
Exploring Infinite State Spaces

with Finite Automata

Pierre Wolper

Université de Liège

Verification as State Space Exploration

• Consider programs that can be given semantics in terms of
state-transition systems, i.e. structures

K = (S,R, I),

where

– S is a finite or infinite set of states,

– R ⊆ S × S is a transition relation,

– I ⊆ S is a set of initial states.

• A program P is an implicit finite description of a structure
KP = (S,R, I).

• Verifying a program amounts to checking properties of KP , most
commonly of checking properties of its set of reachable states

Sreach = µX.I ∪R(X).

Computing and Representing the Reachable States

To compute the reachable states Sreach, the obvious approach is to

repeatedly apply ρ ≡ I ∪R(X) to the empty set until stabilization.

For doing this, one needs a representation for subsets of S.

If S is finite, this can be done

• By explicit enumeration, in which case applying R is simply done

by doing a program computation step;

• Symbolically, in which case elements of S are coded by fixed

length bit vectors, and subsets of S as well as the relation R by

Boolean formulas; to ease the required computation, it is

common to represent the Boolean formulas in a normal form

(BDDs).

If S is infinite, the only choice is a symbolic representation. To be

usable, such a representation has to be sufficiently

• Expressive, for coding I, R and Sreach; as well as sufficiently

• Decidable, for convergence and properties of Sreach to be

checkable.

Usual choices are formulas in a restricted logical theory, often

written in a normal form in order to ease the computation.

Note. Having a suitable representation formalism does not

guarantee that the fixpoint computation terminates, though this can

be the case for restricted classes of programs.

Theme of this talk: finite automata are an interesting and versatile

symbolic representation formalism

Data-Oriented Infinite State Spaces:
A Simple Framework

Let us consider systems for which the state space is infinite due to
the nature of the data that is manipulated. Precisely, consider
programs defined by a tuple (C, c0,M,m0,Op,∆), where

• C is a finite set of control locations,

• M is a (possibly infinite) memory domain (often given as the
cross product of the domains of a finite number of variables),

• Op ⊆M →M is a set of memory operations,

• ∆ ⊆ C ×Op× C is a finite set of transitions,

• c0 is an initial control location, and m0 is an initial memory
content.

A state is thus an element of C ×M

Generating Infinite Sets of States:
The Need to Accelerate

• In most cases, applying the relation ρ to a finite set of states will
also yield a finite set.

• Thus if the set of reachable states is infinite and the set of initial
states is finite, repeatedly applying ρ to the set of initial states
will never converge to the set of reachable states.

• To solve this problem, one needs to accelerate the exploration of
the set of reachable states.

• Two common acceleration techniques are

– widening, which amounts to guessing an upper approximation
of the set of reachable states.

– using meta-transitions, which corresponds to precomputing
the effect of applying a cyclic transition an unbounded
number of times.

Generating Infinite Sets of States:

Using Meta-transitions

• Identify some loops in the finite-state control of the system.

• Explore the state space as usual, but when reaching a loop,

attempt to compute the effect of indefinitely iterating the

sequence of operations labeling the loop.

• When this computation succeeds, introduce a corresponding

meta-transition and use it as a computation step in the

state-space exploration.

• The state-space exploration terminates when nothing can be

added to the computed state space.

An example of the use of meta-transitions

2 43

x := x + 2

x := 0

x <= 1000000

x > 1000000

1

(©1 ,⊥)

(©2 ,0)

(©2 ,2k) with 0 ≤ k ∈ N ≤ 500000

(©3 ,2k + 2) with 0 ≤ k ∈ N ≤ 500000

(©4 ,1000002)

Note that a meta-transition allows one to go arbitrarily deep into a

computation in one step.

The limits of meta-transitions

Using meta-transitions does not guarantee that the state space can

always be computed. Indeed,

• the search might not terminate in spite of the meta-transitions,

or

• the meta-transitions corresponding to some cycles might not be

computable and representable.

Programs with Integer Variables:

Linear Integer Systems

In a Linear Integer System, the memory is a set of unbounded

integer variables. Formally, we have the following.

• The memory domain M is Zn, where n > 0 represents the

number of variables.

• The set of memory operations Op contains all functions M →M

of the form

P~x ≤ ~q → ~x := T~x+~b

where P ∈ Zm×n, ~q ∈ Zm,m ∈ N, T ∈ Zn×n and ~b ∈ Zn.

The system P~x ≤ ~q is the guard of the operation and the

transformation ~x := T~x+~b is the assignment of the operation.

Representing sets of integer values

First idea : linear constrained sets.

• Yes, but iterating a simple operation like x := x+ 3 yields sets

which are periodic unions of linear constrained sets

. . .

• One needs means to represent periodicity !

Representing sets of integers II

• Use a logical formalism, e.g. Presburger Arithmetic (first-order

arithmetic without multiplication).

∃k x0(x = x0 + 5k ∧ 1 ≤ x0 ≤ 3
∧2 ≤ y ≤ 4)

– Expressiveness is sufficient,

– The problem is computing with such a logical representation.

• Alternative : use automata to represent sets of integers.

Encoding Integers by Strings

Principles :

• Binary representation,

• Unbounded numbers,

• Most significant bit first.

• 2’s complement for negative numbers (at least p bits for a
number x such that −2p−1 ≤ x < 2p−1).

Examples :

4 : 0100, 00100, 000100, . . .

−4 : 100, 1100, 11100, . . .

Vectors are represented by using same length encodings of the
components and reading them bit by bit.

Expressiveness of the Automaton Representation

• To simplify operations, we use automata that accept all valid

encodings of a given subset of Zn.

• The subsets of Zn representable by automata are those definable

in a slight extension of Presburger arithmetic: one adds a

function giving the largest power of 2 dividing its argument.

• If one requires representability by automata in all bases ≥ 2, then

the representable subsets are exactly those definable in

Presburger arithmetic.

• Reduced deterministic automata provide a normal form for all

Presburger definable arithmetic constraints.

Building Automata for Linear Equations

Consider an equation ~a.~x = b with ~a ∈ Zn and b ∈ Z.

The problem is to build an automaton A = (S,2n, δ, s0, F) accepting

the encodings of all ~x ∈ Zn satisfying the equation.

• Each state s of the automaton (except the initial state s0) is

uniquely labeled by an integer β(s). The final state is the one

labeled by b. The initial state is a special state labeled by 0.

• The idea of the construction is that the label of a state

represents the value of ~a.~x for the bits that have been read so far.

• Therefore, for states s and s′ other than s0 to be linked by a

transition labeled ~d, the number β(s) associated with the state s′

has to be given by

β(s′) = ~a.~x′ = 2.~a.~x+ ~a.~d = 2.β(s) + ~a.~d.

where ~(x) and ~(x′) respectively represent the vectors read when

respectively reaching s and s′.

Note that the state s′ is unique.

• For the initial state, the associated value is 0, but one has to

take into consideration that the first bit is a sign bit: in the

function given the next state, a 1 bit is interpreted as −1.

Termination of the Construction and

Inequations

• If ~a = (a1, . . . , an), then the accepting state cannot be reached

from any state s labeled by an integer β(s) ≥ |b/2|+ Σi|ai|. Thus,

only a finite number of states are needed in the automaton.

• In practice, it is more effective to do the construction starting

with the final state and proceeding backwards.

• For an inequation ~a.~x < b, one proceeds similarly except that all

states with labels < b are accepting.

• The automaton obtained is deterministic and hence can easily be

minimized.

Example:

x− y = 2

−2

−1

1

2

−6

−5

−4

4

5

6

3

−3

0
00/11

01

10

10

00/11

01

01

10
00/11

00/11

00/11

00/11

00/11

10

10

10

01

01

1000/11

01

01

−7

7

01

10

Handling Arbitrary Formulas

• For Boolean combinations of linear constraints, one uses the

corresponding operations on automata.

• For existential quantification, one uses projection.

• Universal quantification is handled by transforming ∃ to ¬∀¬.

• One important advantage of this approach is that one has a

normal form even for formulas that represent non convex sets

and include periodicity constraints.

Iterating operations on integers

A simple case: an instruction I ≡ T~x ≤ ~u→ ~x := A~x+~b, with A

idempotent (A2 = A) and an initial value ~x0

Compute the values obtained by the repeated execution of I on ~x0 :

A~x0 + + ~b

A~x0 + A~b + ~b

A~x0 + 2A~b + ~b
... ...

A~x0 + kA~b + ~b
... ...

Cycle precondition : T (A~x0 + kA~b+~b) ≤ ~u

More general results have been developed.

Programs with Integers and Reals

• The automaton-based representation for integers can be

extended to reals by using automata on infinite words.

• Real numbers are encoded by their infinite binary expansion

(note that some numbers have two encodings).

Examples :

L(3.5) = 0+11 ? 1(0)ω ∪ 0+11 ? 0(1)ω

L(−4) = 1+00 ? (0)ω ∪ 1+011 ? (1)ω;

• Implementing operations on infinite word automata is

problematic (especially complementation), but using a

topological argument, it has been show that all sets definable in

linear arithmetic over the integers and reals has a representation

that is accepted by a weak deterministic infinite word automaton.

• This allows the use of a simple algorithm for determinization and

provides a canonical representation.

• Automata thus are a useful tool for handling the combined

theory of the reals and integers, with applications such as

analysing various classes of timed and hybrid systems.

Another Application of Automata Representations:

Systems with Unbounded FIFO Queues

In a queue system, the memory domain is a set of unbounded

queues. Formally, we have the following.

• The memory domain is of the form Σ∗1 ×Σ∗2 × · · · ×Σ∗n, where

n > 0 represents the number of queues, and each Σi is the finite

queue alphabet of the i-th queue qi (we assume they are

distinct).

• The set of memory operations Op contains the two queue

operations qi!a and qi?a for each queue qi and symbol a ∈ Σi .

Representing the Content of Queues:

The QDD

A Queue Decision Diagram (QDD) is a finite automaton

representation of a set of queue contents.

• A content (w1, . . . , wn) for a queue system with n queues is

represented by the concatenation w1 · w2 · · ·wn of the individual

queue contents taken in a fixed order.

• A QDD is a finite automaton over the union of the queue

Σ = Σ1 ∪ . . . ∪Σn of the queue alphabets such that all words

accepted by the automaton satisfy

w = w|Σ1
w|Σ2

. . . w|Σn.

That is, every word accepted by the automaton can be

interpreted as a content for the set of queues of the system.

Operations on QDDs

A state of a queue system is a pair (c,m) ∈ C ×M . We consider sets

of states with an identical control location c represented as a pair

(c, A) where A is a QDD. We have to address the following problems.

• Compute the effect of applying a transition (c, op, c′) to the

states represented by (c, A), i.e. the set of states

{(c′,m′)|∃m(m ∈ L(A) ∧m′ ∈ op(m)}.

• Compute the effect of applying a sequence of transitions to

(c, A).

• Compute the effect of repeatedly applying a cyclic sequence of

transitions to (c, A).

What we want to compute is (if it exists) the QDD resulting from

the application of the operations.

Applying Operations to QDDs

The Single Queue Case

The effect of single operations or of finite sequences of operations is

easy to compute as can seen on the following example.

a∗b:

a

a

bb

a

bb
(q!b)[a∗b]:

(q!b; q?a)[a∗b]:

b

Iterating Sequences of Operations on QDDS

To compute the effect of iterating a sequence of operation σ to the

set of queue contents represented by a QDD A, i.e. to compute

σ∗(A), we proceed as follows

• We use σ∗(A) =
⋃
k σ

k(A)

• Some periodicity will eventually occur within the σk(A).

• σ∗(A) can thus be represented by a finite union.

Iterating Sequences on a QDD:

An Example

a

b

a∗b: (q!b; q?a)∗[a∗b]:

bb b b · · ·

a

b

a b

Operations on Systems with Multiple Queues

• For single operations, one simply operates as above on the part

of the QDD representing the queue on which the operation is

performed.

• Sequences of operations can be similarly handled.

• The result of iterating a sequence of operations cannot always

be represented as a QDD. For instance (q1!a; q2!b)∗.

The problem comes from the ability to count the number of

iterations by looking at the content of two or more queues.

• When only one queue allows to count the number of iterations,

one can combine the result of handling separately the different

queues.

Other Types of Systems

• Pushdown systems: systems with one pushdown stack. In this

case the set of reachable states is regular and can always be

computed.

• Parametric Systems: systems with an arbitrary unbounded

number of processes. States are represented by words and the

transition relation by a finite-state transducer. Reachable states

are computed by generic techniques applied to finite-state

transducers.

