
Deeper Bound in BMC by Combining Constant Propagation and Abstraction

Roy Armoni, Limor Fix1, Ranan Fraer1, Tamir Heyman1,3,
Moshe Vardi2, Yakir Vizel1, Yael Zbar1

1Logic and Validation Technology, Intel Corporation, Haifa, Israel
2Rich University, Houston, Tx

3Carnegie Mellon University, Pittsburgh, PA

Abstract The most successful technologies for automatic verifica-
tion of large industrial circuits are bounded model checking, abstrac-
tion, and iterative refinement. Previous work has demonstrated the
ability to verify circuits with thousands of state elements achieving
bounds of at most a couple of hundreds. In this paper we present
several novel techniques for abstraction-based bounded model check-
ing. Specifically, we introduce a constant-propagation technique to
simplify the formulas submitted to the CNF SAT solver; we present
a new proof-based iterative abstraction technique for bounded model
checking; and we show how the two techniques can be combined.
The experimental results demonstrate our ability to handle circuit with
several thousands state elements reaching bounds nearing 1,000.

I. INTRODUCTION

Since the introduction of model checking in the early 1980s [9, 20],
its capacity has continued to increase. While early implementations
were able to handle designs with only a few thousands of states,
later implementations could handle millions of states [5]. Symbolic
model checking [7], based on Binary Decision Diagrams [6] (BDDs),
pushed the capacity to 1020 states and more. While such numbers
may seem astronomical, in reality they correspond to designs with
hundreds state elements [3]. At the same time, design blocks with
well-defined functionality typically have thousands of state elements.
SAT-based bounded model checking (BMC) [3] can typically handle
designs with thousands of state elements, but at the cost of limiting
the search to counterexamples of bounded length. In practice, SAT-
based bounded model checking can rarely reach search bound of 100
or more for designs with thousands of state elements. While many
errors can be discovered with bounded search, the small search bound
limit confidence in design correctness.

Automated abstraction techniques [17, 8, 18] aim at finding auto-
matically, through a sequence of iterative approximations, a conserva-
tive abstraction of the design under verification, and then proving that
this abstracted design satisfies the specification using model-checking
technology. Such an approach [12, 13] aimed at finding a conservative
approximation, but this abstraction is verified, up to a given search
bound, using SAT-based bounded model checking. This combination
of automated abstraction and bounded model checking, which can be
described as abstracted bounded model checking, is still in essence a
bounded-model-checking technique, but the application of abstraction
enables dealing with more complex designs and larger search bounds.
While abstracted bounded model checking can handles designs with
thousands of state elements, it rarely can reach search bounds beyond
a couple of hundreds [12, 13].

Our goal in this paper is to scale abstracted bounded model check-
ing further, aiming to reach search bounds nearing 1, 000 for large

designs. We accomplish this by combining two significant algorith-
mic improvements. Our first key observation is that a bounded model-
checking instances are often subject to various constraints (constant
values in different time frames) that originate from various initializa-
tion and environmental assumptions on the design under verification.
While one can conjoin these constraints to the instance submitted to
the satisfiability solver by the bounded model checker, we argue that
it is more effective to add a pre-processing stage in which these con-
straints are propagated in order to simplify the formula submitted to
the solver. This simplification is typically iterative; as constraints are
used to simplify the formula, new constraints are generated, leading
to further simplification. We found that constraint propagation leads
to significant formula simplification. Our results demonstrate signifi-
cant improvement in execution time and memory consumption. This
leads to an improved bounded model-checking algorithm, which we
call BMC-CP. Similar preprocessing simplifications have been shown
to be successful [1, 4, 14, 2, 15, 19]. Our contribution is showing
how inputs of the design with a known cyclic pattern can be used as
constrains in preprocessing simplifications of the BMC formula for a
CNF SAT solver.

Our second contribution is an improvement of abstracted bounded
model checking. As in [12], our algorithm, ABMC, uses proof-based
abstraction [18]. Starting with a design M , the algorithm gener-
ates a sequence M ′

1, M
′
2, . . . of abstracted designs. The property P

is checked in each abstracted design up to some large bound t (say,
1, 000). If P holds up to bound t in M ′

i , the algorithm stops and
concludes that P also holds up to bound t in the original design M .
If P does not hold in M ′

i , the algorithm proceeds to the next itera-
tion and generates a new abstracted design M ′

i+1. The construction
of M ′

i+1 is based on the unsatisfiability proof generated by the satis-
fiability solver for the bounded model-checking instance of M . We
differ from [12] and [18] in the way we proceed from M ′

i to M ′
i+1

and by the use of proof based abstraction for BMC. Our experimental
results show that in many cases our technique reaches larger bounds.

Finally, we combine the constant-propagation technique of BMC-
CP with the abstraction technique of ABMC. The combination is
far from been trivial. During constant propagation the simplification
eliminates many variables from the formula. If the abstraction is ap-
plied naively, variables eliminated from the formula for M will not
appear in the abstracted design M ′

i . This may result in too aggressive
abstraction, which leads to too many approximation iterations. We
describe here a novel constant-propagation procedure that overcomes
this difficulty and enables us to combine constant propagation with
abstraction. Overall, this paper presents three improvements to the ba-
sic BMC algorithm: (1) BMC-CP - BMC with constant-propagation,
(2) ABMC - proof based abstraction and BMC, (3) ABMC-CCP -
abstraction and constant-propagation and BMC. Moreover, the exper-



imental results indicate that ABMC-CCP is the strongest among these
three improvements, that is, it reaches the deepest bound on our suite
of industrial testcases. Previous paper that combines formula sim-
plification technique with proof based abstractions is [11]. In [11],
in contrast to our approach, the simplification are not performed in a
preprocessing step, instead additional constrains are added to the SAT
formula.

The paper is organized as follows. Section II describes BMC-CP,
which combines bounded model checking with constant propagation.
Section III describes ABMC, which combines bounded model check-
ing with abstraction. Then, Section IV describes the combination of
constant propagation with abstracted bounded model checking. Fi-
nally, Section V gives conclusions.

II. CONSTANT PROPAGATION

We present here a short summary of the BMC approach, as de-
scribed in [3]. Let M be a model with state variables X and input
variables U . Let V ≡ X ∪ U be the set of all variables. The initial
states of M are defined as a set of constraints I(V ). The possible
transitions of the model are also a set of constraints denoted by a tran-
sition relation TR(V, V ′), where V (V ′) is the set of current (next)
variables in the model before (after) a transition. Let P (V ) be a com-
binational predicate over the current variables V . For a given bound k,
a BMC checks whether P (V ) holds in all model executions of length
k. The transition relation is explicitly unfolded to k + 1 time frames,
TR(Vt−1, Vt), t = 1 . . . k, where Vt is a copy of the variables V at
time frame t. Then, the formula TR(V0, V1) ∧ . . . ∧ TR(Vk−1, Vk)
denotes all executions of the model of length k.

P (V ) holds in all model executions of length k that start at initial
state satisfying I(V ) if and only if the following formula is unsatisfi-
able.

ϕ ≡ I(V0) ∧ TR(V0, V1) ∧ . . . ∧ TR(Vk−1, Vk) ∧
k∨

t=0

¬P (Vt).

A. Algorithmic Framework

The data structure used for circuit-based unfolding is an Expression
Graph, to be denoted EG, similar to the And-Inverter Graph (AIG)
in [10, 16, 15]. EG is a directed-acyclic graph. The leaves of EG
are variables or constants (true, false). The internal nodes are logical
operators. To simplify, we restrict the discussion in this paper to the
binary AND operator and the unary NOT operator.

The EG of a BMC formula ϕ is built bottom-up in an iterative
fashion. We start by allocating leaf nodes for each variable v0 that
corresponds to a variable v at time frame 0. Then, for each variable
v and each time frame t, we add to the graph a node that represents
vt. The expression for xt is generated by substituting in the next-
state function Fx(V, U ′) the nodes in Vt−1 and the variables in Ut

respectively.
In a typical hardware design several input signals are known to

have constant values at different time frames. For instance, the initial
state of the execution is usually a state obtained after applying a reset
sequence. Many of the state signals are initialized to constant values,
and we can take advantage of these constants in the first time frame
of the unfolding.

Some of the inputs of the design have a known cyclic pattern. For
instance an input that toggles in every time frame. If the initial value
of this input is known to be constant zero or constant one, then one can
compute the value of the input at every time frame. Another typical

pattern is input that stays constant for a few time frames and then
becomes free.

Our algorithm takes advantage of this information by injecting the
constant values into the EG at different time frames according to the
input pattern and performing the constant propagation ( CP) described
later. To illustrate the approach, consider a simple model with two
state variables x and y and two inputs c and r. The property to check
is

P (x, y) ≡ (x = y).

The initial states are defined by

I(x, y) ≡ (x = 1) ∧ (y = 0).

The transition relation is

TR(x, y, x′, y′) ≡
{

x′ = (¬c ∧ c′)?(¬y ∧ r) : x ∧
y′ = (c ∧ ¬c′)?x : y

We use the knowledge that the input c is initialized to 0 and it
is toggling on every phase and change the AIG accordingly (c0 =
0, c1 = 1, c2 = 0). In addition, x is initialized to 1 (the node x0 in
the AIG gets the value 1) and y is initialized to 0 (y0 = 0). The final
BMC formula for bound 2 after CP is: (y2 = r1) ∧ (¬(0 = y2)) .

The constant propagation algorithm manipulates the EG, it propa-
gates the values of constant nodes and replaces additional nodes in the
graph by constants. The pseudocode for the constant-propagation al-
gorithm presented in Figure 1 refers only to negation and conjunction
but can be extended to many types of operators. The algorithm eval-
uates a subexpression in EG that corresponds to a node e by travers-
ing the subgraph rooted in e, using a DFS post order. In particular,
if the values of the operand(s) of e imply a constant value on e the
algorithm replaces the entire subgraph rooted in e by the calculated
constant value. Each node e in the EG may have no operands, a single
operand denoted e.e1, or two operands, denoted e.e1, e.e2.

function CP(e)
1. if (e.visited) return e
2. e.visited = true /* new node*/
3. if(e is constant) return e
4. e.e1= CP(e.e1)
5. if (e.operator = negation ∧ (e.e1 = zero ∨ e.e1 = one))
6. e = (e.e1 = zero)?one : zero
7. if (e.operator = and)
8. e.e2 = CP(e.e2)
9. if (e.e1 = zero ∨ e.e2 = zero ∨ (e.e1 = ¬e.e2))

10. e = zero
11. else if (e.e1 = one ∧ e.e2 = one)
12. e = one
13. return e

Fig. 1. Pseudocode for the constant propagation

B. Experimental results

Our experiments were conducted using twelve of the largest mod-
els from a recent Intel’s hardware design. In these models several
inputs of the design have a known cyclic pattern. We used a PC with
a dual 2.7Ghz Pentium c© 4 processor and 4GB memory.

In Table I, we describe experimental results that demonstrate the
benefits of constant propagation for bounded model checking. In each



example we give execution time and number of clauses at a given
bound. If the algorithm succeeds in completing the search at a cer-
tain bound, we provide execution time (in seconds). If the algorithm
reaches a certain bound but execution time exceeded 10 hours, we
mark as Tout. If the algorithm reaches a certain bound but failed to
complete it because of memory overflow, we mark as Mout. On av-
erage, the number of clauses sent to the SAT solver has been reduced
by a factor of 2.

Consider, for example, the test case P45 with 6, 219 state elements
(variables). The SAT solver applied to the original BMC formula
(without constant propagation) reaches bound 63. When the SAT
solver tries to complete bound 63 holding at that point in time with
a 10-million-clause formula it requires more than 36, 000 seconds.
When the SAT solver was applied to the same BMC problem after
simplification by CP - bound 63 was completed after 270 seconds,
which is more than hundred times faster and was holding at that point
of time only 6 million clauses.

One might argue that if the initial constants are provided as unit
clauses to the SAT solver, then the unit clause rule would perform a
similar constant propagation with the same effect. We tested this hy-
pothesis, by providing only the initial value c0 = 0 and the toggling
constant c′ = ¬c. It is true that the SAT solver does eventually redis-
cover the same constant values at different time frames. But it does
not have immediate effect of the downstream simplification for the
other signals. Not surprisingly, the conclusion was that it still pays
off to simplify the BMC formula in advance and not rely on the SAT
solver to perform the equivalent of constant propagation.

Table II presents the maximum bound reach by BMC with and
without CP. As expected, constant propagation is enabling much
deeper bounds. For example, test case P45 has reached maximum
bound of 63 without CP and bound 94 with CP.

Cir- #vars Bo- BMC BMC-CP Ratio
cuit und Time Size Time Size Size
P8 27,201 12 Tout 16M 70 6M 38%
P15 5,946 65 Mout 9M 4K 5M 53%
P19 6,907 69 Mout 11M 5K 6M 55%
P24 5,954 79 Mout 11M 14K 6M 54%
P38 6,028 77 Mout 11M 13K 6M 54%
P54 6,028 77 Mout 11M 8K 6M 54%
P69 5,938 81 Mout 11M 13K 6M 54%
P45 6,219 63 Tout 10M 270 6M 56%
P37 7,180 71 Mout 13M 3K 7M 58%
Pf 1,585 167 Tout 9M 8K 5M 53%
Pbb 1,458 54 Tout 2M 21K 1M 51%
Pc 1,648 115 Tout 7M 2K 3M 45%
Ave 52%

TABLE I
Comparison of the execution time (in seconds) and the number of

clauses (Size) used by BMC with and without CP.

III. ABSTRACT BMC

This section presents an iterative model abstraction algorithm com-
bined with BMC, called ABMC. For a given model M , a sequence
M ′

1, M
′
2, . . . , of abstract models is generated automatically. The

property P is checked in each abstract model up to bound t, the tar-
get bound. If P holds up to bound t in the abstract model M ′

i , the
algorithm stops and concludes that P also holds up to bound t in the
original model M . If P does not hold in the abstract model M ′

i the
algorithm proceeds to the next iteration and generates a new abstract
model M ′

i+1.

Circuit #vars BMC BMC-CP Ratio
P8 27,201 11 38 345%
P15 5,946 64 96 150%
P19 6,907 68 88 129%
P24 5,954 78 100 128%
P38 6,028 76 102 134%
P54 6,028 76 100 132%
P69 5,938 80 102 128%
P45 6,219 62 94 152%
P37 7,180 70 94 134%
Pf 1,585 166 270 163%
Pbb 1,458 53 55 104%
Pc 1,648 114 206 181%
Ave 157%

TABLE II
Comparison of the maximum bound completed with and without CP

under the same time (ten hours) and memory budgets.

An abstract model M ′
i is automatically generated by running BMC

on the original model M up to bound k + i, where k < t is an ex-
ternal parameter to the algorithm. If the original model M is large
(small), we start with a small (large) k. In more details, in order to
generate M ′

i , a BMC formula is created on the original model M up
to bound k + i and sent to the SAT solver. If the formula is satisfi-
able, the algorithm stops and returns the satisfying assignment as the
counterexample. If the formula is unsatisfiable, then the SAT solver
returns the set of clauses that cause unsatisfiability (unSAT core). The
algorithm collects the set V ′ of model variables referred to in the un-
SAT core. Clearly, V ′ ⊆ V , where V is the the set of variables in
the original model M . Using the set of variables V ′, a new abstract
model, M ′

i , is constructed consisting of the next-state-functions of all
variables in V ′. Note that, if the number of variables in V ′ is not small
enough, that is |V ′|

|V | > δ, the model M ′
i is skipped and the next model

M ′
i+1 is generated. A pseudocode of the algorithm in presented in

Figure 2.

function ABMC(M, P, t, δ)
1. initialize k
2. While k < t
3. V = concrete model variables
4. ϕ = Build-BMC-formula (V, k)
5. if SAT-solver(ϕ)= SAT return CEX
6. V ′ = variables in unSAT core

7. if |V ′|
|V | ≤ δ

8. ϕ = Build-BMC-formula(V ′, t)
9. if SAT-solver(ϕ) = unsat

10. return Valid up to t
11. k = k + 1
12. return Valid up to t

Fig. 2. Pseudocode for ABMC deep BMC algorithm

Lines 8-10 in Figure 2 actually oversimplify. In reality, we apply
bounded model checking to the abstract model incrementally, trying
to reach bound t. If we are unable to complete bound t, we report the
largest bound completed.

A similar iterative model abstraction algorithm (BDDs-based) was
presented in [18], in which the bound k was increased by one or more
at each iteration. The new value of k is determined in [18] to be the
next bound where P fails in the abstract model M ′

i . Our algorithm
ABMC makes more iterations towards its target bound t by always



Cir- Jump Step
cuit Ite Abs Bound Time Ite Abs Bound Time
P8 7 194 15 Mout 15 1,881 19 Mout
P15 3 731 260 Tout 11 677 280 Tout
P19 2 601 164 Tout 3 530 152 Tout
P24 3 2,571 194 Tout 12 683 270 Tout
P38 4 2,657 196 Tout 14 2,675 186 Tout
P54 4 758 240 Tout 12 747 244 Tout
P69 4 1,065 190 Tout 14 2,635 198 Tout
P45 4 2,391 328 Mout 10 2,203 368 Tout
P37 4 2,889 292 Mout 9 2,892 354 Tout
Pf 7 1,514 182 Tout 44 442 714 Tout
Pbb 5 935 29 Tout 54 935 29 Tout
Pc 8 398 66 Mout 49 452 70 Mout

TABLE III
The table presents the deepest bound completed using two versions

of ABMC: In Jump the bound k is incremented based on the
counterexample length. In Step the bound k is incremented by one.
Abs is the number of variables in the abstract model. Mout means

memory overflow. Tout means timeout (of ten hours).

increasing k by one, compared to the larger increases in [18]. Nev-
ertheless, our experimental results, presented in Table III, show that
in most cases our algorithm reaches a deeper bound in a similar time
budget.

In this experiment we used a time budget of 36, 000 seconds, the
initial value of k was 2 and δ was defined to be 0.9. There are two
reasons to the improvement of 30% in the bounds reached. The
first one is that by increasing k in a conservative fashion we end
up with smaller abstract models at each iteration and thus each it-
eration consumes less time. The second reason is that increasing k
non-conservatively may cause a large jump in the bound, which then
cannot be completed by BMC on the concrete model.

For example, for the circuit Pc in in Table III, larger increases of
the bound sets k to 34 after 8 iterations. At this stage, the abstraction
includes 398 variables and a counterexample. The shortest counterex-
ample in this abstraction is of length 67 and therefore we can conclude
that the concrete model does not include a counterexample of length
less than 66. Running BMC on the abstract model results in mem-
ory overflow at bound 66. With conservative bound increase we set
k to 50 in 49 iterations. The abstraction now includes 452 variables
and the shortest counterexample has length 71. (BMC on the concrete
model terminates at bound 51 due to memory overflow.)

In Table IV, the deepest bound completed by BMC-CP is com-
pared with the one completed by ABMC. The final abstract model in
ABMC is 2 − 10 times smaller than the original model. On average
the bounds of ABMC are 210% deeper. In examples P8, Pbb and
Pc, BMC-CP’s performance was better than that of ABMC.

Both algorithms BMC-CP and ABMC have been proven to be
very successful in reaching deeper bounds than BMC. Yet, the bound
reached is not always satisfying, for instance, in the example of the
Pc. This provide a strong motivation to combine abstraction and con-
stant propagation, as described in the next section.

IV. ABSTRACTION AND CONSTANT PROPAGATION

In this section we present an algorithm, ABMC-CCP, which com-
bines abstraction with constant propagation. We demonstrate that
these two approaches can be combined to yield an algorithm that is
superior to both BMC-CP and ABMC. We need to overcome the fol-
lowing problem. When the CP algorithm is applied, several variables
from the original model completely disappear from the formula sub-
mitted to the SAT solver. Therefore, these variables will never be

Cir- #vars BMC-CP ABMC Ratio
cuit Bound Time Bound Time Abs
P8 27,201 38 Mout 19 Tout 1,881 50%
P15 5,946 96 Mout 280 Tout 677 292%
P19 6,907 88 Mout 152 Tout 530 173%
P24 5,954 100 Tout 270 Tout 683 270%
P38 6,028 102 Tout 186 Tout 2,675 182%
P54 6,028 100 Mout 244 Tout 747 244%
P69 5,938 102 Mout 198 Tout 2,635 194%
P45 6,219 94 Mout 368 Tout 2,203 391%
P37 7,180 94 Tout 354 Tout 2,892 377%
Pf 1,585 270 Tout 714 Tout 442 264%
Pbb 1,458 55 Tout 29 Tout 935 53%
Pc 1,670 206 Tout 70 Mout 452 34%
Ave 210%

TABLE IV
The table compares the deepest bound completed by BMC-CP to

ABMC. Abs is the number of variables in the abstract model. Mout
means memory overflow. Tout means timeout (of ten hours).

selected to be part of the abstract model M ′. Recall, that the variables
in M ′ are defined to be the variables that appear in unSAT core.

We demonstrate this problem with the following example. Assume
a model M , with two variables x and c, defined by the following next
state functions:

M ≡ c′ = ¬c; x′ = (¬c ∨ ¬x) ∧ (c ∨ x).

For illustration we build a simple BMC formula with bound 2 and no
property:

ϕ ≡ (c1 = ¬c0) ∧ (x1 = (¬c0 ∨ ¬x0) ∧ (c0 ∨ x0)) ∧
(c2 = ¬c1) ∧ (x2 = (¬c1 ∨ ¬x1) ∧ (c1 ∨ x1))

If we apply CP using the constant ”c0 = 0” on the initial value of
c, we end up with:

ϕopt ≡ (x1 = x0) ∧ (x2 = ¬x1).

The abstract model M ′ is extracted from the unSAT core, and c cannot
be part of it. In case a clause from the expression x2 = ¬x1 is part
of the unSAT core, M ′ will contain the variable x and be defined as:
M ′ ≡ x′ = (¬c ∨ ¬x) ∧ (c ∨ x). Note that in M ′, the variable
c becomes a free variable and its toggling nature is abstracted away.
In other words, since the CP algorithm had eliminated the signal c
from ϕopt and replaced it by a constant, c may only appear in M ′ as
a free and unconstrained signal. We noticed that such abstractions are
often too drastic and cause false negatives. Therefore, we identified
the need to generate a conservative abstractions of M .

Definition 1 [Conservative Abstraction] Assume model M satisfies
property P till bound k. A model M ′ is a conservative abstraction of
model M w.r.t. k and P if M ′ satisfies P till bound k.

As pointed above CP generates abstractions that are too aggressive.
We propose to combined ABMC with a more conservative constant-
propagation algorithm, CCP, described below. Figure 3 presents the
combined algorithm, ABMC-CCP.

This flow is similar to the one presented in Figure 2 (Section III),
except for lines 5 and 10, in which two constant propagation stages
are used. In line 10, constant propagation is as in Figure 1 (Section II),
while in line 5, we use more conservative constant propagation, de-
scribed next.

The conservative constant propagation algorithm is presented in
Figure 4. The pseudocode refers only to negation and conjunction



Function ABMC-CCP(M, P, t, δ)
1. initialize k
2. while k < t
3. V = concrete model variables
4. ϕ = Build-BMC-formula (V, k)
5. ϕopt = CCP(ϕ)
6. if SAT-solver(ϕopt)= SAT return CEX
7. V ′ = variables in unSAT core

8. if |V ′|
|V | ≤ δ

9. ϕ = Build-BMC-formula(V ′, t)
10. ϕopt = CP(ϕ)
11. if SAT-solver(ϕopt) = unsat
12. return Valid up to bound t
13. k = k + 1
14. return Valid up to bound t

Fig. 3. Pseudocode for the ABMC-CCP algorithm

but the implementation includes disjunction, exclusive-disjunction,
equality, negation and conjunction. A node e in the EG graph in-
cludes two additional bits, e.bit0 and e.bit1. When e.bit0 (e.bit1)
is high it indicates that the subexpression associated with e is evalu-
ated to the constant 0 (1). This is in contrast to the CP algorithm, in
which whenever a node in EG is evaluated to a constant we always
replace the node e with this constant. Instead here, we only annotate
e with the computed constant. Only in two cases (see lines 12 and
13), we perform the actual structural transformation on the EG. That
is, if node e is an AND node and if in addition one of its operands is
evaluated to 0, for example e1.bit0 holds, then we replace e by e1.

function CCP (e)
1. if e.visited return e
2. e.visited = true
3. if e is a leaf
4. if e = 0 (e = 1) set e.bit0 (e.bit1)
5. return e
6. e.e1 = CCP (e.e1)
7. if (e.operator = negation)
8. if e1.bit0 set e.bit1, return e
9. if e1.bit1 set e.bit0, return e

10. if (e.operator = and)
11. e.e2 = CCP (e.e2)
12. if e1.bit0 return e1
13. if e2.bit0 return e2
14. if e1.bit1 ∧ e2.bit1 set e.bit1, return e
15. if e1 = negation(e2) set e.bit0, return e

Fig. 4. Pseudocode for the CCP algorithm

In ABMC-CCP the generated abstract model M ′
i is conservative

abstraction of M . Intuitively, any sub expression pruned from the
formula by CCP can be proved to be unnecessary for ensuring that the
abstraction is conservative. For example, if a node e is the conjunction
of nodes z and w and in addition w is constantly 0, then the node e
can be replaced by the node representing w (becomes allies to w). If
e will be included in the unSAT core then e and w will be included in
the abstract model. Moreover, in the abstract model, variable z will be

a free input, however, due to w being equal to 0 the value of e (recall
e = z ∧ w) will not be influenced by pruning the logic that drives z.

A detailed proof of the ABMC-CCP algorithm’s soundness and
completeness is omitted because of space limitation. Intuitively, the
soundness and completeness argument is as follows: if we remove
line 5 and lines 7-12 (in Figure 2) the algorithm is sound and complete
since it performs the classic iterative BMC algorithm in which the
bound k is increased by one every iteration and the BMC formula is
build for the concrete model M . Including line 5 in the algorithm
preserves soundness and completeness since the CCP transformation
that generates ϕopt from ϕ guarantees that for every assignment, A, to
the variables of ϕ, ”A satisfies ϕ if and only if A also satisfies ϕopt”.
In other words, CCP only performs a formula rewrite that does not
change the course of the BMC algorithm. Including lines 7-12 in the
algorithm preserves soundness and completeness since the algorithm
terminates in line 12 only if there exists an over approximation of the
original model M that satisfies the given property P till bound t.

In Table V, the performance of the new ABMC-CCP algorithm is
compared to the performance of ABMC. In most of the cases deeper
bounds are achieved. In particular, the length of the bound grow on
average by 218%, reaching bound 1, 000 in test case P45.

Cir- #var ABMC ABMC-CCP Ratio
cuit bound time bound time
P8 27,201 20 Mout 48 Mout 240%
P15 5,946 281 Tout 512 Tout 182%
P19 6,907 153 Tout 296 Tout 193%
P24 5,954 271 Tout 312 Tout 115%
P38 6,028 187 Tout 300 Tout 160%
P54 6,028 245 Tout 296 Tout 121%
P69 5,938 199 Tout 276 Tout 139%
P45 6,219 369 Tout 1,000 7,869 271%
P37 7,180 355 Tout 694 Tout 195%
Pf 1,585 715 Tout 686 Tout 96%
Pbb 1,458 30 Tout 61 Tout 203%
Pc 1,648 71 Mout 498 Tout 701%
Ave 218%

TABLE V
Comparison of deepest bound by the ABMC and the ABMC-CCP.

We next look in more details in analyzing ABMC-CCP. Figure 5
compares the number of clauses generated from the BMC formula of
the three algorithms. BMC does not use optimizations. ABMC-CPP
uses CCP to optimized the BMC formula. Finally, BMC-CP uses CP
to optimize the BMC formula. For each bound the number of clauses
by each algorithm is given.

BMC-CP generates fewer clauses than BMC-CPP, for all bounds.
However, ABMC-CCP can be used for finding abstract models that
are much smaller than the concrete models. ABMC-CCP generates
fewer clauses than BMC, for all bounds. Therefore, ABMC-CCP is
more effective in finding abstract models than BMC without any op-
timization.

V. CONCLUSIONS

Model checking is desired in hardware verification since it provides
confident in the correctness of the circuit. However, in many cases
model checking is impossible due to complexity and thus bounded
model checking is applied. In this paper, we effectively used con-
strains on inputs of the design that have a known cyclic pattern. We
demonstrate the ability to reach bounds nearing 1,000 using proof
based abstraction, and in most circuits such a bound already provides



 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 2  4  6  8  10  12  14  16  18  20

N
um

be
r 

of
 C

la
us

es

Bound

BMC
ABMC-CCP

BMC-CP

Fig. 5. Number of clauses for each bound in test example P45. BMC runs
without any optimizations. ABMC-CCP is using CCP. BMC-CP is using CP.

high confidence in the correctness of the circuit due to the fact that
circuit diameters are usually smaller than 1,000.

ACKNOWLEDGEMENTS

We are grateful to Tim Leonard and Abdel Mokkedem for suggest-
ing the constant propagation algorithm.

REFERENCES

[1] N. Amla, X. Du, A. Kuehlmann, R. P. Kurshan, and K. L. McMillan.
An Analysis of SAT-Based Model Checking Techniques in an Industrial
Environment. In CHARME’05.

[2] J. Baumgartner, T. Heyman, V. Singhal, and A. Aziz. An Abstraction
Algorithm for the Verification of Level-Sensitive Latch-Based Netlists.
FMSD’03.

[3] A. Biere, A. Cimatti, E. Clarke, M. Fujita, and Y. Zhu. Symbolic model
checking using SAT procedures instead of BDDs. In Proc. 36th DAC,
1999.

[4] P. Bjesse and J. Kukula. Automatic generalized phase abstraction for
formal verification. In ICCAD, 2005.

[5] M. Browne, E. Clarke, D. Dill, and B. Mishra. Automatic verification
of sequential circuits using temporal logic. IEEE Trans. on Computers,
C-35:1035–1044, 1986.

[6] R. E. Bryant. Graph-based Algorithms for Boolean Function Manipula-
tion. IEEE Trans. Comput., 1986.

[7] J. Burch, E. Clarke, K. McMillan, D. Dill, and L. Hwang. Symbolic
model checking: 1020 states and beyond. Information and Computa-
tion, 98(2):142–171, June 1992.

[8] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-
guided abstraction refinement for symbolic model checking. J. ACM,
50(5):752–794, 2003.

[9] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic Verification of
Finite-State Concurrent Systems using Temporal Logic Specifications.
In Proceedings of the Tenth Annual ACM Symposium on Principles of
Programming Languages, Jan. 1983.

[10] M. K. Ganai and A. Aziz. Improved SAT-based Bounded Reachability
Analysis. In ASP-DAC ’02.

[11] A. Gupta, M. Ganai, and P. Ashar. Lazy Constraints and SAT Heuristics
for Proof-Based Abstraction. In VLSI Design, 2005.

[12] A. Gupta, M. Ganai, Z. Yang, and P. Ashar. Iterative Abstraction using
SAT-based BMC with Proof Analysis. In ICCAD ’03.

[13] A. Gupta and O. Strichman. Abstraction Refinement for Bounded Model
Checking. In CAV, 2005.

[14] G. Hasteer, A. Mathur, and P. Bannerjee. A framework for equivalence
checking of multi-phase FSMs. In Proc. High Level Design Validation
and Test Symp., 1997.

[15] A. Kuehlmann. Dynamic Transition Relation Simplification for
Bounded Property Checking. In ICCAD ’04.

[16] A. Kuehlmann, V. Paruthi, F. Krohm, and M. K. Ganai. Robust Boolean
Reasoning For Equivalence Checking and Functional Property Verifica-
tion. TCAD’02, 21(12).

[17] B. Kurshan. Computer-Aided Verification of Coordinating Processes:
The Automata-Theoretic Approach. Princeton Series in Computer Sci-
ence, 1994.

[18] K. L. McMillan and N. Amla. Automatic Abstraction without Coun-
terexamples. In TACAS, pages 2–17, 2003.

[19] H. Mony, J. Baumgartner, V. Paruthi, and R. Kanzelman. Exploiting
suspected redundancy without proving it. In DAC ’05.

[20] J. Quielle and J. Sifakis. Specification and Verification of Concurrent
Systems in CESAR. In Proceedings of the Fifth International Sympo-
sium in Programming, 1981.


