Symbolic Pruning of Concurrent Program Executions

Chao Wang
NEC Laboratories America
chaowang@nec-labs.com

Aarti Gupta
NEC Laboratories America
agupta@nec-labs.com

Swarat Chaudhuri
Pennsylvania State University
swarat@cse.psu.edu

Yu Yang
University of Utah
yuyang@cs.utah.edu

ABSTRACT

We propose a new algorithm for verifying concurrent programs, which uses concrete executions to partition the program into a set of lean partitions called concurrent trace programs (CTPs), and symbolically verifies each CTP using a satisfiability solver. A CTP, derived from a concrete execution trace, implicitly captures all permutations of the trace that also respect the control flow of the program. We show that a CTP, viewed as a coarser equivalence class than the popular (Mazurkiewicz) trace equivalence in partial order reduction (POR) literature, leads to more effective pruning of the search space during model checking. While classic POR can prune away redundant interleavings within each trace equivalence class, the pruning in POR is not property driven. We use symbolic methods to achieve property-driven pruning. The effort of exploration is distributed between a symbolic component (verification of a particular CTP) and an enumerative component (exploration of the space of CTPs). We show that the proposed method facilitates more powerful pruning of the search space during the enumerative exploration.

Categories and Subject Descriptors: D.2.4 [Software/ program Verification]: Model checking

General Terms: Verification

Keywords: Concurrency, Partial order reduction, Pruning, SAT

1. INTRODUCTION

Dynamic model checking as in [8, 16, 23] has the advantage of directly verifying concurrent programs written in full-fledged programming languages such as C and Java, by systematically executing a program in its target environment under different thread schedules (interleavings). Since they concretely execute the program itself rather than a model, these methods do not produce bogus errors when verifying safety properties, such as local assertions. For verifying terminating programs, unless context-bounding is imposed [16], these methods are also complete (do not miss any real error). However, explicitly enumerating thread interleavings is expensive since the number of interleavings may be astronomically large. Dynamic partial order reduction (DPOR) [6] has been used in this context to prune away redundant thread interleavings—for each (Mazurkiewicz) trace equivalence class of interleavings, if a representative has been checked, the remaining ones are regarded as redundant. However, DPOR only removes redundant interleavings within each equivalence class, it does not help when an equivalence class itself is redundant, e.g., with respect to a correctness property. In such cases, a property specific reduction is required to prune away the redundant equivalence classes.

Property specific reduction can be achieved by symbolic methods [9, 4, 18, 11, 1, 22] using an underlying satisfiability (SAT or SMT) solver. In symbolic methods, verification is often posed as a satisfiability problem such that the SAT formula is satisfiable iff there exists an interleaving execution of the program that violates the property. The reduction happens inside the SAT solver through the addition of learned clauses derived by conflict analysis [20]. The pruning is potentially more powerful than POR because the interleaving blocked by a learned clause may come from different trace equivalence classes. However, a disadvantage of SAT-based symbolic analysis is that it does not scale well to the entire program, because the cost of checking all possible program executions is often too high.

In this paper, we propose a new framework in which concrete execution and symbolic analysis are used side-by-side to strike a balance between efficiency and scalability. More specifically, we use an enumerative algorithm to systematically generate execution traces of the program. For each trace, we derive a lean partition of the program called a concurrent trace program (CTP), which implicitly captures all possible permutations of the trace that respect the control flow of the program. Our symbolic analysis includes

1. Check: First, we check each CTP symbolically for property violations. If an error is found in the CTP, it is guaranteed to be a real error, and we are done.

2. Prune: Otherwise, we use a conservative analysis of the CTP to identify redundant CTPs in future search, i.e., CTPs whose error-freedom is implied by the current one.

Pruning is realized inside the enumerative algorithm, by skipping traces that may lead to the redundant CTPs.

In our method, exploration is distributed between the symbolic component which verifies a particular CTP and the enumerative component which explores the space of CTPs. The CTP partitioning is effective for pruning the search space because of the following reasons. First, a CTP partition has significantly fewer interleavings than the whole program, making it more amenable to symbolic analysis. Second, for terminating programs (w.r.t. an input), the set

1 In this paper, SAT formula denotes a formula either in Boolean logic or in a quantifier-free first-order logic; SAT solver denotes a decision procedure of SAT formulas.
of CTPs is finite. Third, decomposing the verification problem into subproblems over the CTPs does not negatively affect partial order reduction. By definition, if one interleaving is in the CTP, then so are all its trace-equivalent interleavings. In other words, we need to consider no more than the interleavings within a CTP to get the full benefit of POR. For symbolic POR techniques [11, 22], restricting the set of executions to each CTP significantly lowers the encoding overhead.

Our method also uses SAT-based symbolic analysis to provide crucial pruning capability to the enumerative exploration. We use pruning to meet two objectives. First, we want to ensure that symbolic analysis in Check works on distinct CTPs to avoid duplicated work. Second, when a CTP is proved to be error-free, if it implies that some other CTPs in future search are error-free as well, we want to avoid generating these CTPs. We propose a conservative analysis of the observed CTPs to identify these two types of redundant CTPs. Note that pruning redundant CTPs is orthogonal to applying POR to each individual CTP.

We have implemented the proposed techniques and conducted experiments on some multithreaded C programs written using the POSIX threads (PThreads) library. Our preliminary results show that the symbolic reduction is significantly more effective than dynamic POR [6] in pruning the search space.

The remainder of this paper is organized as follows. In Section 2, we formally define programs, traces, and CTPs. In Section 3, we present the enumerative algorithm that produces execution traces. In Section 4, we present the SAT-based algorithm for checking property violations in a CTP, followed by the symbolic pruning algorithm in Section 5. We present our experimental results in Section 6, review related work in Section 7, and give conclusions in Section 8.

2. CONCURRENT TRACE PROGRAMS

In this section, we introduce a simple but general concurrent language; we also define traces and concurrent trace programs.

2.1 Programs

A program in our language consists of a set \(SV \) of shared variables and a finite set of threads \(T_{0},\ldots,T_{k} \). Let \(Tid = \{0,1,\ldots,k\} \) be the set of thread indices and \(T_{0} \) be the main thread. Each thread \(T_{i} \) consists of a set of control locations \(Loc_{i} \), a set of local variables \(LV_{i} \), and a set of operations. Each \(Loc_{i} \) contains unique entry and exit locations \(l_{entry},l_{exit} \) of the thread, as well as two imaginary locations \(\bot,T \); thread \(T_{i} \) is in \(\bot \) before its creation and in \(T \) after termination. We define operation \(\chi \) as a triple \((l,a,l')\), where \(l,l' \in Loc_{i} \) and \(a \) is an action label. Note that by definition, each operation \(\chi \) belongs to only one thread. Let \(\Lambda_{i} = SV \cup LV_{i} \) be the set of variables accessible to thread \(T_{i} \).

Each action label \(a \in T_{i} \) has one of the following forms:

- **guarded assignment** \((\text{assume}(c),\text{asgn})\), where \(c \) is a condition over \(V_{i} \), and \(\text{asgn} = \{\text{val} := \text{exp}\} \) is a set of parallel assignments, where \(\text{val} \in V_{i} \) and \(\text{exp} \) is an expression over \(V_{i} \). Intuitively, the assignments proceed iff condition \(c \) is true.

- **fork\((j)\)**, where \(j \in Tid \) and \(j \neq i \), starts the execution of child thread \(T_{j} \).

- **join\((j)\)**, where \(j \in Tid \) and \(j \neq i \), waits for child thread \(T_{j} \) to terminate.

- **assert\((c)\)**, where \(c \) is a condition over \(V_{i} \), asserts \(c \).

While this language is simple, by defining expressions suitably and using source-to-source transformations, we can model all statements in multi-threaded C. We omit the details on modeling the C language constructs such as pointers and structures, since they are not directly related to concurrency; for more information refer to recent efforts in [3, 10, 13].

The guarded assignment action \((\text{assume}(c),\text{asgn})\) may have the following variants: (1) when \(c = \text{true} \), it can represent normal assignments; (2) when the assignment set is empty, \(\text{assume}(c) \) itself can represent the then-branch of an \(\text{if}(c)\)-else statement, while \(\text{assume}(\lnot c) \) can represent the else-branch; and (3) with both guard and assignments, it can represent an atomic check-and-set, which is the foundation of all kinds of synchronization primitives. In particular, we precisely capture the semantics of all synchronization primitives in the standard PThreads library. For example, acquiring lock \(lk \) in thread \(T_{i} \) is modeled as \((\text{assume}(lk = 0),\{lk := i\})\), where \(i \) is the thread id; and acquiring the counting semaphore \(se \) is modeled as \((\text{assume}(se > 0),\{se := se - 1\})\). Actions \(\text{fork} \) and \(\text{join} \) represent thread creation and termination, respectively. In PThreads library, they correspond to \(\text{pthread_create} \) and \(\text{pthread_join} \). Action \(\text{assert}(c) \) specifies the correctness property, and it corresponds to the assertion function in the standard C library.

2.2 Execution Traces

We have defined operation \(\chi = (l_{t},a_{t},l'_{t}) \), where \(l_{t},l'_{t} \in Loc \), as the instance of a statement in the \(t \)-th thread. This is needed because a statement in the textual representation of a multithreaded C program may be executed by multiple threads. Furthermore, since each operation \(\chi \) may be executed more than once within a thread, e.g., when it is in a loop, we define event \(t = (l_{t},a_{t},l'_{t}) \), where \(k \in N \), to denote the \(k \)-th instance of \(\chi \) in an execution trace.

We define the semantics of a program using a labeled transition system. Let \(V = SV \cup \bigcup_{i} LV_{i} \) be the set of variables in the program. Let \(Val \) be a set of values for variables in \(V \). \(Val \) contains a special symbol \(\bot,U \), denoting the uninitialized value. We also assume that when thread \(T_{i} \) is in locations \(\bot \) or \(U \), all local variables in \(SV_{i} \) have the value \(\bot,U \). A state of the program is a tuple \(s = (\sigma_{V},PC) \), where \(\sigma_{V} : V \rightarrow Val \) assigns a value to each variable, and \(PC \) is a function mapping each thread \(i \in Tid \) to its current control location \(l \in Loc_{i} \). For convenience, we may use \(s[v] \) and \(s[exp] \) to denote the values of \(v \) and \(exp \) in state \(s \). Transitions have the form \(s \xrightarrow{\chi} s' \), where \(s = (\sigma_{V},PC) \) and \(s' = (\sigma'_{V},PC') \) are states, and \(\chi \) is an event. Intuitively, the existence of such a transition means: the program state changes from \(s \) to \(s' \) when we execute \(\chi \). More formally, let \(t = (l,a,l') \) be an event of thread \(T_{i} \); there exists a transition \(s \xrightarrow{\chi} s' \) iff \(PC'(i) = l' \), \(PC'(i) = l' \), and one of the following conditions holds:

- \(a = (\text{assume}(c),\text{asgn}),s[c] = true \); for each \(\text{val} := \text{exp} \) in \(\text{asgn} \), \(s[\text{val}] = s[\text{exp}] \); and states \(s,s' \) agree otherwise.

- \(a = \text{fork}(j),PC'(j) = \bot,PC'(j) = l_{entry} \), where \(l_{entry} \in Loc_{j} \) is the entry of \(T_{j} \); and states \(s,s' \) agree otherwise.

- \(a = \text{join}(j),PC'(j) = l_{exit},PC'(j) = T \), where \(l_{exit} \in Loc_{j} \) is the exit of \(T_{j} \); and states \(s,s' \) agree otherwise.

- \(a = \text{assert}(c),s[c] = true \); and states \(s,s' \) agree otherwise.

Note that if \(s[c] = false \), an error will be raised.

Based on the above semantics, we define the execution traces.

Definition 1. Let \(P \) be a program and \(s_{0} \) be the initial state. Let \(\rho = t_{1} \ldots t_{k} \) be an event sequence. The tuple \((s_{0},\rho)\) defines
we have \subseteq (view are routines in traces of the program. In particular, the assertion holds in ρ for the correctness property, which holds in some, but not in all, execution of ρ).

2.3 Concurrent Trace Programs

In our model. Due to fork/join, the thread routines end, and asserts start running language). The main thread ρ is the partial order such that, for two arbitrary events t_i, t_j, we have $t_i \subseteq t_j$ iff $i < j$, and there exist t_k, t_l in T such that $t_i \subseteq t_k, t_l \subseteq t_j$, and

- either t_k has action fork($tid(t_k)$),
- or t_l has action join($tid(t_l)$).

Intuitively, the first condition captures the constraint that events in the same thread are ordered by their execution order in ρ. The second condition says that events of a child thread happen before their fork, but before join of the parent thread. Since the partial order is constructed from ρ, which represents a concrete program execution, fork of a thread always comes before its join.

Not all linearizations of CTP_ρ may correspond to execution traces of the program P. Let $\rho' = t'_1 \ldots t'_n$ be a linearization (total order) of CTP_ρ; we say that ρ' is a feasible linearization if ρ' is an execution trace. By definition, all feasible linearizations of CTP_ρ model the real behavior of program P. Therefore, any error found in CTP_ρ is guaranteed to be a real error.

According to the definition, if ρ, ρ' are execution traces of the same program and they have the same set of events, then CTP_ρ and $CTP_{\rho'}$ are the same. Therefore, we can regard two traces ρ, ρ' as CTP-equivalent if they have the same set of events. Now we compare CTP-equivalence with the popular Mazurkiewicz-trace equivalence [15]. In the POR literature, two events t_1, t_2 are independent if (1) executing one does not enable/disable another, and (2) they do not have data conflict, i.e., there does not exist a state s where both t_1, t_2 are enabled, access the same variable, and at least one of them is a write. Two traces are (Mazurkiewicz) equivalent if one trace can be transformed into another by repeatedly swapping adjacent independent events. Therefore, two (Mazurkiewicz) equivalent traces have the same set of events.

Theorem 1. Let ρ_1, ρ_2 be two execution traces of program P. If ρ_1, ρ_2 are (Mazurkiewicz) equivalent, then $CTP_{\rho_1} = CTP_{\rho_2}$.

The seemingly trivial theorem has significant implications. Recall that classic POR relies on trace equivalence. For each (Mazurkiewicz) trace equivalence class, if a representative interleaving has been checked, the remaining interleavings are regarded as redundant and therefore are pruned away. Theorem 1 shows that, in order to apply POR, we need to consider no more than the interleavings within a CTP, because the CTP always contains (Mazurkiewicz) equivalence classes in their entirety. This allows us to take full benefit of the POR reduction, while focusing on smaller partitions (CTP) rather than whole programs. The overhead of symbolic encoding of POR is also reduced.

Example. Fig. 2 illustrates the CTP_ρ derived from the trace ρ in Fig. 1. In the graph representation, nodes denote control locations and edges denote events. We use \triangle to indicate the start of fork (denoted n_{fork}), and \triangledown to indicate the end of join (denoted n_{join}). According to their semantics, fork results in simultaneously executing all outgoing edges of n_{fork}, while join results in simultaneously executing all incoming edges of n_{join}. The three vertical paths in this figure, from left to right, represents the control flow paths in T_1, T_0, T_2, respectively. Since CTP_ρ defines a partial order, interleavings different from ρ are also allowed. For instance, although t_{15} appeared before t_{21} in ρ, inside CTP_ρ, it is allowed to be executed after t_{21}. However, not all linearizations of CTP_ρ are feasible. Consider the trace $\rho'' = t_{12}t_{27}t_{28}t_{19}t_{18}t_{17}t_{16}t_{15}$; it is not a feasible linearization because t_{19}: assume($b \neq 0$) is violated. In contrast, the trace $\rho'' = t_{11}t_{12}t_{13}t_{14}t_{15}t_{16}t_{17}t_{18}t_{19}$ is a feasible linearization. In Section 4, we discuss a SAT-based encoding which explores only feasible linearizations of CTP_ρ. Finally, note that ρ'' and ρ are not Mazurkiewicz equivalent (and yet they are CTP-equivalent).

<table>
<thead>
<tr>
<th>T_0</th>
<th>T_1</th>
<th>T_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>int x = 0;</td>
<td>foo() { int a;</td>
<td>bar() { int b;</td>
</tr>
<tr>
<td>int y = 0;</td>
<td>t_{11}: any;</td>
<td>t_{21}: b=$x;</td>
</tr>
<tr>
<td>pthread_t t1, t2;</td>
<td>t_{12}: assume(a $=$ 0);</td>
<td>t_{22}: b=x;</td>
</tr>
<tr>
<td>main() {</td>
<td>t_{13}: x=$a;</td>
<td>t_{23}: y=b;</td>
</tr>
<tr>
<td>t_1: pthread_create(1,foo);</td>
<td>t_{14}: $ass=$x$+1$;</td>
<td>t_{24}: b=y+1;</td>
</tr>
<tr>
<td>t_2: pthread_create(2,bar);</td>
<td>t_{15}: x=a;</td>
<td>t_{25}: y=b;</td>
</tr>
<tr>
<td>t_3: pthread_join(2);</td>
<td>t_{16}: else</td>
<td>t_{26}: else</td>
</tr>
<tr>
<td>t_4: pthread_join(1);</td>
<td>t_{17}: x=d;</td>
<td>t_{27}: y=d;</td>
</tr>
<tr>
<td>t_5: assert(x \neq y);</td>
<td>t_{18} }</td>
<td>t_{28} }</td>
</tr>
</tbody>
</table>

(below is the trace)

Thread T_0: Thread T_1: Thread T_2

t_0: x=0,y=0;
t_1: fork(1)
t_2: fork(2) \triangleright

\downarrow

t_{11}: any;
t_{12}: assume(a $=$ 0);
t_{13}: x=a;
t_{14}: $ass=$x$+1$;
t_{15}: x=a;
t_{16}: else
t_{17}: x=d;
t_{18} }

\uparrow

t_3: join(2);
t_4: join(1);
t_5: assert($x \neq y$);

Figure 1: A C program and one of its execution trace.
We adopt the stateless model checking approach, where each state is symbolically checked and then highlighted and motivated our modifications.

In our framework, the execution traces of a program are produced by an enumerative algorithm that systematically explores the concurrent program. For each execution trace ρ, we derive CTP_ρ and symbolically check all its feasible linearizations for property violations. If we find a bug in CTP_ρ, it is guaranteed to be a real bug in the program. If we do not find any bug in CTP_ρ, the enumerative algorithm moves on to the next execution trace ρ'. In this section, we first review the baseline enumeration algorithm, and then highlight and motivate our modifications.

3.1 Baseline Search Algorithm

The baseline enumerative algorithm is similar to dynamic model checking [8, 16, 23]. The algorithm is implemented in a so-called scheduler process, running concurrently with the program under verification (a separate process). Our scheduler controls the execution order of the program’s statements and records the execution trace in a stack S. It is important to note that our scheduler records only the event sequence $t_1 \ldots t_n$, not the concrete states represented as variable valuations—due to the large state space, such a stateful approach often runs into scalability problems in practical settings. We adopt the stateless model checking approach, where each state $s_i \in S$ is represented implicitly by the event sequence $t_1 \ldots t_i$ that leads to state s_i (from the initial state s_0).

During the enumerative search, in each $s \in S$, we maintain the following data structures:

- The set $s.enabled$ consists of all events that can be executed from s; that is, it contains t iff $s \rightarrow s'$ exists for some s'.
- The set $s.done \subseteq s.enabled$ consists of all the events that have been executed from s in some previous runs.
- The set $s.backtrack \subseteq tid$ consists of the enabled threads (ids) that remains to be explored from s in future runs.

The pseudo code of our algorithm is shown in Fig. 3 (ignore lines 4-6 and the subroutines in lines 20-41 for now). Procedure $FUSION-SEARCH$ starts from state s_0 and keeps executing the program till it terminates, where termination is signaled by $s.enabled = \emptyset$. Each execution step is a (recursive) call to $FUSION-SEARCH$. At each step, a previously unexplored enabled event t is picked from $s.enabled$ such that $tid(t)$ is also in the backtrack set $s.backtrack$.

Once the termination state is reached (line 3), a complete execution trace ρ can be derived from the search stack S. To move on to the next trace, $FUSION-SEARCH$ returns to a previous step, picks another enabled event t such that $tid(t) \in s.backtrack$, and continues the execution. The algorithm stops when $FUSION-SEARCH(S, s_0)$ returns.

The set $s.backtrack$ is crucially important in affecting the search performance. In the baseline algorithm, since $s.backtrack$ contains all threads that are enabled at s, when the algorithm stops, all possible interleavings of the program have been explored. There is a scalability problem in the baseline algorithm, since the number of interleavings of a nontrivial concurrent program is often astronomically large [16].
3.2 The Goal of Pruning

The goal of our symbolic analysis is to solve the aforementioned interleaving explosion problem. Our analysis consists of two phases, i.e., check and prune, corresponding to lines 4-6 of the pseudo code in Fig. 3. Recall that since the algorithm reaches line 3, the particular run of the program has completed, and the execution trace \(\rho \) can be retrieved from the search stack \(S \). First, we call CTP-Check-Property to derive \(CTP_\rho \) and check its feasible linearizations for property violations. If we find an error in \(CTP_\rho \), it is a real error and the algorithm stops. If we cannot find any error in \(CTP_\rho \), we call CTP-PRUNE-BACKTRACKSETS to prune the future search space. Since the enumerative search is conducted in a DFS order, pruning can be realized by removing some backtrack points (in \(s.\text{backtrack} \)) that correspond to the redundant CTPs.

In CTP-PRUNE-BACKTRACKSETS, there are two challenging problems that need to be solved. First, how to prune the backtrack points so that, among the produced execution traces \(\rho_1, \rho_2, \ldots \), we have \(CTP_{\rho_i} \neq CTP_{\rho_j} \) for all \(i \neq j \). It ensures that CTP-Check-Property always works on distinct CTPs to avoid duplicated work. Second, how to prune the backtrack points so that when \(CTP_{\rho_i} \neq CTP_{\rho_j} \), if the current \(CTP_{\rho_i} \) being error-free implies that the future \(CTP_{\rho_j} \) is error-free as well, the redundant trace \(\rho_j \) will not be generated in the first place. It is important to note that we do not (intend to) solve these two problems precisely, i.e., some CTPs we check may be redundant. The main idea of our pruning effort is to use a fast and conservative analysis, which can weed out many, but perhaps not all, redundant CTPs. In the next two sections, we shall present symbolic algorithms for checking \(CTP_\rho \), and for identifying redundant backtrack points.

4. SYMBOLICALLY CHECKING CTPS

Given \(CTP_\rho \), we symbolically check all its feasible linearizations for property violations. We express this verification problem as a SAT formula \(\Phi_{CTP_\rho} \) such that it is satisfiable iff a feasible linearization violates the correctness property.

Although our symbolic encoding is applicable to any loop-free concurrent program, in this section we shall present the algorithm by tailoring it to CTPs only. In the next section, we will extend it to handle the more general case.

4.1 Constructing the CSSA Form

Our SAT encoding is based on transforming a loop-free program (e.g., a CTP) into a concurrent static single assignment (CSSA) form [14]. This CSSA form has the property that each variable is defined exactly once. A definition of variable \(v \) is an event that modifies \(v \), and a use is an event when \(v \) appears in an expression (condition or right-hand-side of an assignment).

The transformation consists of (1) renaming variables that have more than one definition, (2) adding \(\phi \)-functions at the merging points of if-else statements to represent the confluence of multiple definitions in thread-local branches, and (3) adding \(\pi \)-functions before shared variable uses to represent the confluence of multiple definitions in different threads. While \(\phi \)-functions exist in standard SSA form, \(\pi \)-functions are unique to concurrent programs. Since each thread in a CTP has a single thread-local path without branches, \(\phi \)-functions are not needed in a CTP.

\textbf{Definition 3.} A \(\phi \)-function, for a local variable \(v \) at the merging node of multiple branches of the same thread, has the form \(\phi(v_1, \ldots, v_i) \), where each \(v_i (1 \leq i \leq k) \) is the definition of \(v \) in the \(i \)-th incoming branch.

2We will use \(\phi \)-functions in \(CTP_\rho^+ \) (Section 5).

\textbf{Definition 4.} A \(\pi \)-function, for a shared variable \(v \) at the node before its use, has the form \(\pi(v_1, \ldots, v_k) \), where each \(v_i \) (\(1 \leq i \leq k \)) is either the most recent definition in the same thread (as the use), or a definition in another concurrent thread.

We construct the CSSA form of a program as follows:

1. Create unique names for local variables in their definitions.
2. Create unique names for shared variables in their definitions.
3. Add a \(\phi \)-function for each local variable \(v \) at the thread-local merging node of two branches, create a unique name \(w \), and add definition \(w \leftarrow \phi(v_1, \ldots, v_k) \).
4. For each use of a local variable, replace the use with the most recent (unique) definition.
5. For each use of a shared variable \(v \), the most recent definition may not be unique (depending on the interleaving).
 - Add a \(\pi \)-function immediately before the use, create a unique name \(w \), and add definition \(w \leftarrow \pi(v_1, \ldots, v_k) \).
 - Replace the use with the newly defined \(w \).

\textbf{Example.} The CSSA form of the CTP in Fig. 2 is as follows:

\begin{verbatim}
\begin{verbatim}
t_0 : x_0 := 0;
y_0 := 0;
t_1 : t_2 :
 t_{11} : w_1 := \pi(y_0, y_1)
 a_1 := w_1;
 t_{12} : \text{assume}(a_1 = 0)
 t_{13} : x_1 := 1;
 t_{14} : w_2 := \pi(x_1)
 a_2 := w_2 + 1;
 t_{15} : x_2 := a_2;
 t_{18} :
\end{verbatim}
\end{verbatim}

We create \(w_1 := \pi(y_0, y_1) \) at \(t_{11} \) to denote the most recent definition of the shared variable \(y \). This may be either \(y_0 \) defined in \(t_0 \), or \(y_1 \) defined in \(t_{12} \). We create the other \(w \)-variables in a similar way. Note that the \(\pi \)-functions for \(w_2, w_3, w_4 \) have only one parameter because their most recent definitions can be statically determined. In particular, for \(z \) at \(t_5 \), we can statically determine that definitions \(x_0, x_1 \) must happen before \(x_2 \) due to the semantics of fork/join—therefore they cannot be the most recent definition.

4.2 From CSSA to \(\Phi_{CTP_\rho} \)

The CSSA form in [14] was designed for compiler optimizations where \(\phi, \pi \) functions are treated as nondeterministic choices. The interpretation is too conservative for verification. We interpret them precisely in our SAT encoding described below.

\textbf{Execution time.} We start by assigning each event \(t \) a fresh integer variable \(O(t) \) denoting its execution time. We use \(HB(t, t') \) to express the constraint that \(t \) is executed before \(t' \). In the SAT/SMT formula, \(HB(t, t') \) is implemented as a difference logic constraint: \(O(t) < O(t') \), or simply \(O(t) - O(t') \leq -1 \).

\textbf{Path conditions.} For all events \(t \) in \(CTP \), we define the path condition \(g(t) \) such that \(t \) is executed iff \(g(t) \) is true. Consider the graph representation of a CTP (e.g., Fig. 2); the \textit{predecessor} of an event \(t \) is the edge immediately preceding \(t \) in the graph. We define the path condition as follows:

\begin{verbatim}
\end{verbatim}
The symbolic encoding of formula Φ to holds by construction. Note that solutions (variable assignments) ability Modulo Theory (SMT) solver [5].

Between threads to take place, subject only to the HB-constraints can be expressed in a quantifier-free first-order logic. In our

Program Order: For each event $t \in CTP$,

- if t is the first event in the CTP, do nothing;
- otherwise, for each predecessor t' of t in the CTP, let $\Phi_{CTP} := \Phi_{CTP} \land HB(t', t)$.

This rule captures the program order specified in Definition 2.

Actions: For each event $t \in CTP$,

- if t has $val := exp$, let $\Phi_{CTP} := \Phi_{CTP} \land (val = exp)$;
- if t has $assert(c)$, let $\Phi_{CTP} := \Phi_{CTP} \land \neg(g(t) \rightarrow c)$.

This rule captures the standard semantics of assignments and assertions. The correctness property $(g(t) \rightarrow c)$ states that c must hold if t is executed. We negate the property to look for bugs.

π-Functions: For each $w \leftarrow \pi(v_1, \ldots, v_k)$, defined in t, let t_i be the event that defines v_i, let $\Phi_{CTP_{i}} := \Phi_{CTP_{i}} \land \bigwedge_{i=1}^{k}(w = v_i) \land (g(t) \land HB(t_i, t) \land \bigwedge_{i=1,j \neq i}^{k}(HB(t_j, t_i) \lor HB(t, t_j)))$

Intuitively, the π-function evaluates to v_i iff it chooses the i-th definition in the π-set. Having chosen v_i, all other definitions $j \neq i$ must occur either before t_i, or after this use of v_i in t.

ϕ-Functions: For each $w \leftarrow \phi(v_1, \ldots, v_k)$, defined in t, let t_i be the predecessor of t such that t_i is in the branch that defines v_i.

$\Phi_{CTP_{i}} := \Phi_{CTP_{i}} \land \bigvee_{i=1}^{k}(\phi = v_i) \land g(t_i)$

That is, the ϕ-function evaluates to v_i iff the branch of t_i is executed. If no branching exists in any thread, as is the case for CTP_{n}, this rule is not needed.

Theorem 2. Formula $\Phi_{CTP_{i}}$ is satisfiable iff there exists a feasible linearization of CTP_{i} violating the correctness property.

The symbolic encoding of formula Φ_{CTP} directly follows the semantics of CTP as defined in Section 2. Therefore, the theorem holds by construction. Note that solutions (variable assignments) to Φ_{CTP} correspond to linearizations of CTP.

It is important to point out that the encoding allows interleavings between threads to take place, subject only to the HB-constraints added in rules 1 and 3. Since CTP has a finite size, the formula Φ_{CTP} can be expressed in a quantifier-free first-order logic. In our implementation, the formula is decided by an off-the-shelf Satisfiability Modulo Theory (SMT) solver [5].

5. PRUNING REDUNDANT CTPS

The pruning problem in Section 3 can be formulated into a SAT problem similar to $\Phi_{CTP_{i}}$. However, pruning requires an over-approximation of the behavior of the program, whereas CTP_{i} is an underapproximation. Detailed explanation is given as follows.

Let $\rho = t_1 \ldots t_n$ be the current trace and ρ be the set of traces $\{\rho\}$ such that ρ matches a prefix of ρ. Assume that executing ρ leads to state s. The pruning problem, i.e., whether $s\backslashbacktrack$ can be pruned away, is deciding whether the correctness property holds on all traces in $W(\rho)$. If the answer is yes, we do not need to generate these traces. However, CTP_{ρ} may not capture all traces in $W(\rho)$. Consider the CTP in Fig. 2 as an example: assume that $\rho = t_0t_1t_2t_3$; continuing ρ, by executing T_1 leads to the execution of t_2, which is not captured in CTP_{ρ}.

Therefore, we need to derive from ρ a concurrent trace abstraction (CTA) which models all the events in ρ, and also (conservatively) models the untaken branches in all threads.

5.1 Concurrent Trace Abstraction (CTA)

To model both branches in an $if(c)\rightarrowelse$ statement, we add a phantom edge for the untaken branch guarded by $\neg(c)$. A precise modeling of the code in the untaken branch is undesirable due to scalability concerns. Instead, we consider appropriate abstractions depending on the correctness properties for pruning purposes.

For checking local assertions, a naive and yet correct abstraction is that the unobserved code may assign all variables to arbitrary values. That is, the phantom edge is labeled with guard $\neg(c)$ and the set $\{v \leftarrow \ast | v \in V\}$ of assignments, where V is the set of all program variables. The set of assignments may set any variable to an arbitrary value, and therefore can over-approximate any statement in the program. More formally, any state transition $s \rightarrow s'$ can be simulated $s \rightarrow s''$.

However, this abstraction is too coarse to be practically useful. We improve over the naive approach by using a conservative static analysis of the program, conducted a priori, to identify, for each unobserved branch, the set $WV \subseteq V$ of write-variables (variables that may be modified). In this new abstraction, the phantom edge assigns the WV-variables to arbitrary values. If an assertion is embedded in the untaken branch, we consider that it may fail and therefore add a special variable called $assert_fail$ to WV.

Merging point. For each branch T_j in a structured program, we assume the existence of a partial function $M : Loc_j \rightarrow Loc_j$ such that, for each event $t=(l, assume(c), l')$, there is $M(l) = l''$ which, intuitively, is the merging point of the two branches in $if(c)\rightarrowelse$. In control flow analysis literature, such merging points are called immediate post-dominators. More formally, l'' strictly post-dominates l in a graph iff $l \neq l''$ and all paths from l to the exit point goes through l''. And l'' is the immediate post-dominator of l if it is the closest strict post-dominator of l.

In our implementation, we instrument all branching statements of a C program to make available at runtime the merging points and write-variables of untaken branches (computed a priori). This code instrumentation is illustrated in Fig. 4. First, we insert recording routines to signal the start and end of every branch—they mark the branch heads and their immediate post-dominators. Second, in both branches of $if\rightarrowelse$ statement, we insert

- $rec_var_WR_in_other_branch(WV)$, where WV is the set of write-variables in the other branch.

Footnote: For instance, for detecting data races, a practical abstraction uses a many-set of shared variables that are accessed in the branch and the corresponding must-set of locks protecting the accesses.

Footnote: For instance, for detecting data races, a practical abstraction [21] uses a many-set of shared variables that are accessed in the branch and the corresponding must-set of locks protecting the accesses.
Recall that no two events in \(\rho \) are the same. Consequently, the graph representation of CTA is always acyclic. Suppose that the entire code in Fig. 4 is embedded in a loop, then each time the loop body is executed, a new sequence of non-phantom edges \(t_{ph2} \) will occur after \(t_{22}t_{25} \) (assuming the else-branch is taken), together with a new phantom edge \(t_{ph2} \).

5.2 Semantics of Phantom Edges

The semantics of a phantom edge is different from executing a non-phantom edge. Let \(t_{ph} = (l, a_{ph}, l') \) be the phantom edge, where \(a_{ph} = (\text{assume}(\neg c), \{ v \leftarrow * | v \in WV \}) \). The effect of executing \(t_{ph} \) is captured by the following regular expression:

\[
\text{assume}(\neg c) \{ v \leftarrow * | v \in WV \}^*
\]

That is, when condition \(\neg c \) is true at \(l \), the assignments may be executed for an arbitrary but finite number of times, before the control goes to \(l' \).

Using the semantics defined above, one can prove that the phantom edge \(t_{ph} \) overapproximates the untaken branch guarded by \(\neg c \); all possible event sequences of the untaken branch are included in the above regular expression. The proof is sketched as follows: First, any event \(t \) of the untaken branch can be overapproximated by executing \(\{ v \leftarrow * | v \in WV \} \) once. Second, any finite event sequence of the untaken branch can be overapproximated by \(\{ v \leftarrow * | v \in WV \}^* \). For a concrete example, refer to Fig. 4. Any of the events \(t_{23}t_{25} \) or \(t_{24}'t_{25} \) can be overapproximated by the phantom edge \(t_{ph2} : \text{assume}(b = 0) \{ y \leftarrow *, b \leftarrow * \} \). Consequently, the representation of each thread in \(CTPP \) overapproximates the behavior of the thread in program \(P \). This leads to the following observation.

Observation 1. The concurrent trace abstraction \(CTPP \) overapproximates the behavior of program \(P \). That is, if \(\rho' \) is an execution trace of \(P \), then \(\rho' \) is a feasible linearization of \(CTPP \).

Bounded Semantics. The phantom edge also has bounded semantics when it is restricted to a particular \(CTPP \). The reason is that, for a phantom assignment \(v \leftarrow * \) (where \(v \in WV \)) to have any impact, the value defined for \(v \) needs to be used by other edges in \(CTPP \). Only non-phantom edges can use a variable—when the variable appears in conditions or the right-hand side of assignments. (The guard of a phantom edge does not count because it uses the same versions of variables as its non-phantom counterpart.) Since \(CTPP \) has a fixed number of non-phantom edges, the aforementioned regular expression for is reduced as follows:

- For each edge \(t \) that uses variable \(v \in WV \), create a fresh copy \(v_t \) as part of the CSSA construction. Let \(WV_{cssa} \) be the set of all these fresh variables.
- The set \(\{ v \leftarrow * | v \in WV \} \) is reduced to \(\{ v_t \leftarrow * | v_t \in WV_{cssa} \} \), where the size of \(WV_{cssa} \) is fixed.
- The effect of executing \(t_{ph} \) is modeled by executing each individual assignment \(v_t \leftarrow * \) (where \(v_t \in WV_{cssa} \)) exactly once, but in all possible orders.

5.3 Symbolically Encoding \(\Phi_{CTPP} \)

The symbolic encoding for CTA closely resembles the encoding in Section 4.1. Below we highlight only the modifications.

Adding \(\phi \)-functions. Due to phantom edges, a thread in CTA may have multiple control paths. Therefore, \(\phi \)-functions are needed when we construct the CSSA form. Section 4 presents the rules...
for adding and encoding ϕ-functions. As an example, the CSSA of the CTA in Fig. 5 is as follows:

\[
t_0: \ x_0 = 0;
\]
\[
t_1: \ y_0 = 0;
\]
\[
t_2: \ t_{11} : w_1 \leftarrow \pi(y_0, y_1, y_3) \\
 t_{12} : \pi(x_0, x_1, x_2, x_3) \\
 t_{13} : x_1 = 1; \\
 t_{14} : w_2 \leftarrow \pi(x_1) \\
 t_{15} : x_2 = a_3; \\
 t_{16} : \pi(x_1, a_3) \\
 t_3: \ a_3 \leftarrow \pi(x_2, x_3) \\
 t_4: \ a_3 \leftarrow \pi(y_2, y_3)
\]
\[
t_5: \ w_4 \leftarrow \pi(x_2, x_4) \\
 w_0 \leftarrow \pi(y_2, y_3)
\]

We add φ(a_1, a_2) and φ(b_1, b_2) at t_18 and t_26, to denote the most recent definitions of a and b. In t_26, variable y has two fresh copies because the definition is used in one then and not in the other. There are actually two definitions in the taken branch t_23-t_25. Similarly, t_5 defines two copies of x since both t_21 and t_5 use it.

Encoding Phantom Edges. Let \(\{ v_t \mid v_t \in \mathcal{W}_t \} \) be the set of assignments in the phantom edge \(t_{\text{ph}} \). We create an execution time variable, denoted \(O_t(t_{\text{ph}}) \), for each assignment \(v_t \leftarrow * \).

Program Order: In Rule 1 of Section 4.1, we add constraints to ensure that assignments in the phantom edge must happen after the predecessor edge \(t' \), and before the successor edge \(t'' \). That is,

\[
H(B(t', t_{\text{ph}})) := \bigwedge_{v_t \in \mathcal{W}_{t'}, \pi(v_t) \in \mathcal{W}_{t'}} O_t(t') < O_t(t_{\text{ph}})
\]
\[
H(B(t_{\text{ph}}, t'')) := \bigwedge_{v_t \in \mathcal{W}_{t''}, \pi(v_t) \in \mathcal{W}_{t''}} O_t(t_{\text{ph}}) < O_t(t'')
\]

π-Functions: In Rule 3 of Section 4.1, when encoding \(\pi(t_1, \ldots, t_k) \), if \(v_i \ (1 \leq i \leq k) \) is defined by phantom edge \(t_{\text{ph}} \) and is used by edge \(t \), we define \(O_t(t_{\text{ph}}) \) as the execution time of assignment \(v_i \leftarrow * \). The HB-constraints are as follows:

\[
H(B(t_{\text{ph}}, t)) := O_t(t_{\text{ph}}) < O(t)
\]
\[
H(B(t, t_{\text{ph}})) := O(t) < O(t_{\text{ph}})
\]

Note that there is no need to encode the phantom assignments because \((v = *) \) always equals true. Furthermore, in our encoding, phantom assignments from the same \(t_{\text{ph}} \) are not ordered with respect to each other; all possible linearizations of them are allowed, in order to conservatively model behavior of the taken branch.

Our encoding follows the bounded semantics of phantom edges defined in the previous subsection. Consequently, by Observation 1, formula \(\Phi_{CTP_{\rho}} \) captures all possible execution traces of the program \(P \) (precisely for some and conservatively for others).

We again use symbolic analysis to check for property violations in \(CTP_{\rho} \). In this case, solutions to the SAT formula corresponds to linearizations of the CTA. If the formula is unsatisfiable, all linearizations of the CTA are error-free, since the CTA is an over-approximation. This implies that the entire program is proved to be error-free. In practice, it is rare that \(CTP_{\rho} \) would be error-free by itself, however, when its linearizations are constrained to prefixes of \(\rho \), the search subspace is more likely to be error-free. We exploit this to provide pruning in our enumerative search.

5.4 Using \(CTP_{\rho} \) for Pruning

The pseudo code of the pruning algorithm is presented in Fig. 3, which starts from the last step of the current trace \(\rho \), and for each \(i = n - 1, \ldots, 1 \), analyzes the prefix \(pfx \) of \(\rho \) up to the \(i \)-th step. For each \(pfx \), it builds formula \(\Phi_{pfx} \), which constrains the first \(i \) steps to be the same as \(pfx \). Formula \(\Phi_{pfx} \) is constructed as follows: First, we initialize \(\Phi_{pfx} := \text{true} \) for the first event in \(pfx \). For each remaining event \(t \in \rho \).

- If \(t \) is in \(pfx \) and \(t' \) immediately precedes \(t \) in \(pfx \), let \(\Phi_{pfx} := \Phi_{pfx} \land H(B(t')) \).
- If \(t \notin pfx \), and \(t' \) is the last event in \(pfx \), let \(\Phi_{pfx} := \Phi_{pfx} \land H(B(t', t)) \).

Theorem 3. Let \(s_i \) be the program state after executing \(pfx \).

If formula \(\Phi_{CTP_{\rho} + \Phi_{pfx}} \) is unsatisfiable, the backtrack points in \(s_i \) backtracking can be removed.

Example. Consider the running example, and regard \(\rho \) in Fig. 2 as the current trace in the enumerative search. Without our symbolic checking and pruning, the DPOR algorithm as in [6] would backtrack to the state before \(t_{13} \) and execute \(t_{21} \), leading to the new execution trace \(\rho' = t_0 t_1 t_2 t_1 t_2 t_3 t_4 t_2 t_3 t_2 t_4 t_5 t_7 \). Partial order reduction cannot remove \(\rho' \) because it is not (Mazurkiewicz) equivalent to \(\rho \) and therefore is not deemed redundant. However, in our method, \(CTP_{\rho} = CTP_{\rho'} \) and therefore \(\rho' \) has already been checked by CTP-CHECK-PROPERTY. Consequently, our symbolic pruning will remove this backtrack set: for \(pfx = t_0 \ldots t_{14} \), formula \(\Phi_{CTP_{\rho} + \Phi_{pfx}} \) is unsatisfiable. As a result, we skip the trace \(\rho' \), backtrack, and directly generate the new trace \(\rho'' = t_0 t_1 t_2 t_1 t_2 t_3 t_4 t_2 t_3 t_2 t_4 t_5 t_7 \). Since \(CTP_{\rho''} \neq CTP_{\rho} \), and our subsequent calls to symbolic checking would report that a linearization of \(CTP_{\rho''} \) fails the assertion at \(t_5 \).

In practice, our pruning happens only when the SAT solver proves that \(\Phi_{CTP_{\rho} + \Phi_{pfx}} \) is unsatisfiable; any other possible outcome in practice (satisfiable, timeout, undecided, etc.) means no pruning. This provides crucial flexibility in practical settings to make trade-offs. For instance, a timeout may be imposed on the SAT solver, to control the time allowed for the pruning computation.

Thus far, we have assumed that the program is structured and the phantom action label (merging points and write-variables) can be efficiently computed a priori. In real-world programs, these assumptions may not hold. We use a safe bailout strategy to deal with abnormals where our assumptions do not hold. When code in a branch have \(\text{assert}(c) \) statements, non-structured statements (goto, long-jump, etc.), or otherwise complex statements that are difficult for static analysis, we resort to using a phantom edge labeled with \(\text{assert}(false) \). It is implemented by adding variable \(\text{assert} _{fail} \) to \(W \). If this phantom edge is encountered during a search on a \(CTP_{\rho} \), an error will be raised, forcing the algorithm to take the backtrack rather than prune it away.

6. EXPERIMENTS

We have implemented the symbolic pruning algorithms in the setting of dynamic model checking. Our tool, called **Fusion**, is capable of handling C programs using the Linux PThreads library.
Our enumerative algorithm builds on Inspect [23], a stateless model checker with dynamic POR. We also use it for our baseline comparison\(^4\). We use CIL [17] for parsing the C code, collecting write-variables, and code instrumentation. We use the Yices SMT solver [5] to decide the formulas for checking and pruning.

We have compared Fusion with the popular DPOR algorithm [6] implemented in Inspect. DPOR uses the enumerative algorithm with state-of-the-art POR techniques, but does not have symbolic checking and pruning. Two sets of benchmarks were used. The first set consists of parameterized C programs, constructed in-house, with intense shared variable accesses. The LOCs (line of code) of these programs after slicing range from 100 to 200. However, they have a large number of (irredundant) shared variable accesses and therefore are hard concurrency problems. Common C language features (pointers, structures, loops, and recursion) can be found in these programs. The second set consists of the indexer examples from [6], where they were used to showcase the power of DPOR. These are multithreaded programs where each thread inserts 4 messages into a shared hash table. In all examples, the correctness properties are numerical assertions over the shared variables. All benchmarks are accompanied by test cases to facilitate the concrete execution. The experiments were conducted on a PC with a 1.6 GHz Intel Core Duo processor and 2GB memory running Fedora 8.

Table 1 shows the results on the first set of benchmarks. The first four columns show the statistics of the test cases, including the name, the number of threads, and the number of visible events (accesses to shared variables), and whether the assertion holds. Columns 5-10 compare the two methods in terms of the number of execution traces generated, the number of executed events, and the total runtime in seconds. Both methods exhaustively explore the search space unless a property violation is found. A reduction in the number of traces demonstrates Fusion’s pruning capability. In almost all cases, Fusion explores the search space more efficiently by checking only a few traces/CTPs and pruning away the remaining ones. In contrast, DPOR, without any property specific pruning, has to enumerate a large number of trace equivalence classes (in pBch4 all the equivalence classes). Fusion found the buggy executions in the fa02 examples by SAT and the ones in pBch4 and dynRec by dynamic execution.

Figure 6 shows the results on the indexer examples. In this figure, the \(x\)-axis is the number of threads and the \(y\)-axis is the runtime in seconds to find the bug. The correctness property is an assertion starting that a particular hash entry cannot be over-written. When the number threads is from 1 to 11, there is no hash table collision; but from 12 to 20, there are many collisions among threads (however, these collisions cannot be predicted with sufficient accuracy by a static analysis). For brevity, we present the data only in the range 10-20. The results showed that the symbolic pruning in Fusion has significantly reduced the search space.

We believe that our implementation can be further improved by adding light-weight static analysis to simplify the CTPs before subjecting them to SAT-based algorithms. We are also in the process of implementing context-bounding [16] (a powerful unsound reduction orthogonal to ours) upon our symbolic encoding. Nevertheless, Table 1 shows that, even with a preliminary implementation, the overhead of symbolic analysis is well compensated by the savings over pruned traces.

7. RELATED WORK

Among the stateless model checkers that target the same problem as ours, VeriSoft [8], CHESS [16], and Inspect [23] are the closest related ones. However, as we pointed out earlier, all of them are based on the purely enumerative algorithms. None of them has property specific search space pruning. In a previous work [22], we have used the notion of property driven pruning for data race detection. However, the method was also purely enumerative. To our knowledge, the notions of CTP, CTP-equivalent traces, and symbolic pruning have not appeared in existing work in the literature.

For our method to prove bug-freedom, the program must be terminating with respect to the input (no liveness cycle). This requirement is also shared by all existing algorithms based on stateless model checking [8, 16, 23, 24]. In practice, this is not a significant limitation, because most concurrent programs are in fact terminating or can be made so using a testing harness during verification. For nonterminating programs, our method can be used as a bounded analysis tool dedicated for bug-finding, by bounding the execution depths like in CHESS [16].

Our symbolic encoding is related to, but is different from, the SSA-based SAT encoding [3, 13], which is popular for sequential programs. We use difference logic to directly capture the partial order. This differs from CheckFence [1], which explicitly encodes ordering between all pairs of events in pure Boolean logic. TCBMC [18] and the work in [11, 22, 7, 12] are also closely related, but they do not use SSA; we believe that SSA facilitates a more succinct SAT encoding. Furthermore, all the aforementioned methods were applied to whole programs and not to trace programs, and symbolic pruning was not used by any of them.

Our goal of checking alternative interleavings of a concrete trace is related to various predictive testing techniques [19, 2]. Predictive testing aims at detecting concurrency errors during runtime from observing the good (non-error) execution traces of concurrent programs. However, predictive testing does not use the notion of CTP and does not (intend to) cover all feasible linearizations of a CTP. In contrast, it often inspects only a small subset of these linearizations that conform to a happens-before causality model. In our case, we not only check all feasible linearizations of a CTP (derived from the given trace), but also exhaustively explore the space of CTPs.

8. CONCLUSIONS

We have presented new symbolic reduction methods for pruning the property specific redundant execution traces of concurrent programs. Our method uses an enumerative algorithm to explore the space of CTPs, and uses SAT-based symbolic algorithms to verify each individual CTP. We also use a conservative analysis to identify redundant CTPs with respect to the property and prune them away during the enumerative exploration. Our preliminary experimental results show that symbolic reduction can be significantly more effective than classic POR in pruning the search space.
Table 1: Comparing the performance of Fusion and DPOR

<table>
<thead>
<tr>
<th>name</th>
<th># threads</th>
<th>global-ops</th>
<th>property</th>
<th>traces</th>
<th>transitions</th>
<th>time (s)</th>
<th>traces</th>
<th>transitions</th>
<th>time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>fast-0-1</td>
<td>2</td>
<td>21</td>
<td>false</td>
<td>1</td>
<td>32</td>
<td>0.2</td>
<td>94</td>
<td>545</td>
<td>6.6</td>
</tr>
<tr>
<td>fast-0-5</td>
<td>2</td>
<td>73</td>
<td>false</td>
<td>1</td>
<td>84</td>
<td>0.8</td>
<td>190</td>
<td>8349</td>
<td>47.5</td>
</tr>
<tr>
<td>fast-0-10</td>
<td>2</td>
<td>138</td>
<td>false</td>
<td>1</td>
<td>149</td>
<td>1.4</td>
<td>390</td>
<td>29904</td>
<td>108.6</td>
</tr>
<tr>
<td>pBch4-5</td>
<td>2</td>
<td>28</td>
<td>false</td>
<td>2</td>
<td>59</td>
<td>0.5</td>
<td>64</td>
<td>472</td>
<td>13.8</td>
</tr>
<tr>
<td>pBch4-10</td>
<td>2</td>
<td>48</td>
<td>false</td>
<td>2</td>
<td>89</td>
<td>0.6</td>
<td>274</td>
<td>2082</td>
<td>55.9</td>
</tr>
<tr>
<td>pBch4-20</td>
<td>2</td>
<td>88</td>
<td>false</td>
<td>2</td>
<td>149</td>
<td>1.3</td>
<td>1144</td>
<td>10842</td>
<td>248.7</td>
</tr>
<tr>
<td>pBch4ok-1</td>
<td>2</td>
<td>12</td>
<td>true</td>
<td>4</td>
<td>49</td>
<td>1.9</td>
<td>5</td>
<td>50</td>
<td>1.4</td>
</tr>
<tr>
<td>pBch4ok-3</td>
<td>2</td>
<td>28</td>
<td>true</td>
<td>11</td>
<td>211</td>
<td>6.9</td>
<td>152</td>
<td>1445</td>
<td>32.7</td>
</tr>
<tr>
<td>pBch4ok-4</td>
<td>2</td>
<td>36</td>
<td>true</td>
<td>18</td>
<td>385</td>
<td>19.6</td>
<td>1164</td>
<td>10779</td>
<td>255.8</td>
</tr>
<tr>
<td>pBch4ok-5</td>
<td>2</td>
<td>44</td>
<td>true</td>
<td>27</td>
<td>641</td>
<td>40.1</td>
<td>-</td>
<td>-</td>
<td>>3600</td>
</tr>
<tr>
<td>dynRec-0</td>
<td>2</td>
<td>18</td>
<td>false</td>
<td>1</td>
<td>16</td>
<td>3.1</td>
<td>3</td>
<td>32</td>
<td>1.1</td>
</tr>
<tr>
<td>dynRec-1</td>
<td>3</td>
<td>36</td>
<td>false</td>
<td>3</td>
<td>63</td>
<td>3.3</td>
<td>788</td>
<td>7852</td>
<td>534.0</td>
</tr>
<tr>
<td>dynRec-2</td>
<td>4</td>
<td>54</td>
<td>false</td>
<td>5</td>
<td>131</td>
<td>7.9</td>
<td>-</td>
<td>-</td>
<td>>3600</td>
</tr>
<tr>
<td>dynRec-3</td>
<td>5</td>
<td>72</td>
<td>false</td>
<td>7</td>
<td>219</td>
<td>17.2</td>
<td>-</td>
<td>-</td>
<td>>3600</td>
</tr>
<tr>
<td>dynRec-4</td>
<td>6</td>
<td>90</td>
<td>false</td>
<td>9</td>
<td>327</td>
<td>35.3</td>
<td>-</td>
<td>-</td>
<td>>3600</td>
</tr>
<tr>
<td>dynRec-5</td>
<td>7</td>
<td>108</td>
<td>false</td>
<td>11</td>
<td>455</td>
<td>71.5</td>
<td>-</td>
<td>-</td>
<td>>3600</td>
</tr>
<tr>
<td>dynRec-6</td>
<td>8</td>
<td>126</td>
<td>false</td>
<td>13</td>
<td>603</td>
<td>106.4</td>
<td>-</td>
<td>-</td>
<td>>3600</td>
</tr>
</tbody>
</table>

9. REFERENCES

