Syntax and Semantics
Today's Lecture

- Compounds: Templates, Templates, ...

- Syntax
 - The acceptable form of what we write
 - Mathematically, a set <prog>
 - Backus and Nauer From (BNF)

- Semantics
 - The meaning of syntax
 - Mathematically, well, we’ll see
Shape = Triangle | Square

- *Shape* will combine two things:
 - (define-struct triangle (base height))
 - (define-struct square (side))

- Now we can talk about *shape* as either
 - (triangle b h) where b and h are numbers, or
 - (square s) where s is a number

- Functions that consume *shape* must follow a *template*
Template (for deconstruction)

; x : shape

(cond [(triangle? x)
(... (triangle-base x)
 (triangle-height x))]]
[(square? x)
(... (square-side x))]))
Instance of template

; area : shape -> number
(define (area x)
 (cond [(triangle? x)
 (* 0.5 (* (triangle-base x)
 (triangle-height x)))]
 [(square? x)
 (sqr (square-side x))])))
Recall from lecture 3

- A syntactically correct program can be
 - An atom, like a number 17, `rabbit, of a variable \textit{radius}, or
 - A compound program,
 - starting with (,
 - followed by \texttt{operator (variable name)}
 - then \texttt{one (for now) or more programs}
 - and, finally, ending with)

- Syntax errors: 3), (3 + 4), [+ 3 1],)+(, …
Syntax

- For variables, constants, and primitives

<var> = x | area-of-disk | perimeter | ...
<con> = true | false | 'a | ‘ringo ...

\[1 \mid -1 \mid \frac{3}{5} \mid 1.22 \mid ... \]

<prm> = + \mid - \mid ...
Syntax

- Now we can look at expressions:

 \[
 \langle \text{exp} \rangle = \langle \text{var} \rangle \mid \langle \text{con} \rangle \mid (\langle \text{prm} \rangle \langle \text{exp} \rangle \ldots \langle \text{exp} \rangle) \\
 \mid (\langle \text{var} \rangle \langle \text{exp} \rangle \ldots \langle \text{exp} \rangle) \\
 \mid (\text{cond} (\langle \text{exp} \rangle \langle \text{exp} \rangle) \ldots (\langle \text{exp} \rangle \langle \text{exp} \rangle)) \\
 \mid (\text{cond} (\langle \text{exp} \rangle \langle \text{exp} \rangle) \ldots (\text{else} \langle \text{exp} \rangle))
 \]

- And definitions:

 \[
 \langle \text{def} \rangle = (\text{define} (\langle \text{var} \rangle \langle \text{var} \rangle \ldots \langle \text{var} \rangle) \langle \text{exp} \rangle) \\
 \mid ?
 \]
Semantics

- Defined by explaining each syntactic entity in our language
 - `<exp>`
 - `<var>` means return the associated value
 - `<con>` means return this constant
 - `<def>`
 - `(define ...) means introduce new variable, ...`

- Read this chapter very carefully!