Distributed synthesis over LTL fragment

Giuseppe Perelli

Rice University

Comp607 Seminary
Houston, February 14th - 2014
(Happy S.Valentine Day!)
Computations

Definition
A computation is an infinite path of assignments over a (finite) set \mathbf{V} of binary variables.

Example
For $\mathbf{V} = \{x_1, x_2, x_3, y_1, y_2, y_3\}$, then a possible computation is of the form

$$\pi = \{x_1, y_2, y_3\} \cdot \{x_2, y_1, y_2, y_3\} \cdot \ldots \cdot \{x_1, x_2, y_1, y_3\} \cdot \ldots,$$

where the variables in each set $\mathbf{V}_i \subseteq \mathbf{V}$ of the sequence are assigned to true and the others in $\mathbf{V} \setminus \mathbf{V}_i$ are assigned to false.
Temporal properties of computations

A computation π can be evaluated under certain temporal properties.

Example

- Two variables can never be both true at the same time. (Critics avoidance);
Temporal properties of computations

A computation π can be evaluated under certain temporal properties.

Example

- Two variables can never be both true at the same time. (Critics avoidance);
- Every occurrence of variable x is followed by an occurrence of variable y (System guarantees);
Temporal properties of computations

A computation π can be evaluated under certain temporal properties.

Example

- Two variables can never be both true at the same time. (Critics avoidance);
- Every occurrence of variable x is followed by an occurrence of variable y (System guarantees);
- The variable x is never true in the computation π (Safety);
- The variable x occurs infinitely often in the computation π (Safety).
Temporal properties of computations

A computation π can be evaluated under certain temporal properties.

Example

- Two variables can never be both true at the same time. (Critics avoidance);
- Every occurrence of variable x is followed by an occurrence of variable y (System guarantees);
- The variable x is never true in the computation π (Safety);
- The variable x is true until the variable y occurs in the computation π (Safety);
Temporal properties of computations

A computation π can be evaluated under certain temporal properties.

Example

- Two variables can never be both true at the same time. (Critics avoidance);
- Every occurrence of variable x is followed by an occurrence of variable y (System guarantees);
- The variable x is never true in the computation π (Safety);
- The variable x is true until the variable y occurs in the computation π (Safety);
- The variable x occurs infinitely often in the computation π (Safety).
Temporal properties of computations

A computation π can be evaluated under certain temporal properties.

Example

- Two variables can never be both true at the same time. *(Critics avoidance)*;
- Every occurrence of variable x is followed by an occurrence of variable y *(System guarantees)*;
- The variable x is never true in the computation π *(Safety)*;
- The variable x is true until the variable y occurs in the computation π *(Safety)*;
- The variable x occurs infinitely often in the computation π *(Safety)*.
Temporal properties of computations

A computation \(\pi \) can be evaluated under certain temporal properties.

Example

- Two variables can never be both true at the same time. (Critics avoidance);
- Every occurrence of variable \(x \) is followed by an occurrence of variable \(y \) (System guarantees);
- The variable \(x \) is never true in the computation \(\pi \) (Safety);
- The variable \(x \) is true until the variable \(y \) occurs in the computation \(\pi \) (Safety);
- The variable \(x \) occurs infinitely often in the computation \(\pi \) (Safety).

Question

How to formally represent such temporal properties?
Linear Temporal Logic (\(\text{LTL}, [\text{Pnueli, '77}]\))

Syntax

\[
\phi ::= p \mid \neg \phi \mid \phi \land \phi \mid \phi \lor \phi
\]
Linear Temporal Logic (LTL, [Pnueli, ’77])

Syntax

\[\varphi ::= p \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid X \varphi \mid \lozenge \varphi \mid \square \varphi \mid \varphi U \varphi \]

Semantics
Linear Temporal Logic (LTL, [Pnueli, ’77])

Syntax
ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | ◊ϕ | □ϕ | ϕUϕ

Semantics

\[Xϕ \]
Linear Temporal Logic (\textbf{LTL}, [Pnueli, ’77])

Syntax

\[\varphi ::= p \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid X \varphi \mid \Diamond \varphi \mid \Box \varphi \mid \varphi U \varphi \]

Semantics

\[\begin{array}{l}
X \varphi \\
\Diamond \varphi
\end{array} \]

\[\begin{array}{l}
\varphi \\
\varphi
\end{array} \]
Linear Temporal Logic (LTL, [Pnueli, ’77])

Syntax

\[\varphi ::= p \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid X \varphi \mid \Diamond \varphi \mid \Box \varphi \mid \varphi U \varphi \]

Semantics

- **X \varphi**
 - \(V_0 \rightarrow V_1 \rightarrow V_2 \rightarrow \ldots \rightarrow V_i \rightarrow V_k \)

- **Diamond \varphi**
 - \(V_0 \rightarrow V_1 \rightarrow V_2 \rightarrow \ldots \rightarrow V_i \rightarrow V_k \)

- **Box \varphi**
 - \(V_0 \rightarrow V_1 \rightarrow V_2 \rightarrow \ldots \rightarrow V_i \rightarrow V_k \)
Linear Temporal Logic (LTL, [Pnueli, ’77])

Syntax

\(\varphi ::= p \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid X \varphi \mid \Diamond \varphi \mid \square \varphi \mid \varphi U \varphi \)

Semantics

- **\(X \varphi \)**
 - \(V_0 \) \(\rightarrow \) \(V_1 \) \(\rightarrow \) \(V_2 \) \(\rightarrow \) \(V_i \) \(\rightarrow \) \(V_k \)

- **\(\Diamond \varphi \)**
 - \(V_0 \) \(\rightarrow \) \(V_1 \) \(\rightarrow \) \(V_2 \) \(\rightarrow \) \(V_i \) \(\rightarrow \) \(V_k \)

- **\(\square \varphi \)**
 - \(V_0 \) \(\rightarrow \) \(V_1 \) \(\rightarrow \) \(V_2 \) \(\rightarrow \) \(V_i \) \(\rightarrow \) \(V_k \)

- **\(\varphi U \psi \)**
 - \(V_0 \) \(\rightarrow \) \(V_1 \) \(\rightarrow \) \(V_2 \) \(\rightarrow \) \(V_i \) \(\rightarrow \) \(V_k \)
Example of LTL specifications

- Two variables x and y can never be both true at the same time.
Example of LTL specifications

- Two variables x and y can never be both true at the same time.
 $\Box \neg (x \land y)$
Example of LTL specifications

- Two variables x and y can never be both true at the same time.
 $$\square \neg (x \land y)$$
- Each occurrence of variable x is followed by an occurrence of variable y.
 $$x \rightarrow x U y$$
Example of LTL specifications

- Two variables x and y can never be both true at the same time.
 $\Box \neg(x \land y)$

- Each occurrence of variable x is followed by an occurrence of variable y.
 $\Box (x \rightarrow X \Diamond y)$
Example of LTL specifications

- Two variables x and y can never be both true at the same time.
 \[\Box \neg (x \land y) \]
- Each occurrence of variable x is followed by an occurrence of variable y.
 \[\Box (x \rightarrow X \Diamond y) \]
- The variable x is never true in the computation π.
 \[\neg x \]
- The variable x occurs infinitely often in the computation π.
 \[x U y \]
Example of LTL specifications

- Two variables x and y can never be both true at the same time.
 $\square \neg(x \land y)$

- Each occurrence of variable x is followed by an occurrence of variable y.
 $\square (x \rightarrow X \diamond y)$

- The variable x is never true in the computation π.
 $\square \neg x$
Example of LTL specifications

- Two variables x and y can never be both true at the same time.
 \[\square \neg (x \land y) \]

- Each occurrence of variable x is followed by an occurrence of variable y.
 \[\square (x \rightarrow X \diamond y) \]

- The variable x is never true in the computation π.
 \[\square \neg x \]

- The variable x is true until the variable y occurs in the computation π.
 \[x U y \]
Example of LTL specifications

- Two variables x and y can never be both true at the same time.
 $\Box \neg (x \land y)$
- Each occurrence of variable x is followed by an occurrence of variable y.
 $\Box (x \rightarrow X \diamond y)$
- The variable x is never true in the computation π.
 $\Box \neg x$
- The variable x is true until the variable y occurs in the computation π.
 $x U y$
Example of LTL specifications

- Two variables x and y can never be both true at the same time.
 $\square \neg (x \land y)$

- Each occurrence of variable x is followed by an occurrence of variable y.
 $\square (x \rightarrow X \diamond y)$

- The variable x is never true in the computation π.
 $\square \neg x$

- The variable x is true until the variable y occurs in the computation π.
 $x U y$

- The variable x occurs infinitely often in the computation π.
Example of LTL specifications

- Two variables x and y can never be both true at the same time.
 $\square \neg (x \land y)$

- Each occurrence of variable x is followed by an occurrence of variable y.
 $\square (x \rightarrow X \Diamond y)$

- The variable x is never true in the computation π.
 $\square \neg x$

- The variable x is true until the variable y occurs in the computation π.
 $xU y$

- The variable x occurs infinitely often in the computation π.
 $\square \Diamond x$
Other examples

- $\diamond \square X$
- $X \land \square (X \rightarrow X X) - x$ is true on at least all the odd positions;
- $X \land \square (X \rightarrow X X) - x$ is true on at least all the even positions.
Other examples

- $\Diamond \Box x$ - from a certain point x will be always true;
Other examples

- $\Diamond \Box x$ - from a certain point x will be always true;
- $x \land \Box (x \rightarrow XX x)$

Giuseppe Perelli
Rice University
Distributed synthesis over LTL fragment
Other examples

- $\Diamond \Box x$ - from a certain point x will be always true;
- $x \land \Box (x \rightarrow XX x)$ - x is true on at least all the odd positions;
Other examples

- \(\Diamond \Box x \) - from a certain point \(x \) will be always true;
- \(x \land \Box (x \rightarrow XX x) \) - \(x \) is true on at least all the odd positions;
- \(XX x \land \Box (x \rightarrow XX x) \) - \(x \) is true on at least all the even positions.
Satisfiability

Definition
A computation \(\pi \) that follows the LTL specification \(\varphi \) is said to satisfy \(\varphi \).

Definition
A set of computations \(\Pi \) satisfies an LTL specification \(\varphi \) if all the computations \(\pi \in \Pi \) satisfy \(\varphi \).
Architectures

Definition
An **architecture** is a labeled directed graph describing the topology of the system.

- p_e is the **environment** process;
- **Instantaneous communication** among processes is managed with a set V of binary variables;
- Process p reads its input variables $I(p)$ and writes its output variables $O(p)$;
- Every sequence of truth-assignments of variables over time-steps corresponds to a computation over V;
Architectures

Definition

An **architecture** is a labeled directed graph describing the topology of the system.

- A **local strategy** for the system process p establishes what to output according to the history of the input. $\sigma_p : (2^{I(p)})^* \rightarrow 2^{O(p)}$;
- By combining local strategies of system processes, we obtain a **collective strategy**, which depends on the environment input histories $\sigma : (2^{O(\pi_e)})^* \rightarrow 2^{V \setminus O(\pi_e)}$
Architectures

Definition
An architecture is a labeled directed graph describing the topology of the system.

\[
\begin{align*}
\sigma_1(\alpha \cdot a) &= (a, 0); \\
\sigma_2(\alpha \cdot a, \beta) &= (a, 1 - a); \\
\sigma_3(\alpha, \beta, \gamma) &= (1).
\end{align*}
\]
Architectures

Definition
An architecture is a labeled directed graph describing the topology of the system.

\[\sigma_1(\alpha \cdot a) = (a, 0); \]
\[\sigma_2(\alpha \cdot a, \beta) = (a, 1 - a); \]
\[\sigma_3(\alpha, \beta, \gamma) = (1). \]
Architectures

Definition
An architecture is a labeled directed graph describing the topology of the system.

Definition
An architecture is a labeled directed graph describing the topology of the system.

\[\sigma_1(\alpha \cdot a) = (a, 0); \]
\[\sigma_2(\alpha \cdot a, \beta) = (a, 1 - a); \]
\[\sigma_3(\alpha, \beta, \gamma) = (1). \]

\[x_1 \quad 0 \]
\[x_2 \quad 1 \]
\[y_1 \quad 0 \]
\[y_2 \quad 0 \]
\[y_3 \quad 1 \]
\[y_4 \]
\[y_5 \quad 1 \]
Architectures

Definition
An architecture is a labeled directed graph describing the topology of the system.

\[
\begin{align*}
\sigma_1(\alpha \cdot a) &= (a, 0); \\
\sigma_2(\alpha \cdot a, \beta) &= (a, 1 - a); \\
\sigma_3(\alpha, \beta, \gamma) &= (1).
\end{align*}
\]
Architectures

Definition

An **architecture** is a labeled directed graph describing the topology of the system.

\[
\sigma_1(\alpha \cdot a) = (a, 0);
\]
\[
\sigma_2(\alpha \cdot a, \beta) = (a, 1 - a);
\]
\[
\sigma_3(\alpha, \beta, \gamma) = (1).
\]
A collective strategy σ identifies a set of computations $\Pi(\sigma)$, given by the all possible behaviors over time of the environment process.

Definition
A collective strategy σ satisfies an LTL formula φ if the set $\Pi(\sigma)$ of computations satisfies φ.

Realizability problem
Given an architecture \mathcal{A} and an LTL formula φ, decide whether there exist local strategies σ_p, for all processes p, which generate the collective strategy σ that satisfies φ. Moreover, if so, synthesize it.
Consider a specification

\[\varphi_1 \equiv \square(x_1 \implies \Diamond y_1) \land \square(x_2 \implies \Diamond y_2) \land \square \neg(y_1 \land y_2) \]

in the architecture:

![Diagram](image)

It is realized by \(\sigma_1, \sigma_2 \) such that:

- \(\sigma_1(w) = \{ y_1 \} \) if \(|w|\) is even and \(\emptyset \) otherwise, and
- \(\sigma_2(w) = \{ y_2 \} \) if \(|w|\) is odd and \(\emptyset \) otherwise.
Consider a specification
\(\varphi_1 \equiv [\neg x_1 \implies \lozenge y_1] \land [\neg x_2 \implies \lozenge y_2] \land [\neg (y_1 \land y_2)] \) in the architecture:

It is realized by \(\sigma_1, \sigma_2 \) such that:
\(\sigma_1(w) = \{ y_1 \} \) if \(|w| \) is even and \(\emptyset \) otherwise, and
\(\sigma_2(w) = \{ y_2 \} \) if \(|w| \) is odd and \(\emptyset \) otherwise.

The following specification is not realizable
\(\varphi_2 \equiv ([\neg \lozenge x_1 \implies [\neg \lozenge (x_1 \land y_1)] \land ([\neg \lozenge x_2 \implies [\neg \lozenge (x_2 \land y_2)] \land [\neg (y_1 \land y_2)]). \)
Example

Consider a specification
\[\varphi_1 \equiv \Box (x_1 \implies \Diamond y_1) \land \Box (x_2 \implies \Diamond y_2) \land \Box \neg (y_1 \land y_2) \] in the architecture:

It is realized by \(\sigma_1, \sigma_2 \) such that:
\[
\sigma_1(w) = \{ y_1 \} \text{ if } |w| \text{ is even and } \emptyset \text{ otherwise, and }
\sigma_2(w) = \{ y_2 \} \text{ if } |w| \text{ is odd and } \emptyset \text{ otherwise.}
\]

The following specification is not realizable
\[\varphi_2 \equiv (\Box \Diamond x_1 \implies \Box \Diamond (x_1 \land y_1)) \land (\Box \Diamond x_2 \implies \Box \Diamond (x_2 \land y_2)) \land \Box \neg (y_1 \land y_2). \]

Suppose it is realizable.
\[
\begin{array}{cccccccc}
 x_1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
 y_1 & & & & & & & \\
 x_2 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
 y_2 & & & & & & &
\end{array}
\]
Consider a specification
\(\varphi_1 \equiv \Box (x_1 \implies \lozenge y_1) \land \Box (x_2 \implies \lozenge y_2) \land \Box \neg (y_1 \land y_2) \) in the architecture:

\[
\begin{array}{c}
p_e \\
p_1 & p_2 \\
\downarrow y_1 & \downarrow y_2 \\
x_1 & x_2 \\
p_1 \end{array}
\]

It is realized by \(\sigma_1, \sigma_2 \) such that:
\[
\sigma_1(w) = \{y_1\} \text{ if } |w| \text{ is even and } \emptyset \text{ otherwise, and } \\
\sigma_2(w) = \{y_2\} \text{ if } |w| \text{ is odd and } \emptyset \text{ otherwise.}
\]

The following specification is not realizable
\(\varphi_2 \equiv (\Box \lozenge x_1 \implies \Box \lozenge (x_1 \land y_1)) \land (\Box \lozenge x_2 \implies \Box \lozenge (x_2 \land y_2)) \land \Box \neg (y_1 \land y_2) \).

Suppose it is realizable.

\[
\begin{array}{cccccccc}
x_1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
y_1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
x_2 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
y_2 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
\end{array}
\]
Example

Consider a specification
\[\varphi_1 \equiv \Box(x_1 \implies \Diamond y_1) \land \Box(x_2 \implies \Diamond y_2) \land \Box \neg (y_1 \land y_2) \] in the architecture:

\[\sigma_1(w) = \{y_1\} \text{ if } |w| \text{ is even and } \emptyset \text{ otherwise, and} \]
\[\sigma_2(w) = \{y_2\} \text{ if } |w| \text{ is odd and } \emptyset \text{ otherwise.} \]

The following specification is not realizable
\[\varphi_2 \equiv (\Box \Diamond x_1 \implies \Box \Diamond (x_1 \land y_1)) \land (\Box \Diamond x_2 \implies \Box \Diamond (x_2 \land y_2)) \land \Box \neg (y_1 \land y_2). \]

Suppose it is realizable.

\[
\begin{array}{cccccccc}
 x_1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
 y_1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
 y_2 & & & & & & & \\
 x_2 & & & & & & & \\
\end{array}
\]
Example

Consider a specification
\[\varphi_1 \equiv \Box(x_1 \Rightarrow \Diamond y_1) \land \Box(x_2 \Rightarrow \Diamond y_2) \land \Box \neg (y_1 \land y_2) \] in the architecture:

It is realized by \(\sigma_1, \sigma_2 \) such that:
\[\sigma_1(w) = \{y_1\} \text{ if } |w| \text{ is even and } \emptyset \text{ otherwise, and} \]
\[\sigma_2(w) = \{y_2\} \text{ if } |w| \text{ is odd and } \emptyset \text{ otherwise.} \]

The following specification is not realizable
\[\varphi_2 \equiv (\Box \Diamond x_1 \Rightarrow \Box \Diamond (x_1 \land y_1)) \land (\Box \Diamond x_2 \Rightarrow \Box \Diamond (x_2 \land y_2)) \land \Box \neg (y_1 \land y_2). \]

Suppose it is realizable.

\(x_1 \)	1	0	1	0	1	0	1	
\(y_1 \)	1	0	0	0	1	0	1	
\(x_2 \)	\downarrow							
\(y_2 \)								
Consider a specification

\[\varphi_1 \equiv \Box(x_1 \implies \Diamond y_1) \land \Box(x_2 \implies \Diamond y_2) \land \Box \neg (y_1 \land y_2) \] in the architecture:

It is realized by \(\sigma_1, \sigma_2 \) such that:

\(\sigma_1(w) = \{ y_1 \} \) if \(|w|\) is even and \(\emptyset \) otherwise, and \(\sigma_2(w) = \{ y_2 \} \) if \(|w|\) is odd and \(\emptyset \) otherwise.

The following specification is not realizable

\[\varphi_2 \equiv (\Box \Diamond x_1 \implies \Box \Diamond (x_1 \land y_1)) \land (\Box \Diamond x_2 \implies \Box \Diamond (x_2 \land y_2)) \land \Box \neg (y_1 \land y_2). \]

Suppose it is realizable.

\[
\begin{array}{cccccccc}
 x_1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
 y_1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
 x_2 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
 y_2 & & & & & & & \\
\end{array}
\]
Consider a specification
\[\varphi_1 \equiv \Box(x_1 \implies \Diamond y_1) \land \Box(x_2 \implies \Diamond y_2) \land \Box \neg (y_1 \land y_2) \]

in the architecture:

It is realized by \(\sigma_1, \sigma_2 \) such that:
- \(\sigma_1(w) = \{y_1\} \) if \(|w|\) is even and \(\emptyset\) otherwise, and
- \(\sigma_2(w) = \{y_2\} \) if \(|w|\) is odd and \(\emptyset\) otherwise.

The following specification is not realizable
\[\varphi_2 \equiv (\Box \Diamond x_1 \implies \Box \Diamond (x_1 \land y_1)) \land (\Box \Diamond x_2 \implies \Box \Diamond (x_2 \land y_2)) \land \Box \neg (y_1 \land y_2). \]

Suppose it is realizable.

\[
\begin{array}{ccccccccc}
x_1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
y_1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
x_2 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
y_2 & & & & & & & &
\end{array}
\]

\(x_2 \) holds infinitely often, but only when \(y_1 \) holds!
The power of sharing input variables

Consider the LTL formula $\varphi = \square((x_1 \leftrightarrow y_1) \land (y_1 \leftrightarrow \neg y_2))$ and the two architectures below.

![Diagram of two architectures](image-url)
The power of sharing input variables

Consider the LTL formula $\varphi = \Box ((x_1 \leftrightarrow y_1) \land (y_1 \leftrightarrow \neg y_2))$ and the two architectures below.

$$\sigma_{p_1}(\alpha \cdot a) = a$$
The power of sharing input variables

Consider the LTL formula $\varphi = \square ((x_1 \leftrightarrow y_1) \land (y_1 \leftrightarrow \neg y_2))$ and the two architectures below.

$$\sigma_{p_1}(\alpha \cdot a) = a$$
$$\sigma_{p_2}(\alpha \cdot a) = 1 - a.$$
The power of sharing input variables

Consider the LTL formula $\varphi = \Box((x_1 \leftrightarrow y_1) \land (y_1 \leftrightarrow \neg y_2))$ and the two architectures below.

$$\sigma_{p_1}(\alpha \cdot a) = a$$
$$\sigma_{p_2}(\alpha \cdot a) = 1 - a.$$

Not realizable. Process p_2 cannot deduce anything on variable y_1.
For which classes of architectures is realizability decidable?

Complete characterization based on the *information fork* criterion.

Processes p_1, p_2 form an information fork in architecture A if there exist paths $p_e \sim p_i$ in A such that do not traverse edges in $I(p_{-i})$.

Theorem (Finkbeiner, Schewe)

Every architecture either:

- Has an information fork (undecidable).
- Can be reduced to a pipeline (decidable).
Our approach

- LTL formulae that appear in the undecidability proof are complicated.

Question

What are the LTL fragments for which the realizability problem is decidable?

- That question can be approached from two directions:
 - Prove that realizability is undecidable in weak LTL fragments.
 - Find LTL fragments for which the realizability problem is decidable.
Reachability specifications \(\text{LTL} \downarrow \)

\(\text{LTL} \downarrow \)

- \(\psi \in \text{LTL}_1 \) iff it is a Boolean combination of \(P \) and \(\mathcal{X}P \), where \(P \) is propositional. (only non-nested \(\mathcal{X} \))
- \(\varphi \in \text{LTL} \downarrow \) iff \(\varphi \equiv Q \rightarrow \Diamond \psi \), where \(\psi \in \text{LTL}_1 \) and \(Q \) is propositional.

Theorem

The realizability of specifications from \(\text{LTL} \downarrow \) in architectures containing information fork is undecidable.
Reachability specifications \(\text{LTL} \diamond \)

<table>
<thead>
<tr>
<th>(\text{LTL} \diamond)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- (\psi \in \text{LTL}_1) iff it is a Boolean combination of (P) and (\mathcal{X}P), where (P) is propositional. (only non-nested (\mathcal{X}))</td>
</tr>
<tr>
<td>- (\varphi \in \text{LTL} \diamond) iff (\varphi \equiv Q \to \diamond \psi), where (\psi \in \text{LTL}_1) and (Q) is propositional.</td>
</tr>
</tbody>
</table>

Theorem

The realizability of specifications from \(\text{LTL} \diamond \) in architectures containing information fork is undecidable.

\[
\begin{aligned}
&\text{\(q_1, \ldots, q_m \)} \\
&\text{\(p_e \)} \\
&\text{\(p_1 \)} \\
&\text{\(p_2 \)} \\
&\text{\(y_1 \)} \\
&\text{\(y_2 \)} \\
&\text{\(\tau_M \)} \\
&\text{A safety automaton} \ A_{\text{safe}} \text{ recognizes} \ L_{\tau_M}. \\
&\text{Specification} \ \gamma \in \text{LTL} \diamond \text{ states that eventually} \\
&\text{\(p_e \) (does not) simulate} \ A_{\text{safe}} \text{ with} \ q_1, \ldots, q_k, \\
&\text{\(p_1 \) outputs the final configuration.}
\end{aligned}
\]
Safety specifications LTL\(\square\) over Overlapping Inputs

LTL\(\square\)

- \(\psi \in \text{LTL}_1\) iff it is a Boolean combination of \(P\) and \(X\ P\), where \(P\) is propositional. (only non-nested \(X\))
- \(\varphi \in \text{LTL}_\square\) iff \(\varphi \equiv Q \land \Box \psi\), where \(\psi \in \text{LTL}_1\) and \(Q\) is propositional.

Theorem

The realizability of specifications from LTL\(\square\) in an architecture \(A\) containing an information fork-meet is undecidable.

The proof is as for LTL\(\Diamond\), but \(p_3\) simulates \(A_{\text{safe}}\) instead of \(p_e\), i.e.:

- A safety automaton \(A_{\text{safe}}\) recognizes \(L_{\tau_M}\).
- Specification \(\gamma \in \text{LTL}_\square\) ensures that \(p_3\) simulates \(A_{\text{safe}}\).
Consider a class of star architectures with disjoint inputs:

\[O(p_n) \rightarrow I(p_n) \leftarrow I(p_1) \rightarrow O(p_1) \rightarrow I(p_2) \rightarrow O(p_2) \]

Lemma

A formula $\phi = Q \land \Box \psi$ is realizable iff it is realizable by strategies with double exponential memory.

Sufficiently long plays can be repeated.

Theorem

Realizability of LTL^\Box specifications on star architectures with disjoint inputs is in EXPSPACE.
Fragments of LTL without \mathcal{X}

LTL_{AG}

$\varphi \in LTL_{AG}$ if for propositional formulae P, Q, R_i, F_i, φ is of the form

$$\varphi = \Box P \rightarrow \Box Q \land \bigwedge_i \Box \Diamond R_i \land \bigwedge_i \Diamond F_i$$

Theorem

Realizability of LTL_{AG} specifications is NEXPTIME-complete.
Fragments of LTL without \mathcal{X}

LTL_{AG}

$\varphi \in LTL_{AG}$ if for propositional formulae P, Q, R_i, F_i, φ is of the form

$$\varphi = \square P \rightarrow \square Q \land \bigwedge_i \square \Diamond R_i \land \bigwedge_i \Diamond F_i$$

Theorem

Realizability of LTL_{AG} specifications is NEXPTIME-complete.

- $\varphi \in LTL_{AG}$ is realizable iff every formula $\square (P \rightarrow Q \land R_i)$ and every $\square (P \rightarrow Q \land F_i)$ are realizable.
- $\square Q$ is realizable iff it is realizable by memoryless strategies.
- Realizability of LTL_{AG} is in NEXPTIME.
Fragments of LTL without \mathcal{X}

LTL\textsubscript{AG}

$\varphi \in \text{LTL}\textsubscript{AG}$ if for propositional formulae P, Q, R_i, F_i, φ is of the form

$$\varphi = \square P \rightarrow \square Q \land \bigwedge_i \square \diamond R_i \land \bigwedge_i \diamond F_i$$

Theorem

Realizability of LTL\textsubscript{AG} specifications is NEXPTIME-complete.

Dependency Quantified Boolean Formulas (DQBF) are propositional formulae with Henkin quantifiers.

$$\forall x_1 \forall x_2 \exists y_1(x_1) \exists y_2(x_2). Q(x_1, x_2, y_1, y_2)$$

- Validity of DQBF is NEXPTIME-complete.
- DQBF reduces to realizability of LTL\textsubscript{AG}
Conclusions

Our contributions:

- Distributed synthesis is undecidable, even restricted to simple LTL fragments: $\text{LTL} \Diamond$, $\text{LTL} \square$.
- $\text{LTL} \square$ is decidable in NEXPSPACE on the class of star architectures with disjoint inputs.
- LTL_{AG} is NEXPTIME-complete.
- LTL_{AG} reduces to DQBF and vice versa.

Thank you!