115 East 57th Street

10th Floor

New York, New York 10022
212.515.6200 phonc,
2125153624 fai

February 9, 2001

Professor Moshe Vardi
Department of Computer Science
PO Box 1892

Rice University

Houston, TX 77251-1892

Dear Professor Vardi:

| am writing to offer you a solution to a standard problem in computer
science departments across the country. Who will teach the introductory
programming courses?

I have spent the last thirty years of my career, first at Stanford, then Yale,
and most recently at Northwestern University, exploring and developing
learning environments that are reflective of how people naturally learn. We
have had tremendous success developing powerful simulation based software
for leading corporations, including GE, 1BM, and Merrill Lynch. Our efforts in
the corporate community have provided us with the experience to prove our
approach of goal-based learning and take those lessons to the students |
care about most, yours.

Columbia Interactive Arts & Sciences, is a unique online collaboration
between Columbia University and Cognitive Arts Corporation. We are building
a variety of on line, learn by doing courses, working in close cooperation with
Columbia. We have just made these courses available to the public and can
now make them available to your students as well. The computer courses we
have available are C++, JAVA, and HTML. These courses were built as part of
Columbia’s Computer Technology Applications (CTA) Program in the Division

Chicago
Boston 1
New York



of Continuing Education and thus have a more practical bent. The Columbia
CTA Courses are designed to immerse students in authentic simulations that
reflect what an IT job is really like.

These courses cover the same basic computer science concepts and skills
that you would expect in any serious college-level programming course. But
we believe they do much more than that. Unlike other courses, both
distance-based and classroom-based, our courses present everything in the
context of the software development life cycle. We don't just talk about how
software is developed, we put the students on the job. From Day One the
student plays the role of a member of a corporate programming team. Task
assignments come from a team manager, and detailed specifications from a
lead programmer, with frequent references to client needs, concerns, and
reactions. Students get to see where real programming problems come
from, how APl's are used to support team programming, and how code review
is used to monitor and improve code quality, particularly maintainability.

Then we add something students rarely get in college and fear to get on the
job: in-depth code review and critiquing. Every piece of code a student
submits is subjected to an detailed analysis. Code

is examined for inefficiencies, subtle bugs, maintainability problems
unnecessary complexities, poor design and so on. Problematic code is
returned to the student with detailed annotations to be reworked and
resubmitted.

This "do-review-redo" process means our students do more than learn
enough to "make it work." They learn how to "do it right," how to write
readable code, how to choose the right constructs for each task, how to use
functions and classes to organize code into maintainable modular units, and
SO on.

Each course consists of approximately 14 major task assignments. These
assignments begin with simple graphics and numeric calculations and work up
to an interactive calculation and graphical design tool. Along the way, the
students learn core concepts in the following areas.

Basic Concepts and Skills: Our introduction to programming courses
cover the elements common to what the ACM used to call CS 1, i.e.,
variables, functions, loops, arrays, structures, and input/output, both
console and file.



Object-oriented Analysis and Design: Both courses are object-oriented
from the start. Students are designing and implementing classes by the
midpoint of each course. In C++ they learn how to separate APl and
implementation in header files and code files. In Java, they learn about public
versus private methods.

lterative Development: Students learn the concepts and skills through a
series of tasks that lead to the construction of a large application, that
combines graphics, numerical calculations, and file I/0. Rather than
independent, isolated, homework assignments, students see how large
projects can be constructed as a series of approximations that are tested,
review and extended.

Modern Programming Platforms: Students on PC's use Microsoft's
Visual C++ integrated development environment for C++ programming and
Borland's JBuilder Foundation for Java programming. Students on
Macintoshes use Metrowerks' CodeWarrior Pro for C++ and Java.

Portable Standard Code: Students are taught to code to language
standards, avoiding platform-specific extensions, using the current C++
Standard Library and the Java 1.2 libraries.

Cross-platform Simplified Graphics: In both courses, students develop
graphical interfaces from the start, as well as the more traditional texi-
based interfaces. Small simple graphical libraries hide complicated platform-
specific details from beginning programmers so that they can focus on the
key concepts of screen coordinates, shape drawing, and event handling.

Throughout these courses the student is actively engaged in building a suite
of graphical software for a client. They advance at their own pace, but they
are not left to struggle on their own. The student has the guidance and
support of a Tutor who has experience as a computer programmer working in
the IT industry. And they are able to access online resources designed to
answer virtually any question that might arise.

At the completion of each of the courses, your students will receive a letter
of completion along with an official Columbia University transcript. More IT
courses to complement the introductory courseware will be available
throughout 2001, along with courses in English as a Second Language,
Psychology, Physics, and Economics.



If you are interested in learning more about the courses soon to be available,
or have any questions, please feel free to contact me directly via e-mail at

schank @cognitivearts.com. | look forward to hearing from you. Many

thanks.

Chairman and Chief Technology Officer
Cognitive Arts Corporation

Professor Emeritus of Computer Science
Northwestern University



