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ABSTRACT

We suggest a new approach to database updates, in which a database is
treated as a collection of theories. We investigate two issues: simultancous
multiple update operations and equivalence of databases under update
operations.

1. INTRODUCTION

One of the nain problems in database theory is the problem of view
updating, i.e.. how to translate an update on a user view into an update of
the database [1-4.6-8, 13]. The problem is that in general there is no
unique database update corresponding to the view update. Another
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problem is that of updating a database that must satisfy certain integrity
constraints [12.15]. The difficulty here is that the database after the
update may no longer satisfy the constraints, in which case we may have
to modify other things in the database to ensure that the integrity
constraints still hold. As in the case of view updates, there is not
necessarily a unique way to modify the database so that the constraints
still hold.

Fagin et al. [S] suggest that the appropriate framework for studying the
semantics of updates is to treat the database as a consistent set of
sentences in first-order logic, i.c., a theory. A theory is a description of
the world. but is not necessarily a complete description; every model of
the theory is a possible state of the world. Thus the database can be
viewed as an exact description of our knowledge about the world. This
framework was propounded in other papers (e.g., [9,11,14).

When one tries to update a theory by inserting or deleting some
sentence. several new theories can accomplish the update. Fagin et al. [5]
argue that we should try to minimize the change that is needed to
accomplish the update. Unfortunately, even under this minimality con-
straint, there may be several theories that accomplish the update, with no
reasonable way to choose among them. One approach to this, suggested
in [5]. is to define the result of the update to be the disjunction of all the
possible theories that accomplish the update with minimal change. Two
difficulties with this approach are that it requires us to have sentences of
a rather complicated syntax (e.g.. disjunctions of tuples in a relational
database) and that the number of sentences in the database may grow
doubly exponentially with each update. '

The fact that several theories can accomplish a given update motivates
an alternative approach: viewing the database as a collection of theories
rather than a single theory. We call a collection of theories a flock. The
advantage of this approach is that it is easier to deal with the multiplicity
of flocks than with the multiplicity of theories. With the new approach,
the sentences we get are of no greater complexity than those that were in
the database or those that were inserted, and the number of sentences
does not grow as fast as before.

In this paper, after presenting the two approaches to updates,
databases as theories vs. databases as flocks, we investigate two basic
issues. First. we study batch operations, in which many sentences, rather
than a single sentence, are inserted or deleted simultaneously. We then
observe that two theories or flocks that are logically equivalent may not
be equivalent after an update is performed. We give necessary and
sufficient conditions for equivalence forever, i.e., equivalence that is
preserved under updates.

B ™™
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2. UPDATES OF THEORIES

Our basic units of information are sentences, i.e., formulas without free
variables in some first-order logic. We do not allow inconsistent sen-
tences, and we do not allow the deletion of valid sentences. A theory is a
consistent set of sentences. We shall use the letters S and T to denote
theories, and the letters o and T to denote sentences.

We start by describing the framework developed in [5]. (We use C to
denote inclusion and C to denote proper inclusion.)

Definition 1

1. A theory T accomplishes the deletion of o from S if T} o.
2. A theory T accomplishes the insertion of o into Sif e T.

Definition 2. Let T,, T,, and T be theories.

1. T, has fewer insertions than T, with respectto Tif T\ - TC T~
T.

2. T, has fewer deletions than T, with respectto Tif T-T,CT-
T,.

3. T, has fewer changes than T, with respect to T, if T, has fewer
deletions than T, or T, and T, have the same deletions (T — T, =
T — T;) and T, has fewer insertions than T-.

Definition 3. A theory T accomplishes an update (i.e., a deletion or
an insertion) u of S minimally if T accomplishes u and there is no theory
T’ that accomplishes u and has fewer changes than T with respect to S.

THEOREM 1.{5] Let S and T be theories and let o be a sentence. Then

1. T accomplishes the deletion of o from S minimally iff T is a maximal
subset of S that is consistent with o

2. T U({o} accomplishes the insertion of o into S minimally iff T is a
maximal subset of S that is consistent with o.

There could be many theories that accomplish an update minimally.
Suppose that T, ..., T, are the theories that accomplish an update u of
S minimally. It is argued in [S] that the result of u should be a theory T
such that

Mod(T)= |J Mod(T)

i<izn
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where Mod(S) is the sct of models of the theory S.

Definition 4. Let T,,..., T, be theorics. The disjunction of these
theories is defined to be the theory

V Ti={f.v---vr,|neﬂ.léi$n}

l=isn
It is shown in [5] that _ ‘
Mod( V T.) = U Mod(T)
I=isn

1sisn
Thus they suggest thatif Ty,..., T, are the theories that accomplish an
update u minimally. then the resuit of u should be Vixi=a Ti.

3. FLOCKS

In this section. we shall describe another approach to updates, namely
using collections of theories. We call these collections flocks. The in-
tuitive idea is that since we have many possible theories that accomplish
an update minimally, we reflect this ambiguity by keeping all these
theoriecs.

Definition 5. A flock S is a set of theories. The models of S are

Mod(S) = L Mod(s)
SeS
An update still consists of the insertion or deletion of a single sentence.
To update a flock we have to update each theory in the flock. Formally:

Definition 6. LetS = {Si..... S.} be aflock. A flock T={Ty..... Tal
accomplishes an update u of § minimally if T; accomplishes the update
of S; minimally for I =isn.

Again, there could be many flocks that accomplish an update mini-
mally. Suppose that T,,.... T, are the flocks that accomplish an update
u of S minimally. As in [5] we contend that the result of u should be a
flock T such that

Modm = |J Mod(T))
i<i=n
It is easy to show that the flock UJisi=n T has this property. This
motivates the following definition: .
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Definition 7. Let S be a flock, and let §,,...,S, be the flocks that
accomplish an update u of S minimally. Then the result of u is the flock

U Isisn S

LEMMmA 2. Let S={S,,...,S.} be a flock. For each theory S, let
S!.....S! be the theories that accomplish the update u of S; minimally.
Then the result of applying u to S is the flock

S={Skl1=i=snl=sk=<j}

Proor. Let 8’ be the result of the update. If S €8’ then, by Definition
7. S€8; for some S; that accomplishes the update minimally. But then,
by Deﬁnmon 6, S accomphshes the update of some S; € S minimally. i.e.,
S is one of the theories S!,. .., St

Now let S= S} for some k, 1 =k=j.. Then S accomplishes the
update u of S; minimally. For each j, 1 =j=n, j# i, let S/ be any theory
that accomplishes the update u of S; minimally. Then, by Definition 6.
the flock {S',....S™', 8, $™*', ..., S"} accomplishes the update u of S
minimally and so, by Definition 7, each theory in this flock is in §'. In
particular, Se§. O

In other words, to update a flock, consider each theory in the flock in
turn. Take all theories that accomplish the update minimally and put
them in the new flock.

Note that if a flock is a singleton, i.e., contains exactly one theory, its
models as a theory and as a flock are the same. Also, the flock that we
get after applying an update to such a flock has the same models as the
theory we get by applying the update to the single member of that flock,
as the following lemma shows.

LEMMA 3. Let S={S} be a singleton flock, and u an update. If S’ is
the result of applying the update u to the theory S, and S’ is the result of
applying u to the flock S, then S' and S’ have the same models.

Proor. By Lemma 2, the result of applying u to S is the flock
§'={S;|t=i=<j}, where S,,....S; are the theories that accomplish the
update u of S minimally. Similarly, the result of applying u to S is the
theory $' = \/ 1x.is; Si. By Definition 5 and the comments at the end of
Section 2. §' and S’ have the same models. (O

Even though the result of an update has the same models under both
approaches, under future updates their results may differ. as the follow-
ing example shows.
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Example 1. If we start with the flock {{A, B}}, and delete A A B from
it using the flocks approach, we take all the maximal subtheories of
{A. B} that do not imply A A B, namely {A} and {B}. That is, the
resulting flock is {{ A}, {B}}. If we now delete A and then delete B, we
cnd up with the flock containing only the empty theory. i.e., anything is a
model of the result. On the other hand, if we start with the theory { A, B},
and delete A A B, we get the theory { A v B}. This has the same models as
the flock {{ A}. { B}}. However, if we now delete A and then delete B, we
still have the theory { A v B}, which does not have the same models as the
empty theory. O '

In practice, singleton flocks are the most likely to be used as the
starting state of the database (in fact, the starting state will probably be
{#}). It would be interesting to characterize the flocks that are obtained
from singleton flocks by a sequence of update operations. Another
intcresting question is the comparative merit of the two approaches:
theories vs. flocks. We know that these approaches yield different results
for the same updates. Which one of them is closer to correct?

4. BATCH OPERATIONS

Batch operations consist of deleting or inserting several sentences simui-
tancously.

Definition 8. Let S be a theory and let %, be a set of sentences. We say
that S’ accomplishes the deletion of X from S if S'¥ o for each oe 3.
We say that S’ accomplishes the insertion of % into S if ZCS’. We say
that 8’ accomplishes an update u of S minimally if S’ accomplishes u and
there is no theory that accomplishes u with fewer changes.

The above definition is nonconstructive in the sense that it does not
explicitly say how to find those theories that accomplish an update
minimally. The following theorem gives a constructive equivalent con-
dition, which generalizes Theorem L.

THEOREM 4. Let S and T be theories and 3 a set of sentences. Then

1. T accomplishes the deletion of 2 from S minimally iff T is a
maximal subset of S such that T U{—o} is consistent for all o in X.

2. TUZX accomplishes the insertion of £ into S minimally iff T is a
maximal subset of S that is consistent with X.

TS N
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Proor

l. i T is a maximal subset of S that is consistent with —¢ for every
g€X, then clearly T accomplishes the deletion of 3 from §.
Assume that T does not accomplish the deletion minimally, j.e.,

cannot have fewer insertions than T, since T has no inser-
tions at all.

If T accomplishes the deletion minimally, it must be consistent
with o for every oeX. It is also clear that TCS since if it

with fewer insertions, If T is not a maximal subset of S that s
consistent with all the T0’s, then there is a theory that ac-
complishes the update with fewer deletions than T.

complishes the update with fewer deletions, and let T"=T'NnS§.
Then S—-T"=§5— 7' S— T, and therefore T C T"CSand T"is
consistent with ¥, contradicting the maximality of T. Clearly, no
theory can accomplish the insertion with the same deletions and
with fewer insertions than TUZ, since the only insertions are 3.
If TUz accomplishes the insertion of Z minimally, we must
have TCSand T consistent with 3. If T is not a maximal subset
of S that was consistent with 2, then we can find T’ consistent with
2 that satisfies T C T'CS. But then T UZ accomplishes the
insertion with fewer deletions. This is a contradiction. [J

deleted or inserted, to distinguish it from baich update (respectively,
batch deletion, baich insertion), where a set of sentences s deleted or
inserted.
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The following example shows that the batch delction of X does not
always give the same result as deleting the sentences in 2 one by one.

Example 2. Delcting { A, B} from the theory {A, B, A= B} results in
the theory {A = B}. If, on the other hand, we delete first A, we get the
theory { B v (A = B)}, which remains unchanged after deleting B. Delet-
ing first B and then A gives us the theory {A v (A= B)}.

Delcting {A, B} from the flock {{A, B, A= B}} results in the flock
{{A = B}}. If, on the other hand, we first delete A we get the
flock {{ B}.{A = B}}, and if we then delete B we end up with the flock
{n.{A = B}}. This is different from the flock {{A = B}}, since the union of
the models of the first flock consists of all possible structures, whereas the
models of {{A= B}} are only those models in which A and B are
equivalent. [

Similarly, the insertion of = does not give the same result as inserting
the sentences in = one by one. The following theorem shows, however,
that for flocks, batch insertions can be simulated by single updates.

THEOREM 5. Let £ ={a,..., 0.} be a consistent set of sentences and
let S be a flock. Then the result of inserting = into S is the same as first
deleting —\(ay A - - * A @,) and then inserting the o,’s one by one.

PROOF. A theory S is consistent with £ iff Sy A+~ - A 0n). Let T
be the result of deleting —(oy A- - - A @) from S. We claim that §' =
{TUZ| T eT} is the result of inserting X into S.

First, let T be a theory in T. It accomplishes the deletion of (o A
-+ A a,) from some SeS minimally. We claim that T U % accomplishes
the insertion of £ into S minimally. It is clear that T UZ accomplishes
the insertion of 3. If T’ accomplishes the insertion with fewer deletions
than TUZ. then T’ also accomplishes the deletion of —(ay A - - A 0,)
from S with fewer deletions than T with respect to S, a contradiction.
Clearly no theory can accomplish the insertion of 2 into S with fewer
insertions than T U S with respect to S, since the only insertions here are
the sentences of . This shows that each theory in §' is in the result of
inscrting X into S.

Now let T be a theory in the result of inserting X into S, ie., T
accomplishes the insertion of X into some S€S minimaily. Let T =
T —(S—-S). Then T’ is consistent with £ and so T’ accomplishes the
deletion of (o A - - - A 0) from S. If some theory §’ accomplishes the
deletion with fewer deletions than T’ with respect to S, then SUZ
accomplishes the insertion of Z with fewer deletions than T, a contradic-
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tion. Therefore. T accomplishes the deletion of 2o, A - - - A o,) from S
minimally, i.e.. T'eT, and thercfore T=T'US isin§. O]

Remarks

l. The thcorem does not hold for theories. For example, let S be the
theory {A, B}, and I the sct {(A# B)a C}. Then the result of
inserting X into S is the theory

{AV(A#B)AC), BVIHA#B)AC), Av B,(A% B) A C}

On the other hand. the result of deleting (A= B) v C from S is
the theory {A v B}, and if we then just insert (A # B) A C, we get
the theory {Av B,(A# B) A C).

2. There are batch deletions from flocks that cannot be simul-
ated by any sequence of single updates. For example, if we delete
{A, B} from the flock {Av B. Av—B.1Av B}}, we get the flock
{fAv BL,{AvB,—Av B}}. It is shown in [10] that the latter
flock cannot be obtained from any singleton flock by single up-
Gaics (the proof is tov long to present here).

5. EQUIVALENCE FOREVER

5.1. Definitions

Two theories or flocks are logically equivalent if they have the same
models. Nevertheless, this does not guarantee that they will continue to
have the same models after any sequence of updates, as the next example
shows.

Example 3. The two theories {B} and {B. Av B} are logically
equivalent. However, if we delete B from both of them we get the
nonequivalent theories @ and {A v B}.

The two flocks {{B}} and {{B., A v B}} are logically equivalent. After
deleting B from both of them we get the nonequivalent flocks {#}} and
{avsy. O

We say that two theories or flocks are equivalent forever if after
applying any sequence of updates we always get two theories or flocks
that have the same models. In the rest of this section we supply charac-
terizations for equivalence forever.

We use the following definition.
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Definition 9. We say that a theory S covers a theory T iff every
sentence 7 in T is logically equivalent to a conjunction o, A - A g, of
sentences in S. (An empty conjunction is by convention valid.)

5.2. Egquivalence Forever for Theories

THEOREM 6. Let S and T be finite theories. The following are
equivalent.

[ R S

6.

S and T are equivalent forever under updates.

S and T are equivalent forever under batch updates.

S and T are equivalent forever under deletions.

S and T are equivalent forever under batch deletions.

Each subset of S is logically equivalent to a subset of T, and vice
versa. A

S covers T, and vice versa.

Proor. (2)3> (1), (2)=>(4), (4)=>(3), (5)=>(6), and ()= (3) are
obvious. We shall show (3) = (6), (6) = (5), and (5) = (2).

(3)=> (6) We shall prove the following statement, which we call state-

ment (*), inductively on k:

(*) Let T, and T, be finite theories that are equivalent forever
under deletions. If there is a structure M that obeys 7€ T, and that
also obeys exactly k sentences in T, then 7 is equivalent to a
conjunction of sentences in T.

Statement (*) implies (3) = (6). For,let S= T, and T = T, and let 7
be an arbitrary member of S. Let M be a structure which obeys 7.
(There is such a structure since we deal only with consistent sen-
tences.) Since T is finite, there is some k (possibly k = 0) such that
M obeys exactly k sentences in T. Then statement (*) tells us that 7
is equivalent to a conjunction of sentences in T, as desired.

If T, and T, are finite theories and if M is a structure, it is
convenient for us to define oM, T,, T) to be the sentence

V{o-| oe T, U T; and M violates o}

It is easy to see that there is a single maximal theory which resuits
from deleting this sentence from T, namely, the set of all sentences
in T, which are true in M. Of course, the same is true about T,. We
are now ready to prove statement (*), by induction on k.

ol

[T

FRTE ¥
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k =0 In this case, M obeys no sentence in T. Let us denote by
T (respectively, T3) the result of deleting o(M, T,, T,) from T,
(respectively, T>). Since M obeys no sentence in T3, it follows that
T is the empty theory, which every structure obeys. Since T and
T; are equivalent (by equivalence forever of T, and T; under
deletions), it follows that T\ consists of valid sentences. But r
belongs to T;, since M obeys 7. It follows that 7 is valid, and is
therefore equivalent to a conjunction of sentences in 7.

Inductive step: Assume that the inductive hypothesis (*) holds,
with k' substituted for k, for every k' < k, and for every choice of T,
and T;. Let T, and T be finite theories that are equivalent forever
under deletions, and let M be a structure which obeys r e T, and
which also obeys exactly k sentences in T,. We must show that r is
equivalent to a conjunction of sentences in T,.

Let us denote by T} (respectively, T3) the result of deleting
oM, T, T;) from T, (respectively, T>). Then T is a subset of T,
which contains , and T; is a subset of T, which contains exactly k
sentences (namely, those sentences in T, which are true in M). By
equivalence forever of T, and T under deletions, we know that T,
and T'; are also equivalent forever under deletions. In particular, T
and T; are equivalent, and so T; implies 7. If also T were to imply
T; (that is, if T were to imply every member of T'), then we would
be done, since r would be equivalent to the subset T; of T,. So we
can assume that r does not imply T3. Therefore, there is a structure
M’ which obeys + but not T. Let k' be the number of members of
T3 which M obeys. Then 0 = k' < k., since T; contains k sentences,
not all of which M obeys. By inductive hypothesis (*), where T,
T3, and k’ play the roles of T, T3, and k respectively, it follows that
7 is equivalent to a conjunction of members of T3, and hence of T,.

(6) > (5) Let S’ be a subset of S. Foreach o€ &', let T, be a subset of
T such that o is equivalent to the conjunction of members of T,.
Let T’ be the union of all sets T, where o€ S'. We now show that §'
is equivalent to T'. If r¢ T', find o€ S such that re T,. Then o
implies 7, so §' implies 7. Hence. S’ implies T Conversely, assume
that o€ S'. Then T, implies o, and so T’ implies o. Hence T’
implies S,

(5)=>(2) Assume that (5) holds. It suffices to show that if §"
(respectively, T'") is the resuit of applying a batch update u to S
(respectively, T), then every subset of S'" is equivalent to a subset
of T and vice versa.

Let the update u be the deletion of T (we shall remark at the cnd
how to modify the proof to deal with the casc where u is an
insertion.) Let S' be a maximal subset of S that is consistent with
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-, for every o€ 3. By assumption, there is a subset of T that is
equivalent to S'. Let T' be a maximal such subset of T. We now
show that T is a maximal subset of T that is consistent with o, for
every age 2. Clearly T' is consistent with every o, since T is
equivalent to S', and S' is consistent with every o If T' is not
maximal. then find T'CT consistent: with every Mo such that
T'C T'. By definition of T*, we know that T" is not equivalent to
T’. By hypothesis. there is a subset of S that is equivalent to T’; let
S’ be a maximal such subset. Since S'=T'C T’ =S, it follows that
S implies S'. and so §'U S' is equivalent to S'. By maximality of s,
it follows that S'CS’. But S'# S, since S'=T"# T'=S". Hence,
StC S'. Since T’ is consistent with —o, for every o € %, and since
T'=§'. it follows that §' is consistent with every 1o. This con-
tradicts maximality of S'.

Let us call each maximal subset of S (respectively, T) that is
consistent with every 1o an S-candidate (respectively, a T-can-
didate). We have shown that for each S-candidate S' there is a
T-candidate T' such that S' = T"'. Similarly, for each T-candidate
T* there is an S-candidate S' such that S'= T'. Furthermore, this
correspondence is bijective, since if there were two different T-
candidates T' and T* with §'=T"'=T?, then T'U T* would be a
subset of S consistent with every 1o, contradicting the maximality
of T' and T*. That is, if S,....S. are all of the distinct S-
candidates, then there is a listing T, ..., T, of all of the distinct
T-candidates such that §,=T; for 1si=n.

The result S of the update on S is the theory V {Si|1=i= n},
and analogously for T*". We shall show T'" covers S, As in the
proof that (6) = (5), it then follows that every subset of SV is
equivalent to a subset of T‘?, as desired.

Let « be a member of . We know that a is of the form
av---Va,, where ;€ §;, for 1 =i=n. By assumption, there is a
subset T of T which is equivalent to a;. Since ;€ S;=T;, it
follows that T; implies a;, and hence T; implies T: So by the
maximality of T;, we know that T':CT;. Let Qbe theset{r,v-: v
.| n € Tifor 1 <i=n}. Then QC T". Let 7 be the conjunction of
the members of Q. The proof is complete if we show that « is
equivalent to 7. Let 7} be the conjunction of members of T, for
1 =<i=n. and let y be the disjunction riv:--V Th Clearly 7} is
equivalent to a;, since both are equivalent to T (1 =< i=n). Hence,
y is equivalent to a. But 7is the conjunctive normal form of v, and
consequently 7 is equivalent to a.

We close by remarking how the proof should be modified to deal
with insertions rather than deletions. Assume that the update u is the

-
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insertion of Z. Let us call each maximal subset of S (respectively, T)
that is consistent with £ an S-candidate (respectively, a T-can-
didate). Just as before, it follows that if S,,..., S, are all of the
distinct S-candidates, then there is a listing T,,..., T, of all of the
distinct T-candidates such that S;= T}, for 1 <i =< n. The result S
of the update on S is the theory V{SUS|1=i=< n}, and analo-
gously for T". Let a be a member of S, We know that a is of the
form a,v---va,, where ;€ S;UZ, for 1<i=<n. If no a; is in X,
then the proof proceeds as before. Assume now that some a; is in X.
For simplicity in description, assume that a, is in 3, but o, € S; for
2= i< n (otherwise there is an obvious modification in the proof).
As before, find a subset T of T which is equivalent to «;, for i =2.
Let Q be the set {a;vrav- v r1,|ne T, for 2=i=n}. Then
QCT®, and, as before, a is equivalent to the conjunction of
members of Q. I

5.3. Equivalence Forever of Flocks

We do not have, at present, a simple necessary and sufficient condition
for equivalence forever of general flocks. However, for singleton flocks,

ie.,

flocks that contain only one theory, we can prove an analogue to

Theorem 6.

THEOREM 7. Let S and T be finite theories, and let S={S} and
T ={T} be singleton flocks. The following are equivalent.

NEON e~

6.

S and T are equivalent forever under updates.

S and T are equivalent forever under batch updates.

S and T are equivalent forever under deletions.

8 and T are equivalent forever under baich deletions.

Each subset of S is logically equivalent to a subset of T, and vice
versa.

S covers T and T covers S.

PrRooF (2)3(1), 2)>4), (49> (3), (5)=>(6) and (1)=>(3) are
obvious, and (6) = (5) was proven in Theorem 6. We now show (3) = (6)
and (6) > (2).

(3) > (6) Assume that S does not cover T. Then there is a sentence r

in T that is not logically equivalent to any conjunction of sentences
of S. Let X be the set of sentences in SU T that are not implied by
7. Let R be the set of maximal disjunctions of sentences in 3, ie.,
the set R of all disjunctions of sentences in I such that if we add any
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other sentence in £ to the disjunction, the result is implied by
Formally, R consists of all sentences of the form o, v - - - v g%, whe
each o; is in 2, :

TE v - vor ‘
and if o is any sentence in X distinct from all the o;’s, then H
TEyv---voyvo i

We now show that if we delete the sentences in R from the floc

S ={S}. one by one, in any order, the resulting flock §' will be equ:

@

e

to {S—3}, and similarly deleting R from T={T} will result j |

{T - Z}. We prove this for S, and an analogous proof holds for T.
Since no sentence in 3 is implied by 7, every o in X can b
extended to a maximal disjunction o v o, v - - - v 0y that is in the se
R. After deleting this disjunction, we get a flock of theories, non
of which can contain any of the sentences o, 0., ... ., ox. Therefor
after deleting all of the sentences in R from S we get a flock §' o
theories, each of which must be a subset of §—X. 3
We can show by induction on the number of deletions that the
result is a singleton flock, consisting of one theory that is a superset
of S—Z2. The basis for the induction is the initial flock S. We now

show that if we have a flock consisting of one theory that is a ~

superset of S—3Z and a subset of § and we delete a sentence in the

TR

s R

set R from it, we get a singleton flock that also consists of one

theory that is a superset of $ —3 and a subset of S.

Suppose that we have such a flock consnstmg of the theory S’ and
we delete from it a sentence oyv---vor, of R. Let -~
{on...,o ={ay,..., an}. Since oy v - - - v o} is maximal, r implies
oyv--rvorva for 1 <i=m, and consequently —a; implies oy v

‘vorvor for I=i=m. Suppose that {7, a;,..., an} implies

oyv---voy then 7 implies "y v . -viauvo,v::-vor. But

then it follows that 7 implies oy v - - - v oy—contradiction. But T,

implies S—3 by definition and §' is a subset of S, so (§'~3Z)U’ )

{ay,..., &y} does not imply oy v---voy. Thus §'~{oy,...,0u} is
consistent with (o v - - - v o). It follows that the result of deleting

oy v---voyx from {S} is {S' —{o1,...,o}}. This completes the ‘

induction and shows that the result of deleting R from S={S} is v

§={S-3}
By the definition of =, we have 7F S—Z, and therefore r implies

the conjunction of all the sentences in S$—X. Since 7 is not logically
equivalent to any conjunction of a collection of sentences in S, it :
follows that S — X . Therefore, there must be a model M of S—3% .
that is not a model of r. Then M is a model of §'. However, since 7is
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in T-X, M is not a model of T'. It follows that S and T are not
equivalent forever under deletions.

6) > (2) We show by induction on the number of updates that we
always have

(VS eSNIAT e T'N(S covers T' A T' covers §') (1)

where 8" and T’ are the flocks we get from S and T by performing
some updates. By our assumption, Condition 1 holds at the begin-
ning, when both flocks are singletons. '

Assume that Condition 1 holds after some insertions and
deletions. We have to show that it continues to hold after deleting
or inserting a set of sentences 3. We first show this for deletion. We
shall use $' and T' for the flocks before the deletion, $? and T? for
the flocks afterwards.

Let S? be a theory in the flock S2. We first show that there is some
theory in T? that covers S2. By the definition of deletion, S must be
a maximal subset of some theory S' in the flock S' that does not
imply any sentence in 3. By the inductive hypothesis. there is a
theory T' in the flock T' such that §' covers T', and T' covers S'
Let o; be any sentence in the theory S2. Since $? is a subset of S!
and T' covers S, there are sentences 7,..., %, in T' such that
Ti=T A ATy

Let A be the set of all these 7i’s, for all ;s in S2. We claim that
A'does not imply any sentence in 3. Assume otherwise. i.e.. A F o,
for some o in 2. Since each o, in S? implies all the corresponding
7;'s in A, we have Sk A, and therefore S?k o, a contradiction,
Therefore A does not imply any sentence in £ and can be extended
to a maximal subset of T' with this property. Call the maximal
subset T2, Since A covers S2, T also covers S2. We shall now show
that $2 covers T2, thus completing the proof.

Let 7 be any sentence in T2 We have to show that it is logically
equivalent to a conjunction of sentences in S, Since S! covers T
and T?is a subset of T, there are oy,... .0, in S such that

TS A - Aoy (2)

We know that T2k §2, since T2 covers 5% We also know that
T2k 1k a;, for each ;. If some o; were not in $2, the fact that $2 js
a maximal subset of S' not implying any sentence in 2 would entail
that S?U{o;} implies some sentence oeX. But then T kg, g
contradiction. This shows that each o; is in $?, and therefore §°
covers T2, .

Now let M be a model of some theory S’ in the flock §' By
Condition 1, there is some theory T’ in the flock T'. such that §’
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covers T'. This implies that M is also a model of T’. Thus every
model of §' is also a model of T'. Similarly, every model of T is also
a model of §'. -

For insertion, note that by Theorem 5, inserting s={o,.-., o}
into a flock S ={Si. ..., Sa} is the same as first deleting (o A - - - A
o) to get a flock {S)..... S} and then inserting the sentences inX,
all of which are consistent with the S7s, and therefore the result is
the flock {S;UZS.....SmUZ} Itis easy to see that Condition 1 is
preserved by both of these steps. a

Example 4. The flocks {{A. B, A B}} and {{A, B}} are equivalent
forever. The flocks {{A, B, Av B}} and {{A, B}} are not equivalent
forever. If we delcte A and then B, we get {{A v B}} from the first flock
and {#} from the second one.

For arbitrary flocks we only have a sufficient condition for equivalence
forever.

Tueorem 8. Let S and T be two flocks that satisfy the conditions

(VS e SHIT € TUS covers T A T covers S) (3)
and

(VT e TN3S e SUT covers SAScoversT) (4)

Then S and T are equivalent forever.
PrOOEF. See proof of (6) > (2) in Theorem 7. O
Remarks

I. By Theorem 6 we can replace “S covers T in this theorem by the
condition “for every subset of S. there is a logically equivalent
subset of T." _

The above conditions are not necessary for equivalence forever.
For example, it is shown in {10] that the two flocks

(%]

s={{A,B,A=B}{A,A=B}L{B, A= BY}
and
T={{A, A= B},{B, A= B}}

are equivalent forever even though they do not satisfy Conditions
3 and 4.

WA v R, (o

ER Y

e

| eropt

-
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6. CONCLUSIONS AND OPEN PROBLEMS

We have presented in this paper two different approaches to the problem
of updating databases. Both approaches are based on looking at the
database as a set of logical sentences, and investigating what happens
when we insert or delete a fact. In one approach, the database is similar
to a logical theory, but with the existence of a fact in the set having a
greater significance than it being merely a logical consequence of them.
In the second approach, a database is a set of theories, rather than a
single theory. '

Flocks have a smaller complexity—even though the number of sen-
tences can still grow exponentially, the size of the individual sentences
remains the same as in the original database. In particular, if the
sentences represented individual tuples in a relational database, we would
remain with tuples after the update, instead of getting disjunctions of
tuples. Another advantage of flocks is that they seem to give better
semantics in simple examples.

On the other hand, theories are mathematically more tractable. We do
not have a characterization for equivalence forever for arbitrary flocks,
nor can we tell if an arbitrary flock can come from a singleton flock, one
that corresponds to a normal database. These problems do not arise if the
database is regarded as a single theory.
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