An Unfolding Approach to Model Checking

Javier Esparza

Laboratory for Foundations of Computer Science
University of Edinburgh
Concurrent programs

Program: a tuple \(P = (T_1, \ldots, T_n) \) of finite labelled transition systems

\[
T_i = (A_i, S_i, \Delta_i, s_{0i}), \quad 1 \leq i \leq n
\]

where

- \(A_i \) is an alphabet of \textit{actions},
- \(S_i \) is a finite set of \textit{(local) states},
- \(\Delta_i \subseteq S_i \times A_i \times S_i \) is a \textit{transition relation}, and
- \(s_{0i} \in S_i \) is the \textit{initial state}.
Semantics

The behaviour of P is defined by the (reachable subset of) the global transition system

$$T_P = (A, S, \Delta, s_0)$$

where

- $A = A_1 \cup \ldots \cup A_n$

 (A partitioned into visible and invisible actions),

- $S = S_1 \times \ldots \times S_n$

 ($s(i)$ denotes the ith component of $s \in S$),

- $s_0 = (s_{01}, \ldots, s_{0n})$,

- $(s, a, s') \in \Delta$ iff for every $1 \leq i \leq n$

 - $a \in A_i \implies (s(i), a, s'(i)) \in \Delta_i$, and

 - $a \notin A_i \implies s(i) = s'(i)$.
Reducing the model checking problem

The model checking problem for a program $P = (T_1, \ldots, T_n)$ can be reduced to (several instances of) the following problems:

The forbidden trace problem (FT)
Given: Program P, action a.
To decide: Does T_P exhibit a forbidden trace, i.e., a trace $a_0a_1a_2 \ldots a_n \in A^*$ such that $a_n = a$?

The forbidden infinite trace problem (FIT)
Given: Program P, action a.
To decide: Does T_P exhibit a forbidden infinite trace, i.e., an infinite trace $a_0a_1a_2 \ldots \in A^\omega$ such that $a_i = a$ for infinitely many $i \geq 0$?

The livelock problem (L)
Given: Program P, action a.
To decide: Does T_P exhibit a livelock, i.e., an infinite trace $a_0a_1a_2 \ldots \in A^\omega$ such that $a_i = a$ for some i, and a_j is invisible for every $j > i$?
A first analysis

- Complexity of FT, FIT and L: PSPACE-complete.
 - Standardsolution: computetheglobaltransitionsystem T and use well-known graph algorithms. Time and space complexity $O(|T|)$.
 - Problem: exponential in the size of T for very easy instances, e.g. for completely independent processes.
 - In practice often $O(|T|^2)$.

Compact "proof objects", exponentially smaller than $|T|$.

- Our solution: work on the unfolding of the system.

- Proof objects of size $O(|T|)$ for FT, and of size $O(|T|^2)$ for FIT and L.

In this talk: only FT and FIT (L more technical).
The unfolding
Second tree
In this case \(\mathcal{L} = \mathcal{L}^p \).

An example with \(u = 1 \).
Solving FT for $n = 1$

Proof tree: Prefix of the unfolding of P.

A node n is a **terminal** if

(I) it is reached by an event labelled by a, or
(II) the proof tree constructed so far contains a node n' labelled by the same state as n.

A **tableau** is a (minimal) proof tree such that all leaves are terminals.

A terminal n is **successful** if it is of type I.
A proof tree is **successful** if it has at least one successful terminal.

Theorem: (P,a) exhibits a forbidden trace iff (P,a) has a successful proof tree.
Problem: Terminals are local states, but a terminal’s definition must refer to global states.

Idea [McMillan 92, 95]: Associate to each node \(n \) of the unfolding a global state \(GS(n) \) as follows:

- let \(Hist(n) \) be the “history” of \(n \);
- let \(GS(n) \) be the result of “executing” \(Hist(n) \).

New definition of terminal:

A node \(n \) is a **terminal** if

(I) it is reached by an event labelled by \(a \), or

(II) the proof tree constructed so far contains a node \(n' \) such that \(GS(n) = GS(n') \).

A terminal \(n \) is **successful** if it is of type I.
The attempt fails!
Adequate orders

$GS(n) = GS(n')$ too weak for a terminal

An order \preceq on histories is adequate if it

- is well-founded,
- preserves causality: if h prefix of h' then $h \preceq h'$, and
- is preserved by finite extensions: if $h \preceq h'$, then $h \cdot h'' \preceq h' \cdot h''$ for all h''.

We say $n \preceq n'$ if $Hist(n) \preceq Hist(n')$.

New definition of terminal:

A node n is a terminal if

(I) it is reached by an a-transition, or
(II) the proof tree constructed so far contains a node $n' \preceq n$ such that $GS(n) = GS(n')$.

A terminal n is successful if it is of type I.

Theorem: (P,a) has a forbidden trace iff it has a successful tableau.
Problem: \(n' \preceq n \) is an additional condition
\[\Rightarrow \text{ less places are terminals} \]
\[\Rightarrow \text{ proof trees can be bigger!} \]

- In [McMillan 92]:
 \(h \preceq h' \) if size of \(h \) smaller than size of \(h' \).
 Tableaux can be \textit{exponentially} bigger than \(T_P \)

- In [E.,Römer,Vogler 96, E., Römer 99]:
 \textbf{Total} orders \(\preceq \).

 \textbf{Theorem}: Any tableaux in which the events are added in \(\preceq \)-order has size \(O(T_P) \).
A solution to FIT for $n = 1$

A node n is a terminal if $Hist(n)$ contains a node n' labelled with the same state as n.

A terminal n is successful if $Hist(n) - Hist(n')$ (the path from n' to n) contains some a-labelled transition.

Theorem: (P,a) exhibits a forbidden infinite trace iff (P,a) has a successful tableau.

Problem: tableaux can be exponentially larger than T_P
New definition of terminal:

A node \(n \) is a terminal if there is a node \(n' \) labelled with the same state as \(n \) such that

- \(n' \) belongs to \(Hist(n) \), or
- \(n' \) does not belong to \(Hist(n) \), and \(Hist(n') \) contains at least as many \(a \)-labelled transitions as \(Hist(n) \).

A terminal \(n \) is successful if \(n' \) belongs to \(Hist(n) \) and \(Hist(n) \setminus Hist(n') \) contains some \(a \)-labelled transition.

Theorem: \((P, a)\) has a forbidden infinite trace iff it has a successful tableau. The size of any tableau in which events are added in \(\leq \)-order is \(O(|T_P|^2) \).
Definition of terminal:

A node \(n \) is a terminal if there is a node \(n' \leq n \) such that \(GS(n') = GS(n) \), and

- \(n' \) belongs to \(Hist(n) \), or
- \(n' \) does not belong to \(Hist(n) \), and \(Hist(n') \) contains at least as many \(a \)-labelled transitions as \(Hist(n) \).

A terminal \(n \) is successful if \(n' \) belongs to \(Hist(n) \) and \(Hist(n) \setminus Hist(n') \) contains some \(a \)-labelled transition.

Theorem: \((T_P, a)\) has a forbidden infinite trace iff it has a successful tableau.

With the adequate orders of [E., Römer, Vogler 96] and [E., Römer 99] the size of any tableau is at most \(O(|T_P|^2) \).
A successful tableau
<table>
<thead>
<tr>
<th>System</th>
<th>Structured Petri net</th>
<th>Prefix</th>
<th>Places</th>
<th>Traps</th>
<th>Places</th>
<th>Traps</th>
<th>Global States</th>
<th>Places</th>
<th>Traps</th>
<th>Places</th>
<th>Traps</th>
<th>BDD size</th>
<th>(scale)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RW(10)</td>
<td>7576</td>
<td>15974</td>
<td>29132</td>
<td>1.6 \times 10^6</td>
<td>96</td>
<td>86</td>
<td>(rw(10))</td>
<td>257</td>
<td>150</td>
<td>45460</td>
<td>256</td>
<td>385</td>
<td>2.8 \times 10^7</td>
</tr>
<tr>
<td>DME(64)</td>
<td>210249</td>
<td>780</td>
<td>1671</td>
<td>2.8 \times 10^7</td>
<td>140</td>
<td>150</td>
<td>DME(64)</td>
<td>736</td>
<td>736</td>
<td>40188</td>
<td>231</td>
<td>241</td>
<td>< 3.1 \times 10^6</td>
</tr>
<tr>
<td>C(7)</td>
<td>40188</td>
<td>1035</td>
<td>2164</td>
<td>< 3.1 \times 10^6</td>
<td>202</td>
<td>150</td>
<td>C(7)</td>
<td>736</td>
<td>736</td>
<td>40188</td>
<td>231</td>
<td>241</td>
<td>3235</td>
</tr>
<tr>
<td>SR(10)</td>
<td>40188</td>
<td>16935</td>
<td>32354</td>
<td>4.3440</td>
<td>99</td>
<td>736</td>
<td>SR(10)</td>
<td>736</td>
<td>736</td>
<td>40188</td>
<td>231</td>
<td>241</td>
<td>119450</td>
</tr>
<tr>
<td>DPD(7)</td>
<td>40188</td>
<td>119450</td>
<td>86180</td>
<td>8.1 \times 10^7</td>
<td>100</td>
<td>100</td>
<td>DPD(7)</td>
<td>736</td>
<td>736</td>
<td>40188</td>
<td>231</td>
<td>241</td>
<td>109965</td>
</tr>
<tr>
<td>CY(12)</td>
<td>40188</td>
<td>86310</td>
<td>74264</td>
<td>< 3.1 \times 10^6</td>
<td>100</td>
<td>100</td>
<td>CY(12)</td>
<td>736</td>
<td>736</td>
<td>40188</td>
<td>231</td>
<td>241</td>
<td>8.1 \times 10^7</td>
</tr>
</tbody>
</table>
 RW: Readers and Writers (Hellwagner)

DME: STG specification of a circuit for distributed mutual exclusion

CP: Concurrent Pushers (Heimer)

PC: Production cell

EL: Elevator

SR: Slotted ring protocol

DPP: Philosophers with deadlock avoidance

CY: Cycler (Milner)
Unfoldings vs. BDDs

Conceptual similarities and differences:

- Both techniques *compress* the state space
- BDDs exploit *regularity*
 Unfoldings exploit *concurrency*

Consequences:

- **Robustness**: Unfoldings less sensitive to changes in the system
- **Compression**: Prefix smaller for loosely coupled systems, BDDs smaller for tightly coupled systems
<table>
<thead>
<tr>
<th>BDD size</th>
<th>Nr. of phil.</th>
<th>Min.</th>
<th>Max.</th>
<th>St. Dev.</th>
<th>Average</th>
<th>St. Dev.</th>
<th>Average</th>
<th>BDD size</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.54</td>
<td>4</td>
<td>85798</td>
<td>429903</td>
<td>9742</td>
<td>33742</td>
<td>4855</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>1.76</td>
<td>6</td>
<td>85389</td>
<td>47032</td>
<td>632</td>
<td>4855</td>
<td>3140</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>1.48</td>
<td>8</td>
<td>4637</td>
<td>27516</td>
<td>510</td>
<td>3140</td>
<td>340</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>0.92</td>
<td>10</td>
<td>1437</td>
<td>9678</td>
<td>800</td>
<td>1555</td>
<td>583</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>0.52</td>
<td>12</td>
<td>305</td>
<td>1716</td>
<td>248</td>
<td>583</td>
<td>583</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>0.30</td>
<td>14</td>
<td>52</td>
<td>455</td>
<td>94</td>
<td>583</td>
<td>94</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

BDD for the set of reachable states (Petri net)

100 random tables with right-handed, left-handed, and ambidextrous philosophers
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.06</td>
<td>9.25</td>
<td>185</td>
<td>140</td>
<td>161</td>
<td>14</td>
<td>4</td>
<td>117</td>
<td>0.09</td>
<td>5.13</td>
<td>0.10</td>
<td>5</td>
</tr>
<tr>
<td>0.05</td>
<td>0.74</td>
<td>160</td>
<td>120</td>
<td>141</td>
<td>12</td>
<td>6</td>
<td>117</td>
<td>0.09</td>
<td>5.99</td>
<td>0.09</td>
<td>6</td>
</tr>
<tr>
<td>0.07</td>
<td>0.78</td>
<td>135</td>
<td>100</td>
<td>117</td>
<td>10</td>
<td>8</td>
<td>95</td>
<td>0.07</td>
<td>6.92</td>
<td>0.07</td>
<td>8</td>
</tr>
<tr>
<td>0.07</td>
<td>0.692</td>
<td>110</td>
<td>85</td>
<td>90</td>
<td>8</td>
<td>6</td>
<td>70</td>
<td>0.05</td>
<td>5.99</td>
<td>0.05</td>
<td>6</td>
</tr>
<tr>
<td>0.09</td>
<td>0.99</td>
<td>58</td>
<td>60</td>
<td>70</td>
<td>6</td>
<td>4</td>
<td>46</td>
<td>0.07</td>
<td>5.13</td>
<td>0.07</td>
<td>4</td>
</tr>
<tr>
<td>0.10</td>
<td>3.13</td>
<td>60</td>
<td>40</td>
<td>40</td>
<td>4</td>
<td>4</td>
<td>46</td>
<td>0.05</td>
<td>4.13</td>
<td>0.05</td>
<td>4</td>
</tr>
</tbody>
</table>

100 random tables with right-handed, left-handed, and ambidextrous philosophers.
Checking deadlock-freedom with BDDs

100 random tables with right-handed, left-handed, and ambidextrous philosophers

<table>
<thead>
<tr>
<th>Phil.</th>
<th>Average</th>
<th>Min.</th>
<th>Max.</th>
<th>Std. Dev.</th>
<th>Time in seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2.45</td>
<td>0.13</td>
<td>0.05</td>
<td>0.08</td>
<td>0.02</td>
</tr>
<tr>
<td>4</td>
<td>1.18</td>
<td>0.20</td>
<td>14.60</td>
<td>2.45</td>
<td>0.16</td>
</tr>
<tr>
<td>6</td>
<td>3.36</td>
<td>0.20</td>
<td>15.80</td>
<td>4.60</td>
<td>0.46</td>
</tr>
<tr>
<td>8</td>
<td>4.14</td>
<td>0.14</td>
<td>1.18</td>
<td>1.45</td>
<td>0.36</td>
</tr>
<tr>
<td>10</td>
<td>0.80</td>
<td>0.05</td>
<td>0.36</td>
<td>0.16</td>
<td>0.08</td>
</tr>
<tr>
<td>12</td>
<td>0.29</td>
<td>0.05</td>
<td>0.13</td>
<td>0.02</td>
<td>0.05</td>
</tr>
</tbody>
</table>

SMV on a SUN Ultra 60, 2 processors, 640 MB

100 random tables with right-handed, left-handed, and ambidextrous philosophers

Chekking deadlock-freedom with BDDS
Checking deadlock-freedom with unfoldings

100 random tables with right-handed, left-handed, and ambidextrous philosophers

PEP + stable models on a SUN Ultra 60, 2 processors, 640 MB

<table>
<thead>
<tr>
<th>Nr. of phil.</th>
<th>Time in seconds</th>
<th>Min</th>
<th>Max</th>
<th>St. Dev</th>
<th>Ave.</th>
<th>St. Dev</th>
<th>Ave.</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>0.17</td>
<td>0.05</td>
<td>0.03</td>
<td>0.007</td>
<td>0.03</td>
<td>0.016</td>
<td>0.17</td>
</tr>
<tr>
<td>10</td>
<td>0.17</td>
<td>0.02</td>
<td>0.04</td>
<td>0.007</td>
<td>0.02</td>
<td>0.016</td>
<td>0.17</td>
</tr>
<tr>
<td>12</td>
<td>0.20</td>
<td>0.04</td>
<td>0.03</td>
<td>0.007</td>
<td>0.03</td>
<td>0.016</td>
<td>0.17</td>
</tr>
<tr>
<td>14</td>
<td>0.22</td>
<td>0.07</td>
<td>0.07</td>
<td>0.009</td>
<td>0.07</td>
<td>0.016</td>
<td>0.17</td>
</tr>
<tr>
<td>16</td>
<td>0.28</td>
<td>0.04</td>
<td>0.04</td>
<td>0.007</td>
<td>0.04</td>
<td>0.016</td>
<td>0.17</td>
</tr>
<tr>
<td>18</td>
<td>0.30</td>
<td>0.05</td>
<td>0.05</td>
<td>0.007</td>
<td>0.05</td>
<td>0.016</td>
<td>0.17</td>
</tr>
</tbody>
</table>

Checking deadlock-freedom with unfoldings
Unfoldings vs. stubborn sets

Conceptual similarities and differences:

- Both techniques exploit concurrency
- Stubborn sets discard information
 Unfoldings compress information
- Stubborn sets are conservative: small overhead is guaranteed, at the price of a suboptimal reduction
 Unfoldings “take risks”: large overhead is possible, but optimal compression

Consequences:

- No loss of information \(\rightarrow\) All reachability properties checkable on the same prefix
- Causality information available
 (ex. alarm patterns)
- Larger overheads for tightly coupled systems
Checking deadlock freedom with stubborn sets and unfolding

<table>
<thead>
<tr>
<th>Nr. of phil.</th>
<th>Time in seconds</th>
<th>PROD</th>
<th>PEP + smodels</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>18</td>
<td>PROD</td>
<td>PEP + smodels</td>
</tr>
<tr>
<td>12</td>
<td>69</td>
<td>PROD</td>
<td>PEP + smodels</td>
</tr>
<tr>
<td>14</td>
<td>834</td>
<td>PROD</td>
<td>PEP + smodels</td>
</tr>
<tr>
<td>16</td>
<td>5003</td>
<td>PROD</td>
<td>PEP + smodels</td>
</tr>
<tr>
<td>18</td>
<td>29257</td>
<td>PROD</td>
<td>PEP + smodels</td>
</tr>
</tbody>
</table>

SUN Ultra 60, 2 processors, 640 MB

- SUN Ultra 60, 2 processors, 640 MB
- 1 left-handed, 1 right-handed, and (n - 2) ambidextrous philosophers
Tentative rules of thumb

- Unfoldings more suitable for highly concurrent systems
- Stubborn sets and unfoldings more suitable for irregular but concurrent systems
- Stubborn sets more suitable for systems with little concurrency
- BDDs more suitable for very regular systems

- BDDs more suitable for very regular systems