SAT-based conformant planning

E. Giunchiglia

University of Genova

C. Castellini, P. Ferraris, A. Tacchella

See whether the Planning as Satisfiability idea can be extended to Expressive Action Languages allowing for

- 1. Concurrency, Constraints, Nondeterminism, environmental changes, . . . : [Giunchiglia, KR'00]
- 2. in an effective way: [Ferraris&Giunchiglia, AAAI'00], [Castellini, Giunchiglia, Tacchella, ECP'01].

Talk overview

- 1. Conformant Planning via SAT
- 2. C-plan overview
- 3. Optimization 1: Pruning possible plans,
- 4. Optimization 2: Introducing backjumping and learning
- 5. Experimental Analysis
- 6. Conclusions

Conformant planning

A planning problem is a triple $\langle I, D, G \rangle$ in which

- *I* is a formula representing the possible initial states,
- ullet D is a formal representation describing how actions affect the world, and
- G is a formula representing the goal states.

In conformant planning, the problem is to find a *sequence* of actions which, if executed sequentially starting from any initial state, is ensured to lead to a goal state.

 \Rightarrow if D is deterministic and I is a singleton, then

conformant planning = classical planning ...

... however, I am not making any assumption about $I,\,D,\,G$, and focus is on correct, complete, optimal approaches.

A conformant planning problem

There are #B bombs. Each bomb may or may not be armed. There are also #C containers, and if a bomb is placed in a container, then it is no longer dangerous, even if it is armed.

Starting from an initial state in which the set of armed bombs is unknown, the goal is to reach a "safe" state, i.e., a state in which which each bomb is no longer dangerous.

The idea

Consider a planning problem $\pi = \langle I, D, G \rangle$. Let tr_i^D be a propositional formula corresponding to the transition relation of D.

We may divide the problem of finding a "valid" plan for π into two parts:

1. generate "possible" plans of length n by satisfying

$$I_0 \wedge \wedge_{i=0}^{n-1} tr_i^D \wedge G_n$$
.

2. *test* whether a generated plan $\alpha^1; \ldots; \alpha^n$ is "valid" by checking that

$$I_0 \wedge \wedge_{i=0}^{n-1} \alpha_i^{i+1} \wedge \wedge_{i=0}^{n-1} \operatorname{tr}_i^D \models G_n.$$

The idea

Consider a planning problem $\pi = \langle I, D, G \rangle$. Let tr_i^D be a propositional formula corresponding to the transition relation of D.

We may divide the problem of finding a "valid" plan for π into two parts:

1. generate "possible" plans of length n by satisfying

$$I_0 \wedge \wedge_{i=0}^{n-1} tr_i^D \wedge G_n$$
.

2. *test* whether a generated plan $\alpha^1; \ldots; \alpha^n$ is "valid" by checking that

$$I_0 \wedge \wedge_{i=0}^{n-1} \alpha_i^{i+1} \wedge \wedge_{i=0}^{n-1} tr_i^D \models G_n.$$

If the transition relation is not total then the "test" does not work!

Conformant planning via SAT

Consider a planning problem $\pi = \langle I, D, G \rangle$. Let tr_i^D be a propositional formula corresponding to the transition relation of D.

We may divide the problem of finding a "valid" plan for π into two parts:

1. generate "possible" plans of length n by satisfying

$$I_0 \wedge \wedge_{i=0}^{n-1} \operatorname{tr}_i^D \wedge G_n$$
.

2. *test* whether a generated plan $\alpha^1; \ldots; \alpha^n$ is "valid" by checking that

$$I_0 \wedge \neg Z_0 \wedge \wedge_{i=0}^{n-1} \alpha_i^{i+1} \wedge \wedge_{i=0}^{n-1} \operatorname{trt}_i^D \models G_n \wedge \neg Z_n.$$

where trt_i^D is defined as

$$(\mathit{tr}_i^D \wedge \neg Z_i \wedge \neg Z_{i+1}) \vee ((Z_i \vee \neg \mathit{Poss}_i^D) \wedge Z_{i+1}),$$

 $(Z_i \text{ is a new fluent, } \textit{Poss}_i^D \text{ is true for an action } \alpha \text{ in a state } \sigma \text{ if } \alpha \text{ is executable in } \sigma).$

Algorithm: \mathcal{C} -SAT

```
P := I_0 \wedge \wedge_{i=0}^{n-1} \operatorname{tr}_i^D \wedge G_n; \quad V := I_0 \wedge \neg Z_0 \wedge \wedge_{i=0}^{n-1} \operatorname{trt}_i^D \wedge \neg (G_n \wedge \neg Z_n);
function C-SAT() return C-SAT_GENDLL (cnf(P), \{\}).
function C-SAT_GENDII (\varphi, \mu)
     if \varphi = \{\} then return \mathcal{C}-SAT_TEST(\mu);
     if \{\} \in \varphi then return False;
     if \{ a unit clause \{L\} occurs in \varphi \} then return \mathcal C-SAT_GENDLL(assign(L, \varphi),\mu \cup \{L\});
     L := \{ \text{ a literal occurring in } \varphi \};
     return \mathcal C-SAT_GENDLL(assign(L, \varphi),\mu \cup \{L\}) or \mathcal C-SAT_GENDLL(assign(\overline L, \varphi),\mu \cup \{\overline L\}).
 function C-SAT_TEST(\mu)
      \alpha := \{ \text{the "partial" plan in } \mu \};
      foreach {"total" plan \alpha^1; \ldots; \alpha^n which extends \alpha}
           if not SAT(\wedge_{i=0}^{n-1}\alpha_i^{i+1}\wedge V) then exit with \alpha^1;\ldots;\alpha^n;
      return False.
```

Algorithm: \mathcal{C} -SAT

```
P := I_0 \wedge \wedge_{i=0}^{n-1} \operatorname{tr}_i^D \wedge G_n; \quad V := I_0 \wedge \neg Z_0 \wedge \wedge_{i=0}^{n-1} \operatorname{trt}_i^D \wedge \neg (G_n \wedge \neg Z_n);
function C-SAT() return C-SAT_GENDLL (cnf(P), \{\}).
function \mathcal{C}-SAT_GENDLL(\varphi, \mu)
     if \varphi = \{\} then return \mathcal{C}-SAT_TEST(\mu);
     if \{\} \in \varphi then return False;
     if \{ a unit clause \{L\} occurs in \varphi \} then return \mathcal C-SAT_GENDLL(assign(L, \varphi),\mu \cup \{L\});
     L := \{ \text{ a literal occurring in } \varphi \};
     return \mathcal C-SAT_GENDLL(assign(L, \varphi),\mu \cup \{L\}) or \mathcal C-SAT_GENDLL(assign(\overline L, \varphi),\mu \cup \{\overline L\}).
 function C-SAT_TEST(\mu)
      \alpha := \{ \text{the "partial" plan in } \mu \};
                                                                                                                  For any fixed n,
      foreach {"total" plan \alpha^1; \ldots; \alpha^n which extends \alpha}
                                                                                                      \mathcal{C}-SAT is correct and complete
           if not SAT(\wedge_{i=0}^{n-1}\alpha_i^{i+1}\wedge V) then exit with \alpha^1;\ldots;\alpha^n;
```

return False.

${\mathcal C}$ -plan overview

- CCALC has been developed by Norman McCain,
- ullet ${\mathcal C}$ -plan first version has been implemented by Paolo Ferraris.

\mathcal{C} -plan overview

- CCALC has been developed by Norman McCain,
- ullet ${\mathcal C}$ -plan first version has been implemented by Paolo Ferraris.

C-plan is correct and complete

Example: Simple robot navigation problem

A robot (the circle) has to reach a position inside the dashed box.

Black locations are occupied by objects.

Either locations $\{(3,1),(5,3)\}$ or $\{(3,3),(5,1)\}$ are occupied.

 \mathcal{C} -plan finds a valid plan but after generating many possible plans

Problems:

- 1. For each possible configuration of the obstacles, all possible plans are considered, and
- 2. For each fixed configuration of the obstacles, nothing is learned from previous attempts

Problem 1: all possible plans are generated

Solution: for plan generation, eliminate uncertainty in the planning problem

As soon as a possible plan is generated and rejected, the corresponding configuration of obstacles is discarded:

to

The new configuration is then considered for generating future possible plans.

The system is still correct and complete.

From

Problem 2: nothing is learned from previus failures

Solution: compute the reasons for failures, and introduce backjumping and learning

For a given configuration of objects, "learn" the reason for failure

From

Reasons are dynamically learnt and forgot, as in SAT.

The system is still correct and complete.

SAT-based conformant planning Dagsthul, 4-11 November 2001

to

Comparative Analysis

Systems:

- Bonet's and Geffner's GPT [AIPS'2000]
- Cimatti's and Roveri's CMBP [ECP'1999, JAIR'2000]

Test cases:

- Purely parallel
- Purely sequential, low uncertainty
- Purely sequential, high uncertainty

Working environment:

- Pentium III, 850MHz, 512MBRAM running Linux SUSE 7.0
- Timeout at 1200s
- Systems stopped when memory requirements > 512MB

Purely parallel

	GPT	С	MBP	Cplan					
$\mid \#B\text{-}\#C \mid$	Total	#s	Total	#s	#pp	Last	Tot.search	Total	
2-1	0.03	2	0.00	1	1	0.00	0.00	0.00	
4-1	0.03	4	0.01	1	1	0.00	0.00	0.00	
6-1	0.04	6	0.02	1	1	0.00	0.00	0.00	
8-1	0.15	8	0.08	1	1	0.00	0.00	0.00	
10-1	0.27	10	0.61	1	1	0.00	0.00	0.00	
15-1	17.05	15	42.47	1	1	0.00	0.00	0.00	
20-1	MEM	_	MEM	1	1	0.00	0.00	0.00	

Purely Sequential, Low Uncertainty

	GPT	C	CMBP	Cplan					
$\mid \#B \text{-}\#C \mid$	Total	#s	Total	#s	#pp	Last	Tot.search	Total	
2-1	0.10	3	0.00	3	6	0.00	0.00	0.01	
2-5	0.04	2	0.01	1	1	0.00	0.00	0.00	
2-10	0.05	2	0.03	1	1	0.00	0.00	0.00	
4-1	0.04	7	0.00	7	540	0.12	0.15	0.65	
4-5	0.23	4	0.79	1	1	0.00	0.00	0.00	
4-10	2.23	4	11.30	1	1	0.00	0.00	0.01	
6-1	0.09	11	0.04	11	52561	15.39	49.39	221.55	
6-5	3.29	7	16.80	3	98346	56.92	57.34	419.53	
6-10	74.15	_	MEM	1	1	0.00	0.00	0.01	
8-1	0.41	15	0.20	-	_	_	_	TIME	
8-5	32.07	11	112.48	-	_	_	_	TIME	
8-10	MEM		MEM	1	1	0.00	0.00	0.01	
10-1	2.67	19	1.55	_	_	_	_	TIME	
10-5	MEM	15	974.45	_	_	_	_	TIME	
10-10	MEM	_	MEM	1	1	0.00	0.00	0.04	

Purely Sequential, Low Uncertainty

	GPT	C	СМВР	Cplan					
#B-#C	Total	#s	Total	#s	#pp	Last	Tot.search	Total	
2-1	0.10	3	0.00	3	6	0.00	0.00	0.01	
2-5	0.04	2	0.01	1	1	0.00	0.00	0.00	
2-10	0.05	2	0.03	1	1	0.00	0.00	0.00	
4-1	0.04	7	0.00	7	540	0.12	0.15	0.65	
4-5	0.23	4	0.79	1	1	0.00	0.00	0.00	
4-10	2.23	4	11.30	1	1	0.00	0.00	0.01	
6-1	0.09	11	0.04	11	52561	15.39	49.39	221.55	
6-5	3.29	7	16.80	3	98346	56.92	57.34	419.53	
6-10	74.15	_	MEM	1	1	0.00	0.00	0.01	
8-1	0.41	15	0.20	_	_	_	_	TIME	
8-5	32.07	11	112.48	_	_	_	_	TIME	
8-10	MEM		MEM	1	1	0.00	0.00	0.01	
10-1	2.67	19	1.55	_	_	_	_	TIME	
10-5	MEM	15	974.45	_	_	_	_	TIME	
10-10	MEM	_	MEM	1	1	0.00	0.00	0.04	

Purely Sequential, High Uncertainty

	GPT	C	CMBP	Cplan					
#B-#C	Total	#s	Total	#s	#pp	Last	Tot.search	Total	
2-1	0.03	3	0.00	3	3	0.00	0.00	0.00	
2-5	0.04	2	0.00	1	1	0.00	0.00	0.00	
2-10	0.24	2	0.02	1	1	0.00	0.00	0.02	
4-1	0.17	7	0.01	7	15	0.01	0.02	0.02	
4-5	0.06	4	0.54	1	1	0.01	0.00	0.01	
4-10	0.38	4	7.13	1	1	0.02	0.00	0.02	
6-1	0.08	11	0.03	11	117	0.25	1.39	2.01	
6-5	0.33	7	10.71	3	48	0.62	0.66	1.36	
6-10	7.14	_	MEM	1	1	0.00	0.00	0.00	
8-1	0.06	15	0.17	15	1195	12.23	147.25	184.29	
8-5	2.02	11	90.57	3	2681	14.84	15.60	317.13	
8-10	MEM	_	MEM	1	1	0.00	0.00	12.68	
10-1	0.21	19	1.02			_	_	TIME	
10-5	12.51	15	591.33	_	_	_	_	TIME	
10-10	MEM	_	MEM	1	1	0.00	0.00	0.06	

Purely Sequential, High Uncertainty

	GPT	CMBP		Cplan					
#B-#C	Total	#s	Total	#s	#pp	Last	Tot.search	Total	
2-1	0.03	3	0.00	3	3	0.00	0.00	0.00	
2-5	0.04	2	0.00	1	1	0.00	0.00	0.00	
2-10	0.24	2	0.02	1	1	0.00	0.00	0.02	
4-1	0.17	7	0.01	7	15	0.01	0.02	0.02	
4-5	0.06	4	0.54	1	1	0.01	0.00	0.01	
4-10	0.38	4	7.13	1	1	0.02	0.00	0.02	
6-1	0.08	11	0.03	11	117	0.25	1.39	2.01	
6-5	0.33	7	10.71	3	48	0.62	0.66	1.36	
6-10	7.14		MEM	1	1	0.00	0.00	0.00	
8-1	0.06	15	0.17	15	1195	12.23	147.25	184.29	
8-5	2.02	11	90.57	3	2681	14.84	15.60	317.13	
8-10	MEM		MEM	1	1	0.00	0.00	12.68	
10-1	0.21	19	1.02		_	_	_	TIME	
10-5	12.51	15	591.33	-	_	_	_	TIME	
10-10	MEM	_	MEM	1	1	0.00	0.00	0.06	

Summary

- SAT-based (conformant) planning is very flexible. It is easy to define procedures for planning in the presence of, e.g., for
 - concurrency,
 - constraints, and
 - nondeterminism
- ullet In the presence of an uncertain initial state and/or nondeterminism, $\mathcal{C} ext{-PLAN}$
 - employs a "generate" and "test" approach
 - incorporates some optimizations, but many other are possible to improve performances, e.g., taking into account domain specific features, or by giving up optimality and/or completeness.
 - range of applicability is different from GPT's and CMBP's
 - performances are not directly correlated with the "degree of uncertainty" of the domain.

Other Symbolic approaches

- David Smith's alternative "generate and test, anytime" approach,
- Jussi Rintanen's QBF-based approach,
- Alessandro Cimatti's BDD-based approach.

References

[Giunchiglia, 2000] Enrico Giunchiglia. Planning as satisfiability with expressive action languages: Concurrency, constraints and nondeterminism. In KR'2000.

[Giunchiglia, 2000] Paolo Ferraris, Enrico Giunchiglia. Planning as satisfiability in nondeterministic domains. In AAAI'2000

[Castellini *et al.*, 2001] Claudio Castellini, Enrico Giunchiglia, and Armando Tacchella. Improvements to SAT-based conformant planning. In ECP'2001.

[Castellini *et al.*, 2001] Claudio Castellini, Enrico Giunchiglia, and Armando Tacchella. Sat-based planning in complex domains: Concurrency, constraints and nondeterminism, 2001. Tech. Report.