Efficient whole-genome association mapping using local phylogenies for unphased genotype data

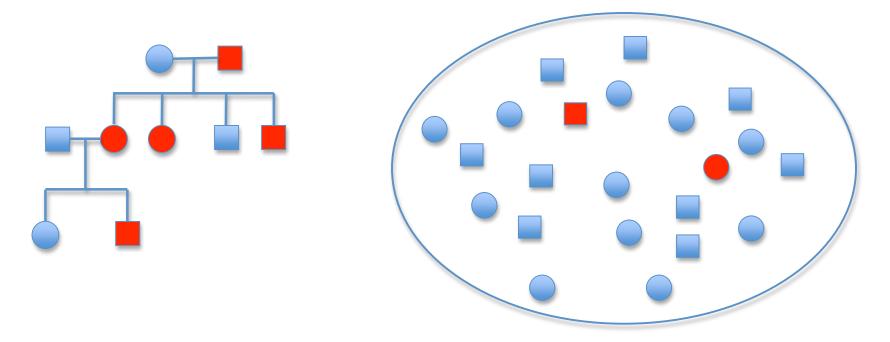
Zhihong Ding, Thomas Mailund, Yun S. Song

Report by Shuwei Li 11/18/08

Phase-known BLOSSOC

BLOSSOC (BLOck aSSOCiation)

- > Constructs local tree-like genealogies along the genome
- Scores those genealogies according to how the cases and controls are clustered
- Relies on a deterministic, efficient algorithm to build a single tree for each locus (infinite-sites model), achieve efficient computational time.


However, a major limitation is: reliance on having phased haplotype data

Solution: combines a linear-time algorithm for phasing genotypes on trees with the original treebased method for association mapping

Phase-unknown BLOSSOC

BLOSSOC ALGORITHM: Motivation and Idea

Basic idea: test for a significant clustering of affected individuals in local trees to find a location in the genome that harbors a disease-predisposing mutation.

Input: Set of genotypes G and their disease status, user specified number m**Output:** Likelihood scores for each marker

PPH: Perfect Phylogeny Haplotyping

LPPH: Linear time Perfect Phylogeny Haplotyping

If the size of I is at least m, then build a local tree T for genotypes in I using the LPPH algorithm If the size of I is less than mAdd neighboring markers to I until its size equals mUse the entropy minimization algorithm to infer the phase of genotypes in IBuild a local tree T for the haplotypes in IScore T and output the score as the score for marker i

```
Input: Set of genotypes G and their disease status, user specified number m
Output: Likelihood scores for each marker
```

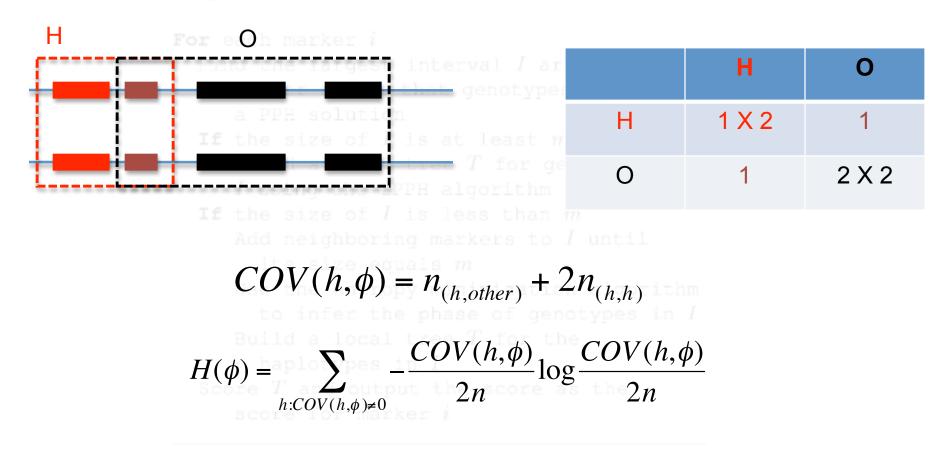
```
For each marker i
```

Find the largest interval *I* around marker *i* such that genotypes in *I* have a PPH solution

If the size of I is at least m, then build a local tree T for genotypes in I using the LPPH algorithm

If the size of I is less than m

Initialize X to be the set containing only x. Then alternate two steps until neither is possible:


(1)If X and the next marker immediately to the left together admit a PPH solution, then add that marker to X.

(2) If X and the next marker immediately to the right together admit a PPH solution, then add that marker to X.

score for marker i

```
Input: Set of genotypes G and their disease
Output: Likelihood scores for each marker
For each marker i
  If the size of I is at least m_i, then
     build a local tree T for genotypes in
  If the size of I is less than m
     Add neighboring markers to I until
       its size equals m
     Use the entropy minimization algorithm
       to infer the phase of genotypes in I
     Build a local tree T for the
      haplotypes in I
```

Given a hapotype h and a phasing solution φ for a set of n genotypes in G

BLOSSOC

ALGORITHM: Building local phyogenies

Entropy minimization algorithm

(1) Generate a random phasing solution ϕ for genotypes G.

(2) Repeat the following:

- (a) Find the pair (g, (h₁, h₂)) such that H(φ') is minimized, where φ' is obtained from φ by re-explaining g∈G with (h₁, h₂).
- (b) If $H(\phi') < H(\phi)$, then let $\phi = \phi'$, else exit the loop.

(3) Output phasing solution ϕ .

```
Use the entropy minimization algorithm
to infer the phase of genotypes in I
Build a local tree T for the
haplotypes in I
Score T and output the score as the
score for marker i
```

BLOSSOC ALGORITHM: Scoring local phylogenies

Consider the tree with a hierarchical clustering structure: each partition of the tree into subtrees defines a clustering.

Given a clustering $C = \{c_1, ..., c_n\}$ and corresponding disease risks $\Theta = \{\theta_1, ..., \theta_n\}$, the likelihood of the observed disease status is given by

$$L(\mathcal{C}, \Theta) = \prod_{i=1}^{n} \theta_i^{A_i} (1 - \theta_i)^{U_i},$$

Bayesian approach with independent β -priors $\pi(\theta)$ =1.

$$L(\mathcal{C}) = \prod_{i=1}^{n} \int_{0}^{1} \theta^{A_{i}} (1-\theta)^{U_{i}} \pi(\theta) d\theta = \prod_{i=1}^{n} B(A_{i}+1, U_{i}+1),$$

where *B* is the β function. To integrate out *C*, we again choose a uniform prior on clusters, obtaining the following final score:

$$L = \frac{1}{|\mathcal{C}|} \sum_{\mathcal{C}} L(\mathcal{C})$$

BLOSSOC Evaluation: Ranking Experiments

ρ	WR	GRR	1 kb			10 kb			100 kb		
			χ ²	Р	U	χ ²	Р	U	χ ²	Р	U
100	5%	1.2	0.08	0.11	0.12	0.63	0.76	0.86	4.88	4.89	4.58
100	5%	1.4	0.06	0.09	0.08	0.66	0.75	0.82	4.97	5.36	5.47
100	5%	1.6	0.13	0.13	0.13	0.97	1.43	1.24	5.34	6.14	5.99
100	5%	1.8	0.10	0.21	0.22	1.14	1.75	1.78	6.04	6.51	6.40
100	5%	2.0	0.20	0.21	0.19	1.26	1.59	1.56	5.82	6.11	6.20
100	10%	1.2	0.12	0.11	0.09	0.70	0.71	0.69	4.42	4.50	4.72
100	10%	1.4	0.09	0.05	0.06	0.85	0.81	0.90	5.37	5.29	5.20
100	10%	1.6	0.12	0.16	0.18	1.25	1.83	1.84	6.02	6.90	6.84
100	10%	1.8	0.09	0.14	0.12	1.03	1.64	1.62	5.50	6.58	6.52
100	10%	2.0	0.07	0.16	0.17	1.06	1.80	1.70	5.82	6.62	6.54
400	5%	1.2	0.01	0.01	0.03	0.37	0.40	0.43	2.25	2.46	2.67
400	5%	1.4	0.04	0.05	0.03	0.40	0.47	0.36	2.45	2.78	2.81
400	5%	1.6	0.01	0.03	0.02	0.55	0.73	0.69	2.78	3.54	3.26
400	5%	1.8	0.03	0.05	0.06	0.50	0.80	0.63	2.89	4.02	3.74
400	5%	2.0	0.07	0.09	0.09	0.64	0.95	0.86	3.24	4.61	4.27
400	10%	1.2	0.07	0.03	0.03	0.24	0.30	0.27	1.77	2.23	2.27
400	10%	1.4	0.13	0.15	0.16	0.44	0.66	0.61	2.75	3.46	3.29
400	10%	1.6	0.07	0.12	0.11	0.68	0.82	0.83	2.89	3.26	3.42
400	10%	1.8	0.10	0.08	0.07	0.60	0.72	0.61	3.32	4.18	4.10
400	10%	2.0	0.10	0.14	0.14	0.81	1.19	1.20	3.58	4.84	4.70

Table 1. Ranking experiment results showing the average number of top-10 ranked markers within a given distance of the true disease-predisposing locus

Based on 100 simulated datasets each with 1000 case and 1000 control individuals. Columns denoted χ^2 correspond to single-marker χ^2 -test results, while columns denoted 'P' ('U', respectively) correspond to BLOSSOC results using m=5 for phased (unphased, respectively) data. GRR, 'Genetic Relative Risk'; WR, 'Wildtype Risk'.

BLOSSOC Evaluation: Ranking Experiments

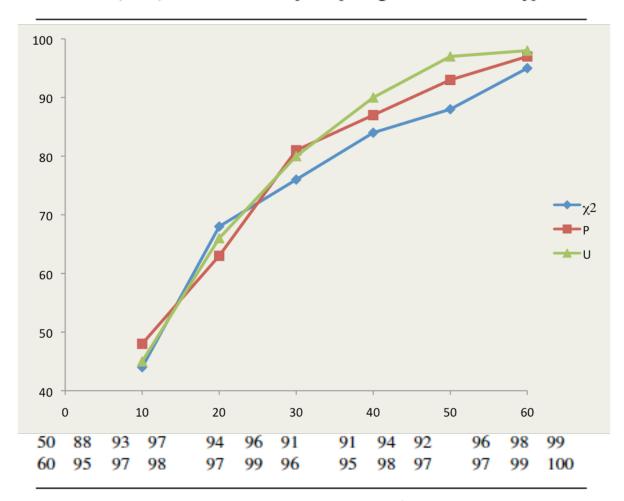

ρ	WR	GRR	1 kb			10 kb			100 kb		
			χ²	Р	U	χ ²	Р	U	χ ²	Р	U
100	5%	1.2	0.13	0.13	0.12	0.42	0.46	0.39	0.98	0.90	0.86
100	5%	1.4	0.15	0.22	0.20	0.71	0.74	0.70	0.99	0.95	0.98
100	5%	1.6	0.27	0.29	0.28	0.73	0.82	0.80	0.99	0.99	0.99
100	5%	1.8	0.19	0.30	0.28	0.79	0.83	0.80	1.00	0.98	0.98
100	5%	2.0	0.19	0.30	0.28	0.81	0.85	0.84	1.00	1.00	1.00
100	10%	1.2	0.11	0.11	0.14	0.59	0.52	0.51	0.98	0.94	0.96
100	10%	1.4	0.24	0.27	0.27	0.73	0.66	0.63	0.98	0.96	0.95
100	10%	1.6	0.16	0.26	0.24	0.74	0.82	0.73	1.00	0.98	0.99
100	10%	1.8	0.23	0.30	0.30	0.85	0.85	0.83	1.00	1.00	1.00
100	10%	2.0	0.28	0.42	0.43	0.85	0.86	0.91	1.00	1.00	1.00
400	5%	1.2	0.05	0.04	0.04	0.39	0.27	0.28	0.91	0.75	0.80
400	5%	1.4	0.08	0.07	0.09	0.46	0.51	0.46	0.95	0.88	0.86
400	5%	1.6	0.08	0.13	0.11	0.45	0.55	0.53	0.96	0.88	0.94
400	5%	1.8	0.12	0.16	0.15	0.70	0.78	0.77	0.99	0.99	0.98
400	5%	2.0	0.16	0.19	0.20	0.69	0.73	0.73	1.00	0.99	1.00
400	10%	1.2	0.04	0.03	0.04	0.27	0.32	0.23	0.89	0.75	0.73
400	10%	1.4	0.03	0.06	0.05	0.47	0.51	0.48	0.93	0.88	0.91
400	10%	1.6	0.12	0.14	0.13	0.68	0.73	0.74	0.98	0.96	0.97
400	10%	1.8	0.14	0.16	0.17	0.69	0.76	0.77	0.99	0.99	0.99
400	10%	2.0	0.13	0.13	0.12	0.69	0.75	0.74	1.00	0.98	0.98

Table 2. Ranking experiment results showing the fraction of data sets with at least one top-10 marker within a given distance of the true disease-predisposing locus

Based on 100 simulated datasets each with 1000 case and 1000 control individuals. Columns denoted χ^2 correspond to single-marker χ^2 -test results, while columns denoted 'P' ('U', respectively) correspond to BLOSSOC results using m=5 for phased (unphased, respectively) data. GRR, 'Genetic Relative Risk'; WR, 'Wildtype Risk'.

BLOSSOC Evaluation: Localization Experiments

Table 3. Percentage of datasets with the highest scoring marker within distance ϵ (in kb) from the disease-predisposing SNP, which is untyped

Based on 100 simulated datasets for each setting, with 5% WR and $\rho = 40$. Columns denoted χ^2 correspond to single-marker χ^2 -test results, while columns denoted 'P' ('U', respectively) correspond to BLOSSOC results using m = 5 for phased (unphased, respectively) data.

BLOSSOC Evaluation: Parkinson's disease genome-wide dataset

Table 5. Top-10 highest scoring SNPs in the Parkinson disease dataset (Fung et al., 2006) analyzed using BLOSSOC

Chromosome	dbSNP ID	Location	BLOSSOC score
10p12	rs792456	22214547	29.9567
10p12	rs792455	22233428	29.4246
10p12	rs2666781	22245682	29.4223
10p12	rs2807982	22255866	25.9754
10p12	rs2666750	22259562	25.9754
7p15	rs7793103	21920080	16.1051
7p15	rs7798144	21920802	16.1051
7p15	rs11760455	21921256	16.1051
7p15	rs3829757	21921944	16.1051
8p22	rs7824519	14267167	13.1250

Locations correspond to that of NCBI Build 36.1.

BLOSSOC

Evaluation: Running Time

Number of Individuals	т	Number of SNPs	Running time (h)
500	5	100,000	0.81
500	5	200,000	1.67
1000	5	100,000	9.17
1000	5	200,000	19.15
2000	5	100,000	50.83
4000	5	50,000	114.17
500	10	100,000	2.93
500	10	200,000	5.58
1000	10	100,000	33.83
1000	10	200,000	64.04
2000	10	100,000	149.17

Table 6. Running times of BLOSSOC

See the main text for the computer spec.

Discussion: Future work

 \succ Explore ways of finding the optimal setting for m for different datasets

> Develop more efficient algorithms to deal with incompatible regions.

> As a consequence of building local phylogenies, population structure within a sample can result in falsepositive associations.

THANKS !

