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1. Introduction

First-order propertics of finite relational structures are of considerable interest both in
mathematical logic (c.g. [BH, F1, 2, Ga, Ha]) and in computer science (e.g.. AU, CH, Im}).
Perhaps one of the simplest properties that is not first-order is connectivity of graphs. Several
proofs to that effect appeared in the literature. The carliest proof appeared in (141, and it uses
Erenfeucht-Fraisse games, as do the proofs in [CH, Im). In [BH] it is claimed that they can
show that conncctivity is not first-order by an ultraproduct argument. “I'he proof in [Ha] uscs
the method of semisets, and the proof in [AU] uses quantificr climination. Finally, the claim
follows immediately from a general characterization of first-order propertics in [Ga]; a charac-
terization that is proved by quantifier climination. (Obscrve that a straightforward compactncss
argument shows that connectivity for arbitrary graphs is not first-order, and it is only the finite
case that poses some difficulty.)

We feel that conneetivity is an important enough property to deserve having a simple and
dircct proof to the effect that it is not first-order. The only tools we use are the compactness
and owenheim-Skolem theorems. We shall prove the claim for directed graphs, and it can be

casily muodificd to (he case of undirceted graphs.

2. The Main Result.

I'he tanguage 7. we use has one extralogical symbol R of arity two. A structure A for [
is a dirccted graph <D.R>, where D is a nonempty set of nodes, and RCH? is a set of edges.
A property 7 of graphs is definable it there is a first-order sentences o such that for :lli graphs
A=<DRD, A has the property o if and only if A k=0, o is finitely definable if there is a first-
order sentences o such that for all finite graphs 4 =<D,R>, A has the property = if and only

iff A I= a.

Vi Fael, it is shown these that connectivity is not expressible even in mogmidic second-order cxistential Jopic,
See ulso [dR)).



A graph A =<A,RD is connected if for all nodes x.p in 2 there is a sequences of nodes
XIb oo oo Xno 221, such that x =xy, y=x,, and (x;,X;,.)ER for 0<in.
Theorem 1. Connectivity is not definable.
Proof. Let @,{x.y) be a formula saying that there is a path of length # from x w y. We
define the @,'s by induction: qglx,p) is the formula x =y, and o ilxy) is the formula
Fz(R(x.2)€& p,(z.9)).

Assume now that conncctivity is definable by a sentences 6. We now cxpand the

language L by two constants ¢; and cp. Let

S ={atU{ps(e).c0): 0<k<w}.

1t is casy to sce that every finitc subsct of S is satisfiable, but ' is not satisfiable - contradic-
tion. O

“I'he above proof uses the Compactness ‘Theorem, and therefore docs not carry over to
finite definability. . '
Theorem 2. Connectivity is not finitely definable,
Proof. let A, be the finite structure  with nodes {L....n} and cdges.
(i D:1<i<n~ [JUn. D). Let B, be the finite structure with nodes {1,....2¢} and
edges {<i i+ 1>:1<i<2n =1 and i =£n UK D>}, That is, 4, isa cycle of length #,

s it is conneeted, and B, is two cyeles of fength a, so it is disconneeted. Let Sy be the theory
{o o holds in all but Rnitely many 4,,'s},

ad let S, be the theory

. {o 20 holds in all but finitely many B,'s}.
We now expand the language /. with countably many constants g, . . ., Cyeenee Let 77 be
the theory | =g (00,1 077k Koo and F:47} (the s are delined in the prool” of Theorem

). Now take 7' to be SYUT, and we take Ty to be S,UT,



We argue by compactness that T is satisfiable. et = be a finite subset of Sy, and let A
be a finite subsct of 7. Each sentence in = holds in all but finitely many A,'s. It follows that
there is some g so that for all #>ng, 4, E Z. Let now k be the number of constants occur-
ring in sentences of A, and let m be the maximal one such that ,,(c;.c;)EA for some con-
stants ¢ and ¢ Lot admax(ue k(m -+2)). 1t is casy to see that we can interpret the & con-
stants in A by clements from {1, .. ..n}. so that for any pair of constants ¢; and ¢; that occur
in sentences of A, the shortest path in A, between the clements that interpret these constants is
of length n+1. It follows that 4, EZUA. Thus, 77 is satisfiable. By an identical argument
T, is also satisfiable.

et 4 and B be countable models of T} and T, respectively. ‘These models exist by
Lowenheim-Skolem Theorem, since the expanded language 7.(cg,...) is countable. Consider
the model A. Clearly, in A4 cvery clement has a unique successor and a unique predecessor,
because this is true in all the 4,%s. Thus, a connccted component of A is cither a cycle or a
line2. The formula 7, (x): 2y (x =€ @, - 1{x 3 )€ R(r.x)) says that there is a cycle of length
going through x. For all 10, Vx (27, (x)) is in 8, so A4 can not have cycles but only lines.
Finally, because for cach pair of constants ¢; and ¢; and for all #, we have 4 kg, (ci.cp. no
two constants can be interpreted as clements on the same line in A, 1t follows that A4 has
countably many lines. ‘Ihe same argument applies to the model B, “Thus, the reductions of A
and B to the language /. (ic.. ignoring the constants) arc isomorphic and 'clc}rlclxlalrily
cquivalent.

Suppose nuw.lh;ul connectivity for finite directed graphs is a finitely definable. “Then,
there s a sentence o such that for-all a, A, l=e and B, "0, It follows that 6€7 and

=6CTy 50 A [Eo and B =70 - a contradiction, O

2 A line is a directed graph ismmophic w {<FL7 -+ 1D — wli<w} .
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