
Language Technologies for Lighting up Learning

Sumit Gulwani
Microsoft Research

sumitg@microsoft.com

Rishabh Singh
Microsoft Research
risin@microsoft.com

1. Application to Children Learning
Approximately 250 million children around the world in develop-
ing countries lack basic reading, writing, and arithmetic skills. The
existing programs to build schools and train teachers cannot scale
fast enough to meet the growing need. An alternative technology
based approach is needed to provide a quality learning experience
to every child, regardless of their location or economic status. The
XPRIZE learning competition thus calls out for building software
that can teach basic literacy and numeracy skills to children (be-
tween the ages of 7-12) who lack these skills [1]. The formalisms,
techniques, and tools developed in the Programming Languages
and the Formal Methods research communities can play a pivotal
role in developing such technologies.

Recently, programming languages technologies have been used
to build feedback generation capabilities for programming assign-
ments [6] and automata construction assignments [2]. These tech-
nologies have also been shown to be useful for personalized prob-
lem generation for procedural content such as mathematical proce-
dures taught in middle/high school (e.g., addition, long division,
Gaussian elimination) [3]. We believe similar technologies also
have an important role to play to enable quality learning at the ele-
mentary and primary school level. We illustrate this by discussing
a specific problem of providing feedback on the task of alphabet
writing.

1.1 Example: Character Handwriting
We present an example of how programming languages technolo-
gies can be used to provide feedback on correctly writing a charac-
ter, say the digit 8. Figure 1 shows a sample of handwritten images
of digit 8 taken from a corpus of about 6000 samples in the MNIST
dataset [5]. This dataset has been quite popular amongst the ma-
chine learning community to automatically classify an image as the
corresponding digit. However, this well-studied problem of auto-
matically recognizing a digit from an image is quite different from
the problem of providing feedback to students on their handwrit-
ing. First, we already know from the exercise what digits students
are supposed to write, so we don’t need to perform an inference
for that. Second, since we want to provide feedback to students to
teach and improve their handwriting, we need to understand the
semantics and structure of their strokes in a much deeper fashion.
Machine learning techniques are not well suited for this task since
they are quite brittle and the models that they learn (over high di-
mension vector spaces) are not amenable for easily understandable
explanations. This is where programming languages technologies
can play an important role to formalize and analyze the rich se-
mantics of these handwriting tasks.

Modeling We can develop a language like LADDER [4] to model
the drawing of a specific character. The language would describe
the sketching gestures and the corresponding constraints associ-
ated with writing the character correctly. For example, Figure 3
describes a possible model for correctly writing the digit 8.

Figure 1. A small subset of the 6000 handwritten images of digit
8, which consists of few well written 8 and few badly written 8. As
we can see there are many different ways to make mistakes while
writing the digit. For such cases, we can build a technology that can
provide feedback such as the ones shown in Figure 2.

Figure 2. Possible feedback that can be provided to students for
badly written 8s.

((components curve1 curve2)
(shape curve1 oval w1)
(shape curve2 oval w2)
(above curve1 curve2 w3)
(touch curve1 curve2 w4)
(size-equal curve1 curve2 w5))
(stroke-order curve1 curve2 w6))
(stroke-order curve2 curve1 w7))

Figure 3. The model for a correctly written digit 8.



The model description defines that the digit 8 is composed
of two curves curve1 and curve2. The shape of the curves is
oval with some probability w1 and w2 respectively. The model
then describes a few constraints that curve1 is above curve2, the
curves are touching, are of equal size, and one is drawn before the
other (based on the stroke order of the curves). Each constraint is
associated with a certain probability measure that allows the system
to model several variations for correctly written 8 digits.

Parsing After defining the model of a character, we now need to
parse the handwritten digit into the constituent components of the
model. The parser module would generate all possible interpreta-
tions of the components that are associated with a handwritten digit.
For example in one possible interpretation, the parser would asso-
ciate curve1 with the top half of a student written 8 and the lower
half with curve2. It would also parse various properties about the
components such as their size, shape, stroke-order, and spatial con-
straints.

Verification Once a handwritten character is parsed to identify
the model components and their properties, we can use the verifica-
tion techniques to check which model constraints are satisfied and
by how much. Since a model consists of soft constraints, we can
use a weighted constraint solver to perform the verification step to
compute the weights associated with the satisfaction of each con-
straint. This weight can then be compared against certain thresholds
to quantify by how much the constraints are satisfied (or violated).
For example, the verification step should be able to identify which
particular constraints are violated in the badly written digits shown
in Figure 1.

Synthesis Finally, if the verification phase identifies that the
weight associated with constraint satisfaction for some constraints
is less than a threshold, we can use program synthesis procedures
similar to that of AutoProf [6] to identify minimal number of
changes to the digit such that the thresholds are met. The synthesis
algorithm would take as input an incorrectly drawn character and
an error model corresponding to the common mistakes that students
make while writing that particular character. The algorithm would
then symbolically search over the space of all possible variations to
the handwritten digit (defined by the error model) to find minimal
number of edits such that the modified digit satisfies the thresholds
for all model constraints. These changes can then be paraphrased
in natural language to provide step-by-step feedback to students
on how to correct their handwritten digits. Some possible feedback
that can possibly be generated by the system are shown in Figure 2.

1.2 Other Opportunities
The above-mentioned exercises in modeling, parsing, verification,
and synthesis are also applicable to several other writing related
tasks in early education where solutions are not unique, and where
the correctness of solutions can be captured as a collection of rules.
Alphabet writing, as discussed above, is one instance of it where ev-
ery student draws a unique character image at the pixel level. Word
writing is another instance where the properties to be checked are
that of spacing and orientation between consecutive letters. In case
of cursive writing, the connecting strokes between consecutive let-
ters are important properties to be checked for. Sentence construc-
tion is another challenging instance where there are several syntac-
tic properties to be checked such as whether each sentence begins
with a capital letter, whether each sentence ends with the current
punctuation mark, whether a sentence is complete or not, whether
the subject of the sentence agrees with the action verb.

Even some reading tasks, such as pronouncing words, are
amenable to formal modeling. A correct pronunciation of a word
depends on the student’s ability to know the correct sequence of
its constituent phonemes and to be able to correctly pronounce

each such constituent phoneme. The knowledge of whether or not
a student is capable of pronouncing a given phoneme can be built
up from knowing what words can the student correctly pronounce
based on their past interaction with the system.

A common exercise in early childhood education is that of rec-
ognizing visual patterns in a sequence of images, where each image
consists of a collection of objects oriented in a specific relationship
with each other. Formal modeling can be used to express relation-
ship between objects in a single image, and the change in that rela-
tionship across consecutive images in the sequence.

2. Relationship to Machine Learning
It is interesting to contrast the role that machine learning technolo-
gies and PL/formal method technologies can play in the area of
computer-aided education. Both have complementary capabilities.
Machine learning technologies can model phenomenon that is dif-
ficult to capture in a logical manner. On the negative side, the sta-
tistical models that these techniques produce are not human under-
standable. Furthermore, they might require a lot of training data,
which might not always be available to start with.

For instance, consider the example of character handwriting
task. While machine learning technologies can be used to learn
classifiers that can cluster written characters based on some training
data, they will not be able to generate explanations (as to why a cer-
tain character was classified in a particular manner) for the purpose
of providing feedback or repair to a student. On the other hand,
machine learning techniques may be able to build cognitive models
of what misconceptions the student might have. These techniques
may also be a great fit for predicting personalized workflows for
students based on their past progress—in case of character hand-
writing task, this might correspond to identifying an alternative or-
der on characters (as opposed to the alphabetic order). Machine
learning might even play a great role during the fuzzy parsing pro-
cess, where it needs to be identified whether or not a given rule was
violated enough to necessitate feedback generation. This may, for
instance, be done by using machine learning techniques to compute
values for wi’s in the model shown earlier for the digit 8 using a
training corpus of handwritten digits.

Hence, a synergistic combination of the machine learning tech-
niques with the PL/formal methods technologies can facilitate a
greater and more robust automation than what would be possible
with the individual technologies.

References
[1] URL http://learning.xprize.org/.
[2] R. Alur, L. D’Antoni, S. Gulwani, D. Kini, and M. Viswanathan. Auto-

mated grading of DFA constructions. In IJCAI, 2013.
[3] E. Andersen, S. Gulwani, and Z. Popovic. A trace-based framework for

analyzing and synthesizing educational progressions. In CHI, 2013.
[4] T. Hammond and R. Davis. Ladder, a sketching language for user

interface developers. Computers & Graphics, 29(4):518–532, 2005.
[5] Y. Lecun and C. Cortes. The MNIST database of handwritten digits.

URL http://yann.lecun.com/exdb/mnist/.
[6] R. Singh, S. Gulwani, and A. Solar-Lezama. Automated feedback

generation for introductory programming assignments. In PLDI, 2013.


