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Abstract. We describe the automata-theoretic approach to the algorithmic veri-

fication of probabilistic finite-state systems with respect to linear-time properties.

The basic idea underlying this approach is that for any linear temporal formula

we can construct an automaton that accepts precisely the computations that sat-

isfy the formula. This enables the reduction of probabilistic model checking to

ergodic analysis of Markov chains.

1 Introduction

Temporal logics, which are modal logics geared towards the description of the temporal

ordering of events, have been adopted as a powerful tool for specifying and verifying

concurrent systems [Pnu81]. One of the most significant developments in this area is the

discovery of algorithmic methods for verifying temporal logic properties of finite-state

systems [CE81,QS81,LP85,CES86]. This derives its significance both from the fact that

many synchronization and communication protocols can be modeled as finite-state pro-

grams, as well as from the great ease of use of fully algorithmic methods. Finite-state

programs can be modeled by transition systems where each state has a bounded descrip-

tion, and hence can be characterized by a fixed number of Boolean atomic propositions.

This means that a finite-state program can be viewed as a finite propositional Kripke

structure and that its properties can be specified using propositional temporal logic.

Thus, to verify the correctness of the program with respect to a desired behavior, one

only has to check that the program, modeled as a finite Kripke structure, satisfies (is a

model of) the propositional temporal logic formula that specifies that behavior. Hence

the name model checking for the verification methods derived from this viewpoint. Sur-

veys can be found in [CG87,CGL93,Wol89].

For linear temporal logics, a close and fruitful connection with the theory of au-

tomata over infinite words has been developed [VW86,VW94,Var96]. The basic idea

is to associate with each linear temporal logic formula a finite automaton over infinite

words that accepts exactly all the computations that satisfy the formula. This enables

the reduction of various decision problems, such as satisfiability and model-checking,

to known automata-theoretic problems, yielding clean and asymptotically optimal algo-

rithms. Furthermore, these reductions are very helpful for implementing temporal-logic
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based verification methods, and are the key to techniques such as on-the-fly verification

[CVWY92] that help coping with the “state-explosion” problem.

In view of the attractiveness of the model-checking approach, one would like to

extend its applicability as much as possible. In particular, we would like to extend the

model-checking approach to deal with probabilistic systems, since the introduction of

probabilistic randomization into protocols has been shown to be extremely useful (see,

for example, [LR81]). For probabilistic systems the situation becomes more complex.

In such systems there is a probability measure defined on the set of computations. The

notion of correctness now becomes probabilistic: we study here the notion that the

program is correct if the probability that a computation satisfies the specification is one.

(For investigations of quantitative notions of correctness, see, for example, [HJ94].)

Even in this setting, the automata-theoretic approach is very useful, as was shown in

[Var85,VW86,CY90,CY95]. In this paper we provide an overview of the automata-

theoretic approach to probabilistic model checking of linear temporal properties. We

show how it provides essentially optimal algorithms in most cases, and highlight one

case where it does not.

2 Automata Theory

A nondeterministic automaton words is a tupleA = (�;S; S

0

; �; �), where

– � is a finite alphabet,

– S is a finite set of states,

– S

0

� S is a set of initial states,

– � : S �� ! 2

S is a (nondeterministic) transition function, and

– � is an acceptance condition (will be defined precisely later).

A state s 2 S is deterministic if j�(s; a)j = 1 for all a 2 �. The automaton A is

said to be semi-deterministic if all states are deterministic. If in addition jS
0

j = 1, then

A is said to be deterministic.

A run of A over a infinite word w = a

1

a

2

: : :, is a sequence s
0

; s

1

; : : :, where

s

0

2 S

0

and s
i

2 �(s

i�1

; a

i

), for all i � 1. Acceptance is defined in terms of limits.

The limit of a run r = s

0

; s

1

; : : : is the set lim(r) = fs j s = s

i

infinitely ofteng.

A Büchi acceptance condition is a set F � S of accepting states. A set T � S is

accepting if T \ F 6= ;. Note that when F = S, all sets are accepting; we call such an

accepting condition a trivial acceptance condition. A Rabin condition is a subset G of

2

S

�2

S , i.e., it is a collection of pairs of sets of states, written [(L

1

; U

1

); : : : ; (L

k

; U

k

)].

A set T is accepting if for some i we have that T \ L

i

6= ; and T \ U

i

= ;. A Streett

condition is also a subset G of 2S � 2

S , written [(L

1

; U

1

); : : : ; (L

k

; U

k

)]. A set T is

accepting if for for all i we have that if T \ L

i

6= ;, then T \ U

i

6= ; (thus, Streett

acceptance is dual to Rabin acceptance). Note that Büchi acceptance is a special case

of both Rabin acceptance (the pair hF; ;i), and Streett acceptance (the pair hS; F i). A

Büchi (resp., Rabin, Streett) automaton is an automaton on infinite words with Büchi

(resp., Rabin, Streett) acceptance condition. Büchi, Rabin, and Streett conditions can

all be viewed as fairness conditions, which are limit conditions on runs [Fra86]. A run

r is accepting if lim(r) is accepting. An infinite word w is accepted by A if there is an

accepting run ofA over w. The set of infinite words accepted byA, called the language

of A, is denoted L(A).

It is known that Rabin and Streett automata are not more expressive than Büchi

automata. More precisely, if A is a Rabin or Streett automaton, then there is a Büchi



automaton Ab such that L(A) = L(A

b

) [Tho90]. When A is a Rabin automaton, the

translation to a Büchi automaton is quadratic, but when A is a Streett automaton, the

translation is exponential [SV89].

An automaton A is nonempty if L(A) 6= ;. One of the most fundamental algorith-

mic issues in automata theory is testing whether a given automaton is nonempty. The

nonemptiness problem for automata is to decide, given an automaton A, whether A is

nonempty.

Proposition 1. [CES86] The nonemptiness problem for Büchi automata is decidable in

linear time.

Proof: Let A = (�;S; S

0

; �; F ) be the given automaton. Consider the directed graph

G

A

= (S;E

A

), where E
A

= fhs; ti j t 2 �(s; a); a 2 �g. It can be shown that A

is nonempty iff G
A

has a nontrivial maximal strongly connected component that is

reachable from S

0

and intersects F nontrivially. As a depth-first-search algorithm can

construct a decomposition of the graph into strongly connected components in linear

time [CLR90], the claim follows.

Since there is a quadratic translation of Rabin automata to Büchi automata, Propo-

sition 1 yields a quadratic algorithm for nonemptiness of Rabin automata. For Streett

automata, a direct algorithm is needed.

Proposition 2. [Eme85] The nonemptiness problem for Streett automata is decidable

in polynomial time.

Proof: Let A = (�;S; S

0

; �;G) be the given automaton. Again we start by decom-

posing G
A

into maximal strongly connected components reachable from S

0

. We then

iterate the following operation

For a component Q and a pair hL;U i 2 G, ifQ \L 6= ; and Q\U = ;, then

delete the states in L fromG

A

and recompute the decomposition into maximal

strongly connected components.

Since each iteration deletes states fromG

A

, the above operations can be applied only jSj

times. L(A) is nonempty iff the final decomposition contains a nontrivial component.

As we shall see, closure under Boolean operations plays in important role in the

application to verification. We first consider closure under intersection.

Proposition 3. [Cho74] Let A
1

; A

2

be Büchi automata. Then there is a Büchi automa-

tonA such that L(A) = L(A

1

) \ L(A

2

).

Proof: We show the construction explicitly for the case that A
1

has a trivial accep-

tance condition. Let A
1

= (�;S

1

; S

0

1

; �

1

; S

1

) and A

2

= (�;S

2

; S

0

2

; �

2

; F

2

). Let

A = (�;S; S

0

; �; F ), where S = S

1

� S

2

, S0 = S

0

1

� S

0

2

, F = S

1

� F

2

, and

(s

0

; t

0

) 2 �((s; t); a) if s0 2 �
1

(s; a) and t0 2 �
2

(t; a).

We denote the intersection automaton byA
1

\A

2

.

Büchi automata are also closed under complementation.

Proposition 4. [Büc62,Kla91,KV97b] Let A be a Büchi automaton over an alphabet

�. Then there is a Büchi automatonAc such that L(Ac) = �

!

� L(A).



If A has n states, thenAc has nO(n) states, which is known to be tight [Mic88].

Unlike automata on finite words, Büchi automata are not closed under determiniza-

tion, i.e., nondeterministic Büchi automata are more expressive than deterministic Büchi

automata [Tho90]. In contrast, Rabin and Streett automata are closed under deter-

minization. In fact, they are also closed under co-determinization.

Proposition 5. [McN66,Saf89] Let A be a Büchi automaton. There are deterministic

Rabin (resp., Streett) automata A
d

and Acd such that L(Ad) = L(A) and L(Acd) =

�

!

� L(A)

If A has n states, thenA
d

and Acd have nO(n) states and O(n) pairs.

3 Verification

We focus here on finite-state systems, i.e., systems in which the variables range over

finite domains. The significance of this class follows from the fact that a significant

number of the communication and synchronization protocols studied in the literature

are in essence finite-state systems [Liu89,Rud87].

A finite-state system over a set Prop of atomic propositions is a structure of the

form M = (W;w

0

; R; V ), where W is a finite set of states, w
0

2W is the initial state,

R � W

2 is a total transition relation, and V : W ! 2

Prop assigns truth values to

propositions in a set Prop for each state inW . The intuition is that W describes all the

states that the program could be in (where a state includes the content of the memory,

registers, buffers, location counter, etc.),R describes all the possible transitions between

states (allowing for nondeterminism), and V relates the states to the propositions (e.g.,

it tells us in what states the proposition request is true). The assumption that R is total

(i.e., that every state has a child) is for technical convenience. We can view a terminated

execution as repeating forever its last state.

Let u be an infinite sequence u
0

; u

1

; : : : of states in W such that u
0

= w

0

, and

u

i

Ru

i+1

for all i � 0. Then the sequence V (u

0

); V (u

1

) : : : is a computation of M . If

we take� to be 2

Prop, then a computation of M is a word in �!. We denote the set of

computations ofM byL(M ). A specification forM is a language � � �

!. M satisfies

� if every computation of M is in �.

A finite-state system M = (W;w

0

; R; V ) can be viewed as a Büchi automaton

A

M

= (�;W; fw

0

g; �;W ), where � = 2

Prop and s0 2 �(s; a) iff (s; s0) 2 R and

a = V (s). As this automaton has a set of accepting states equal to the whole set of

states, every infinite run of the automaton is accepting; that is, L(A
M

) = L(M ). If �

is expressed in terms of a specification automatonA
�

, then M satisfies � iff L(M ) �

L(A

�

). This is called the language-containment approach to verification [Kur94]. Note

that L(M ) � L(A

�

) iff L(M ) \ (�

!

� L(A

�

)) = ; iff L(M ) \ L(A

c

�

)) = ; iff

L(A

M

\A

c

�

) = ;, where Ac
�

is an automaton that complement A
�

and A
M

\A

c

�

is the

intersection of A
M

and Ac
�

. Thus, verification is ultimately reducible to the emptiness

problem. Using Propositions 1 and 4, we get:

Theorem 6. Checking whether a Büchi automaton A
�

with n states is satisfied by a

finite-state programM can be done in time O(jjM jj � n

O(n)

).

We note that a time upper bound that is polynomial in the size of the program and

exponential in the size of the specification is considered here to be reasonable, since the

specification is usually rather short [LP85]. It is unlikely that the exponential bound can

be improved, as the problem is PSPACE-complete [Wol83].



4 Temporal Logic and Automata

Formulas of linear time propositional temporal logic (LPTL) are built from a set Prop

of atomic propositions and are closed under the application of Boolean connectives,

the unary temporal connective X (next), and the binary temporal connective U (until)

[Pnu77,GPSS80]. LPTL is interpreted over computations. A computation is a function

� : ! ! 2

Prop, which assigns truth values to the elements of Prop at each time instant

(natural number). For a computation � and a point i2!, we have that:

– �; i j= p for p2Prop iff p2�(i).

– �; i j= � ^  iff �; i j= � and �; i j=  .

– �; i j= :' iff not �; i j= '

– �; i j= X' iff �; i+ 1 j= '.

– �; i j= �U iff for some j � i, �; j j=  and for all k, i � k < j �; k j= �.

We say that � satisfies a formula ', denoted � j= ', iff �; 0 j= '. We say that a finite-

state system M = (W;w

0

; R; V ) satisfies ' if � j= ' for every computation � of

M .

As we observed computations can also be viewed as infinite words over the alphabet

2

Prop. The following theorem establishes the correspondence between LPTL and Büchi

automata.

Proposition 7. [VW94] Given an LPTL formula ', one can build a Büchi automaton

A

'

= (�;S; S

0

; �; F ), where � = 2

Prop and jSj � 2

O(j'j), such that L(A
'

) is

exactly the set of computations satisfying the formula '.

It follows that M j= ' iff L(M ) � L(A

'

) iff L(M ) \ (�

!

� L(A

'

)) = ; iff

L(M )\L(A

c

'

)) = ; iff L(A
M

\A

c

'

) = ;. Note that rather than construct first A
'

and

then Ac
'

, involving a doubly exponential blow-up, we can construct directly A
:'

, as,

clearly, L(A
:'

) = L(A

c

'

). By Proposition 7, the number of states of A
:'

is 2

O(j'j).

Consequently, the automaton A
M

\A

:'

has jW j � 2

O(j'j) states. Using Proposition 1,

we get:

Theorem 8. Checking whether a formula ' is satisfied by a finite-state program M

can be done in timeO(jjM jj � 2

O(j'j)

),

It is unlikely that the exponential bound can be improved, as the problem is PSPACE-

complete [SC85]. Note that regardless of whether the specification is expressed using a

Büchi automaton or an LPTL formula, the complexity is linear in the size of the system

and exponential in the size of the specifiation.

5 Probabilistic Systems

We model probabilistic systems by (finite-state) Markov chains. The basic intuition is

that transition between states is governed by some probability distribution. A Markov

chain M = (W;P; P

0

) consists of a finite state space W ; a transition probability func-

tion P : W

2

! [0; 1], such that Sum
v2W

P (u; v) = 1 for all u 2 W ; and an initial

probability distributionP
0

:W ! [0; 1], such that Sum
u2W

P

0

(u) = 1.

As in the standard theory of Markov processes (see [KS60,KSK76]), we define a

probability space called the sequence space 	
M

= (
;�; �), where 
 = W

! is the



set of all infinite sequences of states, � is a Borel field generated by the basic cylindric

sets

�(w

0

; w

1

; : : : ; w

n

) = fw 2 
 jw = w

0

; w

1

; : : : ; w

n

; : : :g;

and � is a probability distribution defined by

�(�(w

0

; w

1

; : : : ; w

n

)) =

P

0

(w

0

) � P (w

0

; w

1

) � P (w

1

; w

n

) � : : :P (w

n�1

; w

n

):

Consider a language � � W

!, viewed as specification, that is measurable wrt the

sequence space 	
M

. We say that M almost surely satisfies � if �(�) = 1, that is, if

“almost” all computations of M are in �.

Suppose that � is expressed in terms of a deterministic automatonA = (W;S; s

0

; �;G).

It can be shown that in this case � is measurable [Var85]. We define the product chain

M �A = (W �S; P

0

; P

0

0

), where P 0

0

(hw; s

0

i) = P

0

(w) and P 0

0

(hw; si) = 0 if s 6= s

0

,

and P 0

(hu; si; hv; ti) = P (u; v) if t = �(s; u) and P 0

(hu; si; hv; ti) = 0 if t 6= �(s; u).

If G is the acceptance condition [(L

1

; U

1

); : : : ; (L

k

; U

k

)] (Rabin or Streett), then take

W �G to be [(W �L

1

;W �U

1

); : : : ; (W �L

k

;W �U

k

)]. Let sat(W �G) be the set

of sequences that satisfy the acceptance conditionW�G, i.e., whose limit is accepting.

Lemma 9. �
M

(L(A)) > 0 iff �
M�A

(sat(W � G) > 0

Lemma 9 enables us to focus on the behavior of the Markov chain in the limit. Let

M = (W;P; P

0

) be a Markov chain and let � � 2

W

� 2

W be a Streett acceptance

condition. Consider the graph G
M

= (W;W

0

; E

M

), where W
0

= fw jP

0

(w) > 0g

andE
M

= fhu; vi jP (u; v) > 0g. An ergodic set inG
M

is a terminal maximal strongly

connected component that is reachable fromW

0

. Such a set is closed with respect to all

positive transitions ofM .

Lemma 10. �
M

(sat(�)) > 0 iff some ergodic set of G
M

is accepting wrt �.

Note that in this analysis the exact transition probabilities are irrelevant. All that counts

is whether a transition probability is 0 or not.

Ergodic analysis can be also viewed from an automata-theoretic perspective. De-

fine the Streett automaton A
M

= (fag;W;W

0

; �

P

; � [ �), where fag is a singleton

alphabet, �
P

(u; a) = fv jP (u; v) > 0g, and � = f(fug; fvg) jP (u; v)> 0g.

Lemma 11. �
M

(sat(�)) > 0 iff L(A
M

) 6= ;.

The intuition behind the lemma is that probabilistic behavior is essentially a “fair” be-

havior.

We can now consider the algorithmic aspect of verifying probabilistic systems. Sup-

pose that we are given a Markov chain M and a nondeterministic automaton A
�

. We

want to check whether M almost surely satisfies �. We construct the co-deterministic

Streett automaton Acd
�

, per Proposition 5. We know that M almost surely satisfies A
�

iff �
M

(L(A

cd

�

)) = 0. Thus, we can form the product chain M � A

cd

�

and then apply

Lemma 11.

Theorem 12. Checking whether a Büchi automatonA
�

with n states is almost surely

satisfied by a Markov chainM can be done in time polynomial in jjM jj and exponential

in jjA
�

jj.



It is unlikely that the exponential bound can be improved, as the problem is PSPACE-

complete [Var85].

Suppose now that we have an assignment V : W ! 2

Prop and the specification

is given by an LPTL formula over Prop. Let L(') consists of all sequences w 2


 such that V (w) satisfies '. It can be shown that L(') is measurable [Var85]. We

want to verify that M almost surely satisfies ', i.e., M almost surely satisfies L(').

We can apply Proposition 7 and construct A
'

and then proceed with the algorithm

of Theorem 12. The resulting algorithm is polynomial in the size of M , but is doubly

exponential in the size of '. Courcoubetis and Yannakakis [CY95] showed how almost-

sure satisfaction of LPTL formulas over Markov chains can be checked in time that is

exponential in the size of the specification. The algorithm does not use the translation

of LPTL formulas to Büchi automata. We will return to this point in the concluding

discussion.

6 Reactive Probabilistic Programs

So far we viewed systems as Markov chains. This model assumes that all the transitions

of a system are probabilistic. This is adequate for closed systems, whose transitions are

internally driven. In reactive systems, which interact with their external environments

[HP85], some transitions are inherently nondeterministic.

A (finite-state) reactive Markov chain M = (W;N;P; P

0

) is a Markov chain

(W;P; P

0

) with a set N � W of nondeterministic states (the states in W � N are

the probabilistic states). The idea is that W � N is the set of states where a proba-

bilistic transition has to be made and N is the set of states where a nondeterministic

transition has to be made. If u2N , then we interpret P (u; v) to mean that there is a

possible transition from u to v if and only if P (u; v) > 0.

This model, originally named concurrent Markov chain, was proposed in [Var85],

based on earlier ideas in [HSP83]. It turns out, however, that is simply another guise of

Markov decision processes [Der70].

To define the sequence space of a reactive Markov chain it is convenient to imagine

a scheduler, which makes all the nondeterministic choices. A scheduler for a reactive

Markov chain M = (W;N;P; P

0

) is a function � : W

�

N ! W , i.e., a function that

assigns a state to each sequence of states that end with a nondeterministic state, such

that � (w
0

; : : : ; w

n

) = w only if P (w

n

; w) > 0.

Let M = (W;N;P; P

0

) be a reactive Markov chain. A scheduler � forM gives rise

to an infinite Markov chain M �

= (W

+

; P

�

; P

�

0

), where

– P

�

0

(w) = P

0

(w) for all w2W and P �

(x) = 0 for all x2W+

�W ,

– P

�

: W

+

� W

+

! [0; 1] is defined as follows (where x and y are arbitrary

members of W+):

� P

�

(xu; xuv) = P (u; v) if u2W � N ,

� P

�

(xu; xuv) = 1, if u2N and � (xu) = v, and

� P

�

(x; y) = 0, otherwise.

Intuitively,M � describes the behavior of the system under the scheduler � .

Consider a specification � � W

!. We need to “lift” � to the level of M � . To

that end, we define a mapping V : W

+

! W by V (u

1

u

2

: : : u

n

) = u

n

. Now take

L(�) � (W

+

)

! as the set of sequences u 2 (W

+

)

! such that V (u) 2 �. We now say

that M almost surely satisfy � if �
M

�

(L(�)) = 1 for all schedulers � . The intution is



that � almost surely holds regardless of the environment decisions. Dually, we can ask

whether the exists a scheduler � such that �
M

�

(L(W

!

� �)) > 0.

Suppose that � is given in terms of a deterministic Streett automaton A with accep-

tance conditionG. Then, as in Lemma 9, almost sure satisfaction of A can be reduced

to checking a limit property.

Lemma 13. There exists a scheduler � such that �
M

�

(L(A)) > 0 iff there exists a

scheduler � such that �
(M�A)

�
(sat(W � G) > 0

As we did with Markov chains, we use ergodic analysis to check limit properties.

Let M = (W;N;P; P

0

) be a reactive Markov chain and let � � 2

W

� 2

W be a

Streett acceptance condition. Consider the graph G
M

= (W;W

0

; E

M

), where W
0

=

fw jP

0

(w) > 0g andE
M

= fhu; vi jP (u; v) > 0g. An ergodic set inG
M

is a strongly

connected component ofG
M

that is reachable fromW

0

and is closed under the positive

probabilistic transitions of M , i.e., under E
M

\ ((W � N )�W ).

Lemma 14. There exists a scheduler � such that �
M

�

(sat(�)) > 0 iff some ergodic

set of G
M

is accepting wrt �.

Again, the ergodic analysis can be also viewed from an automata-theoretic per-

spective. Define the Streett automaton A
M

= (fag;W;W

0

; �

P

; � [ �), where fag

is a singleton alphabet, �
P

(u; a) = fv jP (u; v) > 0g, and � = f(fug; fvg) ju 2

W � N and P (u; v) > 0g.

Lemma 15. There exists a scheduler � such that �
M

�

(sat(�)) > 0 iff L(A
M

) 6= ;.

To check that a reactive Markov chain almost surely satisfies a Büchi automatonA
�

or an LPTP formula ' we proceed as we did with Markov chains. We first construct a

deterministic Streett automaton for the complementary specification. The cost is expo-

nential for Büchi automata and doubly exponential for LPTL formuas. We then take the

product with the chain and perform ergodic analysis. The resulting complexity is poly-

nomial in the size of the chain, exponential in the size of A
�

and doubly exponential

in the size of '. A 2EXPTIME lower bound in [CY95] shows that the latter bound is

asymptotically optimal.

We note that the automata-theoretic framework lends itself easily to the incorpora-

tion of fairness. The intuition underlying fairness is that we want to restruct attention to

only “well-behaved” schedulers [BK97]. For example, we may want to assume that if

a transition is enabled infinitely often then it is taken infinitely often. Streett conditions

enable us to express rather general fairness properties [Fra86]. We say that a sched-

uler � is fair wrt a fairness conditionG if �
M

�

(sat(G)) = 1. We can now modify the

definition of almost-sure satisfaction by quantifying universally only over fair sched-

ulers. It turns out that the algorithmic modification required to handle fairness is rather

straightforward; all we have to do is to add the Streett condition describing the fairness

condition to the Streett condition used in Lemmas 14 and 15.

7 Concluding Remarks

Over the last 15 years, the automata-theoretic approach to verification has proven itself

to be a rather powerful paradigm. Essentially, almost all decision problems related to

specification and verification of finite-state systems can be expressed and solved using

automata-theoretic tools. See [VW86,EJ91,VW94,BVW94,CY95,KV97a] for numer-

ous examples. The result in Section 5 is a rare exception. As we saw there, using the



automata-theoretic approach we obtained an algorithm for checking almost-sure satis-

faction of LPTL formulas over Markov chains whose complexity is doubly exponential

in the size of the input formula. A non-automata-theoretic algorithm, whose complexity

is exponentially lower (i.e., a single exponential) is described in [CY95]. Can the im-

proved algorithm be given an automata-theoretic account? We believe that the answer

is positive and suspect that such account can be given in terms of “weak alternating

automata” [Var95,KV97b].
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