
Continuity Analysis of Programs

Swarat Chaudhuri
Pennsylvania State University

swarat@cse.psu.edu

Sumit Gulwani
Microsoft Research

sumitg@microsoft.com

Roberto Lublinerman
Pennsylvania State University

rluble@psu.edu

Abstract
We present an analysis to automatically determine if a program
represents a continuous function, or equivalently, if infinitesimal
changes to its inputs can only cause infinitesimal changes to its out-
puts. The analysis can be used to verify the robustness of programs
whose inputs can have small amounts of error and uncertainty—
e.g., embedded controllers processing slightly unreliable sensor
data, or handheld devices using slightly stale satellite data.

Continuity is a fundamental notion in mathematics. However,
it is difficult to apply continuity proofs from real analysis to func-
tions that are coded as imperative programs, especially when they
use diverse data types and features such as assignments, branches,
and loops. We associate data types with metric spaces as opposed
to just sets of values, and continuity of typed programs is phrased
in terms of these spaces. Our analysis reduces questions about con-
tinuity to verification conditions that do not refer to infinitesimal
changes and can be discharged using off-the-shelf SMT solvers.
Challenges arise in proving continuity of programs with branches
and loops, as a small perturbation in the value of a variable often
leads to divergent control-flow that can lead to large changes in
values of variables. Our proof rules identify appropriate “synchro-
nization points” between executions and their perturbed counter-
parts, and establish that values of certain variables converge back
to the original results in spite of temporary divergence.

We prove our analysis sound with respect to the traditional ε-δ
definition of continuity. We demonstrate the precision of our anal-
ysis by applying it to a range of classic algorithms, including algo-
rithms for array sorting, shortest paths in graphs, minimum span-
ning trees, and combinatorial optimization. A prototype implemen-
tation based on the Z3 SMT-solver is also presented.

Categories and Subject Descriptors F.3.2 [Logics and Meanings
of Programs]: Semantics of programming languages—Program
analysis.; F.3.1 [Logics and Meanings of Programs]: Specifying
and Verifying and Reasoning about Programs—Mechanical ver-
ification; G.1.0 [Numerical Analysis]: General—Error analysis,
Stability

General Terms Theory, Verification

Keywords Continuity, Program Analysis, Uncertainty, Robust-
ness, Perturbations, Proof Rules.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’10, January 17–23, 2010, Madrid, Spain.
Copyright c© 2010 ACM 978-1-60558-479-9/10/01. . . $10.00

DIJK(G : graph, src : node)

1 for each node v in G
2 do d[v] :=⊥; prev [v] := UNDEF ;
3 d[src] := 0; WL := set of all nodes in G;
4 while WL 6= ∅
5 do choose node w ∈WL such that d[w] is minimal;
6 remove w from WL;
7 for each neighbor v of w
8 do z := d[w] +G[w, v];
9 if z < d[v]

10 then d[v] := z; prev [v] := w

Figure 1. Dijkstra’s shortest-path algorithm

1. Introduction
Uncertainty in computation has long been a question of interest
in computing [8]. An important reason for the uncertain behavior
of programs is erroneous data [21]: the traffic data that a GPS de-
vice uses to plan a path may be slightly stale at the time of com-
putation [15], and the sensor data that an aircraft controller pro-
cesses may be slightly wrong [11]. In a world where computation
is increasingly intertwined with sensor-derived perceptions of the
physical world [12], such uncertain inputs are ubiquitous, and the
assurance that programs respond robustly to them often vital. Does
the output of a GPS device change only slightly in response to fluc-
tuations in its inputs? If so, can we prove this fact automatically?

Robustness of programs to small amounts of error and uncer-
tainty in their inputs can be defined via the mathematical notion of
continuity. Recall that a function f(x) : R → R is continuous at
the point x = c if, for all infinitesimal deviations of x from c, the
value of f(x) deviates at most infinitesimally from f(c). This pro-
vides a concrete definition of robustness: if a program implements
a function that is continuous at c, then its output is not affected by
small fluctuations of its input variable around the value c.

To see this definition of continuity of programs and its appli-
cation in specifying robustness, consider an algorithm routinely
used by path-planning GPS devices: Dijkstra’s shortest-path algo-
rithm. A program Dijk implementing the algorithm is shown in
Figure 1—here, G is a graph with real edge-weights, src is the
source node, and G[u, v] is the weight of the edge (u, v). It is a
property of Dijk that the set of paths that it computes can change
completely in response to small perturbations to G (by this, let us
mean that the weight of some edge of G changes slightly). How-
ever, what if our robustness requirement asserts that it is the weight
of the shortest path that must be robust to small changes to G? In
other words, assuming the array d of shortest-path distances is the
program’s output, is the program continuous? We note that it is—d
changes at most infinitesimally if G changes infinitesimally.

Questions of continuity and robustness appear routinely in the
literature on dynamical and hybrid systems [16, 17]. However,
these approaches apply to systems defined by differential equa-
tions, hybrid automata [1], or graph models [18]. In the program

verification literature, robustness has previously been considered
in the restricted settings of functional synchronous programs [2],
finite-state systems [10], and floating-point roundoff errors [6, 7,
13, 14]. Also, for purely numerical programs, robustness can be
analyzed by abstract interpretation using existing domains [4, 5].

In contrast, this paper assumes a framing of robustness in terms
of continuity, and presents a general proof framework for continuity
that applies to programs—such as Dijk—that use data-structures
such as graphs and arrays, as well as features like imperative as-
signments, branches, and loops. The search for such a proof frame-
work, however, is fraught with challenges. Even a program whose
inputs and outputs are over continuous domains may use temporary
variables of discrete types, and manipulate data using imperative
assignments, branches, and loops. It can have multiple inputs and
outputs, and an output can be continuous in one input but not in an-
other. Indeed, prior work [9] has argued for a notion of continuity
for software, but failed to offer new program analysis techniques,
concluding that “it is not possible in practice to mechanically test
for continuity” in the presence of loops.

Recall the seemingly simple continuity property of the program
Dijk : if d is its output, then it is continuous. However, it is highly
challenging to establish this property from the text of Dijk . One
way to prove it would be to first prove that Dijk computes shortest
paths, and then to establish that the costs of these paths are con-
tinuous in the weights of the edges of G. Such a proof, however,
would be highly specialized and impossible to automate. What we
want, therefore, is a proof methodology that reasons about continu-
ity without aiming to prove full functional correctness, is applica-
ble to a wide range of algorithms, and can be automated. Here we
present such a method. We highlight below some of the challenges
that arise and our proof rules for addressing them.

Presence of Control-flow. One challenge in proving continuity
of programs is control-flow: a small perturbation can cause control
to flow along a different branch leading to a syntactically divergent
behavior. For example, consider the branch in Lines 9-10 in Dijk ,
which allow semantically different behaviors of either “setting d[v]
to z” or “leaving d[v] unchanged”. We present a rule for proving
continuity of such if-then-else code-fragments. The key idea is to
show that the two (otherwise semantically different) branches be-
come semantically equivalent in situations (known as discontinu-
ities) where the conditional can flip its value. Using this rule (ITE-
1), we can show that the l-value d[v] is continuous after the code-
fragment “if d[v] < z then d[v] := z.” This is because the condi-
tional d[v] < z can flip values on small perturbations only when
d[v] was already close to z; however, under such a condition the
expressions d[v] and z evaluate to approximately the same value.

Non-inductiveness of continuity. The next challenge comes in
extending the continuity proofs to loops. A natural approach is to
set up an inductive framework for establishing continuity during
each loop iteration (rule SIMPLE-LOOP). However, it turns out that
continuity is not an inductive property for several loops (unlike
invariants), meaning that the program variables that are continuous
at the end of the loop are not necessarily continuous in each loop
iteration. For example, while the array d is a continuous function
of G on termination of Dijk , it is not continuous across each
loop iteration. This is because the array d is updated in each loop
iteration based on the choice of w from the workset W such that
d[w] is minimal. Now small fluctuations in the input weights can
cause small fluctuations in the elements of d, causing it to choose a
very different node w and potentially alter d completely.

Key to solving this challenge is the observation that if we group
some loop iterations together, then continuity becomes an induc-
tive property of the groupings. These groupings are referred to as
epochs, and they have the property that the constituent iterations

can be executed in any order without violating the semantics of
the program. The LOOP proof-rule discharges this obligation by
establishing commutativity of the loop body. Returning to Dijk-
stra’s algorithm, this grouping is based on the set of elements w
that have similar weight d[w]. The property of this grouping is that
P (w1);P (w2) is semantically equivalent to P (w2);P (w1) where
w1 andw2 are two elements such that d[w1] = d[w2], where P (w)
represents the code-fragment in Lines 7-10.

Perturbations in Number of Loop Iterations. Another challenge
in continuity proofs for loops is that the number of loop iterations
may differ as a result of small perturbations to the inputs. We note
that whenever such a behavior happens in continuous loops, then
the effect of the extra iterations either in the original or the per-
turbed execution is almost equal to that of a skip-statement. This
property—called synchronized termination condition—is asserted
in our rules for loops. (Dijkstra’s algorithm does not exemplify this
challenge though, as the loop body is executed once for each graph
node regardless of small changes to the edge weights.)

1.1 Contributions and Organization of the Paper
This paper makes the following contributions.

• We formalize the notion of continuity of programs by associat-
ing data-types with metric spaces and operators with continuity
specifications (Sec. 2).
• We present structural rules to prove the continuity of programs

in presence of control-flow (Sec. 4) and loops (Sec. 5), after es-
tablishing a formalism to reason about continuity of expressions
in Sec. 3. These proof rules require establishing standard prop-
erties of code-fragments, in particular, establishing equivalence
or commutativity, which can be discharged using off-the-shelf
SMT solvers or assertion checkers.
• We prove our proof rules sound with respect to the standard ε-δ

definition of continuity. This is quite challenging because the
proof rules do not refer to ε or δ.
• We demonstrate the precision of our proof rules by showing that

our framework can be used to prove continuity of several con-
tinuous classical algorithms. Sec. 6 discusses our implementa-
tion of a prototype of our framework that discharges proof rules
using the SMT-solver Z3. Our current implementation requires
the user to provide some annotations to identify the requisite
components of the LOOP proof rule, though there are heuristics
that can be used to automate this step.

2. Problem formulation
In this section, we fix a notion of continuity for imperative pro-
grams and formulate the problem of continuity analysis. First, we
define a language whose semantics allows for a notion of distances
between states—in fact, states are now elements of a metric space.
Second, we define continuity for programs as standard mathemat-
ical continuity applied to their semantic functions. As programs
have multiple inputs and observable outputs, we allow for state-
ments such as “Program P is continuous in input x but not in input
y,” meaning that a small change to x must cause small changes to
the observable program outputs, but that a small change to y may
change the observable outputs arbitrarily.

Programs and expressions. We begin by fixing a simple imper-
ative language (henceforth called IMP). The language has a single
non-standard feature: a distance metric for each data type. Types
here represent metric spaces rather than sets of values, and the se-
mantics of expressions and programs are given by functions be-
tween metric spaces. This lets us define continuity of programs us-
ing standard mathematical machinery.

Let a distance be either a non-negative real, or a special value
∞ satisfying x < ∞ for all x ∈ R≥0. We define metric spaces
over these distances in the usual way. Also, we assume:

• A set of data types. Each type τ in this set is associated with dis-
tance metric distτ , and represents a metric space Valτ whose
distance measure is distτ . The space Valτ is known as the
space of values of τ . For our convenience, we assume that each
Valτ contains a special value ⊥ representing “undefined”.
In particular, we allow the types bool and real of booleans and
reals. The type real is associated with the standard Euclidean
metric, defined as distreal(x, y) = |x − y| if x, y 6=⊥, and
distreal(x, y) = ∞ otherwise. The metric on bool is the
discrete metric, defined as distbool(x, y) = 0 if x = y, and
∞ otherwise.
• A universe Var of typed variables.
• A set O of (primitive) operators. Each operator op comes with

a unique signature op : τ(p1 : τ1, . . . , pn : τn), where for all
i, pi /∈ Var . Intuitively, pi is a formal parameter of type τi, and
τ is the type of the output value. For example, the real type
comes with operators for addition, multiplication, division, etc.

The syntax of expressions e is now given by e ::= x |
op(e1, . . . , en),where x ∈ Var and op ∈ O. Here op(e1, . . . , en)
is an application of the operator op on the operands e1, . . . , en. The
set of variables appearing in the text of e is denoted by Var(e). For
easier reading, we often write our expressions in infix. Expressions
are typed by a natural set of typing rules— as our analysis is or-
thogonal to this type system, we assume all our expressions to be
well-typed.

As for programs P , they have the syntax:

P ::= skip | x := e | if b then P1 else P2

| while b do P1 | P1;P2

where e is an expression and b a boolean expression. We denote
the set of variables appearing in the text of P by Var(P). For
convenience, we sometimes annotate statements within a program
with labels l. The interpretation is standard: l represents the control
point immediate preceding the statement it labels.

As for semantics, let us first define a state:

Definition 1 (State). A state is a map σ assigning a value in Valτ
to each x ∈ Var of type τ .

The set of all states is denoted by Σ.
The semantics of an expression e of type τ is now defined as a

function [[e]] of the form Σ→ Valτ . As expressions are built using
operators, we presuppose a semantic map [[op]] for each operator
op ∈ O. Let op have the signature op : τ(p1 : τ1, . . . , pn : τn),
and let Σop be the set of maps assigning suitably typed values to
the pi’s. Then [[op]] is a map of type Σop → Valτ .

The semantic function [[e]] for an expression e is now defined as:

[[e]](σ) =

{
[[op]]([[e1]](σ), . . . , [[en]](σ)) if e = op(e1, . . . , en)
σ(x) if e = x ∈ Var .

As for programs, we use a standard functional (denotational) se-
mantics [23] for them. For simplicity, let us only consider programs
that terminate on all inputs. The semantic function for a program
P is then a map [[P]] of type Σ → Σ such that for all states σin,
[[P]](σin) is the state at which P terminates after starting execution
from the state σin. The inductive definition of [[P]], being standard,
is omitted. Note that both [[e]] and [[P]] are functions between metric
spaces.

Continuity. Now that we have defined the semantics of programs
as maps between metric spaces, we can use the standard ε-δ defini-
tion [20] to define their continuity. As programs usually have mul-

tiple inputs and outputs, we consider a notion of continuity that is
parameterized by a set of input variables In and a set of observable
variables Obs .

For a set of variables V , let us call two states V -close if they
differ at most slightly in the values of the variables in V , and V -
equivalent if they agree on values of all variables in V . Let a state
σ′ be a small perturbation of a state σ if the value of each variable
in In is approximately equal, and the value of each variable not in
In exactly the same, in σ and σ′. We define:

Definition 2 (Perturbations, V -closeness, V -equivalence). For ε ∈
R+, a state σ, and a set In ⊆ Var of input variables, a state σ′ is
an ε-perturbation of a state σ (written as Pertε,In(σ, σ′)) if for all
variables x ∈ In of type τ , we have distτ (σ(x), σ′(x)) < ε, and
for all variables y /∈ In of type τ , we have σ(y) = σ′(y).

For V ⊆ Var and ε ∈ R, the states σ and σ′ are ε-close in
V (written as σ ≈ε,V σ′) if for all x ∈ V of type τ , we have
distτ (σ(x), σ′(x)) < ε. The states are V -equivalent (written as
σ ≡V σ′) if for all x ∈ V , we have σ(x) = σ′(x).

Continuity of programs and expressions can now be defined by
applying the traditional ε-δ definition:

Definition 3 (Continuity of expressions and programs). Let In ⊆
Var be a set of input variables. An expression e of type τ is
continuous at a state σ in In if for all ε ∈ R+, there exists a
δ ∈ R+ such that for all σ′ satisfying Pertδ,In(σ, σ′), we have
distτ ([[e]](σ), [[e]](σ′)) < ε.

A program P is continuous at a state σ in a set In of input
variables and a set Obs ⊆ Var of observable variables if for all
ε ∈ R+, there exists a δ ∈ R+ such that for all σ′ satisfying
Pertδ,In(σ, σ′), we have [[P]](σ) ≈ε,Obs [[P]](σ′).

Intuitively, if e is continuous in In , then small changes to vari-
ables in In can change its value at most slightly, and if P is contin-
uous in In and Obs , then small changes to variables in In can only
cause small changes to variables in Obs (variables outside Obs can
be affected arbitrarily).

While the ε-δ definition can be directly used in continuity
proofs [20], such proofs are highly semantic. More syntactic proofs
would reason inductively, using axioms, inference rules, and invari-
ants. The appeal of a framework for such proofs would be twofold.
First, instead of closed-form mathematical expressions, it would
target programs that may often not correspond to cleanly defined
or easily identifiable mathematical functions. Second, it would al-
low mechanization, even automation. Therefore, we formulate the
problem of continuity analysis:

Problem (Continuity analysis). Develop a set of syntactic proof
rules that can soundly and completely determine if a program P is
continuous in a set In of input variables and a set Obs of observable
variables, at each state σ satisfying a property c.

In the next few sections, we present our solution to this problem.
Our rules are sound. While we do not claim completeness, we
offer an empirical substitute: nearly-automatic continuity proofs
for 11 classic algorithms, most of them picked from a standard
undergraduate textbook [3].

3. Continuity judgments and specifications
In this section, we define the basic building blocks of our reasoning
framework. These include the judgments it outputs, as well as the
user-provided specifications that parameterize it.

3.1 Continuity judgments
Suppose our goal is to judge the continuity of an expression e or
a program P in a set In of input variables and, in the latter case,
a set Obs of observable variables. Instead of obtaining judgments

that hold a specific state σ, we judge continuity at a set of states
symbolically represented by a formula b. Therefore, we define:

Definition 4 (Continuity judgment). A continuity judgment for an
expression e is a term b ` Cont(e, In), where b is a formula with
free variables in Var , and In ⊆ Var .

A judgment for a program P is a term b ` Cont(P, In,Obs),
where b is a formula over Var , and In,Obs ⊆ Var .

The judgment b ` Cont(e, In) is read as: “e is continuous
in In at each state σ satisfying the property b.” The judgment
b ` Cont(P, In,Obs) says that the program P is continuous in the
set In of input variables and the set Obs of observable variables at
all states satisfying b. The judgments are sound if these statements
are true according to the definition of continuity in Definition 3.

Note that for a judgment b ` Cont(P, In,Obs) (similarly,
b ` Cont(e, In)) to be sound, it suffices for In to be an under-
approximation of the set of input variables, and Obs to be an over-
approximation of the set of observable variables, in which P (sim-
ilarly, e) is continuous.
Example 1. The expression (x+y), where + denotes real addition,
is always continuous in {x, y}. On the other hand, the expression
x
y

, which evaluates to ⊥ for y = 0, is not always continuous.
Two sound judgments involving it are true ` Cont(x

y
, {x}) and

(y 6= 0) ` Cont(x
y
, {x, y}), which say that: (1) the result of

division is always continuous in the dividend, and (2) continuous
in all non-zero divisors.

Now consider the type (τ → real) of real-valued arrays:
partial functions from the index type τ to the type real. For any
such array A, we define Dom(A) to denote the domain of A—i.e.,
the set of all x such that A[x] is defined.

Let us consider the following supremum metric:

distτ→real(A,B) =

 maxi∈Valτ {distreal(A[i], B[i])}
if Dom(A) = Dom(B)
∞ otherwise.

Intuitively, the distance betweenA andB is the maximum distance
between elements in the same position in the two arrays.

Now consider the array-update operator Upd , commonly used
to model writes to arrays. The operator has the parameters A (of
type τ → real), i (an integer), and p (a real), and returns the array
A′ such that A′[i] = p, and A′[j] = A[j] for all j 6= i. To exclude
erroneous writes, let Upd evaluate to ⊥ if p =⊥ or if A contains
an undefined value. In that case, the following judgment is sound:

(p 6=⊥) ∧ (∀i, A[i] 6=⊥) ` Cont(Upd(A, i, p), {A, i, p}) .

Observe that Upd(A, i, p) is judged to be continuous in i. The
reason is that as i is drawn from a discrete metric space (the int
type), the only way to change it infinitesimally is to not change i at
all. Continuity in i follows trivially. 2

Example 2. Consider the program P = x := x + 1; y :=
z/x. A sound continuity judgment for P is (x + 1 6= 0) `
Cont(P, {x, y, z}, {y}).

Now consider the following program P ′: if (x ≥ 0) then r :=
y else r := z. Denote by c the formula (x = 0)⇒ (y = z). Then
the continuity judgment c ` Cont(P ′, {x, y, z}, {r}) is sound.

To see why, note that for fixed x and z, an infinitesimal change
in y either causes no change to the final value of r (this happens if
x < 0), or changes it infinitesimally. A similar argument holds for
infinitesimal changes to z. As for x, the guard (x ≥ 0) is continu-
ous in x (i.e., is not affected by small changes to x) at all x 6= 0.
As a result, under the precondition x 6= 0, infinitesimal changes to
x, y, z changes the final value of r at most infinitesimally.

At x = 0, of course, the guard is discontinuous—i.e., can
change value on an infinitesimal change to x. In this case, an

infinitesimal change to x may cause the output r to change from
the value of y to that of z. However, by our precondition, we
have y = z whenever x = 0. Thus means that even if the guard
evaluates differently, the observable output r is affected at most
infinitesimally by infinitesimal changes to x, y, z. In other words,
under the assumed conditions, the discontinuous behavior of the
guard does not affect the continuity of P ′ in r.

Now consider the judgment true ` Cont(P ′, {y, z}, {r}). As
we only assert continuity in inputs y and z, it is clearly sound. 2

3.2 Continuity specifications
As the operators in our programming language can be arbitrary, we
need to know their continuity properties to do continuity proofs.
This information is provided by the programmer through a set of
continuity specifications. We define:

Definition 5 (Continuity specification). A continuity specification
for an operator op, with the signature op : τ(p1 : τ1, . . . , pn : τn),
is a term c ` S, where c is a boolean expression over p1, . . . , pn
and S ⊆ {p1, . . . , pn}.

An operator is allowed to have multiple specifications. Suppose
the operator op has a specification c ` S. The interpretation is
that the semantic map [[op]] is continuous in S at each state over
{p1, . . . , pn} that satisfies c. The specification is sound if this is
indeed the case. Intuitively, application of the operator preserves
the continuity properties of arguments corresponding to parame-
ters pi ∈ S, and can potentially introduce discontinuities in the
remaining arguments.
Example 3. Let the real addition operator have the signature + :
real(x : real, y : real). A sound specification for it is true `
{x, y}. Now consider the real division operator /, with similar
signature. Two sound specifications for it are true ` {x} and
(y 6= 0) ` {x, y}. 2

Continuity specifications as above have a natural relationship
with modular analysis. While operators in programming languages
are usually low-level primitives, nothing in our definition prevents
an operator from being a procedural abstraction of a program.
As the reasoning framework assumes its continuity properties, it
defines a level of abstraction at which continuity is judged. In
the current paper, we assume that this procedural abstraction is
defined by the programmer. In future work, we will consider an
interprocedural continuity analysis, where operator specifications
are generalized into continuity summaries mined from a program.

4. Analysis of expressions and loop-free programs
In this section, we begin the presentation of our analysis. The
main contributions presented here are: (1) a continuity analysis
of expressions through structural induction; and (2) an analysis of
branching programs based on identification of the discontinuities
of a boolean expression, and queries about program equivalence
discharged through an SMT-solver.

4.1 Analysis of expressions
The main idea behind continuity analysis of expressions is simple:
an expression e is continuous in In if it is obtained by recursively
applying continuous operators on variables in In . If e has a subex-
pression e′ that is either discontinuous or an argument to an opera-
tor that does not preserve its continuity, then we should judge e to
be discontinuous in all variables in e′.

The inference rules for the analysis are presented in Fig-
ure 2. Here, for expressions c, e1, . . . , en, the notation c[x1 7→
e1, . . . , xn 7→ en] denotes the expression obtained by substituting
each variable xi in c by ei. The rule BASE states that a variable
is always continuous in itself. WEAKEN observes that a continuity

(Base) x ∈ Var

true ` Cont(x, {x})

(Weaken)
b ` Cont(e, In) b′ ⇒ b In ′ ⊆ In

b′ ` Cont(e, In ′)

(Join)
b ` Cont(e, In1) b ` Cont(e, In2)

b ` Cont(e, In1 ∪ In2)

(Frame)
b ` Cont(e, In) z /∈ Var(e)

b ` Cont(e, In ∪ {z})

(Op)

op has parameters p1, . . . , pn and a specification c ` S
∀pi ∈ S. b ` Cont(ei, In)
∀pi /∈ S. In ∩Var(ei) = ∅

c′ = c[p1 7→ e1, . . . , pn 7→ en]

c′ ∧ b ` Cont(op(e1, . . . , en), In)

Figure 2. Continuity analysis of expressions.

judgment can be soundly weakened by restricting the set of in-
put variables in which continuity is asserted, or the set of states at
which continuity is judged. FRAME observes that an expression is
always continuous in variables to which it does not refer. As for
JOIN, it uses the mathematical fact that if a function is continuous
in two sets of input parameters, then it is continuous in their union.

The rule OP derives continuity judgments for expressions e =
op(e1, . . . , en), where op is an operator. Intuitively, if ei is con-
tinuous in a set of variables In , and if op is continuous in its i-th
parameter, then e is also continuous in each x ∈ In . The situation is
complicated by the fact that a variable can appear in multiple ei’s,
and that if x ∈ In appears in any ej such that op is not continuous
in pj or ej is not continuous in x, then e is potentially discontinu-
ous in x. Thus, we must ensure that In ∩Var(ej) = ∅ for all such
ej ; also, each ei such that pi ∈ S must be continuous in all the
variables in In . The rule OP has these conditions as premises.
Example 4. Consider the expression e = x

x+y
, where x and y

are real-valued variables, and the judgment (x > 0) ∧ (y >
0) ` Cont(e, {y}). To prove it in our system using speci-
fications of real addition and division as before, we first use
the rules BASE and FRAME, OP, and the specification of + to
prove that true ` Cont((x + y), {x, y}). Now we derive that
true ` Cont(x, {x, y}), then use OP and the specification of / to
show that whenever (x+y) 6= 0, e is continuous in {x, y}. Finally,
we use WEAKEN to get the desired judgment. 2

Using induction and ε-δ reasoning, we can show that:

Theorem 1. If all operator specifications are sound, the proof
system in Figure 2 only derives sound continuity judgments.

4.2 Analysis of loop-free programs
The analysis of loop-free programs brings out some subtleties—
e.g., to prove the continuity of programs with branches, we must
discharge a program equivalence query through an SMT-solver.
Example 5. Recall the program in Example 2: P = x := x +
1; y := z/x. As argued earlier, the judgment (x + 1 6= 0) `
Cont(P, {x, y, z}, {y}) is sound. One proof for it is as follows:

1. Show that (x+ 1) is always continuous in x. From this, derive
the judgment true ` Cont(x := x+ 1, {x, y, z}, {x}).

2. Establish that (x 6= 0) ` Cont(y := z/x, {x}, {y}).
3. Propagate backward the condition for continuity of P2, obtain-

ing the precondition (x+ 1) 6= 0 for P .
4. Compose the judgments in (1) and (2), using the fact that x is

the only observable output in the former and the only input in
the latter. This gives us the desired judgment.

(Skip)
true ` Cont(skip, ∅, ∅)

(Join)
b ` Cont(P, In1,Obs) b ` Cont(P, In2,Obs)

b ` Cont(P, In1 ∪ In2,Obs)

(Weaken)

b ` Cont(P, In,Obs) b′ ⇒ b
Obs′ ⊆ Obs In ′ ⊆ In

b′ ` Cont(P, In ′,Obs′)

(Frame)
b ` Cont(P, In,Obs) z /∈ Var(P)

b ` Cont(P, In ∪ {z},Obs ∪ {z})

(Assign-1)
b ` Cont(e, In)

b ` Cont(x := e, In ∪ {x},Var(e) ∪ {x})

(Assign-2)
b ` Cont(x := e,Var(e) ∪ {x},Var(e) \ {x})

(Sequence)

b1 ` Cont(P1, In1,Obs1) In2 ⊆ Obs1
b2 ` Cont(P2, In2,Obs2) {b1}P1{b2}

b1 ` Cont(P1;P2, In1,Obs2)

(Ite-1)

c ` Cont(P1, In,Obs) c ` Cont(P2, In,Obs)
c′ ` Cont(b,Var(b)) (c ∧ ¬c′) ` (P1 ≡Obs P2)

c ` Cont(if b then P1 else P2, In,Obs)

(Ite-2)

c ` Cont(P1, In,Obs) c ` Cont(P2, In,Obs)
c′ ` Cont(b, In ′)

c ∧ c′ ` Cont(if b then P1 else P2, In ∩ In ′,Obs)

Figure 3. Continuity analysis of loop-free programs.

Now consider the program P ′ from Example 2: if (x ≥
0) then r := y else r := z. As we argued earlier, the judgment
c ` Cont(P ′, {x, y, z}, {r}), where c equals (x = 0)⇒ (y = z).
A proof can have the following components:

1. Identify an overapproximation Σ′ of the set of states (in this
case captured by the formula (x = 0)) at which the loop guard
is discontinuous—i.e., can “flip” on a small perturbation.

2. Assuming c holds initially, the two branches of P ′, when ex-
ecuted independently from a state in Σ′, terminate at states
agreeing on the value of r.

3. Each branch is continuous at all states in c, in the set {x, y, z}
of input variables and the set {r} of observable variables.

Here, condition (2) asserts that even if a state executing along a
branch were executed along the other branch, the observable re-
sult would be the same. Together with condition (3), it implies that
even if an execution and its “perturbed” counterpart follow differ-
ent branches, they reach approximately equivalent states at the join-
point. Thus, it asserts a form of synchronization—following a pe-
riod of divergence—between the original and perturbed executions.

Now consider the sound judgment true ` Cont(P ′, {y, z}, {r}).
This time, we establish that: (1) each branch of P ′ is uncondition-
ally continuous in y and z, and (2) the guard (x ≥ 0) is uncondi-
tionally continuous in these variables as well.

Let min be the program if (x ≤ y) thenx else y comput-
ing the minimum of two real-valued variables. Using a similar
style of proof as for P ′, we can establish the sound judgment
true ` Cont(min, {x, y}, {x, y})—i.e., the fact that min is un-
conditionally continuous. A similar argument holds for max. 2

Let us now try to systematize the ideas in the above examples
into a set of inference rules. We need some more machinery:

Discontinuities of a boolean expression. Our rule for branch-
statements requires us to identify the set of states where a boolean
expression b is discontinuous. For soundness, it suffices to work

with an overapproximation of this set. This can be obtained by in-
ferring a judgment of the form c ` Cont(b,Var) about b— by the
soundness of our analysis for expressions, ¬c is overapproximates
of the set of states where b is discontinuous in any variable.

As we have not written continuity specifications for boolean
operators so far, let us do so now. To judge the continuity of boolean
expressions, we plug these into the system in Figure 2.
Example 6. For simplicity, let us only consider boolean expressions
over the types real and bool. We allow the standard comparison
operators =, ≥, and > with signatures such as ≥: bool(x :
real, y : real); we also have the usual real arithmetic operators.
For boolean arithmetic, we use the standard operators ∧, ∨, and ¬.

Specifications for operators involving booleans are as follows:

• We specify each comparison operator in {=, >,<,≤,≥} (let
it have formal parameters p and q) as (p 6= q) ` {p, q}. It is
easy to see that this specification is sound.
• The operators ∧ and ∨ (with formal parameters p and q) have

the specification true ` {p, q}; the operator ¬ (with parameter
q) has the specification true ` {q}. The reason (which also
showed up in Example 1) is that these operators have discrete
inputs. This implies that the only way to infinitesimally change
an input x to any of them is to not change x at all. Unconditional
continuity in the parameters follows trivially.

For example, consider the boolean expression ¬(x2 ≥ 4) ∨ (y <
10) (let us call it b). The reader can verify that using the above
specifications, we can derive the judgment (x2 6= 4) ∧ (y 6= 10) `
Cont(b, {x, y}, {x, y}). It follows that ¬((x2 6= 4) ∧ (y 6= 10))
overapproximates the set of states at which b is discontinuous. 2

Hoare triples and program equivalence. To propagate conditions
for continuity through a program, we generate Hoare triples as ver-
ification conditions. These are computed using an off-the-shelf in-
variant generator. Additionally, we assume a solver for equivalence
of programs 1. Let V ⊆ Var and c be a logical formula; now con-
sider programs P1 and P2. We say that P1 and P2 are V -equivalent
under c, and write c ` (P1 ≡V P2), if for each state σ that satisfies
c, we have [[P1]](σ) ≡V [[P2]](σ). Our rule for branches generates
queries about program equivalence as verification conditions.

The rules. Our rules for continuity analysis of loop-free programs
are presented in Figure 3. Here, the rule JOIN is the analog of the
rule JOIN for expressions. The rule WEAKEN lets us weaken a judg-
ment by restricting either the precondition under which continuity
holds, or restricting the sets of input and observable variables. The
rule FRAME says that a program is always continuous in variables
not in its text. The rule SKIP (taken together with the rule FRAME)
says that skip-statements are always continuous in every variable.
The rule ASSIGN-1 says that if the right-hand side of an assignment
statement is continuous in In , then the statement is continuous in
In even if the lvalue x is observable. ASSIGN-2 says that if x is not
observable, then the statement is unconditionally continuous.

The rule SEQUENCE addresses sequential composition, system-
atizing the insight in Example 2. Suppose P1 is executed from a
state σ satisfying b1 and ends at σ′. We have {b1}P1{b2}; there-
fore, P2 is continuous in In2 at σ′. Now suppose we modify σ by
infinitesimally changing some variables in In1; the altered output
state σ′′ of P1 approximately agrees with σ′ on the values of vari-
ables in In2 (as In2 ⊆ Obs1). Due to the premise about P2, this
can only change the output of P2 infinitesimally (assuming Obs2
is the set of observable variables).

The rule ITE-1 generalizes the first continuity judgment for the
program P ′ made in Example 2. Here, ¬c′ is an overapproximation

1 We note that program equivalence is a well-studied problem, an important
application being translation validation [19] of optimizing compilers.

FLOYD-WARSHALL(G : graph)

1 for k := 1 to n
2 do for i, j := 1 to n
3 if G[i, j] > G[i, k] +G[k, j]
4 then G[i, j] := G[i, k] +G[k, j]; prev [i, j] := prev [k, j]

Figure 4. Floyd-Warshall algorithm for all-pairs shortest paths

of the set of states at which the guard b is discontinuous. As P1 and
P2 are equivalent whenever (c∧¬c′), it does not matter if the guard
“flips” as a result of perturbations—the if -statement is continuous
in each variable in which both branches are continuous.

As for the rule ITE-2, it generalizes the second judgment about
P ′ in Example 2. The (conditional) equivalence of P1 and P2 is
not a premise here; therefore, the if -statement is guaranteed to
be continuous only in the variables in which b is continuous. The
inferred precondition for continuity is also restricted.

Using induction and ε-δ reasoning, we can show that:

Theorem 2. The inference rules in Figure 3 are sound.

Example 7. Consider the program P = P1;P2, where P1 is x :=
y/z and P2 is the program if (x ≥ 0) then r := y else r := z.
Let V = {x, y, z, r}, and let c be ((x = 0) ⇒ (y = z)). To
establish the judgment (y 6= 0) ∧ (z 6= 0) ` Cont(P, V, V), we
first prove the judgment (y 6= 0) ∧ (z 6= 0) ` Cont(P1, V, V)—
this requires a continuity proof for the expression y/z, and use
of the rules ASSIGN, FRAME and WEAKEN. Next we show that
c ` Cont(P2, V, V), using, among others, the rule ITE-1. Finally,
we apply the rule for sequential composition. 2

5. Continuity analysis of programs with loops
In this section, we present our continuity analysis of programs

with loops. The main conceptual contributions presented here are:
(1) An inductive rule for proving the continuity of loops, based
on a generalization of our rule for loop-free programs. (2) A
second rule for loops, based of induction where the basic step is
a sequence of loop iterations (known as an epoch) rather than a
single iteration. The latter rule is needed because many important
applications cannot be proved continuous by an ordinary inductive
argument. A soundness proof for it is also sketched.

5.1 Analysis of loops by induction
We start with a motivating example:
Example 8 (Floyd-Warshall algorithm). Let us consider the Floyd-
Warshall all-pairs shortest-path algorithm with path recovery (Fig-
ure 4). Let us call this program FW ; on termination, G[i, j] con-
tains the weight of the shortest path from i to j, and prev [i, j] con-
tains a node such that for some shortest path from i to j, the node
right before j is prev [i, j].

We view a graph G as a function from a set of edges—each
edge being a pair (u, v) of natural numbers—to a set of real-valued
edge-weights. Thus, G is a real-valued array as in Example 1.

Let the metric on real-valued arrays be as in Example 1; the
metric on the discrete array prev and the variables i, j is the
discrete metric (previously used on the bool type). Then: (1) if
a graph G has a node or edge that G′ does not, then the distance
between G and G′ is ∞, and (2) otherwise, the distance between
them is max(u,v)∈Dom(G){ |G[u, v]−G′[u, v]| }. In other words,
a small change to G is defined as a small change to edge-weights
keeping the node and edge structure intact.

As the final value ofG[i, j] gives the weight of the shortest path
between i and j, the continuity claim true ` Cont(FW , {G}, {G})
is sound (however, the claim true ` Cont(FW , {G}, {prev}) is
not—a previously valid shortest path may become invalidated due

(Simple-loop)

I(c) ` Cont(R,X,X) c ` Term(P,X)
c ` Sep(P,X)

c ` Cont(P,X,X)

Figure 5. Rule SIMPLE-LOOP. (Here, P = while b do (l : R).)

to perturbations.) We can establish this property by induction. Let
R be the body of the inner loop (Line 3). Using an analysis as in
the previous section, we have true ` Cont(R, {G}, {G}). Now
let Ri represent i repetitions of R—i.e., the first i iterations of the
loop taken together. Inductively assume that Ri is continuous in
G—i.e., a small change to the initial value of G leads to a small
perturbation of G at the end of the i-th iteration. By the continuity
of R in G, Ri+1 is also continuous in G.

Finally, observe that the expressions guarding the two loops
here are continuous in G—in other words, small changes to G do
not affect them. Therefore, an execution and its perturbed counter-
part have the same number of loop iterations. This establishes that
the entire loop represents a continuous function. 2

Let us now systematize the ideas in this example into an induc-
tive proof rule. Let P be a program of the form while b do (l :
R). Our goal here is to inductively derive judgments of the form
c ` Cont(P,X,X), where X is an inductively obtained set of
variables. However, we need some more machinery.

Trace semantics and invariants. As our reasoning for loops
requires inductive invariants, it requires a trace semantics of pro-
grams. Let us define the trace of P from a state σin as the unique
sequence π = σ0σ1 . . . σn+1 such that σ0 = σin, and for each
0 ≤ i ≤ n, {σi}R{σi+1} and σi satisfies b.

Let c be an initial condition (given as a logical formula). We
define a state σ to be reachable from c if it appears in the trace
from a state satisfying c (note that in all reachable states, control
is implicitly at the label l). The loop invariant I(c) of Q is an
overapproximation of the set of states reachable from c. Our proofs
assume a sound procedure to generate loop invariants.

The analysis. Let us now proceed to our continuity analysis. As
before, our strategy is to discharge verification conditions that do
not refer to continuity or infinitesimal changes. In particular, the
following conditions are used:

• Separability. A set of variables X is separable in a program P
if the value of any z ∈ X at the terminal state ofP only depends
on the values of variables in X at the initial state. Formally, we
say that X is separable in P under an initial condition c, and
write c ` Sep(P,X), if for all states σ, σ′ reachable from c
such that σ ≡X σ′, we have [[P]](σ) ≡X [[P]](σ′).
Under this condition, we have an alternative definition of con-
tinuity that is equivalent to the one that we have been using:
P is continuous at a state σ in a set X of input variables and
the same set X of observable variables if for all ε ∈ R+, there
exists a δ ∈ R+ such that for all σ′ satisfying σ ≈δ,X σ′, we
have [[P]](σ) ≈ε,X [[P]](σ′). This definition is useful as we use
the relation ≈ inductively.
• Synchronized termination. P fulfills the synchronized termina-

tion condition with respect to an initial condition c and a set of
variables X (written as c ` Term(P,X)) if Var(b) ⊆ X , and
one of the following holds: (1) The loop condition b satisfies
true ` Cont(b,X); (2) Let the formula c′ represent an over-
approximation of the set of states reachable from c where b is
discontinuous in X . Then we have c′ ` R ≡X skip.
Intuitively, this condition handles scenarios where an execution
from a perturbed state violates the loop condition earlier or
later than it would in the original execution. Under synchro-
nized termination, the execution that continues does not veer

“too far” from the state where it was when the other execution
ended.

Of these, separability can be established using simple slicing. In the
absence of nested loops, synchronized termination can be checked
using an SMT-solver. If the loop body contains a nested loop, it can
be checked using an SMT-solver in conjunction with an invariant
generator for the inner loop [19].

Our rule SIMPLE-LOOP for inductively proving the continuity
of P is now as in Fig. 5. Let us now see its use in an example:
Example 9. We revisit the program FW in Figure 4. (We as-
sume it to be rewritten as a while-program in the obvious way.)
Let X = {G, i, j}. First, we observe that true ` Sep(FW , X).
As argued before, letting R be the loop body, we have true `
Cont(R,X,X). Finally, the loop guard b only involves discrete
variables—therefore, by the argument in Example 1, it is always
continuous in X , which means that true ` Term(FW , X).
The sound judgment true ` Cont(FW , X,X) follows. Using
the WEAKEN rule from before, we can now obtain the judgment
true ` Cont(FW , {G}, {G}).

Of course, this example does not illustrate the subtleties of the
synchronized termination condition. For a more serious use of this
condition, see Examples 11 and 13. 2

As for soundness, we have:

Theorem 3. The inference rule SIMPLE-LOOP is sound.

Proof sketch. Consider an arbitrary trace π = σ0σ1 . . . σm+1 of
P starting from a state σ0 that satisfies c, and any ε ∈ R+. Let
us guess a sequence 〈δ0, δ1, . . . , δm+1〉 such that: (1) δm+1 < ε,
and (2) for all states s, s′ reachable from c, if s and s′ are δi-
close (in X), then if t and t′ are the states satisfying {s}R{t} and
{s′}R{t′}, then s′ and t′ are δi+1-close (in X). Such a sequence
exists as the loop body R is continuous. Now select δ = δ0, and
consider a state σ′0 such that σ0 ≡δ,X σ′0.

Recall that we assume that all programs in our setting are
terminating. Therefore, any trace from σ′0 is of the form π′ =
σ′0 . . . σ

′
n+1 (without loss of generality, assume that n ≤ m). By

the continuity of the loop body, we have σ1 ≈δ1,X σ′1. As the
synchronized termination condition holds, one possibility is that b
is continuous at both σ1 and σ′1, In this case, either both traces
continue execution into the next epoch, or none do. The other
possibility is that one of the traces violates b early due to per-
turbations, but in this case the rest of the other trace is equivalent
to a skip-statement. Generalizing inductively, we conclude that
σm+1 ≈ε,X σ′n+1. As π, π′ are arbitrary traces, the program P is
continuous.

5.2 Continuity analysis by induction over epochs
Unsurprisingly, there are many continuous applications whose con-
tinuity cannot be proved by the rule SIMPLE-LOOP. Pleasantly,
many applications in this category are amenable to proof by richer
form of induction that we have identified, and will now present. We
start with two examples:
Example 10 (Dijkstra’s algorithm). Consider our code for Dijk-
stra’s algorithm (Figure 1; code partially reproduced in Fig. 6) once
again. The one output variable is d—the array that, on termination,
contains the weights of all shortest paths from src. The metric on
G is as in Example 8.

Note that Line 5 in this code selects a node w such that d[w] is
minimal, so that to implement it, we require a mechanism to break
ties on d[w]. In practice, such tie-breaking is implemented using an
arbitrary linear order on the nodes. Such implementations, however,
are ad hoc and can easily break inductive reasoning for continuity.
To be on the safe side, we conservatively abstract the program by
replacing the selection in Line 5 by nondeterministic choice. It is

4 while WL 6= ∅
5 do choose node w ∈WL such that d[w] is minimal
6 remove w from WL;
7 for each neighbor v of w . . .

Figure 6. Dijkstra’s shortest-path algorithm

FRAC-KNAP(v : int→ real, c : int→ real,Budget : real):
@pre: |v| = |c| = n

1 for i := 0 to (n− 1)
2 do used [i] := 0 ;
3 curc := Budget ;
4 while curc > 0
5 do choose item m such that t = (v[m]/c[m]) is maximal

and used [m] = 0;
6 used[m] := 1; curc := curc −c[m]
7 totv := totv +v[m];
8 if curc < 0
9 then totv := totv −v[m];

10 totv := totv +(1 + curc /c[m]) ∗ v[m]

Figure 7. Greedy Fractional Knapsack

easy to see that a proof of continuity for this abstraction implies
a proof of continuity of the algorithm with a correct, deterministic
implementation of tie-breaking. Let us call this abstraction Dijk .
Usually, such abstractions correspond to the pseudocode of the
algorithm under consideration, and are easily built from code.

While the abstraction Dijk may seem to be nondeterministic, in
reality it is not—every initial state here leads to a unique terminal
state. Also, as d contains weights of shortest paths on termination,
the judgment true ` Cont(Dijk , {G}, {d}) is sound. Proving it,
however, is challenging. Assume the inductive hypothesis that d
only changes slightly due to a small change toG. Now suppose that
before the perturbation, nodes w1 and w2 were tied in the value of
d[·] and we chose w1, and that after the perturbation, we choose
w2. Clearly, this can completely change the value of d at the end of
Line 10. Thus, the continuity of d is not an inductive property.

However, consider a maximal set of successive iterations in
an execution processing elements tied on d[·]. Let us view this
collection of iterations—subsequently called an epoch—as a map
from an input state σ0 to a final value of d. It so happens that this
map is robust to permutations—i.e., if σ0 is fixed, then however
we reorder the iterations in the collection, so is the value of the
array d at the state σ1. Second, small perturbations to σ0 can lead
to arbitrary reorderings of the iterations—however, they only lead
to small perturbations to the value of d in σ1 (on the other hand, the
value of prev may change completely). This is the insight we use
in our proof rule. 2

Example 11 (Greedy Fractional Knapsack). Consider the Knap-
sack problem from combinatorial optimization. We are given a set
of items {1, . . . , n}, each item i being associated with a cost c[i]
and a value v[i] (we assume that c and v are given as arrays of
non-negative reals). We are also given a non-negative, real-valued
budget . The goal is to identify a subset used ⊆ {1, . . . , n} such
that the constraint

∑
j∈used c[i] ≤ Budget is satisfied, and the

value of totv =
∑
j∈used v[i] is maximized.

Let the observable variable be totv; as small perturbations can
turn previously feasible solutions infeasible, a program Knap solv-
ing this problem correctly is discontinuous in the inputs c and
Budget . At the same time, it is continuous in the input v.

Our analysis can establish the continuity of Knap in v (see Sec-
tion 6). For now we focus on the fractional variant of the problem,
which has a greedy, optimal, polynomial solution and is more in-
teresting from the continuity perspective. Here the algorithm can
pick fractions of items, so that elements of used can be any real
number 0 ≤ r ≤ 1. The goal is to maximize

∑n
i=i used [i] · v[i]

P ::= 〈all syntactic forms in IMP〉 | 〈the form Q below〉

l: while b
do θ := value u ∈ U such that Γ[u] is minimized;
R(θ,Γ, U)

Figure 8. The language LIMP (P represents programs).

while ensuring that
∑n
i=i used [i] · c[i] ≤ Budget . This algorithm

is continuous in all its inputs, as we can adjust the quantities in
used infinitesimally to satisfy the feasibility condition even when
the inputs change infinitesimally.

To see why proving this is hard, consider a program FracKnap
coding the algorithm (Fig. 7). Here, curc tracks the part of the bud-
get yet to be spent; the algorithm greedily adds elements to used ,
compensating with a fractional choice when curc becomes nega-
tive. Line 5 involves choosing an item m such that (v[m]/c[m]) is
maximal, and once again, we abstract this choice by nondetermin-
ism. It is now easy to see that continuity of totv is not inductive;
one can also see that the observations made at the end of Exam-
ple 10 apply. However, one difference is that the the condition of the
main loop (Line 4) here can be affected by slight changes to curc.
Therefore, proving this program requires a more sophisticated use
of the synchronized termination than what we saw before. 2

5.2.1 A language of nondeterministic abstractions
Let us now develop a rule that can handle the issues raised by these
examples. To express our conservative abstractions, we extend the
language IMP with a syntactic form for loops with restricted nonde-
terministic choice. We call this extended language LIMP. Its syntax
is as in Figure 8. Here:

• U is a set—the iteration space for the loop in the syntactic form
Q. Its elements are called choices.
• θ is a special variable, called the current choice variable. Every

iteration starts by picking an element of U and storing it in θ.
• Γ is a real-valued array with Dom(Γ) = U . If u is a choice,

then Γ[u] is its weight. The weight acts as a selection criterion
for choices—iterations always select minimal-weight choices.
Multiple choices can have the same weight, leading to nonde-
terministic execution.
• R(θ,Γ, U) (henceforth just R) is an IMP program that does not

write to θ. It can read θ and read or update the iteration space
U and the weight array Γ.

We call a program of form Q an abstract loop—henceforth, Q
denotes an arbitrary, fixed abstract loop. For simplicity, we only
consider the analysis of abstract loops—an extension to all LIMP
programs is easy. Also, we restrict ourselves to programs that
terminate on all inputs.

The main loops in our codes in Figures 1 and 7 are abstract
loops. For example, the workset WL, the node w, and the array d
in Figure 1 respectively correspond to the iteration space U , the
choice variable θ, and the map Γ of choice weights. While the
weight array is not an explicit variable in Figure 7, it can be added
as an auxiliary variable. by a simple instrumentation routine.

The functional semantics ofQ is defined in a standard way. Due
to nondeterminism, Q may have multiple executions from a state;
consequently, [[Q]] comprises mappings of the type σ 7→ Σ, where
σ is a state, and Σ the set of states at which Q may terminate on
starting from σ. We skip the detailed inductive definition.

Continuity. Continuity is defined in the style of Def. 3: Q is
continuous at a state σ0 in a set In of input variables and a set
Obs of observable variables if for all ε ∈ R+, there is a δ ∈ R+

such that for all σ′0 satisfying Pertδ,In(σ0, σ
′
0), all σ1 ∈ [[Q]](σ0),

and all σ′1 ∈ [[Q]](σ′0), we have σ′0 ≈ε,Obs σ
′
1. Note that if Q is

continuous, then for states σ0, σ1, and σ2 such that {σ1, σ2} ⊆
[[Q]](σ0), we must have have σ1 ≡Obs σ2. Thus, though Q uses a
choice construct, its behavior is not really nondeterministic.

Trace semantics and invariants. Due to nondeterminism, the
trace semantics for abstract loops is richer than that for IMP. Let us
denote the body of the top-level loop of Q by B. For u ∈ U , let
the parameterized iteration Bu be the program (θ := u; R) that
represents an iteration of the loop with θ set to u. For states σ, σ′,
we say that there is a u-labeled transition from σ to σ′, and write
σ

u−→ σ′, if (1) at the state σ, Γ[u] is a minimal weight in the array
Γ; and (2) the Hoare triple {σ}Bu{σ′} holds.

Intuitively, σ and σ′ are states at the loop header (label l) in
successive iterations. Condition (1) asserts that u is a permissible
choice for Q at σ. Condition (2) says that assuming u is the chosen
value for θ in a loop iteration, σ′ is the state at its end. Note that
our transition system is deterministic—i.e., for fixed σ and u, there
is at most one σ′ such that σ u−→ σ′.

Let ρ, ρ′ be nonempty sequences over U , and let u ∈ U . We
say that there is a ρ-labeled transition from σ to σ′ if one of the
following conditions holds:

• ρ = u and σ u−→ σ′,

• ρ = u.ρ′, and there exists a state σ′′ such that: (1) σ u−→ σ′′,

(2) σ′′ satisfies the loop condition b, and (3) σ′′
ρ′−→ σ′.

A trace of Q from a state σin is now defined as a sequence
π = σ0

ρ0−→ σ1
ρ1−→ . . . σn

ρn−→ σn+1, where σ0 = σin, and
for each 0 ≤ i ≤ n, σi

ρi−→ σi+1 and σi satisfies b.
Here, the transition σi

ρi−→ σi+1 represents a sequence of loop
iterations leading Q from σi to σi+1. Note that σn+1 may not
satisfy b—if it does not, then it is the terminal state of Q. If each ρi
is of the form ui ∈ U , then π is said to be a U -trace.

Clearly, Q can have multiple traces from a given state. At the
same time, if ρ = u0u1 . . . um and there is a transition σ0

ρ−→
σm+1, thenQ has a unique U -trace of the form σ0

u0−→ σ1 . . .
um−→

σm+1. We denote this trace by Expose(σ0
ρ−→ σm+1).

For an initial condition c, a state σ is reachable from c if
it appears in some trace from a state satisfying c. A transition
σ

ρ−→ σ′ is reachable from c if σ is reachable from c. The loop
invariant I(c) of Q is an overapproximation of the set of states
reachable from c.

5.2.2 The analysis
Now we present our continuity analysis. As in Section 5, our goal
is to obtain a continuity judgment c ` Cont(Q,X,X), whereX is
an inductively obtained set of variables. As hinted at in Example 10,
we perform induction over clusters of successive loop iterations
parameterized by choices of equal weight. We call these clusters
epochs. Pleasantly, while the notion of epochs is crucial for our
soundness argument, it is invisible to the user of the rule, who
discharges verification conditions just as before.

Verification conditions and rule definition. We start by defining
our rule and its verification conditions. Once again, we discharge
the conditions of synchronized termination and separability (these
are defined as before). In addition, we discharge the conditions of
Γ-monotonicity and commutativity.

The former property asserts that the weight of a choice does not
increase during executions of Q. Formally, the program Q is Γ-
monotonic under the initial condition c if for all states σ, σ′ ∈ I(c)
such that there is a transition from σ to σ′, we have σ(Γ[v]) ≥
σ′(Γ[v]) for all v ∈ U .

The second condition says that parameterized iterations can be
commuted. Let us define:

σ0 σ1 σ2

σ′0 σ′1 σ′2

...u

...v

...v

...u
.......
....≡Obs

....≡Obs σ0(Γ[u]) = σ′0(Γ[v]) =

σ1(Γ[v]) = σ′1(Γ[u])

Figure 9. Commutativity

Definition 6 (Commutativity). The parameterized iterations Bu
and Bv commute under the initial condition c and the set Obs of
observable variables if for all states σ0, σ′0, σ1, σ2 such that: (1)
σ0 ≡Obs σ

′
0; (2) σ0, σ1, and σ′0 satisfy the loop invariant I(c); (3)

{σ0}Bu{σ1} and {σ1}Bv{σ2}; and (4) σ0(Γ(u)) = σ′0(Γ(v)) =
σ1(Γ(v)), there are states σ′1 and σ′2 such that

• {σ′0}Bv{σ′1}, {σ′1}Bu{σ′2}, and σ′1 satisfies I(c)
• σ′1(Γ(u)) = σ′0(Γ(v))
• σ2 ≡Obs σ

′
2.

The programQ is commutative under c and the set Obs of variables
(written as c ` Comm(Q,Obs)) if for all u, v, Bu and Bv
commute under c.

A commutation diagram capturing the relationship between σ0,
σ1, etc. in the above definition is given in Fig. 9. Note that given
σ′0, u, and v, the states σ′1 and σ′2 are unique. Also note that the
property defined here is stronger than commutativity in the usual
sense, as it asserts properties of weights of choices.

Our proof rule for abstract loops is now presented in Fig. 10.
Intuitively, the rule performs induction over sequences of epochs.
As we mentioned in Example 10, small perturbations will reorder
loop iterations within an epoch; however, a subtle implication of
our premises is that such reorderings do not affect continuity at the
end of each epoch. Before presenting a soundness argument and
defining epochs formally, let us apply the rule to our two examples.
Example 12 (Dijkstra’s algorithm). Let us now revisit our imple-
mentation Dijk of Dijkstra’s algorithm, and derive the continuity
judgment true ` Cont(Dijk , X,X), where X = {G, d,WL}
(this can be subsequently weakened to judgments like true `
Cont(Dijk , {G}, {d})). Here, the array d corresponds to Γ in the
syntax of LIMP, and lines 6-10 correspond to the program R.

First, we observe that Dijk is d-monotonic (and that the reason-
ing establishing this is simple). Also,X-separability is obvious. As
in case of the Floyd-Warshall algorithm, synchronized termination
holds as the loop condition, only involving a discrete variable, is
unconditionally continuous in the set of input variables X . Finally,
we observe that lines 6-10 are also commutative by our definition.
By the rule LOOP, the desired continuity judgment follows. 2

Example 13 (Fractional Knapsack). Now we consider the pro-
gram FracKnap (Fig. 7), recast as a LIMP program using an aux-
iliary array Γ such that at the beginning of each loop iteration,
we have Γ[i] = c[i]/v[i]. Let us verify the judgment true `
Cont(FracKnap, X,X), whereX = {Γ, Items, curc , totv , c, v}.
Once again, separability of X is obvious, and Γ-monotonicity
and commutativity can be verified with some effort. The synchro-
nized termination condition, however, is more interesting that in
the proof of Dijk, as the loop condition (curc > 0) is not al-
ways continuous in X . To see that the condition holds, let c be
the formula (curc = 0) capturing the set of states where the
loop condition is discontinuous. Under this condition, Lines 6–
10, taken together, are equivalent to a skip-statement. Therefore,
we have true ` Term(FracKnap, X). By the rule LOOP, we
have true ` Cont(FracKnap, X,X). 2

Soundness. Now we sketch an argument for the soundness of the
rule LOOP. Let us start by defining epochs formally:

(Loop)

U,Γ ∈ X I(c) ` Comm(Q,X) Q is Γ-monotonic under c
c ` Sep(Q,X) I(c) ` Cont(R,X,X) c ` Term(Q,X)

c ` Cont(Q,X,X)

Figure 10. Proof rule LOOP for programs with loops (Q is an
abstract loop, and S ⊆ ObsQ)

Definition 7 (Epochs). Consider a transition η = σ0
ρ−→ σm+1,

with Expose(σ0
ρ−→ σm+1) = σ0

u0−→ σ1 . . .
um−→ σm+1. The

transition η is an epoch if:

1. For all 0 ≤ j < m, we have σj(Γ[uj]) = σj+1(Γ[uj+1]).

2. Q has no transition σm+1
um+1−→ σm+2 such that σm(Γ[um]) =

σm+1(Γ[um+1]). The epoch is said to have weight σ0(Γ(u0)).

Intuitively, an epoch is a maximal sequence of iterations that
agree on choice-weights. For our proofs, we also need a notion of
δ-epochs, which are just like epochs, except they allow a margin
of error δ between the weights of the choices made in successive
iterations. Formally, for δ ∈ R+, a transition η as in Definition 7 is
a δ-epoch of Q if for some W ∈ R, we have:

1. For all 0 ≤ j < m, |σj(Γ(uj))−W | < δ.

2. There is no transition σm+1
um+1−→ σm+2 in Q such that

|σm+1(Γ(um+1))−W | < δ.

Note that every U -trace π = σ0
u0−→ σ1 . . .

um−→ σm+1

corresponds to a unique trace Epochize(π) = σ′0
ρ0−→ σ′1 . . .

ρn−→
σ′n+1 such that σ0 = σ′0, σm+1 = σ′n+1, and for each i, σ′i

ρi−→
σ′i+1 is an epoch. This trace represents the breakdown of π into
epochs. For δ ∈ R+, the trace Epochizeδ(π), representing the
breakdown of π into δ-epochs, is similarly defined.

Now we define a notion of continuity for epochs.

Definition 8 (Continuity of epochs). An epoch η = σ0
ρ−→ σ1

of Q is continuous with respect to a set In of input variables and
a set Obs of observable variables if for all ε ∈ R+, there exists
a δ ∈ R+ such that for all states σ′0 satisfying Pertδ,In(σ0, σ

′
0),

every δ-epoch σ′0
ρ′−→ σ′1 satisfies the property σ1 ≈ε,Obs σ

′
1.

The crux of our soundness argument is that under the premises
of the rule LOOP, every epoch of Q is continuous. This is estab-
lished by the following theorem:

Theorem 4. Suppose the following conditions hold for a set of
variables X ⊆ Var(Q) and an initial condition c:

1. Q is Γ-monotonic under c 4. U,Γ ∈ X
2. I(c) ` Comm(Q,X) 5. c ` Sep(Q,X)
3. I(c) ` Cont(R,X,X) 6. c ` Term(Q,X)

Then every epoch of Q reachable from c is continuous in input
variables X and observable variables X .

The proof involves a lemma proving the determinism of epochs:

Lemma 1. Suppose the premises of Theorem 4 hold. Then if η =

σ0
ρ−→ σ1 is an epoch reachable from c, then for all epochs

η′ = σ′0
ρ′−→ σ′1 such that σ′0 ≡X σ0, we have: (1) ρ′ is a

permutation of ρ; and (2) σ1 ≡X σ′1.

Proof sketch. Let W be the weight of η, and define a variable UW
whose value at a state is the set of choices in U with weight W . As
U ∈ X , UW has the same value in X-equivalent states; as epochs
are maximal, η terminates only when b is violated or UW is empty.

Without loss of generality, assume that ρ and ρ′ are sequences
of distinct choices. Suppose u is the first choice in ρ that does
not appear in ρ′; let ρ = ρ1uρ2. Now we have the following
possibilities: (a) the execution of ρ1 added the choice u to UW

σ0 σ1 σ2 . . . Epochize(π)

Epochizeδ(π′)σ′0 σ′1 σ′2 . . .

...
ρ0

...

ρ′0

...
ρ1

...

ρ′1

...
ρ2

...

ρ′2

..≈δ0,X ..≈δ2,X..≈δ1,X

Figure 11. Induction over epochs

by setting Γ[u] = W ; (b) some iteration Bv in ρ′, where v 6= u,
removed the choice u from UW by setting Γ[u] > W or removing
u from U ; (c) at some point during the execution of ρ′ before u
could be selected, the loop condition b was violated.

Each of these scenarios are ruled out by our assumed conditions.
We only show how to handle case (b). As Q is Γ-monotonic, we
have the property that if Γ[u] > W at some point in ρ′, then
Γ[u] > W at all prior points in ρ′—i.e., u never had the weight
W in η′. As for u being removed from U in ρ′ before ever being
selected, this violates commutativity.

As for postcondition (2), it follows from commutativity if ρ
is of length two or more. If ρ = u for some choice u, then the
postcondition follows from the separability of X .

(As an aside, the above implies that under the premises of the
rule LOOP, epochs are observationally deterministic: epochs start-
ing from X-equivalent states always end in X-equivalent states.)

Now we establish a lemma connecting each δ-epoch to an epoch
to which it is “close.” (The proof is quite involved—due to lack of
space, we only give the intuitions here.) Consider, for sufficiently
small δ, an arbitrary δ-epoch η such that Expose(η) = σ0

u1−→
σ1 . . .

un−→ σn+1 and a state σ′0 such that σ′0 ≈δ,X σ0. As η is a δ-
epoch, it is possible to perturb every state appearing in Expose(η)
by an amount less than δ to get a U -trace π such that: (1) π starts
with σ′0; and (2) if σ′i is the i-th state in π, then for all i, we have
σ′i(Γ[ui]) = σ′i+1(Γ[ui+1]). We can now show that, if the premises
of Theorem 4 hold, then this trace can be executed byQ and, in fact,
is of the form Expose(η′) for some epoch η′ of Q. Thus we have:

Lemma 2. Assume that the premises of Theorem 4 hold. Then for
all ε ∈ R+, there exists a δ ∈ R+ such that for all δ-epochs
η = σ0

ρ−→ σ1 and all states σ′0 such that σ′0 ≈δ,X σ0, there is an

epoch η′ = σ′0
ρ′−→ σ′1 such that: (1) ρ = ρ′, and (2) σ1 ≈ε,X σ′1.

Proof sketch for Theorem 4. Now we can establish Theorem 4. Let
η = σ0

ρ−→ σ1 be any epoch, and let ε ∈ R+. Select a δ
small enough for Lemma 2 to hold. Consider any δ-epoch η′ =

σ′0
ρ′−→ σ′1 such that σ0 ≈δ,X σ′0. By Lemma 2, there is an epoch

η′′ = σ0
ρ′−→ σ′′1 such that σ′′1 ≈ε,X σ′1. As η and η′′ are epochs

from the same state, by Lemma 1, we have σ1 ≡X σ′′1 . But this
means that σ1 ≈ε,X σ′1. This establishes the continuity of η.

Soundness for rule LOOP now follows in a straightforward way.
The argument is similar to that for Theorem 3—however, this time
we use epochs, rather than individual loop iterations, as the basic
steps of induction. While continuity may be broken inside an epoch,
it is, by Theorem 4, reinstated at its end. Intuitively, any two traces
of Q starting from arbitrarily close states “synchronize”—reaching
observationally close states—at the ends of epochs (the situation is
sketched in Figure 11). We have:

Theorem 5. The proof rule LOOP is sound.

Proof sketch. Consider an arbitrary U -trace π of Q starting from a
state σ0 that satisfies c, the trace Epochize(π) = σ0

ρ0−→ . . .
ρm−→

σm+1, and any ε ∈ R+. Select a sequence of δi’s, with δ = δ0, just
as in Theorem 3, and consider a state σ′0 such that σ0 ≡δ,X σ′0.

Example Time Simple-loop or No Loop or
(U,Γ(u), θ)

Term. Expressions

BubbleSort 0.035 Simple-loop No
InsertionSort
(Outer) 0.028 Simple-loop Yes
InsertionSort
(Inner) 0.027 Simple-loop Yes Update(A,j+1,z)
SelectionSort
(Outer) 0.092 Simple-loop No A[s]

SelectionSort
(Inner) 0.249 Simple-loop No

A[1..i],
Array2Set
(A[i . . n− 1])

MergeSort 0.739
({(u, u′) | 1 ≤ u ≤ n,

1 ≤ u′ ≤ m},
Min(A[u], B[u′]), (i, j))

No

Dijkstra 0.177 (Q, dist[u],m) No
Bellman-Ford 0.029 Simple-loop No
Floyd-Warshall 0.032 Simple-loop No

Kruskal 1.069
(Q = Edges(G),
W (u, u′), (i, j))

No

Prim 0.248
({u, u′ | u ∈ G− F,

u′ ∈ F},
W (u, u′), (v, v′))

No

Frac. Knapsack 0.38 ({1 . . n}, v[u]/c[u],m) Yes
Int. Knapsack 3.22 No Loop No

Table 1. Benchmark Examples
Let π′ be any U -trace from σ′0, and let Epochizeγ(π′) =

σ′0
ρ′0−→ . . .

ρ′n−→ σ′n+1 (without loss of generality, assume that
n ≤ m). By the continuity of epochs we have σ1 ≈δ1,X σ′1.
Generalizing inductively, and using the synchronized termination
condition as before, we conclude that σm+1 ≈ε,X σ′n+1. As π, π′

are arbitrary traces, Q is continuous.

6. Experiments
We chose several classic continuous algorithms (mostly from a
standard undergraduate text on algorithms [3]) to empirically eval-
uate the precision and completeness of our proof rules. Our rules
were able to prove the continuity of 11/13 examples that we tried.

An important step before the application of our proof rules
LOOP is the transformation of loops into abstract loops as described
in Section 5.2, which requires identifying the iteration space U , the
current choice variable θ, and the weight function Γ. Of course,
if the rule SIMPLE-LOOP is applicable, then these steps are not
needed. Table 1 describes the rules, and parameters U , θ, and Γ,
needed in each of our applications. In some cases, we also needed
to introduce some auxiliary variables since our framework tracks
continuity of program fragments with respect to a set of observation
variables. (An alternative would have been to define our framework
to track continuity of expressions, and in fact, this is another inter-
esting aspect of continuity proofs for programs. Such an extension
to our framework is not difficult, but we avoided this to keep the
presentation of the framework simpler.) The column “Expressions”
contains the expressions represented by auxiliary variables in the
various examples. Transformation of loops into abstract loops and
introduction of auxiliary variables were performed manually. How-
ever, there are heuristics that can be used to automate this step.

Sorting Algorithms. Consider a sorting algorithm that takes in
an array Ain and returns a sorted array Aout. Such an algorithm
is continuous in Ain—a small change to Ain can only result in a
small change to Aout[i], for all i. The observation requires a bit of
thought as the position of a given element in the output array Aout
may change completely on small perturbations. Indeed, consider
an algorithm that returns a representation of the sorted array in the
form of an array of indices In into the original input array (i.e.,
i < j ⇒ Ain[In[i]] < Ain[In[j]]), rather than a sort of the
original array. Such an algorithm is discontinuous in Ain.

Our proof rules can establish continuity of the three standard
iterative sorting algorithms: BubbleSort, InsertionSort, Selection-

Sort. Our proof rules can also establish continuity for MergeSort,
but are unable to establish the continuity of Quicksort. This is be-
cause the continuity proof for MergeSort is inductive with respect
to the recursive calls (i.e., continuity holds at every recursive call
to MergeSort), but this is not the case with QuickSort. This is not
unexpected since we have not addressed the interprocedural variant
of continuity analysis in this paper. The proof of continuity for each
of the sorting algorithms turns out to be quite different from each
other (suggesting the fundamentally different ways in which these
algorithms operate). We point out some of the interesting aspects
of the continuity proofs for each of these examples.

Bubblesort is the simplest of all where the continuity proof is
inductive for both its loops, and the interesting part is to establish
the continuity of the loop-body. This involves proving that the Swap
operation that swaps two elements of an array is continuous, which
requires an application of proof rule ITE-1.

The proof of continuity of InsertionSort is also inductive for
both its loops. However, establishing continuity of the inner loop
has two interesting aspects. It requires an application of the syn-
chronized termination condition, and requires establishing con-
tinuity of (the auxiliary variable representing) the expression
update(A, j + 1, z) (note that the loop is actually discontinu-
ous in A, but to inductively prove the continuity of the outer loop,
we in fact need to prove continuity of the inner loop with respect
to update(A, j + 1, z)).

The proof of continuity of SelectionSort is also inductive for
both its loops. The interesting part is to note that the outer loop is
not continuous in A. It is actually continuous in the expressions
A[1..i] and the set Array2Set(A[i, .., n − 1]), which suffices to
establish the continuity of A[1..n] when the loop terminates since
i = n outside the loop. Similarly, the inner loop is continuous
in A[s] as opposed to s, but this suffices to prove the desired
continuity property of the outer loop.

For MergeSort, the challenging part is to establish the continuity
of the Merge procedure, which is not inductive, and requires using
the proof rule LOOP in its generality.

Shortest Path Algorithms. The path returned by any shortest path
algorithm is susceptible to small perturbations in the edge weights
of the input graph. However, the value of the shortest path returned
by the shortest path algorithms is actually continuous in the input
graph. Our proof rules can establish this property for each of the
three shortest path algorithms that we considered. Among these,
Dijkstra’s algorithm is the most interesting one, requiring use of the
proof rule LOOP in its generality. The continuity proof of Bellman-
Ford and Floyd Warshall is relatively easy since it is inductive.

Minimum Spanning Tree Algorithms. The spanning tree re-
turned by minimum spanning tree algorithms can vary widely upon
small perturbations in the edge weights of the input graph. How-
ever, the weight of the minimum spanning tree returned by the min-
imum spanning tree algorithms is actually continuous in the edge
weights of the input graph. Our proof rules can establish this prop-
erty for Kruskal and Prim algorithms, but fail for Boruvka’s algo-
rithm. The continuity proofs for both Kruskal and Prim algorithms
are not inductive and require an application of the proof rule LOOP
in its generality. However, our proof rules are not precise enough to
establish the continuity of Boruvka’s algorithm.

Knapsack Algorithms. The integer-knapsack algorithm takes as
input a weight array c and a value array v containing the weight
and value respectively of various objects, and a knapsack capacity
Budget and returns the set of items with maximum combined value
totv such that their combined weight is less than the knapsack
capacity. The value of totv is discontinuous in c and Budget since
small perturbations may make an object now no longer fit in the
knapsack (or the other way round). However, it is interesting to

KRUSKAL(G : graph)
1 for each node v inG do C[v] := {v};
2 Q := set of all edges in G; cost := 0; T := ∅;
3 whileQ 6= ∅
4 do choose edge (v, w) ∈ Q

such thatG(v, w) is minimal;
5 remove (v, w) fromQ;
6 if C[v] 6= C[w]
7 then add edge (v, w) to T ;
8 cost := cost +G(v, w);
9 C[v] := C[w] := C[v] ∪ C[w];

PRIM(G : graph)
1 for each node v inG
2 do d[v] := ⊥; parent[v] := UNDEF;
3 s := arbitrary node in G; d[s] := 0;
4 cost := 0; F := {s};
5 while |F | < |G|
6 do choose node v /∈ F

with a minimal-cost edge (v, v′) into F
7 F := F ∪ {v}; cost := cost+G(v, v′);
8 for each neighbor w of v
9 do if d[w] > d[v] +G(v, w);

10 then d[w] := d[v] +G(v, w);
11 parent[w] := v;

MERGESORT(A : realarr)
1 if |A| ≤ 1
2 then return A;
3 m := b|A|/2c;
4 A1 := A[0 . .m];A2 := A[m+ 1 . . |A| − 1];
5 B1 := MERGESORT(A1);
6 B2 := MERGESORT(A2);
7 return MERGE(B2, B2);

MERGE(A1 : realarr, A2 : realarr)
1 i := 0; j := 0; k := 0;
2 while k < |A1|+ |A2|
3 do if (i ≥ |A1|) or (A1[i] > A2[j])
4 then result[k] := A2[j];
5 j := j + 1; k := k + 1;
6 else result[k] := A1[i];
7 i := i+ 1; k := k + 1;
8 return result ;

BELLMAN-FORD(G : graph, src : node)
1 for each node v inG
2 do d[v] := ⊥; parent[v] := UNDEF;
3 d[src] := 0;
4 for each node inG
5 do for each edge (v, w) of G
6 do if d[v] +G(v, w) < d[w]
7 then d[w] := d[v] +G(v, w);
8 parent[w] := v;

KNAPSACK(v : realarr, c : realarr, j : int,W : real,)
1 if j = 0 then return 0
2 else ifW = 0 then return 0
3 else if (c[j] > W) then return

KNAPSACK(v, c, j − 1,W)
4 else z1 := KNAPSACK(v, c, j − 1,W);
5 z2 := KNAPSACK(v, c, j − 1,W − c[j]);
6 return max{z1, z2}

INSERTION-SORT(A : realarr)
1 for i := 1 to (|A| − 1)
2 do z := A[i]; j := i− 1;
3 while j ≥ 0 andA[j] > z
4 do A[j + 1] := A[j]; j := j − 1;
5 A[j + 1] := z;

SELECTION-SORT(A : realarr)
1 for i := 1 to (|A| − 1)
2 do s := i;
3 for j := i+ 1 to (|A| − 1)
4 do if (A[j] < A[s]) s := j;
5 swap(A[i], A[s]);

BUBBLE-SORT(A : realarr)
1 for i := 1 to (|A| − 1);
2 do for j := 1 to (|A| − 1);
3 do if (A[i] > A[i+ 1])
4 then swap(A[i], A[i+ 1]);

Figure 12. Pseudocode for experiments

note that totv is actually continuous in v. Our proof-rules are able
to establish this property inductively across the different recursive
calls of Knapsack after proving that continuity of the recursion-
free part, which requires an application of proof rule ITE-1. As for
fractional knapsack, it was proved as in Example 13.

Implementation and Experimental Setup. The method has been
implemented in C# relying on the Z3 SMT solver to discharge
proof obligations and the Phoenix Compiler Framework to pro-
cess the input program. The analysis is implemented as a fixpoint
computation to find the solution of dataflow equations derived from
the proof rules, where some proof obligations are submitted to the
SMT-solver in the process. The SMT-solver is used by only some
of the proof rules—e.g., the rule ITE-1 requires the proof of equiv-
alence of branches at the discontinuities of the condition variable,
and the use of a continuity specification for, say, division requires
us to determine if the divisor is non-zero. Commutativity and early
termination proofs, required to prove continuity of loops, are also
submitted to the SMT-solver. As mentioned earlier, we manually
rewrote some of the programs to fit the abstraction language LIMP.
Also, a few examples involved a nested loop inside the abstract
loop. In these, we hand-wrote an invariant for the inner loop (how-
ever, this step can be automated using more powerful invariant gen-
erators). The performance results reported in table 1 were obtained
on a Core2 Duo 2.53 Ghz with 4GB of RAM.

7. Conclusion and future work
We have presented a program analysis to automatically determine if
a program implements a continuous function. The practical motiva-
tion is the verification of robustness properties of programs whose
inputs can have small amounts of error and uncertainty.

This work is the first in a planned series of papers on the analysis
of robustness and stability of programs, and its applications in the
verification of software running on cyber-physical systems [12]. In
particular, we plan to explore the following questions:
Quantitative analysis. Rather than knowing whether a program
is continuous, what if we want bounds on changes to outputs
on small changes to inputs? We plan to answer this question by
developing a quantitative continuity analysis. Such an analysis

will be closely related to the problem of differentiating or finite-
differencing programs.

Safe handling of discontinuities. Many practical programs are dis-
continuous but still safe. For example, a controller that is other-
wise continuous might switch itself off—discontinuously—when
it changes mode. How do we reason about robustness in such set-
tings?

A possible solution is to allow a specification for how the pro-
gram should behave at discontinuities. A robustness proof now es-
tablishes that at every input state, the program is either continuous,
or follows the specification.

Counterexample generation. Can we generate inputs that, when
changed slightly, cause large changes in the program’s behavior?

Modular analysis. What about interprocedural continuity analysis,
hinted at in Sec. 3?

Applications outside robustness. Does our proof methodology have
applications in a contexts outside of robustness? In particular, our
proof rule LOOP establishes the observational determinism of non-
deterministic abstractions expressible in the language LIMP. Can it
be used in determinism proofs for concurrent programs [22]?

Stability. Can we extend the techniques here to do program analysis
with respect to control-theoretic stability properties—e.g., asymp-
totic and Lyapunov stability [16, 17]?

References
[1] Rajeev Alur, Costas Courcoubetis, Thomas A. Henzinger, and Pei-

Hsin Ho. Hybrid automata: An algorithmic approach to the specifi-
cation and verification of hybrid systems. In Hybrid Systems, 1992.

[2] Yamine Aı̈t Ameur, Gérard Bel, Frédéric Boniol, S. Pairault, and
Virginie Wiels. Robustness analysis of avionics embedded systems.
In LCTES, pages 123–132, 2003.

[3] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest.
Introduction to algorithms. MIT Press and McGraw-Hill, 1990.

[4] Patrick Cousot. Proving the absence of run-time errors in safety-
critical avionics code. In EMSOFT, pages 7–9, 2007.

[5] Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne,
Antoine Miné, David Monniaux, and Xavier Rival. The ASTREÉ
analyzer. In ESOP, pages 21–30, 2005.

[6] Eric Goubault. Static analyses of the precision of floating-point oper-
ations. In SAS, pages 234–259, 2001.

[7] Eric Goubault, Matthieu Martel, and Sylvie Putot. Asserting the
precision of floating-point computations: A simple abstract interpreter.
In ESOP, 2002.

[8] Joseph Halpern. Reasoning about uncertainty. The MIT Press, 2003.
[9] Dick Hamlet. Continuity in sofware systems. In ISSTA, pages 196–

200, 2002.
[10] Mats Per Erik Heimdahl, Yunja Choi, and Michael W. Whalen. De-

viation analysis: A new use of model checking. Autom. Softw. Eng.,
12(3):321–347, 2005.

[11] Myron Kayton and Walter R. Fried. Avionics navigation systems.
Wiley-IEEE, 1997.

[12] Edward A. Lee. Cyber physical systems: Design challenges. In
ISORC, pages 363–369, 2008.

[13] Matthieu Martel. Propagation of roundoff errors in finite precision
computations: A semantics approach. In ESOP, pages 194–208, 2002.

[14] Antoine Miné. Relational abstract domains for the detection of
floating-point run-time errors. In ESOP, pages 3–17, 2004.

[15] Bradford Parkinson and James Spiker. The global positioning system:
Theory and applications (Volume II). AIAA, 1996.

[16] Stefan Pettersson and Bengt Lennartson. Stability and robustness for
hybrid systems. In Decision and Control, volume 2, pages 1202–1207,
Dec 1996.

[17] Andreas Podelski and Silke Wagner. Model checking of hybrid sys-
tems: From reachability towards stability. In HSCC, pages 507–521,
2006.

[18] Mardavij Roozbehani, Alexandre Megretski, Emilio Frazzoli, and Eric
Feron. Distributed lyapunov functions in analysis of graph models of
software. In HSCC, pages 443–456, 2008.

[19] Ofer Strichman. Regression verification: Proving the equivalence of
similar programs. In CAV, 2009.

[20] Wilson Sutherland. Introduction to metric and topological spaces.
Oxford University Press, 1975.

[21] John Taylor. An introduction to error analysis: the study of uncertain-
ties in physical measurements. University Science Books, 1997.

[22] Tachio Terauchi and Alex Aiken. A capability calculus for concur-
rency and determinism. In CONCUR, pages 218–232, 2006.

[23] Glynn Winskel. The formal semantics of programming languages. The
MIT Press, 1993.

