Today, we look at an example term and derive the constraints for it. We also discuss what having a solution for these constraints means.

1 Review

The constraint typing relation

\[\Gamma \vdash e : t |_X C \]

states that \(e \) has type \(t \) under the context \(\Gamma \) when the constraints in the set \(C \) are fulfilled. \(X \) is the collection of type variables that have been introduced in the subderivations, which is necessary to create fresh type variables.

The set of constraints is a set of type variable-type pairs, stating what type variables should be equal to what types.

2 Type Inference Example

Find the constraints for the term \(\lambda x. (x (\lambda y. y)) \).

We begin building our constraint typing derivation from the bottom to the top: Our term is a lambda abstraction, so the CT-ABS rule applies.

\[\Gamma, (x : O_1) \vdash x. (\lambda y. y) : O_2 |_X C \]

\[\emptyset \vdash \lambda x. (x (\lambda y. y)) : O_1 \rightarrow O_2 |_X C \]

\(O_1 \) and \(O_2 \) are used as placeholders and may be instantiated to concrete types in the derivation process. The \(X \) subscripts mean that the sets of type
variables introduced are the same in the antecedent and the consequence. The same applies to the set of constraints C.

The subterm in the antecedent, $x(\lambda y.y)$, is an application, so the CT-APP rule applies. This rule introduces a new free type variable, which we call T. This forces the placeholder O_2 to be T.

The set of type variables introduced in this rule is $X_1 \cup X_2 \cup \{T\}$, where X_1 and X_2 are the sets of type variables introduced in the two subderivations. The constraints for this rule are $C_1 \cup C_2 \cup \{O_3 = O_4 \to T\}$. Above, we said that the set of type variables and the constraints have to be the same in the antecedent and consequence of the CT-ABS rule. This forces $X = X_1 \cup X_2 \cup \{T\}$ and $C = C_1 \cup C_2 \cup \{O_3 = O_4 \to T\}$ in the consequence of CT-ABS.

\[
\frac{(x : O_1) \vdash x : O_3 | X_1 C_1 \quad (x : O_1) \vdash \lambda y.y : O_4 | X_2 C_2}{(x : O_1) \vdash x.(\lambda y.y) : T | X_1 \cup X_2 \cup \{O_3 = O_4 \to T\} C_1 \cup C_2 \cup \{O_3 = O_4 \to T\}} \]

The first subterm of the application is a variable, so CT-VAR applies. In the typing context, we find that $x : O_1$, so O_3 becomes O_1. The set of type variables and the set of constraints in this rule are empty everywhere in the typing derivation.

\[
\frac{(x : O_1) \in \Gamma}{(x : O_1) \vdash x : O_1 | \emptyset \{\}} \quad \frac{(x : O_1) \vdash \lambda y.y : O_4 | X_2 C_2}{(x : O_1) \vdash x.(\lambda y.y) : T | \emptyset \cup X_2 \cup \{O_1 = O_4 \to T\} C_1 \cup C_2 \cup \{O_1 = O_4 \to T\}} \]

In the following steps, unnecessary $\{\}$ or \emptyset will be dropped.

The second subterm of the application is another lambda abstraction, and therefore CT-ABS applies. We therefore know that $\lambda y.y$’s type, O_4, is an arrow type, which we change to $O_5 \to O_6$ everywhere in the derivation. Just like in the first use of the CT-ABS rule, the set of type variables and the set of constraints must be the same in the antecedent and the consequence.
\[
\frac{(x : O_1) \in \Gamma}{(x : O_1) \vdash x : O_1|\emptyset}\]
\[
\frac{(x : O_1), (y : O_5) \vdash y : O_6|_{X_2}C_2}{(x : O_1) \vdash \lambda y.y : (O_5 \rightarrow O_6)|_{X_2}C_2}
\]
\[
\frac{(x : O_1) \vdash x, (\lambda y.y) : T|_{X_2 \cup \{\}}C_2 \cup \{O_1 = (O_5 \rightarrow O_6) \rightarrow T\}}{\emptyset \vdash \lambda x.(x(\lambda y.y)) : O_1 \rightarrow T|_{X_2 \cup \{\}}C_2 \cup \{O_1 = (O_5 \rightarrow O_6) \rightarrow T\}}
\]

The subterm of the second CT-ABS rule, \(y\) is a variable, so CT-VAR applies again. We find that \(y\)'s type is \(O_5\), so we change the placeholder \(O_6\) to match it. The type variable and constraint sets, \(X_2\) and \(C_2\) are empty, so we change those throughout the derivation, too. To simplify the derivation object, we have completely dropped these empty sets already where possible.

\[
\frac{(y : O_5) \in \Gamma}{(x : O_1), (y : O_5) \vdash y : O_5|\emptyset}\]
\[
\frac{(x : O_1), (y : O_5) \vdash y : O_5|\emptyset}{(x : O_1) \vdash \lambda y.y : (O_5 \rightarrow O_5)|\emptyset}\]
\[
\frac{(x : O_1) \vdash x, (\lambda y.y) : T|_{\{\}}C_2 \cup \{O_1 = (O_5 \rightarrow O_5) \rightarrow T\}}{\emptyset \vdash \lambda x.(x(\lambda y.y)) : O_1 \rightarrow T|_{\{\}}C_2 \cup \{O_1 = (O_5 \rightarrow O_5) \rightarrow T\}}
\]

This is our finished constraint typing derivation. We have one constraint for the term \(\lambda x.(x(\lambda y.y))\):

\[
O_1 = (O_5 \rightarrow O_5) \rightarrow T
\]

Interestingly, the placeholders \(O_1\) and \(O_5\) do not get instantiated to a concrete type; they act as metavariables.

3 Solutions to Constraints

What does it mean to have a solution for a set of constraints? The set of constraints is a set of pairs that equate type variables and types.

Let \(\sigma\) be a substitution, i.e. a set of pairs of type variables and closed types:

\[
\{(V_1 := T_1), (V_2 := T_2), \ldots\}.
\]
A set of constraints C is satisfied if there exists a substitution σ that equates both sides of all constraints in C:

$$\exists \text{ solution} \iff \exists \sigma, V_i[\sigma] \equiv T_i[\sigma], \forall (V_i := T_i) \in C$$

Examples of substitutions for the constraint typing relation $\emptyset \vdash \lambda x.(x(\lambda y.y)) : O_1 \rightarrow T \mid \{O_1 = (O_5 \rightarrow O_5) \rightarrow T\}$:

$$\sigma_1 = \{(T := \text{int}), \quad (O_1 := (O_5 \rightarrow O_5) \rightarrow \text{int})\}$$

$$\sigma_2 = \{(T := \text{int} \rightarrow \text{int}), \quad (O_1 := (O_5 \rightarrow O_5) \rightarrow (\text{int} \rightarrow \text{int}))\}$$

Even after these substitutions, the placeholder O_5 will not have been assigned a concrete type. It still is a metavariable. For any choice of O_5, the constraints can be fulfilled; therefore, the term therefore is well-typed for any choice of O_5. It becomes apparent that this constraint typing system does not give constraints for all terms.