A SIMPLE PROOF THAT CONNECTIVITY OF FINITE GRAPHS IS NOT FIRST-ORDER DEFINABLE

Haim Gaifman

Institute of Mathematics and Computer Science

Hebrew University of Jerusalem

Jerusalem, Israel

Moshe Y. Vardi[†]

Center for Study of Language and Information

Stanford University, California

Bull. EATCS 76(1985), 41-45

[†] Research supported by a Weizmann Post-Doctoral Fellowship and AFOSR Grant 80-0212.

1. Introduction

First-order properties of finite relational structures are of considerable interest both in mathematical logic (e.g., [BH, F1, F2, Ga, Ha]) and in computer science (e.g., AU, CH, Im]). Perhaps one of the simplest properties that is not first-order is connectivity of graphs. Several proofs to that effect appeared in the literature. The earliest proof appeared in [F1], and it uses Erenfeucht-Fraisse games, as do the proofs in [CH, Im]. In [BH] it is claimed that they can show that connectivity is not first-order by an ultraproduct argument. The proof in [Ha] uses the method of semisets, and the proof in [AU] uses quantifier elimination. Finally, the claim follows immediately from a general characterization of first-order properties in [Ga]; a characterization that is proved by quantifier elimination. (Observe that a straightforward compactness argument shows that connectivity for arbitrary graphs is not first-order, and it is only the finite case that poses some difficulty.)

We feel that connectivity is an important enough property to deserve having a simple and direct proof to the effect that it is not first-order. The only tools we use are the compactness and Lowenheim-Skolem theorems. We shall prove the claim for directed graphs, and it can be easily modified to the case of undirected graphs.

2. The Main Result.

The language L we use has one extralogical symbol R of arity two. A structure A for L is a directed graph $\langle D, R \rangle$, where D is a nonempty set of nodes, and $R \subseteq D^2$ is a set of edges. A property π of graphs is *definable* if there is a first-order sentences σ such that for all graphs $A = \langle D, R \rangle$, A has the property π if and only if $A \models \sigma$. π is *finitely definable* if there is a first-order sentences σ such that for all finite graphs $A = \langle D, R \rangle$, A has the property π if and only if $A \models \sigma$.

 $^{^{-1}}$ In fact, it is shown there that connectivity is not expressible even in monadic second-order existential logic. See also [dR]).

A graph $A = \langle A, R \rangle$ is *connected* if for all nodes x, y in D there is a sequences of nodes $x_1, \ldots, x_n, n > 1$, such that $x = x_1, y = x_n$, and $(x_i, x_{i+1}) \in R$ for 0 < i < n.

Theorem 1. Connectivity is not definable.

Proof. Let $\varphi_n(x,y)$ be a formula saying that there is a path of length n from x to y. We define the φ_n 's by induction: $\varphi_0(x,y)$ is the formula x=y, and $\varphi_{n+1}(x,y)$ is the formula $\exists z (R(x,z) \& \varphi_n(z,y))$.

Assume now that connectivity is definable by a sentences σ . We now expand the language L by two constants c_1 and c_2 . Let

$$S = \{\sigma\} \cup \{\neg \varphi_k(\mathbf{c}_1, \mathbf{c}_2) : 0 \le k \le \omega\}.$$

It is easy to see that every finite subset of S is satisfiable, but S is not satisfiable - contradiction. \Box

The above proof uses the Compactness Theorem, and therefore does not carry over to finite definability.

Theorem 2. Connectivity is not finitely definable.

Proof. Let A_n be the finite structure with nodes $\{1, \ldots, n\}$ and edges. $\{\langle i, i+1 \rangle : 1 \le i \le n-1\} \cup \{\langle n, 1 \rangle\}$. Let B_n be the finite structure with nodes $\{1, \ldots, 2n\}$ and edges $\{\langle i, i+1 \rangle : 1 \le i \le 2n-1 \text{ and } i \ne n\} \cup \{\langle n, 1 \rangle, \langle 2n, n \rangle\}$. That is, A_n is a cycle of length n, so it is connected, and B_n is two cycles of length n, so it is disconnected. Let S_1 be the theory

 $\{\sigma: \sigma \text{ holds in all but finitely many } \Lambda_n's\}$,

and let S_2 be the theory

 $\{\sigma : \sigma \text{ holds in all but finitely many } B_n's\}.$

We now expand the language I, with countably many constants c_0, \ldots, c_n, \ldots . Let T be the theory $\{\neg \varphi_k(c_i, c_j) : 0 \le i, j, k \le \omega \text{ and } i \ne j\}$ (the φ_k 's are defined in the proof of Theorem 1). Now take T_1 to be $S_1 \cup T$, and we take T_2 to be $S_2 \cup T$.

We argue by compactness that T_1 is satisfiable. Let Σ be a finite subset of S_1 , and let Δ be a finite subset of T. Each sentence in Σ holds in all but finitely many A_n 's. It follows that there is some n_0 so that for all $n \ge n_0$, $A_n \models \Sigma$. Let now k be the number of constants occurring in sentences of Δ , and let m be the maximal one such that $\varphi_m(c_i,c_j)\in \Delta$ for some constants c_i and c_j . Let $n \ge \max(n_0,k(m+2))$. It is easy to see that we can interpret the k constants in Δ by elements from $\{1,\ldots,n\}$, so that for any pair of constants c_i and c_j that occur in sentences of Δ , the shortest path in A_n between the elements that interpret these constants is of length n+1. It follows that $A_n \models \Sigma \cup \Delta$. Thus, T_1 is satisfiable. By an identical argument T_2 is also satisfiable.

Let Λ and B be countable models of T_1 and T_2 , respectively. These models exist by Lowenheim-Skolem Theorem, since the expanded language $L(c_0,...)$ is countable. Consider the model Λ . Clearly, in Λ every element has a unique successor and a unique predecessor, because this is true in all the Λ_n 's. Thus, a connected component of Λ is either a cycle or a line². The formula $\tau_n(x)$: $\exists y(x \neq y \in \varphi_{n-1}(x,y) \in R(y,x))$ says that there is a cycle of length n going through x. For all n > 0, $\forall x (\neg \tau_n(x))$ is in S_1 , so Λ can not have cycles but only lines. Finally, because for each pair of constants c_i and c_j and for all n, we have $\Lambda \models \neg \varphi_n(c_i, c_j)$, no two constants can be interpreted as elements on the same line in Λ . It follows that Λ has countably many lines. The same argument applies to the model B. Thus, the reductions of Λ and B to the language L (i.e., ignoring the constants) are isomorphic and elementarily equivalent.

Suppose now that connectivity for finite directed graphs is a finitely definable. Then, there is a sentence σ such that for all n, $A_n \models \sigma$ and $B_n \models \neg \sigma$. It follows that $\sigma \in T_1$ and $\neg \sigma \in T_2$, so $A \models \sigma$ and $B \models \neg \sigma$ - a contradiction. \square

² A line is a directed graph isomorphic to $\{\langle i, i+1 \rangle : -\omega \langle i \langle \omega \}\}$.

References

- [AU] Aho, A.V., Ullman, J.D.: Universality of data retrieval languages. Proc. 6th ACM Symp. on Principles of Programming Languages, 1979, 110-117.
- [BH] Blass, A., Harary, F.: Properties of almost all graphs and complexes. J. Graph Theory 3(1979), 225-240.
- [CH] Chandra, A.K., Harel, D.: Structure and complexity of relational queries. Proc. 21st IEEE Symp. on Foundations of Computer Science, 1980, 333-347.
- [dR] de Rougemont, M.: Uniform definability on finite structures with successor. Proc. 16th ACM Symp. on Theory of Computing, Washington DC, April 1984, pp. 409-417. To appear in J. of Computer and System Sciences.
- [F1] Fagin, R.: Monadic generalized spectra. Zeitschr. f. math. Logik und Grundlagen d. Math. 21(1975), 89-96.
- [F2] Fagin, R.: Probabilities on finite models. J. Symbolic Logic 41(1976), 50-58.
- [Gal Gaifman, H.: On local and non-local properties. Proc. Herbrand Logic Colloq., Marscille, 1981.
- [Ha] Hajek, P.: On logics of discovery. Proc. Symp. on Mathematical Foundations of Computer Science, Lecture Notes in Computer Science Vol. 32, Springer-Verlag, 1975, pp. 15-30.
- [Im] Immmerman, N.: Number of quantifiers is better than number of tape cells. J. Computer and Systems Sciences 22(1981), 384-406.