This lecture concerns the encoding of types like `val := Int of int | Fun of val -> val` and the motivation for existential typing.

1 Typing of `val`

Recall that `val` has the church encoding `∀X.(Nat → X) → ((X → X) → X) → X`.

We were able to construct `int` as `λi : int.X.λfi : int → X.λff : (X × X) → X.fii`

We attempted to construct `fun`. `Fun` would have start with `λf : val → val.X.λfi : int → X.λff : (X → X) → x`.

There are two possibilities for what we could from here.

1. Apply some interesting value to `f` another value `v2`. Use this value `v2`, `X`, `fi`, and `ff` to create an `X`.

2. Somehow apply `f` to `ff`, which is in the style of `int`. This would require us to make a function `λx : X...` that would return something of type `X` and wrap around `f`.

We were unable to solve this problem in class.

2 Existential Types

Since we have types that correspond to the logical universal quantifier, we will consider types that correspond to the logical existential quantifier. These types `∃N.t` read “There exists some type `N`, such that the term has type `t`.

An immediate question is the possibly correspondence between absolute and existential types. In logic the proposition `∃A.t` is identical to the proposition `¬∀A.(¬t)`. Unfortunately, we have no conception of not in our type system.

One way of saying `¬t` is to say that `t → false`. In logic, that `t` implies false. In type theory, that there is some function from a value of type `t` to a value of type `false`. Unfortunately, we have no conception of false in our type system.

Recall that a type is a proposition, and a term represents a proof of that proposition. Thus we would like `false` to be an uninhabited typed. The simplest such type is `∀A.A`. A term of this type would be very useful. You give me a type, and I will give you a value of that type. Further, since System F programs always terminate, that would mean that I really would get a value of that type. Thus it is a reasonable assertion that this type is uninhabited, and would make an adequate false.

So we can then translate `¬t` to `t → ∀A.A`. As a reality check, consider `¬false`. This is the type `∀A.A → ∀A.A`, and it is inhabited by `λx : ∀A.A.x`. Thus the identity function is a proof of true.
Under this translation, \(\exists A.t \) is equivalent to \(T1 = (\forall X.(t \to \forall A.A)) \to \forall A.A \).

This is slightly different from the usual translation, which is \(T2 = \forall Z.((\forall X.t \to Z) \to Z) \).

Naturally we want to see if there is an isomorphism between these two expressions of the existential quantifier. An isomorphism would be proved if we could find a context, or a function, that would translate any term of one type to any term of the other. Translating \(T2 \) to \(T1 \) is easy: \(\lambda x.x[\forall A.A] \). This function takes anything of \(T2 \) and produces it to something of \(T1 \), and is a proof that \(T2 \) implies \(T1 \).

We do not know how to get from \(T1 \) to \(T2 \). This is a very interesting problem to consider.

We can also consider an alternate form of \(\not \). \(\not t = \forall X.t \to X \). This is the type that, given any \(X \), I can give you a function from \(t \) to \(X \). If \(X \) is false, you get the more direct notion of \(\not \).

This idea of \(\not \) seems closer than our original, but the version of \(\exists N.T \) that it results in is \(\forall Z.((\forall X.\forall Y.t \to Y) \to Z) \). It is not directly obvious that this corresponds in any way to the usual translation of the existential type.