T-Coffee: A Novel Method for Fast and Accurate Multiple Sequence Alignment Beth Crompton

http://www.worth1000.com/entries/247500/247882kPRo_w.png

Multiple Alignment is Hard

 General empirical models fail at <30% sequence identity

 Progressive Alignment is too greedy

• Simultaneous alignment is very resource intensive

T-Coffee is the solution to all your problems

http://www.saynotocrack.com/wpcontent/uploads/2007/07/evil-latte.jpg

<u>Tree-based Consistency Objective</u> <u>Function For AlignmEnt Evaluation</u>

http://farm1.static.flickr.com/120/2849719 17_d60dcce9a0.jpg?v=0

•Generates multiple alignments from heterogeneous data source in reasonable runtime

•Optimizes the multiple alignments to fit the pairwise alignments

Weighted Primary Library

Align pairs using ClustalW & Lalign

Each aligned pair is a constraint

http://www.emmitsburg. net/humor/pictures/200 7/Fw%20Coffee %20art.jpg

Assign weights to each constraint using Sequence Identity method

Weight represents correctness of constraints

Extending the library

Problem: fitting a set of weighted constraints into a multiple alignment is NP-complete

Solution: heuristics!

Weights

Already indicate similarity between two sequences

A BARET SHAKING

Should indicate consistency with all other sequences involving those residues

Weight of a pair becomes sum of all weights found examining all triplets involving that pair

Weight of non-existent residues becomes 0

Library extension-continued

c)Extended Library for seq1 and seq2

Progressive Alignment

Pair-wise alignments

distance matrices

guide tree

multiple alignment

http://www.monalisamania.co m/graphics/art/monalatte.jpg http://www.woostercollective.com/2007/0 4/01/coffeeart4.jpg

Differences

No need for scoring matrices or gap penalties!

Pairwise alignments are guided toward consistency with multiple alignment anyway.

But is it biologically accurate? Comparison of T-Coffee and Prrp

Why T-Coffee is worth the effort

Method	Cat1 (81)	Cat2 (23)	Cat3 (4)	Cat4 (12)	Cat5 (11)	Total1 (141)	Total2 (141)	Significance
Dialign	71.0	25.2	35.1	74.7	80.4	61.5	57.3	11.3ª
ClustalW	78.5	32.2	42.5	65.7	74.3	66.4	58.6	26.2^{a}
Рпр	78.6	32.5	50.2	51.1	82.7	66.4	59.0	36.9ª
T-Coffee	<u>80</u> .7	<u>37</u> .3	<u>52</u> .9	<u>83</u> .2	88.7	<u>72</u> .1	<u>68</u> .7	

Library extension makes all the difference

Particularly useful for Kinases

NBS

glla orvsa lshfkllkklgcgdigsvylsels---gtesyfamKVMDKas----kp68 human amdfkeieligsggfggyfkakhr---idgktyviKRVKYnn--------tlkrlnfsgggafggvvkarna---ldsryyaiKKIRNte----qcn2 stll veast pknwlkgacigsgsfgsvylgmna---htgelmavKQVEIknnnigvpt kin3_yeast rseyqvleeigrgsfgsvrkvihi---ptkkllvrKDIKYgh----nima_emeni adkyevlekigcgsfgiirkvkrk---sdgfilcrKEINYik----kin1_yeast lgdwefvetvgagsmgkvklakhr---ytnevcavKIVNRat----kaf kcc1_yeast kkkyvfgktlgagtfgvvrqaknt---etgedvavKILIKka----ks62_human psqfellkvlgqgsfgkvflvkkisgsdarqlyamKVLKKat-----kpc1_yeast ldnfvllkvlgkgnfgkvilsksk---ntdrlcaiKVLKKdn-----ypk2_yeast iddfdllkvigkgsfgkvmqvrkk---dtqkiyalKALRKay-----krac dicdi vadfellnlvgkgsfgkvigvrkk---dtgevyamKVLSKkh----kgp2_drome ltdlrviatlgvggfgrvelvqtn--gdssrsfalkqmkksq-----kapa mouse ldgfdriktlgtgsfgrvmlvkhk---esgnhvamKILDKgk-----kdca drome lenvitravlgngsfgtvmlvrek---sgknyyaaKMMSKed----ark1 human mndfsvhriigrggfgevygcrkr---dtgkmyamKCLDKkr----dmk_human rddfeilkvigrgafsevavvkmk---qtgqvyamKIMNKwd-----dbf2_yeast nrdfemitqvgqggygqvylarkk---dtkevcalKILNKkl-----pim1_human esqyqvgpllgsggfgsvysgirv---sdnlpvaiKHVEKdr-----

Efficiency

Runs in quadratic time $O(N^2L^2)+O(N^3L) + O(N^3) + O(NL^2)$

2X Slower than ClustalW (more overhead)

