
SystemC Primer

• SystemC Primer Information Module
• SystemC Stand-Alone Lab
• SystemC Lab using Riviera

2

SystemC

Introduction

Exploring Limitations
One of the questions that Engineers must always ask
when faced with a new design methodology is Why?
Why should I learn this new method? The answer to this
question can be quite complex, but one answer is
limitations. The techniques I know today may still do the
job, but can they do them efficiently.
This is one of the main questions you must always ask
yourself as you design, what are the limitations of my
current design set, and can I learn a different way, and
can that way allow me to do my job more efficiently.

Exploring Limitations

When you are draw a schematic,
you choose from a pre-defined set
of library elements that have been
defined for that specific device. If
you wish to change devices, you
often have to re-draw the diagram
as the symbol library may not be
the same. There is a limitation in
simulating a schematic as well.

Exploring Limitations
When we write a VHDL design, we are not referring to any particular device
library, we are describing the logical interactions of signals moving through a
design. We are thinking at a higher level of abstraction.

The ability to describe behavior is a major
step, and HDL languages have replaced
schematic design for circuit descriptions.

However, while HDL designs can be good for
RTL coding they are limited in their ability to
model behavior and test it at a higher level of
abstraction

-- VHDL Source for a 4 input
-- AND GATE

library IEEE;
use IEEE.std_logic_1164.all;

entity logic1 is
port(in1, in2: in std_logic;

in3, in4: in std_logic;
out1 : out std_logic);

end logic1;

architecture RTL of logic1 is
begin
out1 <= in1 and in2 and in3

and in4;
end RTL;

Levels of Abstraction

C++ is a desirable modeling tool
since it enables a sufficient level of
abstraction to try out complex ideas.

Current design methodologies
require that there be a manual step
between the C++ modeling stage
and the RTL Description. A desire
is to have bit accurate models in
C++, and then transition to RTL
code.

Why C++ ?
Why C++?
• Object Orientation is characterised by code re-use
• Extensible features allow addition of HW constructs
• Existing tool availability (IDE, debug, profiling)
• Many designs are already started in C/C++

Why not develop a new language?
• New tool environment
• New learning curve for both system and hardware

C++ Design Mission
Bring high-level design to the mainstream

• Raise the level of abstraction available to the logic
designer

• Bridge the gap between the system designer and the
hardware designer

• Provide leading-edge synthesis technology

Levels of Abstraction
Various parts of our design require different levels of abstraction when we describe
them. Let's see how different languages deal with different levels of abstraction:

System Level Not Suitable Poor Very Good

High Level
(Behavioral) Good Very Good Good

Medium Level
(RTL) Very Good Very Good Poor

Low Level
(Gates) Good Poor Not Suitable

Level of
Abstraction

Verilog VHDL C/C++

Why Not Just Use C/C++?
One of the fundamental issues
in describing hardware
constructs using a software
language is the issue of
concurrency. One of the main
things that we learn when we
use an HDL is that there is the
concept of concurrency.

This is an example of a C style
rendition of a counter structure.
The question is, how do we
invoke this counter when the
clock changes from 0 to 1 so
that it acts like a hardware
counter?

What is SystemC
SystemC is a C++ class library and a methodology that you can use to
effectively create a cycle-accurate model of software algorithms, hardware
architecture, and interfaces of your SoC (System On a Chip) and system-level
designs.

You can use SystemC and standard C++ development tools to create a
system-level model, quickly simulate to validate and optimize the design,
explore various algorithms, and provide the hardware and software
development team with an executable specification of the system.

An executable specification is essentially a C++ program that exhibits the same
behavior as the system when executed.

With today's modern HDL frameworks, you can mix SystemC with an HDL
design to make a more complex efficient model of a piece of hardware, or make
a more robust testbench.

SystemC Adds to C++
The SystemC Class Library provides the necessary
constructs to model system architectures, including
hardware timing, concurrency, and reactive behaviors
that are missing in standard C++.

The C++ object-oriented programming language provides
the ability to extend the language through classes,
without adding new syntactic constructs. SystemC
provides these necessary classes and allows designers
to continue to use the familiar C++ language and
development tools.

SystemC Features
SystemC supports hardware-software co-design and the description of the
architecture of complex systems consisting of both hardware and software
components. It supports the description of hardware, software, and interfaces in
a C++ environment.

The following features of SystemC allow it to be used as a co-design language:

Modules: SystemC has a notion of a container class called a module. This is a
hierarchical entity that can have other modules or processes contained in it.

Processes: Processes are used to describe functionality. Processes are
contained inside modules. SystemC provides three different process
abstractions to be used by hardware and software designers.

Ports: Modules have ports through which they connect to other modules.
SystemC supports single-direction and bidirectional ports.

SystemC Features
Signals: SystemC supports resolved and unresolved signals.
Resolved signals can have more than one driver (a bus) while
unresolved signals can have only one driver.

Rich set of port and signal types: To support modeling at
different levels of abstraction, from the functional to the RTL,
SystemC supports a rich set of port and signal types. This is
different than languages like Verilog that only support bits and bit-
vectors as port and signal types. SystemC supports both two-
valued and four-valued signal types.

Rich set of data types: SystemC has a rich set of data types to
support multiple design domains and abstraction levels. The fixed
precision data types allow for fast simulation, the arbitrary
precision types can be used for computations with large numbers,
and the fixed-point data types can be used for DSP applications.

SystemC Features

Multi-Level logic values: SystemC supports both two-
valued and four-valued data types. There are no size
limitations for arbitrary precision SystemC types.

Clocks: SystemC has the notion of clocks (as special
signals). Clocks are the timekeepers of the system during
simulation. Multiple clocks, with arbitrary phase
relationship, are supported.

Cycle-based simulation: SystemC includes an ultra
light-weight cycle-based simulation kernel that allows
high-speed simulation.

SystemC

Data Types

Built in C/C++ Types
System C supports all of
the C/C++ data types.

This means that existing
algorithms can be brought
directly into a SystemC
design with little or no
conversion.

The limitation of the built in
data types is in their range
of values. For example an
int cannot be ranged.

SystemC Data Types

A number of new
data types have
been added as part
of the SystemC
library. These types
reflect a more
hardware style of
data type, with some
offering 4 value logic.

SC_BIT Data Type
Type sc_bit is a two valued data type representing a single bit. A
variable of type sc_bit can have the value ’0’(false) or ’1’(true) only.

This type is useful for modeling parts of the design where Z (hi
impedance) or X (unknown) values are not needed.

Values are assigned using the character literals ’1’ and ’0’. When
performing boolean operations type sc_bit objects can be mixed with
the C/C++ bool type. Objects of type sc_bit are good for representing
single bits of a design where logical operations will be performed.

To declare an object of type sc_bit use the following syntax.

sc_bit s;

SC_LOGIC
A more general single bit type is sc_logic. This type has 4
values, ’0’(false), ’1’(true), ’X’ (unknown), and ’Z’ (hi impedance
or floating). This type can be usedto model designs with multi
driver busses, X propagation, startup values, and floating
busses.

Type sc_logic has the most common values used in VHDL and
Verilog simulations at the RTL level.

An example assignment is shown below:
sc_logic x; // object declaration
x = ’1’; // assign a 1 value
x = ’Z’; // assign a Z value

SC_INT & SC_UINT
Some systems need arithmetic operations on fixed size arithmetic
operands. The Signed and Unsigned Fixed Precision Integer types
provide this functionality in SystemC.

The C++ int type is machine dependent, but usually 32 bits. If the
designer were only going to use 32 bit arithmetic operations then this
type would work. However the SystemC integer type provides integers
from 1 to 64 bits in signed and unsigned forms.

The underlying implementation of the fixed precision type is a 64 bit
integer. All operations are performed with a 64 bit integer and then
converted to the appropriate result size through truncation. If the
designer multiplies two 44 bit integers the maximum result size is 64
bits, so only 64 bits are retained. If the result is now assigned to a 44
bit result, 20 bits are removed.

SC_INT and SC_UINT

Type sc_int<n> is a Fixed Precision Signed
Integer, while type sc_uint<n> is a Fixed
Precision Unsigned Integer. The signed type is
represented using a 2’s complement notation.
The underlying operations use 64 bits, but the
result size is determined at object declaration.
For instance the following declaration declares
a 64 bit unsigned integer and a 48 bit unsigned
integer.

sc_int<64> x;
sc_uint<48> y;

SC_INT & SC_UINT Operators

SC_BIGINT & SC_BIGUINT
There are cases in HDL based design where operands need to be
larger than 64 bits. For these types of designs sc_int and sc_uint will
not work. For these cases use type sc_biguint (arbitrary size unsigned
integer) or sc_bigint (arbitrary sized signed integer).

These types allow the designer to work on integers of any size, limited
only by underlying system limitations. Arithmetic and other operators
also use arbitrary precision when performing operations. Of course this
extra functionality comes at a price. These types execute more slowly
than their fixed precision counterparts and therefore should only be
used when necessary. While sc_bigint and sc_biguint will work with
any operand sizes, they should only be used on operands larger than
64 bits or for operations where more than 64 bits of precision are
required.

SC_BIGINT & SC_BIGUINT

Type sc_bigint is a 2’s complement signed
integer of any size. Type sc_biguint is an
unsigned integer of any size. When using
arbitrary precision integers the precision used
for the calculations depends on the sizes of the
operands used. Look at the example below:

sc_biguint<128> b1;
sc_biguint<64> b2;
sc_biguint<150> b3;
b3 = b1*b2;

SystemC

Module Declaration

Module Declaration
A Functional Block can be declared using the SC_MODULE
macro. This makes defining a C++ Class more HDL Like. Much
like declaring an HDL module the ports, and member functions
(Processes) are defined.
The SC_CTOR constructor defines the sensitivity lists of the
processes.

Module Declaration
A module declaration in SystemC is
essentially the same as a Class definition
in C++. It represents a functionality as an
Entity/Architecture do in VHDL.

The module declaration contains
• Port Declarations
• Local variable declarations if necessary
• Method declarations (analogous to a process)
• SC_CTOR which is the constructor which

initializes variables, and specifies sensitivity
lists.

For example a module declaration for a
D Flip Flop module would be as shown :

The include file “systemc.h” is the
interface to the SystemC library, and
must be included in any file that contains
references to SystemC functions.

Module Ports

Module Ports pass data to and from the
processes of a module. You declare a port
mode as in, out, or inout. You also declare
the data type of the port as any C++ data type,
SystemC data type, or user defined type.

SC_MODULE(fifo) {
sc_in<bool> load;
sc_in<bool> read;
sc_inout<int> data;
sc_out<bool> full;
sc_out<bool> empty;

//rest of module not shown
}

Member Functions
A functionality is described
using a member function,
just as in C++. A member
function is declared as part
of the Module declaration.

The actual functionality can
be described inline with the
module declaration or, as
was shown earlier, just the
prototype is defined in the
modules declaration.

The functionality is then
defined separately.

The Module Constructor
The module constructor
function SC_CTOR is where
SystemC transforms C++ from
a sequential language into a
cycle based system.

The SC_CTOR constructor
serves double duty.

It acts as a class constructor,
giving initial values to the
variables in the module (class)
It also converts the member
functions into processes.

Processes
So far the interface of modules have been discussed, but
not the part of the module that provides the functionality.

The real work of the modules are performed in
processes. Processes are functions that are identified to
the SystemC kernel and called whenever signals these
processes are “sensitive to” change value.

A process contains a number of statements that
implement the functionality of the process. These
statements are executed sequentially until the end of the
process occurs, or the process is suspended by one of
the wait function calls.

SC_METHOD Process
This behavior is described by the following statements in the constructor for module
dflipflop

SC_METHOD(behaviour);
sensitive_pos(clock);

The first statement specifies that this process is an SC_METHOD process. An
SC_METHOD process is triggered by events and executes all of the statements in the
method before returning control to the SystemC kernel.

The second statement specifies that the process is sensitive to positive edge changes on
input port clock.

The process runs once when the first event (positive edge on clock) is received. It executes
the assignment of din to dout and then returns control to the SystemC kernel.

Another event causes the process to be invoked again, and the assignment statement is
executed again. This is analogous to a process block in a VHDL design.

SC_METHOD Process
The allowable sensitivities for the SC_METHOD process are
• sensitive_pos -- denotes positive edge
• sensitive_neg -- denotes negative edge
• sensitive -- level sensitivity for combinatorial behaviour.

There are two notations that can be used in the sensitivity list.
The first has been shown is
• sensitive_pos(clock)

The other way this can be specified is by using the << (stream)
operator, as in
• sensitive_pos << clock

Both are identical in functionality.
For the sensitive level sensitivity, multiple arguments can be
passed
• sensitive << a << b

Multiple Sensitivities
• If the process is sensitive to more than one event,

then multiple sensitive() statements are required.

Multiple Methods in a Module
A Module can consist of many methods, just like a VHDL Architecture
can consist of many processes.

When multiple processes are declared, the pattern is declaration
followed by sensitivity list followed by declaration followed by
sensitivity list and so on.

Thread Processes
Thread Processes can be suspended and reactivated.
The Thread Process can contain wait() functions that
suspend process execution until an event occurs on one
of the signals the process is sensitive to.

An event will reactivate the thread process from the
statement the process was last suspended. The process
will continue to execute until the next wait().

The input signals that cause the process to reactivate are
specified by the sensitivity list. The sensitivity list is
specified in the module constructor with the same syntax
used in the Method Process.

Thread Processes
#include "systemc.h"
SC_MODULE(traff) {
// input ports

sc_in<bool> roadsensor;
sc_in<bool> clock;

// output ports
sc_out<bool> NSred;
sc_out<bool> NSyellow;
sc_out<bool> NSgreen;
sc_out<bool> EWred;
sc_out<bool> EWyellow;
sc_out<bool> EWgreen;

void control_lights();

int i;
// Constructor
SC_CTOR(traff) {

SC_THREAD(control_lights); // Thread Process
sensitive << roadsensor;
sensitive_pos << clock;

}
}; // end SC_MODULE

void traff::control_lights() {
NSred = false;
NSyellow = false;
NSgreen = true;
EWred = true;
EWyellow = false;
EWgreen = false;

while (true) {
while (roadsensor == false)

wait();
NSgreen = false; // road sensor triggered
NSyellow = true; // set NS to yellow
NSred = false;
For (i=0; i<5; i++)

wait();
// rest of design…..

SystemC

Top Level (Testbench)

Top Level
• The sc_main(), function is the entry point from the SystemC

library to the user’s code. It is called by the function main()
which is part of the SystemC library. Its prototype is:

int sc_main(int argc, char* argv[]);

• The arguments argc and argv[] are the standard command-
line arguments. They are passed to sc_main() from main()
in the library.

• The body of sc_main() typically consists of configuring
simulation variables (default time unit, time resolution, etc.),
Instantiation of the module hierarchy and channels,
simulation, clean-up and returning a status code.

Sc_signals
After the sc_main statement, the local signals are
declared to connect the module ports together.
The systemC signal can have any data type, just like
the port connections.

Module Instantiation
A module is instantiated in
the sc_main() function in
SystemC in a way very
similar to the methodology
seen in VHDL.

Note: A module may also be
instantiated from within
another module. This is
directly derived from a class
using another class within its
structure. The syntax for
doing this is beyond the
scope of the present
presentation.

Clock Objects
Clock objects are special objects in SystemC. They generate timing
signals used to synchronize events in the simulation. Clocks order
events in time so that parallel events in hardware are properly
modeled by a simulator on a sequential computer.

A clock object has a number of data members to store clock settings,
and methods to perform clock actions. To create a clock object use the
following syntax:

sc_clock clock1("clock1", 20, 0.5, 2, true);

This declaration will create a clock object named clock with a period of
20 time units, a duty cycle of 50%, the first edge will occur at 2 time
units, and the first value will be true. All of these arguments have
default values except for the clock name. The period defaults to 1, the
duty cycle to 0.5, the first edge to 0, and the first value to true.

Clock Objects
Typically clocks are created
at the top level of the design
in the testbench and passed
down through the module
hierarchy to the rest of the
design. This allows areas of
the design or the entire
design to be synchronized
by the same clock. In the
example below the sc_main
routine of a design creates a
clock and connects the clock
to instantiated components
within the main module.

SC_START Function
Once the instantiation of
the lower level modules
has been coded, and the
clocks setup, the
simulation is moved
forward using the
sc_start method. If an
argument is given, then
the simulation will move
forward by that many
time ticks. If an
argument of -1 is given
then the simulation will
run forever.

Another Way of Simulating
Another method that can be
used to simulate the design
is to use the sc_cycle
function to move the
simulation along.

In this example a 20 cycle
period clock is defined using
a loop.

This methodology allows for
more complex simulations,
as the designer can control
what happens when.

Another Way of Simulating
For example, using this method
an asychronous signal can be
generated easily.
There are other ways of
generating wave shapes and
monitors, but those are beyond
the scope of this presentation.

SystemC

Graphical Output

Signal Tracing
Since SystemC is built upon C/C++ there is the whole language
worth of functions to generate console and file I/O.

However, one of the things that we like is graphical output. In
order to accomplish this, SystemC has a series of trace
functions which create a VCD file.

VCD Files are text files in a known format that have been
around since the time of plotters. There are many programs
available that can read VCD files and Display them.

The graphical system in the Aldec tools for example can display
VCD files.

Creating a Trace File
The first step in tracing waveforms is creating the trace file. The
trace file is usually created at the top level after all modules and
signals have been instantiated. Fortracing waveforms using the
VCD format, the trace file is created by calling the
sc_create_vcd_trace_file() function with the name of the file as
an argument. This function returns a pointer to a data structure
that is used during tracing. For example,

sc_trace_file * my_trace_file;
my_trace_file = sc_create_vcd_trace_file(“my_trace”);

creates the VCD file named my_trace.vcd (the .vcd extension is
automatically added). A pointer to the trace file data structure is
returned. You need to store this pointer so it can be used in
calls to the tracing routines.

Creating a Trace File
SystemC provides tracing functions for scalar variables and signals. All
tracing functions have the following in common:
• The function is named sc_trace().
• Their first argument is a pointer to the trace file data structure sc_trace_file.
• Their second argument is a reference or a pointer to a variable being traced.
• Their third argument is a reference to a string.

For example, the following illustrates how a signal of type int and a
variable of typefloat are traced.

Example

SystemC

Resolved Signals

Signal Resolution
Bus resolution becomes an issue
when more than one driver is
driving a signal.
SystemC uses a Resolved Logic
Vector signal type to handle this
issue. Take a look at the example
with three drivers x, y, w, driving
signal g.
Port x is driving a 0 value, and ports
y and w are driving Z values. The
resolution of these values will be
assigned to signal g. In this
example the resolved value will be
0. Ports y and w have their drivers
disabled and are driving Z values.
Therefore the 0 value from port x
will “win”.

Signal Resolution
In this case ports x and y
are driving a value while
port w is not. However
ports x and y are driving
opposite values. Since
values 0 and 1 are the
same strength or priority
the final value of signal g
cannot be determined
and the value assigned
will be X.

Resolved Vector Type
The following shows how to create a resolved Module port.
The only limitation on the size of n is underlying system
limitations. Resolved Logic Vector ports should only be used
where absolutely necessary as extra simulation overhead is
added versus standard ports. Typically a standard port with a
scalar or vector type should be used for better simulation
efficiency.

Resolved Signal Type
Signals are used to interconnect ports. Vector signals
can be used to connect vector ports. The vector signal
types are the same as the vector port types. The
currently supported vector signal type is sc_signal_rv.
This is a resolved vector of sc_logic signals.
An example is shown below:

sc_signal_rv<n> sig3; // resolved logic vector signal n bits wide
Signals of this type can be used to connect to resolved
logic vector ports.

SystemC

Interfacing to VHDL

Interfacing to VHDL

SystemC was developed with the idea of
creating an executable program that is run
from within a C/C++ environment.

However, users that develop models or
testbenches using systemC may wish to
interface these models with their other VHDL
(synthesiziable) code. Aldec's Riviera simulator
allows the user to instantiate a systemC
module directly from VHDL or Verilog Code.

Riviera Uses Library
Instantiation

Before you can simulate SystemC modules in Riviera, you should link your
application. You need

a shared object (.so) library on Linux

a dynamic-link library (.dll) on Windows

Riviera includes header files required for compilation and a SystemC library
(systemc.a or systemc.lib) needed at the link stage. Compiling and linking is
described both for gcc and Microsoft Visual C++.

The source code of the SystemC library was modified by Aldec to allow
seamless integration of SystemC models into an HDL flow. When compiling
your SystemC application, you should use the header files from the
systemc/interface directory in the Riviera installation directory. Likewise, you
should use the systemc.a or the systemc.lib file from the systemc/lib
directory for linking.

SystemC Flow
The diagram beside shows SystemC
flow. SystemC modules should be
compiled with a C++ compiler (gcc or
VC++).

You should use include files from the
systemc/interface directory in the
Riviera installation directory. (The
installation directory is represented by
the $VSIMSACFG variable on the
diagram.)
The header files delivered with Riviera
are modified compared to the original
SystemC distribution. A number of
changes were required for a seamless
integration with the HDL flow.

Likewise, you should use the SystemC
library delivered with Riviera for linking.
Use systemc.a for gcc or systemc.lib
for VC++.

No SC_MAIN() used
When SystemC and HDLs are mixed into one design and simulated in Riviera, a number of
modifications to the SystemC code (and the build process) is necessary. The SystemC code
should be compiled to a shared object (.so) or a dynamic-link (.dll) library. Riviera will never call
the sc_main() function from your module. This has the following implications:

The sc_main() function must be replaced by a module.

Calls to sc_set_time_resolution() should be removed. Simulation resolution can be set in
Riviera.

Calls to sc_start() function should be removed. Simulation can be controlled with the run
command in Riviera.

Testbench code mixed with multiple invocations of the sc_start() functions can be moved to
SC_THREAD() process. Process execution can be controlled with calls to the wait() function.

SystemC modules that should become available in Riviera (after using the addsc command)
should be exported with the SC_MODULE_EXPORT (sc_module_name) macro.

Example Modification For
Riviera

Sample Execution
The Riviera model is built to a
shared-object (.so) or a
dynamic-link (.dll) library. When
the library is created, modules
exported with the
SC_MODULE_EXPORT macro
must be added to Riviera library
with the addsc command. The
following commands can be
used to run simulation:

Note that the output of the cout
stream will appear in Riviera
console. (The output of printf
function would be printed to the
underlying terminal where
Riviera was started.)

System C Lab #1 – Up/Down Counter
Introduction
In this lab we are going to develop a SystemC model of an enabled 8 bit Up/Down
Counter. We will then develop a main program (testbench) for the design. The design
will then be compiled an executed in a Cygwin (unix emulation) shell in windows.

For the purposes of the design, the counter will be active on the positive edge of the
clock, the reset will be active high and asynchronous, and the updown control will be
active high (count up when 1).

Starting the Lab
Using the windows explorer, browse to the c:\labs\systemc\updown folder. In this folder
you will find 4 files which are the templates (starting point) for the project we are going
to implement. The four files are as follows:

Updown.h This file contains the declaration of the updown counter method.
Updown.cpp This file contains the implementation of the member functions

(processes) for the updown counter.
Main_updown.cpp This file is the top level, which implements the testbench for the

updown counter.
Makefile This is the makefile that compiles the project.

You can edit these files with any editor available on the computer (notepad for example).

Creating updown.h
The file updown.h is where the module (class) for the updown counter is defined. Open
up the file updown.h

#include "systemc.h"

SC_MODULE(updown)
{
 sc_in< bool > P_clk;
 sc_in< bool > P_reset;
 sc_in< bool > P_updown;
 sc_out<sc_int<8> > P_ctr_val;

 int int_ctr_s;
 void behaviour();
 void print_res();

 SC_CTOR(updown)
 {
 int_ctr_s = 0;
// SC_METHOD code to be inserted here
 }
};

www.aldec.com 1/12

The file has already been blocked out. We are defining that a module called updown is
being created. We see that there are 4 input ports (P_clk, P_reset, P_updown) and one
output port (8 bits wide) (P_ctr_val).

An internal signal int_ctr_s has been declared to be the count variable. The existence of
two functions has also been declared. The function behaviour() contains the functionality
of the counter, and the function print_res() has been added for debugging, and it will
print out the values of the counter variables.

What needs to be added to the declaration of the updown method is the sensitivity lists
for behaviour and print_res to the updown SC_TOR (constructor).

DESIGN STEP: Using the SC_METHOD, sensitive and sensitive_pos functions
make the behaviour() function sensitive to the positive edge of P_clk and P_reset.
Make the print_res() function sensitive to the P_clk, P_reset and P_updown signals.

Save the file updown.h. We will compile this file in a future step.

Creating updown.cpp
The next step is to create the functionality of the the two methods that have been declared
in the updown.h header file.

Open up the file updown.cpp

#include "updown.h"

void updown::behaviour()
{

 // insert code for an updown counter here.

 P_ctr_val = int_ctr_s ;
}

void updown::print_res()
{
 cout << sc_simulation_time() << " "<< P_reset << " " << P_clk <<
" "
 << " " << P_updown << " " << int_ctr_s << "\n";
}

The function print_res has already been defined in the file. It uses a simple C++ COUT
directive in order to print all of the values of the variables in the updown counter. The
function sc_simulation_time() returns the current simulation time. There is nothing that
has to be done for this function.

www.aldec.com 2/12

The function behaviour() has been blocked out for you. The declaration has been taken
care of, along with the final assignment of the internal count variable int_ctr_s to the
module output P_ctr_val.

DESIGN STEP: implement the code for the updown counter behaviour() function.
The reset is active high, and the 8 bit counter (rolls over at 255) counts up when
P_updown is 1 and down when P_updown is low.

Save the file. It will be compiled in future step.

Creating main_updown.cpp
The main_updown.cpp file is the main program for our design. Open up
main_updown.cpp

#include "systemc.h"
#include "updown.h"

int sc_main(int argc, char* argv[]) {

 sc_signal<bool> Rst;
 sc_signal< sc_int<8> > cval;
 sc_signal<bool> up_down;
 sc_signal<bool> clk;

 int i; // loop counter

 // initialize the input values

 Rst = 1;
 up_down = 1 ;
 clk = 0;

 // insert the instatiation here

 // install test values here

}

Two things have to be included in the sc_main() top level

1. Instantiation of the updown counter
2. Stimulus for the clk, rest and updown values

The four signals have been declared that are needed for the instantiation.

The test signals are going to be written in a very HDL style, that is, the time advancement
and signals values are going to be controlled manually.

www.aldec.com 3/12

The following systemc values will be useful.

1. sc_initialize() to initialize the simulation
2. sc_cycle(time_value) which progresses the simulation by time_value time ticks.
3. sc_stop() ends the simulation.

A structure like;

for (i = 0; i<= 5; i++)
 {
 clk = 1;
 sc_cycle(10);
 clk = 0;
 sc_cycle(10);
 };

can be used to create clock cycles. You must remember that the sc_main runs
sequentially, so you must set the rst, up_down values, run the simulation for several clock
cycles, change them, more clock cycles….

DESIGN STEP: Add the instantiation of the updown module and some test inputs
to the main program.

Save the file, we will compile it in the next step.

Compiling and running the files
As mentioned in the introduction, we are going to compile and run the program using the
CYGWIN shell. CYGWIN is a linux emulator for windows.

Find the Cygwin shell icon on the desktop.

This will open up a command shell for the unix shell commands (next page).

www.aldec.com 4/12

Type cd /cygdrive/c/labs/systemc/updown in order to go to the project directory.

Type ls and make sure all of the files are there.

In order to make compiling easier, a makefile has been included. In order to compile the
design, type make at the command prompt. This creates the executable
updown_run.exe. You can review and fix any syntax errors. If you wish to delete the
executable and the object files before compiling, type make clean. This deletes all of the
intermediate files.

Once the syntax errors have been fixed and the design compiles (there may be a few
warnings), type updown_run.exe at the command prompt in order to run the program.

www.aldec.com 5/12

You will see the printed results on the console.

End of lab
You can now experiment either by changing the functionality of the counter, or by adding
features such as the VCD function calls in order to create a VCD file to make a graphical
output.

www.aldec.com 6/12

Appendix

www.aldec.com 7/12

Updown.h

#include "systemc.h"

SC_MODULE(updown)
{
 sc_in< bool > P_clk;
 sc_in< bool > P_reset;
 sc_in< bool > P_updown;
 sc_out<sc_int<8> > P_ctr_val;

 int int_ctr_s;
 void behaviour();
 void print_res();

 SC_CTOR(updown)
 {
 int_ctr_s = 0;

 SC_METHOD(behaviour);
 sensitive_pos << P_clk;
 sensitive_pos << P_reset;

 SC_METHOD(print_res);
 sensitive << P_clk << P_reset << P_updown;
 }

};

www.aldec.com 8/12

updown.cpp

#include "updown.h"

void updown::behaviour()
{
 if (P_reset)
 int_ctr_s = 0;
 else
 {
 if (P_updown)
 {
 if (int_ctr_s == 255)
 int_ctr_s = 0;
 else
 int_ctr_s++;
 }
 else
 {
 if (int_ctr_s == 0)
 int_ctr_s = 255;
 else
 int_ctr_s--;
 }

 }

 P_ctr_val = int_ctr_s ;
}

void updown::print_res()
{
 cout << sc_simulation_time() << " "<< P_reset << " " << P_clk
<< " "
 << " " << P_updown << " " << int_ctr_s << "\n";
}

www.aldec.com 9/12

main_updown.cpp

#include "systemc.h"
#include "updown.h"

int sc_main(int argc, char* argv[]) {

 sc_signal<bool> Rst;
 sc_signal< sc_int<8> > cval;
 sc_signal<bool> up_down;

 // sc_clock clk("clock", 20);
 sc_signal<bool> clk;

 int i;

 Rst = 1; // power on reset
 up_down = 1 ;

 updown U1 ("updown");
 U1.P_clk(clk);
 U1.P_reset(Rst);
 U1.P_updown(up_down);
 U1.P_ctr_val(cval);

 // trace file

 sc_trace_file *tf = sc_create_vcd_trace_file
 ("updown_wave");
 // External Signals
 sc_trace(tf, clk, "clock");
 sc_trace(tf, Rst, "reset");
 sc_trace(tf, cval, "counter");
 sc_trace(tf, up_down, "updown");

 // sc_start(500);

 sc_initialize();

 for (i = 0; i<= 5; i++)
 {
 clk = 1;
 sc_cycle(10);
 clk = 0;
 sc_cycle(10);
 };

 Rst = 0;

 for (i = 0; i<= 15; i++)
 {
 clk = 1;
 sc_cycle(10);
 clk = 0;

www.aldec.com 10/12

 sc_cycle(10);
 };

 up_down = 0;

 for (i = 0; i<= 20; i++)
 {
 clk = 1;
 sc_cycle(10);
 clk = 0;
 sc_cycle(10);
 };

 sc_close_vcd_trace_file(tf);

 sc_stop();

 return (0);

}

www.aldec.com 11/12

makefile

CC = /usr/bin/gcc
CPP = /usr/bin/g++
PATH = c:/labs/systemc/updown
TARGET = updown_run
OBJPATH = $(PATH)
LD = /usr/bin/ld
LD_PATH = /usr/bin/ld

OBJECTS = updown.o main_updown.o

TARGETS = updown main_updown

INCDIRS = -IC:/systemc/systemc/include

LIBS = C:/systemc/systemc/lib-cygwin/libsystemc.a
/usr/lib/libstdc++.a

LIBDIRS =

CC_OPT = -Wno-deprecated -ggdb -shared -Wall -D__int64=long\
long\ int
LD_OPT =

target : $(TARGETS)
 $(CC) -W1,--noinhibit-exec, $(OBJECTS) $(LIBS) -o $(TARGET)

updown : $(PATH)/updown.cpp $(PATH)/updown.h
 ${CC} $(CC_OPT) $(INCDIRS) -c -o $(OBJPATH)/updown.o
$(PATH)/updown.cpp

main_updown : $(PATH)/main_updown.cpp
 ${CC} $(CC_OPT) $(INCDIRS) -c -o $(OBJPATH)/main_updown.o
$(PATH)/main_updown.cpp

clean :
 /usr/bin/rm -f *.o
 /usr/bin/rm -f *.exe
 /usr/bin/rm -f *.vcd

Cygwin Package Install

1. Launch Cygwin's setup.exe
2. Choose Download from Internet or Install from Internet

www.aldec.com 12/12

Riviera Lab – SystemC/HDL Instantiation

In this lab, we are going to use Aldec’s Riviera HDL simulator in order to instantiate the
up/down counter developed earlier. It has been modified, and its name changed

For your convenience the DLL has already been created using GCC. We are going to
load it into the Riviera Interface and execute it.

Start The Riviera software either from the desktop or the start menu.

Change the directory to c:/labs/SystemC/counter

www.aldec.com 1/3

This directory contains the files necessary to execute the SystemC module. The src
directory includes SystemC files. TestBench directory includes a VHDL testbench file.

You can open these files (double click on them) in order to view them.

In the console type in the following command

addsc ./src/counter.dll

www.aldec.com 2/3

This adds the SystemC module (updown) to the working library. From the standpoint of
the HDL simulator, updown is now just a module in the library that can be instantiated
and used in the design.

For your convenience, a script file called runme.do has been included in order to run the
simulation.

At the console prompt type do runme.do and press enter.

The simulation should execute, and the waveform results display.

www.aldec.com 3/3

