as O(n2). It is thereby indicated that re-investment of energy in a circuit that

realizes arithmetic operations (analogous to reassociation of probabilistic Boolean for-

mulae which realize logical operations in the pbl context) is likely to yield substantial

improvements in the expected magnitude of error.

While we have considered probabilistic primitives and studied the case of rip-

ple carry adders, the impact of these primitives on alternate architectures for addi-

tion, subtraction over conventional and alternate number representations, such as the

Kogge-Stone adder [96], various other forms of carry look ahead adders and carry save

adders [143] could be studied. In this context, new adder structures which optimize

area and speed in the presence of our energy-correctness trade-offs could be investi-

gated. Finally, based on probabilistic primitives and adders based on these primitives,

structures which implement multiplication operations ought to be investigated.
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Given such a characterization of arithmetic operations such as addition and multi-

plication, the trade-off between energy and magnitude of correctness may be extended

to the algorithmic level. Classically, for algorithms which involve extensive arithmetic

operations—the domain of digital signal processing (dsp) is a good example—and

those which are synthesized into physical computational structures as application-

specific integrated circuits (asics), the notion of Winograd’s arithmetic complexity is

of interest [196]. Arithmetic complexity seeks to quantify the number of arithmetic

operations performed by a particular algorithm and hence is a good indicator of the

size, execution time and energy consumption of circuits which implement arithmetic

algorithms. While characterizing the arithmetic complexity of an algorithm, the fast

Fourier transform (fft) for example, all arithmetic operations of the same type—say

k bit multiplication—are considered to cost the same. Furthermore, there is no notion

of a probability of correctness associated with the constituent arithmetic operations.

In the context of probabilistic arithmetic, which has two attributes (i) a non

uniform measure of (energy) cost across operations of the same type and (ii) a novel

trade-off between energy cost and magnitude of correctness, an extension of arithmetic

complexity which incorporates these additional considerations would enable entirely

new designs by exposing this additional trade-off. Such a complexity measure could

characterize the energy consumption as well as the magnitude of correctness at the

algorithmic level, and could enable the investigation of energy efficient algorithms

which trade energy for quality of solution.

The principles of pbl, the psoc architecture based on pbl and probabilistic arith-

metic, we believe, have a broad intellectual appeal and in a practical context, demon-

strate the utility of probabilistic primitives in the design and implementation of com-

puting systems. Though our empirical demonstrations were based on noise-susceptible

cmos devices, these principles are applicable in the context of probabilistic physical
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primitives, in non-cmos materials as well as in cmos devices where erroneous behav-

ior is not due to noise susceptibility. To illustrate this trade-off between energy and

quality of solution in current-day technology generations, probabilistic arithmetic in

the context of voltage-overscaled implementations of arithmetic structures has been

studied [30]. The erroneous behavior in this context is induced by aggressive voltage

scaling, and hence the errors are induced due to propagation delays. A higher in-

vestment in energy implies operating the corresponding circuit elements at a higher

voltage, and would translate into faster propagation of signal values and hence lower

probability of error.

A psoc architecture can be thought of as the physical implementation of a prob-

abilistic automaton, where the deterministic bookkeeping operations and state is

maintained in the deterministic host processor, and the probabilistic state transition

functions are computed in the probabilistic co-processor. Thus, the energy efficiency

demonstrated through psoc architectures, when compared to designs that implement

these probabilistic applications in an explicitly probabilistic manner (by employing

pseudo-random bits), serves as empirical evidence for the energy efficiency character-

ized in the theoretical setting of the probabilistic automata.

To demonstrate the utility of psoc and probabilistic arithmetic, we have consid-

ered instances from the domain of embedded and probabilistic applications. Applica-

tions, in general, can be classified into three categories: (i) applications which benefit

from (or harness) probabilistic behavior at the device level naturally (ii) applications

that can tolerate (and trade-off) probabilistic behavior at the device level (but do

not need such behavior naturally) and (iii) applications which cannot tolerate prob-

abilistic behavior at all. It is interesting to note that logic elements which exhibit

probabilistic behavior can be utilized for the third category of applications as well.

It is conceivable that they would include either temporal or spatial redundancy with

error correcting techniques [115]. In this context, redundancy and error correcting
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techniques would prove impractical if the amount of redundancy negates advantages

gained due to technology scaling. Quantifying the overheads imposed by such tech-

niques and delineating the contexts under which they would prove useful is a direction

for future inquiry as a way of sustaining Moore’s law.
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