BDD-Based Decision Proceduresfor the M odal
LogicK !

Guogiang Pan® — Ulrike Sattler*™™ —Moshe Y. Vardi***

* Department of Computer Science, Rice University, Hougiexas, 77005, USA.
ggpan@cs.rice.edu

** School of Computer Science, University of Manchester,i@®oad, Manchester
M13 9PL, UK

sattler@cs.man.ac.uk

*k%k

Department of Computer Science, Rice University, HouSiexgs, 77005, USA.
vardi@cs.rice.edu

ABSTRACT.We describe BDD-based decision procedures for the modal g Our approach

is inspired by the automata-theoretic approach, but we éepiplicit automata construction.

Instead, we compute certain fixpoints of a set of types—widzinhbe viewed as an on-the-fly
emptiness of the automaton. We use BDDs to represent angufae such type sets, and
investigate different kinds of representations as well deel-based” representation scheme.
The latter turns out to speed up construction and reduce megansumption considerably.

We also study the effect of formula simplification on our sieai procedures. To proof the
viability of our approach, we compare our approach with aregentative selection of other
approaches, including a translation & to QBF. Our results indicate that the BDD-based
approach dominates for modally heavy formulae, while ded@sed approaches dominate for
propositionally heavy formulae.

KEyworDsModal Logic, Binary Decision Diagram

1. Introduction

In the last 20 years, modal logic has been applied to numeaioess of com-
puter science, including artificial intelligence [BRA 94 Q¢ 69], program verifica-
tion [CLA 86, PRA 76, PNU 77], hardware verification [BOC 82:R83], database
theory [CAS 82, LIP 77], and distributed computing [BUR 88AIH90]. In these
applications, deciding satisfiability of a modal formulaoise of the most basic rea-

1. Portions of this paper have been presented at CADE-18 amoEC¥9.

Journal of Applied Non-Classical Logies- June 28, 2005, Special Issue on Implementation
of Logics 1th submission.

2 Journal of Applied Non-Classical Logies- June 28, 2005, Special Issue on Implementa-
tion of Logics 1th submission.

soning problem, and various techniques have been devebmpdptimized to de-
cide it. Since satisfiability of even the smallest normal middgic, K, is PSPACE-
complete [LAD 77, STO 77, HAL 92], it is clear that differergchniques are use-
ful for inputs of different characteristics, and that it islikely that one technique
would be able to always outperform others. As modal logi@eds propositional
logic, the study in modal satisfiability is deeply conneotéth that of propositional
satisfiability. For example, tableau-based decision pioces forK are presented
in [LAD 77, HAL 92, PAT 99]. Such methods are built on top of theopositional
tableau construction procedure by forming a fully expangezpositional tableau
and generating successor nodes “on demand”. A similar rdetises the Davis-
Logemann-Loveland method [DAV 62] as the propositionalieegyy treating all
modal subformulae as propositions and, when a satisfysigament is found, check-
ing modal subformulae for the legality of this assignmeniJ®0, TAC 99]. In the
last years, we have seen efforts to combine the optimizatised in tableau and
DPLL based approaches. For example, using semantic branehid Boolean con-
straint propagation in a tableau-based solver made DLP a@6d Bome of the fastest
K solvers [PAT 99].

Non-propositional methods take a different approach tgptioblem. It has been
shown recently that, by embeddirg into first order logic, a first-order theorem
prover can be used for deciding modal satisfiability [HUS ABE 00]. The latter
approach works nicely with a resolution-based first-ordentem prover, which can
be used as a decision procedure for modal satisfiability loygusppropriate reso-
lution strategies [HUS 00]. Other approaches for modak8abtility such as mo-
saics, type elimination, or automata-theoretic approsi@re well-suited for prov-
ing exact upper complexity bounds, but are rarely used inahéimplementations
[BLA 01, HAL 92, VAR 97].

In this paper, we restrict our attention to the smallest radmmodal logicK, and
describe a novel approach to decide the satisfiability ahfdae in this logic. The
basic algorithms presented here are inspired by the ausethabretic approach for
logics with the tree-model property [VAR 97]. In that appchaone proceeds in two
steps. First, an input formula s translated to a tree automthat accepts all tree mod-
els of the formula. Second, the automaton is tested for moptieess, i.e., whether
it accepts some tree. In our approach, we combine, in esstreéwo steps, and
we carry out the non-emptiness test without explicitly ¢aning the automaton.
As pointed out in [BAA 01], the inverse method described ifOJ¥ 01] can also be
viewed as an application of the automata-theoretic apprtizat avoids an explicit
automata construction.

The logicK is simple enough that the automaton’s non-emptiness tesiste
of a single fixpoint computation, which starts with a set @ftss and then repeat-
edly applies a monotone operator until a fixpoint is reachéu the automaton that
correspond to a formula, each state itype i.e., a set of formulae satisfying some
consistency conditions. The algorithms presented hestaatlfrom some set of types,

1. This approach can be easily extendedigm).

BDD-based Decision Procedures #§&r 3

and then repeatedly apply a monotone operator until a fixp@ieached: either they
start with the set odlll types and remove those types with “possibiliti€s for which
no “witness” can be found, or they start with the set of typagifg no possibilities
<, and add those types whose possibilities are witnessed yyyeairt the set. The
two approaches, top-down and bottom-up, corresponds twthevays in which non-
emptiness can be tested for automataKor via a greatest fixpoint computation for
automata on infinite trees or via a least fixpoint computat@rautomata on finite
trees. The bottom-up approach is closely related to thersevenethod described in
[VOR 01], while the top-down approach is reminiscent of fy@t-elimination method
developed for propositional dynamic logic in [PRA 80].

The key idea underlying our implementation is that of repnéifg sets of types
and operating on them symbolically. Our implementatiorsuBmary Decision Di-
agrams (BDDs) [BRY 86]: BDDs are compact representationgropositional for-
mulae, and are commonly used as a compact representativated.s One of their
advantages is that they come with efficient operations faagemanipulations. By
representing a set of types by a BDD, we are able to symbiylicahstruct fixpoint
type sets efficiently.

We then study optimization issues for BDD-bad€dsolvers. First, we focus on
alternative representations that can be used for a set tesstdypes exert a strict
consistency requirement on the assignment to related subfae, which is a major
factor in the size of the BDD used to represent the type saisekample, if a type
contains a conjunction, then it must also contain both auwetgi For the type-based
approach, we have employed thex normal form negation can only be applied to
atoms or box formulae (and no diamonds are available). Itrasty in theparticle-
based approach, we employ the standard negation norma] orchthus deal with
both diamond and box formulae.

Secondly, for both the type- and the particle-approach,nwestigate dean ap-
proach: intuitively, our lean sets only capture the mininaébmic information. E.g.,
conjunctions are only implicitly represented by the preseof both conjuncts. This
clearly reduces BDD size, but also makes the manipulati®@Dids more complex.

Thirdly, we take advantage of the propertieskof namely the finite-tree-model
property. A set of types/particles can be seen to encode @&lifardhe formula. By
considering a layered model instead of a general model, wdifyjnthe bottom-up
procedure so that each step only checks witness for diamp@chtors occurring at a
specific depth. This approach yields further performangeavements.

Fourthly, we turn to a pre-processing optimization. Theaiideto apply some light-
weight reasoning to simplify the input formula before staytto apply heavy-weight
BDD operations. In the propositional case, a well-knowrppoeessing rule is the
pure-literalrule [DAV 62]. Preprocessing has also been shown to be ufaflihear-
time formulae [SOM 00, ETE 00]. Our preprocessing is based modal pure-literal
simplification which takes advantage of the tree-model priypof K. We show that
adding preprocessing yields a fairly significant perforoeimprovements, enabling
us to handle the hard formulae of TANCS 2000.

4 Journal of Applied Non-Classical Logies- June 28, 2005, Special Issue on Implementa-
tion of Logics 1th submission.

Finally, we also focus on BDD-specific optimizations on auplementation of the
algorithm. Besides using optimized image finding technigjilee conjunctive clus-
tering with early quantification [BUR 91, GEI 94, RAN 95, CINOP we also study
the issue of variable order, which is known to be of critiaapbrtance to BDD-
based algorithms. The performance of BDD-based dependsatiyuon the size of
the BDDs and variable order is a major factor in determinim@DBsize, as a “bad”
order may cause an exponential blow-up [BRY 86]. While figdam optimal variable
order is known to be intractable [TAN 93], heuristics oftearwquite well in prac-
tice [RUD 93]. We focus here on finding a good initial variableler tailored to the
application at hand, but for large problem instances we havehoice but to invoke
dynamic variable ordering, provided by the BDD package. fduling is that choos-
ing a good initial variable order does improve performarmd,the improvement is
rather modest.

This paper describes a viability study for our approach. dmgare the differ-
ent optimizations of BDD-based approaches, we use exisiamghmarks of modal
formulae, TANCS 98 [HEU 96] and TANCS 2000 [MAS 00], and we diSSAT
[TAC 99] as a reference. A straightforward implementatiéoor approach did not
yield a competitive implementation, but an optimized irmpéatation did yield a com-
petitive implementation, called 5D D, indicating the viability of our approach.

To assess the competitiveness of our optimized solver, wepace it with the
native solvers *SAT and DLP as well as the translation-basgder MSPASS. Ad-
ditionally, we also developed a translation fr@&nto QBF (which is of independent
interest), and apply semprop, which is a highly optimized=@Blver [LET 02]. Our
results indicate that the BDD-based approach dominatandaially heavy formulae
while search-based approaches dominate for proposityehahvy formulae.

The paper is organized as follows. After introducing the alddgic K in Sec-
tion 2, we present our algorithms and show them to be sounctamglete in Sec-
tion 3. In Section 4, we discuss four optimizations that wpligd. In Section 5, we
present a BDD-based implementation. An embeddinK dfito QBF is presented in
Section 6. Finally, we present the empirical evaluatiorthbmetween different opti-
mizations in the BDD-based framework and with other solvierSection 7.

2. Preliminaries

In this section, we introduce the syntax and semantics ofrtbdal logicK, as
well as types and how they can be used to encode a Kripke steuct

The set ofK formulae is constructed from a set of propositional vagaldt =
{¢1,92,...}, and is the least set containidgand being closed under the Boolean
operators\ and— and the unary modality. As usual, we use other Boolean operators
as abbreviations, anttp as an abbreviation forO—-p. The set of propositional
variables used in a formulais denotedd P ().

BDD-based Decision Procedures #§r 5

AformulainK is interpreted in a Kripke structut€ = (V, W, R, L), whereV is
a set (containin@) of propositionsJV is a set of possible worldg C W x W is
the accessibility relation on worlds, add: V' — 2" is a labeling function for each
state. The notion of a formula beingsatisfiedin a worldw of a Kripke structure<
(written asK, w =) is inductively defined as follows:

- K,wkEqforqe ®iff we L(q)

—KwkEpAyiff KLwEeandK,w = ¢
—K,wE-piff K,wlo

- K,w = Ogpiff, for all v, if (w,w’) € R, thenK,w' = ¢

The abbreviated operators can be defined as follows:

—KwkEpVvyiff KwEgorK,wkEy
- K,w | Opiff there existsw’ with (w,w’) € RandK, w' | .

A formula is satisfiableif there existK, w with K, w = . In this caseK is called
amodelof ¢. Two formulaep andi) are said to the equivalent if, for all structur&s
and all worldsw € W, K, w |= ¢ ifand only of K, w = 1.

For our concern here, the most important propert¥ois thetree-model prop-
erty, which allows automata-theoretic approaches to be appliedact, it has the
strongerfinite-tree-model propertywhich will allow both top-down and bottom-up
construction of such automata.

THEOREM 1 ([BLA 01]). — K has the finite-tree-model property, i.e., every sat-
isfiable formulay has a modelK, w such thatR is a finite tree with rootw, and

K,wy E .

In fact, a formulay) has a finite tree model that is only as deep amitglal depth
which we define next as usual; and we will use this “small treelet’ property for
the “level” optimizations in our algorithm.

Given a formulap, call its set of subformulagib(v). Fory € sub(v), we define
depth(¢p) as follows:

—if ¢ € ®, thendepth(y) = 0;

—if o = ~¢’, thendepth(p) = depth(¢’);

—lfo=¢ A" orp=¢' Ve’ thendepth(¢) = max{depth(¢'), depth(¢”)},

—1If p =0y’ orp = O, thendepth(p) = depth(p’) + 1.

We restrict our attention to formulae in a certain normafrfoA formulay is said
to be inbox normal form(BNF) if all its subformulae are of the forga A ¢, ¢ V ¢,
Oy, -0, q, or g whereq € AP(vy). EachK formulae can be obviously converted

into an equivalent one in BNF that is of linear size. If notstbotherwise, we assume
all formulae to be in BNF.

6 Journal of Applied Non-Classical Logies- June 28, 2005, Special Issue on Implementa-
tion of Logics 1th submission.

The closureof a formulacl(v) is defined as the smallest set such that, for all
subformulap of ¢, if ¢ is not—y’, then{y, ¢} C cl(v). Please note that(y) may
contain negated conjunctions and negations, and thus faetthat are not in BNF.

The first algorithms we present work types i.e., maximal sets of formulae that
are consistent w.r.t. the Boolean operators, and whereafedgbox formulae are
treated as atoms. A set of formulae cl(v) is called a-type(or simply a type ify)
is clear from the context) if it satisfies the following cotiolins:

—If o = ¢/, theny € aiff ¢’ ¢ a.
—If o =¢' A", theny € aiff ¢’ € aandy” € a.
—Ifo=¢' V" thenp € aiff ¢’ €aory” € a.

For a set of typesl, we define a maximal accessibility relatidnC A x A as follows.
A(a,d’) iff forall Oy’ € a, we havey’ € a'.

Given a set of typesl C 29(¥) we can construct a Kripke structufé, usingA as
follows: K4 = (AP(v), A, A, L) with a € L(q) iff ¢ € a. Such a Kripke structure
K 4 is almosta canonical model [BLA 01]—the only difference can be seemnmvh
trying to prove that{ 4 satisfies, for allp € cl(v):

CLAIM 2. — K4,a E piff p € a.

This statement is clearly true for atomic and propositignby definition of types,
and it is also true forp = Oy’ by construction ofA. The only case that fails is the
casep = —0O¢’ € a: it might be the case that’ € b for all b with A(a,b). If this
is the case, then we say that the negated box formul@’ in « is not withnessedby
anyb in A. In the following section, we will describe operators ondygets whose
fixpoint A then indeed satisfies Claim 2.

3. Our algorithms

The two algorithms presented here take a certain initiab>es and repeatedly
apply a monotone operator to it. If this application reachéspoint A, we can show
that the above construction & 4 indeed a satisfies Claim 2, i.e., all negated box
formulae are indeed “witnessed” by sorhe= A. This Kripke structure is then a
model oft iff ¢ € a for somea € A.

The first algorithm follows a “top-down” approach, i.e., iags with the sel C
24(%) of all valid types, and the monotone operator removes thgsestcontaining
negated box formulae which are not witnessed in the curegrifdypes. Dually, the
second, “bottom-up” approach starts with the set of typasdb not contain negated
box formulae, and then adds those types whose negated boxltw are witnessed
in the current set of types.

In the following, we will call our class of algorithmS5DD since we intend to
use BDD as the state set representation.

BDD-based Decision Procedures #§r 7

Both algorithms follow the following scheme:

X < Init(y))
repeat
X' <X
X <« Update(X’)
until X = X’
if existsz € X such that) € x then
return “¢ is satisfiable”
else
return “+ is not satisfiable”
end if

If this algorithm is started with a finite sehit () and uses a monotofipdate(-)
operator, it obviously terminates. In fact, after definihgge two operators, we will
show that it will terminate idepth(¢)) + 1 iterations.

3.1. Top-down approach

The top-down approach is closely related to the type elitionaapproach which
is, in general, used for more complex modal logics, see, $agtion 6 of [HAL 92].
For the top-down algorithm, the functiofisit(¢)) andUpdate(-) are defined as fol-
lows:

—Init(v) is the set ofll ¢-types.

—Update(A4) := A\ bad(A), wherebad(A) are the types im that contain un-
witnessed negated box formulae. More precisely,

bad(A) := {a € A| there exists-Oy € a and, for allb € A with A(a,b),
we havep € b}.

THEOREM 3. — The top-down algorithm decides satisfiabilityléfformulae.

PROOF. — Let A bethe set of types that s the fixpoint of the top-down algaoniti.e.,
Update(A) = A. We useA’ for Init(¢) andA? for the set of types afteriterations.
SinceUpdate(-) is monotone and each’ is a subset of the finitel(v), the top-down
algorithm terminates. More precisely/*! is obtained fromA’ by removing types
containing a formula with depth(¢) > i. As a consequence, the algorithm stops
after at mostepth(¢) + 1 iterations. To finish the proof, it thus suffices to prove
soundness and completeness.

LEMMA 4 (SOUNDNESS). — For each typer € A and formulay € cl(y), if ¢ € q,
thenKa,a = .

PROOF. — By induction on the structure of formulae:

—if o € AP(¢), thenK 4, a |= ¢ iff ¢ € a by construction of..

8 Journal of Applied Non-Classical Logies- June 28, 2005, Special Issue on Implementa-
tion of Logics 1th submission.

—ifo=—q p=¢ AN’ orp=¢ V" the claim follows immediately by
induction and the definition of types.

—if o = =(¢’ A ¢"), thenp € a implies thaty’ & a or ¢” & a since, otherwise,
¢ A ¢” would be ina. By maximality ofa, this implies that-¢’ € a or =¢” € a,
and thus we hav& 4, a = —¢’ or K4,a | —¢" by induction. Hence(4, a = —.

—the case» = —(¢’ Vv ¢”) is completely analogous.

—lety = O¢' € a. The definition of A implies thaty’ € o' for all o’ with
A(a,a’). By induction,K 4,a’ = ¢, for all o’ with ¢’ € o/, and thusi 4, a = Oy’ .

—if o = =0¢’ € a, thena ¢ bad(A) becausé&pdate(A) = A, and thus there
existsb € A with A(a,b) andy’ ¢ b. By definition of types;~¢’ € b, and thus we
haveK 4,b E —¢' by induction. Hencd{ 4, a = —-0O¢'.

LEMMA 5 (COMPLETENESS). — For all ¢ in cl(v), if ¢ is satisfiable, then there
exists some € A with ¢ € a.

PROOF. — Given a satisfiable formula, take a modeK = (AP(y), W, R, L) with

K, w, = ¢. Foraworldw € W, we define its type(w) = {p € cl(¢) | K,w = o},
and we defineA(W) = {a(w) | w € W}. Obviously, due to the semantics of the
box modality,R(v, w) implies A(a(v), a(w)). Then we show, by induction onthat
A(W) C A’ Sincey € a(w,,) by construction, this proves the lemma.

— A(W) C AY sinceA° containsall typesa C cl(1)).

—Let A(W) C A’ and assume that(W) ¢ A*"!. Then there is some € K
such thata(w) € bad(A?). So there is somelp € a(w) and, for allb € A* with
A(a(w),b), we havep € b. Hence there is ne € W with R(w,v) andK,v | —p,
in contradiction toK, w = —Op.

3.2. Bottom-up approach

As mentioned above, the top-down algorithm starts withalitMypes, and repeat-
edly removes types with unwitnessed formulae. In contthstpottom-up algorithm
starts with a small set of types (i.e., those without negéimd formulae), and re-
peatedly adds those types whose negated box formulae aresaétd in the current
set. For the bottom-up approach, the functidnst (i) andUpdate(-) are defined as
follows:

—Init(v) is the set of all those types that do not require any witnesskih
means that they do not contain any negated box formula oiyagutly, that they
contain all positive box formulae ic(¢)). More precisely,

Init(¢) := {a C cl(v)) | ais atype anddy € a for eachOyp € cl(vy)}.

BDD-based Decision Procedures #&r 9

—Update(A4) := A Usupp(4), wheresupp(A4) is the set of those types whose
negated box formulae are witnessed by typed.iMore precisely,

supp(A) :={a Ccl(¥)) | aisatypeand,foraltOp € a, there existd € A
with = € bandA(a,b)}.

We say that a type isupp(A) is witnessedy a type inA.
THEOREM 6. — The bottom-up algorithm decides satisfiabilityfofformulae.

PROOF. — As in the proof of Theorem 3, we usék for the fixpoint of the bottom-
up algorithm,A° for Init(v), and A® for the set of types afteriterations. Again,
Update(-) is monotone and!’ is finite, and thus the bottom-up algorithm terminates.
More precisely,A"*! is obtained fromA? by adding types containing a formuja
with depth(¢) > i. As a consequence, the algorithm stops after at aesh () + 1
iterations. To finish the proof, we prove soundness and cetsipess.

LEMMA 7 (SOUNDNESS). — For each type: € A and formulay € cl(y), if ¢ € q,
thenK 4,a = .

PROOF. — Again, soundness can be proved by induction on the streiofdormulae.
We restrict our attention to the only interesting case, fgme= -0y’ € a. Let
¢ € a. By construction of4, there is somé € A with ¢’ € b andA(a,b). Thus,
by induction,K 4,b E —¢’, and thusk 4, a E ¢. .

]
LEMMA 8 (COMPLETENESS). — For all ¢ € cl(v), if ¢ is satisfiable, then there
exists some € A with ¢ € a.

ProoF. — It is well-known thatK has the finite-tree-model property (see, e.g.

[HAL 92)), i.e., each satisfiabl& formulay has a model whose relational struc-
ture forms a finite tree. Take such a modél= (AP(v), W, R, L) with K, w,, = ¢,
and define the mappingg-) and A(-) from worlds in K to types as in the proof of
Lemma 5. We show by induction anhat, if is the maximal distance between a node
w € W and the leaves oK’’s subtree rooted ab, thena(w) € A’. Sinced’ C AI+!

for all j and K forms a finite tree model af, this proves the lemma.

—1If i =0, thenw is aleaf inK (i.e., thereis na’ € W with R(w,w")), and thus
K,w £ —O¢' holds for all-O¢’ € cl(¢)). Hencea(w) € A°.

— Leti > 0 andw a node withi the maximal distance betweenand the leaves of
K’s subtree rooted ab. Then, by induction, for each child’ of w, we haves(w’) €
A= Now R(w,w') implies A(a(v), a(w)). Thus, for each-O¢y’ € a(w), there is
somew’ € W with a(w’) € A"~ and—¢’ € a(w’). Thusa(w) € supp(A*~') C A"

10 Journal of Applied Non-Classical Logies- June 28, 2005, Special Issue on Implementa-
tion of Logics 1th submission.

4, Optimizations

The decision procedures described above handles a formthage steps. First,
the formula is converted into box normal form. Then, theiahiset of types is
generated—we can think of this set as being representeddiywélst vectors. Finally,
this set is updated through a fixpoint process. The answéreofiécision procedure
depends on a simple syntactic check of this fixpoint. In thigien, we will describe
four orthogonal optimization techniques, working on difiet stages in the procedure.

4.1. Particles

The approaches presented so far strongly depend on théngdaié use the box
normal form, and they can be said to be redundant: if a typtagmtwo conjuncts of
some subformula of the input, then it also contains the spoeding conjunction—
although the truth value of the latter is determined by théhtvalues of the former.
Now we propose a representation where we do not insist onastetiundancy, which
possibly reduces the size of the representation of the gporeding sets. To do so, it
is convenient to work on formulae in a different normal form.

A K formulat is said to be imegation normal fornfNNF) if all its subformulae
are of the formp A ¢/, o vV ¢/, Op, Oy, ¢, or 7g Whereq € AP(3)). Itis well-known
that everyK formula can be converted into an equivalent on in NNF thaf isear
size. When talking about “particles”, we assume that alinfolae are in NNF. As
before, we useub() to denote the set of subformulaef

A setp C sub(v) is ay-particleif it satisfies the following conditions:

—If o = =¢/, theny € pimpliesy’ ¢ p.

—If o =¢' A", theny € pimpliesy’ € pandy” € p.

—If o =¢' V", thenp € pimpliesy’ € pory” € p.
Thus, in contrast to a type, a particle may contain gtandy”, but neithery’ A ¢”
nory’ vV ¢".

For particles,A(-,-) is defined as for types. From a set of particlesand the
corresponding\(+, -), we can construct a Kripke structufép in the same way as
from a set of types.

For the top-down approach, the auxiliary functiaiisit(-) and Update(-) for
particles are defined as follows:

—Init(v) is the set of alk)-particles.

—Update(P) = P\ bad(P), wherebad(P) is the particles inP that contain
unwitnessed diamond formulae, i.e.

bad(P) := {p € P| there exist®>y € p such that, for aly € P
with A(p, q), we havey ¢ ¢}.

BDD-based Decision Procedures i&r 11

THEOREM 9. — The top-down algorithm for particles decides satisfiapitif K
formulae.

PROOF. — Termination and the linear bound on the number of iterstiare identical
to the one of Theorem 3.
LEMMA 10. — (Soundness)or each particlep € P and formulay € sub(v), if
¢ € p, thenKp,p = .
PROOF. — The proof is analogous to one of Lemma 4, except for thetfadtthe
-0y’ case needs to be replaced with the’ one.

—if o = Oy’ € p, thenp ¢ bad(P) implies that there existg € P with A(p, q)
andy’ € ¢. By induction,Kp, q = ¢’, and thuskp, p = O¢'.

|

LEMMA 11. — (Completenesskor all ¢ € sub(1)), if ¢ is satisfiable, then there
exists some € P with ¢ € p.

PROOF. — The proof is analogous to the one of Lemma 5: we take a mi&def
©, generate a particle s&(WW) from the states of<, and show thaP(W) C P by
induction on the number of iterations

— P(W) c P°sinceP? containsall particlesp C sub(v).

—Let P(W) C P*and assume tha (W) ¢ P!, Then there is some € K
such thatp(w) € bad(P?). So there is som&¢ € p(w) and, for allg € A? with
A(p(w), q), we havep ¢ ¢q. Hence there is no € W with R(w, v) andK,v = -,
in contradiction tok, w = .

As for types, we also define a bottom-up algorithm for pagichnd we do this by
simply setting our two auxiliary functions accordingly:

—Init(¥) := {p Csub(y)) | pis a particle and>p ¢ p for all O € sub(y)} is
the set ofy-particlesp that do not contain diamond formulae.

—Update(P) := P U supp(P), wheresupp(P) is the set of witnessed particles
defined as follows:

supp(P) := {p Csub(y)) | pis ay-particle and, for al>p € p,
there existg € P with ¢ € g andA(p, q)}.
Again, we obtain a decision procedure, and this can be praséxdfore.

THEOREM 12. — The bottom-up algorithm for particles decides satisfiaypitif K
formulae.

As mentioned before, we can represent a particle or a typdawveactor, and we
can encode a set of bit vectors in a BDD. It is easy to see thaebiors for particles

12 Journal of Applied Non-Classical Logies June 28, 2005, Special Issue on Implementa-
tion of Logics 1th submission.

may be longer than bit vectors for types because, for exgroptenput may involve
subformulaedp and G—p. This, in turn, means that encoding particle sets using
BDDs may require more BDD variables than their encoding péty The size of the
BDD may, however, be smaller for particles since partialepase fewer constraints
than typeg. Beside a possible reduction in the size required to encodewedtor
representation of particle sets, the particle-based @gpes also can improve run
time of our algorithms. From the definition 6&d andsupp, we can see that, in the
type-based approaches, for each fixpoint iteration and typeh we have to check all
box formulae—even though the “real” test is only requiredtiom negated ones that
are present in the type considered. In contrast, in thegbedibased approaches, we
only have to check all diamond formulae that are subformofake input.

4.2. Lean approaches

Even though the particle approach imposes less constthamstype approach, it
still involves redundant information: like types, paréisimay contain both a conjunc-
tion and the corresponding conjuncts. Next, to further cedihe size of the corre-
sponding BDDs, we propose a representation where we only tkaek of the “non-
redundant” subformulae. We call this variation the leanrapph, and we present it
for both the type and the particle approach and, for bothdompn and bottom-up.

First, we define a set of “non-redundant” subformutaem(t)) as the set of
those formulae incl(y) that are neither conjunctions nor disjunctions, i.e., each
¢ € atom(v) is of the formO¢y’, ¢, —O¢’, or ~¢q. By definition of types, each
P-typea C cl(y)), corresponds one-to-one tdean typelean(a) := a N atom(¢)).

To specify our algorithms for lean types, we define indudyieerelation€ between
(non-atomic) formulae and lean types as followss « if

— ¢ € atom(y)) andy € a,

- =~ and noty’ € a,

—p =0 NY", ¢ €a,andy” € a, or

—p=¢' V¢"andy €aory’ €a.
The top-down and bottom-up approach for types can be easitlifrad to work for
lean types: it suffices to modify the definition of the funasbad andsupp as follows:

bad(A) := {a € A| thereexistssOy € a and, for allb € A with A(a,b),
we havep € b}.
supp(A) = {aCcl(¢)| aisatypeand,forathOy € q, there existd € A

with = € bandA(a, b)}.

2. Of course, BDD size is always formula dependent. In our expts, we observed that
particle approaches gives BDD sizes between a small cdrfator (i.e., 2-3) larger to orders
of magnitudes smaller compared to type approaches.

BDD-based Decision Procedures i&r 13

The following theorem is then a direct consequence of theectimess of our algo-
rithms for types: given the one-to-one relationship betwtypes and lean types, we
can easily see that, for a typeits lean version’ = a Natom(v), and allp, we have
p €diff p € a.

THEOREM 13. — The top-down and the bottom-up algorithm for lean typesdieci
satisfiability forK.

Analogously, we can define a lean representation for pasticFirst, we define
the relevant subformulaeart(¢y)) as follows: Fory € sub(w), if ¢ is O¢', O¢’, g,
or —q, theny is in part(y). For a particlep C sub(1)), we define the corresponding
lean particlelean(p) as follows:lean(p) = p N part(¢). Because the constraints on
particles are more relaxed than those of types, more thapantiele may lead to the
same lean particle. Secondly, we define the relagidetween formulae and particles
as follows:p € a if

— ¢ € part(y) andyp € q,
—po=¢ ANY", ¢ Ea,andy” € a, or
—p=¢' V' andy Eaory”’ € a.
Thirdly, we define the relationsipp andbad for lean particles as follows:

bad(P) := {pe€ P| thereexist>y € p such that, foraly € P
with A(p, ¢), we have notp € ¢}.

supp(P) = {pCsub(v))| pisay-particle and, forall>by € p,
there existg € P with ¢ € g andA(p, q)}.

Again, correctness of the lean approach for particlesigdlfrom the correctness of
the particle algorithms.

THEOREM 14. — The top-down and the bottom-up algorithm for lean particles
cide satisfiability forkK.

Although lean approaches can possibly reduce the sizereghjfar representing
worlds, we have to pay for these savings since computirigandsupp using lean
types and particles can be more complicated.

4.3. Level-based evaluation

In this last variation of our basic algorithms, we exploi flact thafiK enjoys the
finite-tree-model property, i.e., each satisfiable formutaf K has a finite tree model
of depth bounded by the depth of nested modal operdépis (¢) of ¢» . We can think
of such a model as being partitioned ifagers where all worlds that are at distance
from the root are said to be in lay&rinstead of representing a complete model using a
set of particles or types, we represent each layer in the husidey a separate set. For
a level-based approach in the context of the first-orderaaar toK, see [ARE 00].
Since only a subset of all subformulae appears in one lalgerrapresentation can

14 Journal of Applied Non-Classical Logies- June 28, 2005, Special Issue on Implementa-
tion of Logics 1th submission.

be more compact. We only present this optimization for thgraach using (full)
types—the particle approach and the lean approach can Istrected analogously.
For0 < i < depth(v), we write

cli(¢) == {p € cl(¢) | ¢ occurs at modal depthin ¢},

and we adapt the definition of the maximal accessibilitytr@eA accordingly:
A;i(a,ad)iff a Ccl;, a’ Cclipq, andy’ € o forall Oy’ € a.

A sequence of sets of types = (Ag, A1,..., Ag) with 4; C 2(¥) can be
converted into a tree Kripke structure

Ky=(AP(¢),AgW... WAy, R, L)
as follows, wherey denotes the disjoint union:

— Foraworlda € A; andg € AP(y), we definen € L(q) iff ¢ € a.

— For a pair of states, a’, R(w,w’') = 1iff, for somei, a € A; anda’ € A; 14
andA;(a,a’).

We define a bottom-up algorithm for level-based evaluat®follows:

d < depth(v))

Xqg <= Initd(d))

for i = d — 1 downtoO do
X, < Update(Xi+17 2)

end for

if existsz € Xy wherey € z then
1) is satisfiable.

ese
1) is not satisfiable.

end if

Please note that this algorithm works bottom-up in the streat starts with the
leaves of a tree modat the deepest levahd then moves up the tree model toward the
root, adding nodes that are “witnessed”. In contrast, thboup approach presented
earlier starts witlall leaves of a tree model.

For the level-based algorithm and types as data structueeauxiliary functions
can be defined as follows:

—Init;(¢0) = {a C cl;(¥) | ais atypég.
—Update(4,i) = {a € Init;(¢p) | forall-Op € athereexistd <
A with = € bandA;(a,b)}.

For a setd of types of formulae at level+ 1, Update(A4, i) represents all types
of formulae at level that are witnessed iA.

THEOREM15. — The level-based algorithm for types is sound and complete.

BDD-based Decision Procedures i&r 15

PrROOF. — We write the sequence of assignment sets constructecebgual based
algorithm asA = (Ao, A1, ..., Ag) whered = depth(vy). Termination aftee steps
is trivial.

LEMMA 16. — (Soundnesskor all ¢ € cl;(¢0), anda € A;, if ¢ € a,thenK 4,0 =
®.

Soundness can be proved as for the bottom-up approach,heithdditional ob-
servation tha? only relates worlds im; with worlds in A; .

LEMMA 17. — (Completenessfor ¢ € cl;(v), if ¢ is satisfiable, then there is a
typea € A; with ¢ € a.

PROOF. — Lety € cl;(¢) be satisfiable. We know from [HAL 92] thathas a finite
tree modelK, = (AP(v), W, R, L) of depthd,, = depth(y) such thatk,, wo = ¢
for the rootw, of K. We also know from the definition afepth andcl; thati+d, <
dy = depth(v), and thus we have thd{, < d,;, —i. SinceK,, is a tree model, we can
partition its set of world$¥" into {Wy, W1,..., Wy, } such that eachy € W; occurs
at distancej from the root. Similar to our completeness proofs beforaynfia world
w € W;, we define a type(w) as follows:a(w) = {o € cli+ jv) | Ky, w = o}.
We defineA(W;) = {a(w) | w € W;} and now show thatd(W;) C A,.; by
induction on depthy:

—if j = d,, then, for each worldv € W,_, there is no worldw’ that is R-
accessible fromw. It follows that, for allp = =0/, we haveK,, w [~ p, and thus
0 ¢ a(w). Sincea(w) is a type, we thus hawg(w) € A;4,.

—letj < dandletpg = -0O¢’' € a(w). Hence there exists some < W, with
-0’ € a(w’). By induction,a(w’) € A;1;41. Since this is true for each negated box
formulaina(w), we have that(w) € A;+; by definition ofUpdate.

Analogously, a level-based algorithm can be defined foiigdast letsub; () de-
note the set of)’s subformulae occurring at depthin ¢, and define the auxiliary
functions as follows:

—Init;(v) = {p C sub;(¥) | pis a particlg.
—Update(P,i) = {p € Init;(y)) | forall Op € pthere existg € P with ¢ €
g andA;(p,q)}-

The following theorem can be proved like the one for the typgraach.

THEOREM 18. — The level-based algorithm for particle assignments is soamd
complete.

16 Journal of Applied Non-Classical Logies- June 28, 2005, Special Issue on Implementa-
tion of Logics 1th submission.

4.4, Formula simplification

We now turn to a high-level optimization, in which we applyrs® preprocessing
to the formula before submitting it 'BDD. The idea is to apply some light-weight
reasoning to simplify the input formula before starting fiply heavy-weight BDD
operations. In the propositional case, a well-known prepssing rule is th@ure-
literal rule [DAV 62], which can be applied both in a preprocessirgpsis well as
dynamically, following the unit-propagation step. Preggssing has also been shown
to be useful for linear-time formulae [SOM 00, ETE 00] and &mscription logic
reasoner [HOR 00, HAA 01]. Our preprocessing is based on ahmade-literal sim-
plification, which takes advantage of the layered-modepprty of K.

When studying preprocessing for satisfiability solvers types of transformation
should be considered.

— Equivalence preserving transformatignghen applied to some, yield a for-
mulay’ which is logically equivalent tg. Unit propagation is an example of an equiv-
alence preserving transformation which is used in modetkihg [SOM 00, ETE 00],
where the semantics of the formula needs to be preserveatlZlepplying an equiv-
alence preserving transformation to a subformula yieldeguivalent formula, and
thus these transformations can be applied to subformulae.

— Satisfiability preserving transformationehen applied to some, yield a for-
mula’ which is satisfiable if and only ip is satisfiable. Pure-literal simplification
[DAV 60] is an example of a satisfiability-preserving tramshation. Such transfor-
mations allow for more aggressive simplifications, but cite applied to subformu-
lae, and they cannot be used for model checking.

Our preprocessing was designed to reduce the number of BREatipns called
by KBDD, though its correctness is algorithm independent. Thedofthe simpli-
fication is on the following aspects:

1) The primary goal is to minimize the size of the formula. Aadler formula
leads to a reduction in BDD size as well as a reduction in theber of BDD opera-
tions and dynamic variable re-orderings.

2) We also aim at minimizing the number of modal operators@formula. This
leads to a smaller transition relation, where we have a cainstfor eachO sub-
formula, as well as a smaller number of BDD operations inedlin withessing®
subformulae.

We found that our preprocessing was beneficial for DLP, &tbbased modal solver,
as well as *SAT, a DPLL-based solver, but not for MSPASS, altg®mn-based solver.

4.4.1. Rewrite rules

Our preprocessing includes rewriting according to the itewules given in Ta-
ble 1. Itis easy to see that the rules are equivalence ofiahtigy preserving. These
rules by themselves are only modestly effectiveKoformulae; they do become quite
effective, however, when implemented in combination withepliteral simplification,

BDD-based Decision Procedures i&r 17

described below. These rules allows us to propagate thetefiépure-literal simplifi-
cation by removing redundant portions of the formula afteegliteral simplification.
This usually allows more pure literals to be found and camtyaeduce the size of
the formula.

Table 1. Simplification rewriting rules foK

| Propositional ruleg | |
Equivalence fAtrue~ f f N false ~ false
f V true ~ true fVfalse ~ f
fNf~ T fvi~1f
fA~f ~ false fVf ~s true
| Modal rules | | |
Equivalence < false ~ false O true ~» true
OfVOg~ O(fVy) OfAnOg~ O(fAg)
Satisfiability OfANOgAh~O(fAg) AR Of~ f
preserving wheredepth(h) = 0.

4.4.2. Pure-literal simplification

To apply pure-literal simplification td& satisfiability solving, we first need to
extend it to the modal setting.

DEFINITION 19. — Given a setS of (propositional or modal) formulae in NNF, we
definelit(S) = {£ € S | £ = gor £ = —q, for someg € &} as the set of literals of.
The sepure(.9) is defined as the set of literals that have a pure-polarityup@nce in
S, i.e.,pure(S) := {£ € lit(S) | =¢ ¢ lit(S)} for =¢ the negation normal form of¢.

It is well known that pure-literal simplification preserva®positional satisfiabil-
ity; that is, given a propositional formula for any literall € pure(yp), ¢ is satisfiable
iff ¢/ true] is satisfiable. There are a number of ways to extend the defirdf pure
literals to modal logics. We first present a naive definitiangd then explain how to
extend it.

DEFINITION 20. — For a formulay in NNF, we defin@ure(v)) = pure(sub(z))) as
the set ofglobally pure literalsof ¢». Applying pure literal simplification ta) yields

a formulay, that is obtained fromp by replacing each occurrence of each literal in
pure(t)) with true.

Pure literal simplification can be made more efficient beedis tree model
property implies that assignments to literals at diffemeotdal depths are in different
worlds, and thus independent of each other. Hence we definieitbwing, stronger
version of pure literals simplification.

18 Journal of Applied Non-Classical Logies- June 28, 2005, Special Issue on Implementa-
tion of Logics 1th submission.

DEFINITION 21. — First, we define the levédvel (v,) of the occurrence of a sub-
formulay in a formulag as follows?

—If ¢ = o, thenlevel (v, ¢) = 0;
—lfp=¢' Ap", & V', or—¢, thenlevel (v, ©') = level(v, ¢") = level (¥, p);
—If o = Op’ or Oy, thenlevel (v, ¢') = level (¢, @) + 1.

For ¢ in NNF, we defindevel-pure literalsby pure;(y)) = pure(sub;(¢)), for
0 < i < depth(¢), and we define)[pure;(1))/ true]; to be the result of substitut-
ing each occurrence at levelof a literal in pure; (1)) with true. Applying level-
wise pure literal simplification ta) yields a formulay} = [pure,(v)/ truely . ..

[PUredeptn(y) (¥)/ truelgepth(y)-

It is possible to push this idea of “separation” further. 8ese each world in the
model may satisfy a different subset of formula, if a litevaturs both positively and
negatively at level inside a diamond subformula, then we still might replaceithw
true whilst preserving satisfiability. However, checking whath subformula may be
substituted withtrue then involves such a huge overhead that we do not believé that
justifies its implementation.

We now prove that pure-literal simplification preservess§ability.

THEOREM22. — Let®y) be in NNF. Theny is satisfiable iffy, is satisfiable iffy}, is
satisfiable.

PrROOF. — We writet)’ instead ofiy;, or ¢} , when the formula used is clear from the
context. First, we show that substituting a single puredité preserves satisfiability.
Theorem 22 follows then by induction on the number of puegdils.

The only-if direction is due to the fact that theand < operators arenonotone
[BLA 01]. More precisely, let) be a formula in NNFq a subformula occurrence of
¥, andg a formula that is logically implied by, theni[a/3] is logically implied by
1. Since every impliestrue, satisfiability ofy) implies satisfiability ofi)’.

For the if direction, letkX’ = (&, W, R, L') be a finite tree Kripke structures of
depthdepth(v) with wy € W the root of the tree anfl”’, wy | ¢'.

— Globally pure literals i.e., v’ = v,. Sincel does not occur in;,, we can as-
sume that.’ does not define a truth value farWe constructa modét = (W, R, L)
from K’ by takingL to be the following extension at’: if £ € AP, thenL(¢) = W,
otherwise/ = —¢q for someq € AP and we setl(¢) = (). We claim that, for every
worldw € W and every formulg € sub(v), K',w = ¢[¢/ true] impliesK, w |= ¢.

This claim is an immediate consequence of the fact that|fes & W, K, w |= /.

— Level-pure literals AssumeK’, wq = ', and consider the occurrencefah
at leveli. For0 < i < depth(%)), let W; = {w | distance betweea andw, = i}.
We construct’ from K’ by definingL as follows: (1)L(q) = L'(q) for eachq €

3. Please note that a subfomula can occur at more than onarevé&rmula.

BDD-based Decision Procedures i&r 19

O\ AP(). (2) L(q) nW; = L'(q¢) N W, for eachy # i, (3) if £ € AP, then set
L(¢) N W,; = W;, otherwise seL(¢) N W; = 0.

For eachp € sub;(y)) andw € W;, we have thaf{’, w = ¢[¢/ true]4—; implies
K,w E ¢. This is an immediate consequence of the fact that, fowalk W;,
K,w = ¢. SinceK andK’ coincide on the interpretation of all propositional vatesh
in worlds inW \ W;, and on the interpretation of all propositional variabléfedent
from AP(¢) in all worlds, it follows thati, wq = ¥[€/ true]q.

5. Implementation

In this section, we describe how to implement our algoritlamd their variations
using Binary Decision Diagrams (BDDs).

5.1. Base algorithms

We use Binary Decision Diagrams (BDDs) [BRY 86, AND 98] to megent sets
of types. BDDs, or more precisely, Reduced Ordered Binargiglen Diagrams
(ROBDDs), are obtained from binary decision trees by follgyva fixed variable
splitting order and by merging nodes that have identicddetiagrams. BDDs pro-
vide a canonical representation for Boolean functions. degnce has shown that
BDDs often provide a very compact representation for verydaBoolean functions,
and that various operations on Boolean functions can béedaout efficiently on
their BDD representation. Consequently, over the last diecBDDs have had a
dramatic impact in the areas of synthesis, testing, andication of digital sys-
tems [BEE 94, BUR 92].

In this section, we describe how our two basic algorithms,down and bottom up
with types, are implemented using BDDs. First, we defité-aector representation
of types. Since types are complete in the sense that eithdafarsula or its negation
must belong to a type, it is possible for a formula and its tiegao be represented
using a single BDD variable.

The representation of typesC cl(v) as bit vectors is defined as follows: first, we
split cl() into positive and negative formulae, i.e.,

ci(p) = {pi€cl() | g;is notof the form-¢’} and
d-(¥) = {-wlyedi()}

and we usen for | cl (¢¥)| = | cl(v)|/2. Then, forcly (v) = {¢1, ..., om}, avector
a={ai,...,an) € {0,1}™ represents the set C cl(z)) with ¢; € a iff a; = 1.

4. Please note that this set is not necessarily a type.

20 Journal of Applied Non-Classical Logies June 28, 2005, Special Issue on Implementa-
tion of Logics 1th submission.

A set of such bit vectors can obviously be represented usBig@ with m vari-
ables. It remains to “filter out” those bit vectors that reganmet types.

We defineconsistent,, as the characteristic predicate for typesnsistenty, (@) =
N1 <i<m consistenty, (@), whereconsistent;, (@) is defined as follows:
— if ¢, is neither of the formy’ A ¢ nory’ v ", thenconsistentfz,(ﬁ) =1,
—ifpi=¢ N, thenconsistentfp(é) =(a; Nd ANa")V (ma; A (—ad' V =ad")),
—ifpi=¢ V", thenconsistentfb(d’) = (a; N (d' Vad")V (ma; A —ad' A —=ad")),
wherea’ = a if ¢’ = ¢y € cl(v), anda’ = —ay if ' = =, for ¢y € cly (¥),
anda” = ai if ¢ = ¢i € cl(¥), anda” = —ay if " = =y, for o € cly ().

From this, the implementation @hit is fairly straightforward: For the top-down
algorithm,

Init(¢y) := {a@ € {0,1}"™ | consistenty,(a)},

and for the bottom-up algorithm,

Init(¢y) := {@ € {0,1}™ | consistenty (@) A /\ a; = 1}.
pi=0¢’

In the following, we do not distinguish between a type andeéfzresentation as a
bit vectora. Next, to specifybad(-) andsupp(-), we define auxiliary predicates:

—<©1,:(Z) is read as ¥ needs a witness for a diamond operator at positiand
is true iff z; = 0 andy; = Oy'.

—<©9,:(¥) is read as{ is a witness for a negated box formula at positiband is
true iff p; = Oy, andy; = 0 or p; = O—gp; andy; = 1.

— 0, ,(%) is read as ¥ requires support for a box operator at positiband is true
iff z; =1 andy; = O¢'.

— 09 ,(¥) is read as {f provides support for a box operator at positidrand is
true iff p; = Oy, andy; = 1 or p; = O—gp; andy; = 0.

For a setd of types, we construct the BDD that represents the “maximetessi-
bility relation A, i.e., a relation that includes all those pdifsy) such thatj supports
all of Z's box formulae. For types, ¢ € {0,1}™, we define

A(7,y) = /\ (O1,i(%) — O2,4(7)).

1<i<m

Given a setd of types, we write the corresponding characteristic fuorctisy 4, and
we usey 4 for the characteristic function of the complementbfNext, we show how
to implement the top-down and the bottom-up algorithm uslirgpredicateg 4, A,
<>j,1', and\:‘j’i.

BDD-based Decision Procedures i&r 21

For the top-down approach, the predichsel is true on those types that contain
a negated box formula which is not withessed in the currerfsiypes. Thus, for a
negated box formula; = ~0Oy;, we define the predicated; as follows:

Xbad; (x) () = O1i(T) AVY : (xx (¥) A AT,) = =C2.4(1)),

and thushad(X) can be written as

Xbad(x) () =\ Xbad, (x) (&)
1<i<m
In our implementation, we compute eagﬂm and use it in the implementation of
the top-down and the bottom-up algorithm. It is easy to saextﬁm is equivalent
to
C1,i(@) — F7: (xx (§) AN A, y) A C2i(9))-

For the top-down algorithm, thépdate function can be written as:

Xx\bad(x) (@) = Xx (B A N\ Ogeaey (@)

1<i<m

For the bottom-up algorithm, we must take care to only addadxitors representing
types, and so thépdate function can be implemented as:

XXUsupp(X)(f) = XX (f) v (Xconsistentw (f) A /\ (Xm(f))
1<i<m

These functions can be written more succinctly using themege function for the
relationA:

preima (X)) (%) = 37 : xn (¥) A AT, 7).
Using pre-images, we can rewri/gfgm as follows:
Xpad; () (%) = ©1,i(F) — preima (xx A C2,4) ().

Finally, the bottom-up algorithms can be implemented asfitens over the sets
X xUsupp(x)» @nd the top-down algorithms can be implemented as iterativer the

setsy x\pad(x) UNtil a fixpoint is reached. Then checking whetheis present in a
type of this fixpoint is trivial.

The pre-image operation is a key operation in both the botipnand the top-
down approaches. Itis also known to be a key operation in sjimimodel checking
[BUR 92] and it has been the subject of extensive research[BIIR 91, GEI 94,
RAN 95, CIM 00]) since it can be a quite time and space consgroperation. Vari-
ous optimizations can be applied to the pre-image computédireduce the time and
space requirements. A method of choice is that@fjunctive partitioninggombined

22 Journal of Applied Non-Classical Logies June 28, 2005, Special Issue on Implementa-
tion of Logics 1th submission.

with early quantification The idea is to avoid building a monolithic BDD for the rela-
tion A, since this BDD can be quite large. Rather, we take advawide fact thatA

is defined as a conjunction of simple conditions, namely onedch box subformula.
Thus, to compute the pre-imagesim,, we have to evaluate a quantified Boolean
formula of the form8y; ... Jy,(c1 A ... A ¢), Where ther;s are Boolean formulae.
Suppose, however, that the varialpledoes not occur in the clauses,i, ..., ¢p.
Then the formula above can be rewritten as

Fyr ... Fy—13yj41 - Ty Gyi(ar Ao A G)) A (Cig1 Ao Aew).

This enables us to apply existential quantification to sen&DDs.

Of course, there are many ways in which one can cluster amdder-thec;s.
One way we used is the methodology developed in [RAN 95]edathe “IWLS 95”
methodology, to compute pre-images. We have also triedr aflastering mecha-
nisms, namely the “bucket-elimination” approach desdtilme[San 01]. Given a set
of conjunctive components, . .., ¢,, we first compute the variable support set for
each component agy,...,Y,. Then, a graph of interference of variables is con-
structed: every vertex represents a variable, and thereasige between variablgs
andy; if y; andy; occur together in somg;,. We conduct a “maximum cardinality
ordering” of the variables, after whig) is the variable that occurs with the maximal
number of edges, ang has the maximum number of edges intg. .., y;_1. Given
such a variable order, we can order the conjunctive compsiethe order of the first
occurrence of the highest (or lowest) ordered variablekgeforward or backward).
We have implemented all four combinations in this case, towtli turn out that the
performance improvements are minimal.

5.2. Optimizations

5.2.1. Particles

The encoding of the particle-based approach with BDDs iogoas to the en-
coding of the type-based approach. Since the consistegayreenent for particles is
more relaxed than that of types, each subformukali{y)) (also the negated ones) is
represented by a variable. Giveub(¢)) = {¢1,...on}, @ vectorg = (p1,...pm) €
{0,1}™ represents a setC sub(v) with ¢; € piff p, = 1.

Then, as for types, we define a characteristic predicate &oticke vectors
Iconsistentw(ﬁ') := Ai<i<n coOnsistent,, (p), whereconsistenty,(p) is defined as fol-
ows:

— if ¢; is neither of the formy; A @i, nore; Vv ey, thenconsistent@, (p) =1,
—if o, = p; A g, thenconsistentfp (P) = (pi — (pj Apr)),

—if o, = p; Vi, thenconsistentfb () = (pi — (p; Vpr)), and

—if @, = =, thenconsistentfp (P) = ~(ps A pj).

BDD-based Decision Procedures i&r 23

Finally, we update the auxiliary predicates for particles:
—<1,4(%) istrueiffz; = 1 andyp; = Oy,
—Ogi(7) is true iff o; = Cp; andy; = 1,
- 01,4(%) is true iffz; = 1 andyp; = Oy’ (the same as for types), and
—O,,(7) is true iff ; = Dy; andy,; = 1.

All other predicates such ageim andbad do not change.

5.2.2. Lean vector approaches

Lean approaches have much more relaxed consistency pesiaathe cost of
bigger witness/support predicates. For lean approacteitstneed to define

Only the consistent;(Z) that is related to those; in atom(z)) (or part(y)) are
used.

In contrast, the auxiliary (withess/support) predicatetfe lean approach is sig-
nificantly more complex. We now define the corresponding laryifunctions for
lean assignments.

For lean types and lean particles; ; andO; ; are the same as for full types and
particles. However, since the subformula occurring insidaodal operator may be
a Boolean combination, we need to redefine the functidgs, O, ; with the same
intuition as for full type and particle vectors. To do this first define the auxiliary
functionstrip; as follows:

strip; () Astrip, () if wi = 0 A i

strip; (§) V stripg (4) if i = ¢; V o,

—strip; (%) if o = —p;

Yi if p; € atom(v) for types orpart(¢)) for particles

strip ;(¢) =

Obviously, for both lean types and lean particleisip, can be computed when parsing
the input formula, and be kept in a table.

Next, &4 ; andOy ; can be defined as follows:
strip,; (%) for particles, ifp;, = O,

Coi(y) = —strip; () for types, ifp; = Dy;
strip;(y) fortypes, ifp; = O-p;

strip ; () for ¢, = Oyp;

Oa,:(¥)
Again, all other predicates such geim andbad do not change.

5.2.3. Level-based evaluation

The level-based evaluation approaches is computed in dasimay. However,
since all levels are treated separately, at each level, Wermed to consider those

24 Journal of Applied Non-Classical Logies June 28, 2005, Special Issue on Implementa-
tion of Logics 1th submission.

unwitnessed box formulae of that level—before, we had teicar all possibly un-
witnessed negated box formulae—which leads to the retati/predicatdad; (X).
Similarly, to test whether a given vector indeed represaitype, the constraint pred-
icateconsistentfb for the level-based approach only needs to consider sublamof
the same level. So, we can relativize both the lean and the full variant eftipe
approach by defininge,ei, x) as follows:

Xleveli(X) (f) = Xconsistentfp (f) A /\ (Xbadj (X)(f))
{ilejecli()}

Then we can specify the level-based variants by sefting., (@) = consistent; (@)
andXUpdate(A,i) (d) = Xconsistent; (d) A Xlevel; (A) (6)

The level-based evaluation for particles can be implenteimi¢he same way by
replacingcl; with sub; and relativizing the corresponding predicates for parsicl

5.3. Variable ordering

It is well-known that the performance of BDD-based algarithis very sensitive
to BDD variable order since it is a primary factor influenciBBD size [BRY 86].
In our experiments, a major factor in performance degradasi space blow-ups of
BDDs, including the intermediate BDDs computed during ipnage operation. In all
our algorithms, however, every step in the REPEAT loop udeB8with variables
from different modal depth, and thus dynamic variable ardgis of limited benefit
for KBDD (though it is necessary when dealing with intermediate Bb@svups)
because there may not be sufficient reuse to make it wortewhihus, we focused
here on heuristics to construct a good initial variable gride, one that is appropriate
for KBDD. In this, we follow the work of Kamhi and Fix [KAM 98a] who argd in
favor of application-dependent variable order. As we sho®eéction 7.1.5, choosing
a good initial variable order does improve performancefteimprovementis rather
modest.

A naive method for assigning an initial variable order to & gesubformulae
would be to traverse the syntax DAG of the input fornfutasome order. We used a
depth-first, pre-order traversal. This order, howeversdu® meet the basic principle
of BDD variable ordering, which is to keep related variabteslose proximity. Our
heuristic is aimed at identifying such “close” variables ¥und that related variables
correspond to subformulae that are related via the “siblorgniece” relationships.
More precisely, we say that, is achild of v, if, for the corresponding subformulae,
we have thalp,, € sub;(¢), ¢, € sub,11(¢), andy, is a subformula of,, for some
0 < i < depth(¢)).6 We say thawv, andv, aresiblingsif either bothy, andyp, are
in sub; (¢)) or they are both children of another variable We say thav, is aniece

5. The syntax DAG is obtained from the syntax tree of a formyladentifying nodes labeled
with the same subformula.
6. For the type approachkyb; has to be replaced wittl; accordingly.

BDD-based Decision Procedures i&r 25

of v, if there is a variable), such that, is a sibling ofv, andv, is a child ofv,.
We say that, andv, aredependenif they are related via the sibling or the niece
relationship. The rationale is that we want to optimizeestt representation for
pre-image operations. Keeping siblings close helps inikgegiate-set representation
compact. Keeping nieces close to their “aunts”, helps ipkagintermediate BDDs
compact.

Our heuristics builds a variable order from the root of therfola DAG down.
We start with left-to-right traversal order of top variabie the parse tree af as the
order for variables corresponding to subformulaeiiby(¢)). Given an order of the
variables of modal deptk ¢, a greedy approach is used to determine the placement
of variables at modal depth When we insert a new variable we measure the
cumulative distance of from all variables already in the order that are dependent
onwv, and choose a location ferthat minimizes the cumulative distance from other
dependent variables. We refer to this approach agiedyapproach, as opposed to
thenaiveapproach of depth-first pre-order.

6. Reducing K to QBF

BothK and QBF have PSPACE-complete satisfiability problems [LADSTO 77],
and thus these two problems are polynomially reducible tth egher. A natural
reduction from QBF tdK is described in [HAL 92]. In the last few years, exten-
sive effort was carried out into the development of highptimized QBF solvers
[GIU 01, CAD 99, LET 02]. One motivation for this effort is th®pe of using QBF
solvers as generic search engines [RIN 99], much is the saagehat SAT solvers
are being used as generic search engines, cf. [BIE 99]. Tigigests that we can
realistically hope to decidK satisfiability by using a natural reduction Kf to QBF,
and then applying one of the highly optimized QBF solver.8ac approach is sug-
gested in [CAD 99] without providing either details or resuNext, we describe such
a reduction, and evaluate it empirically in the next secttogether with ouiCBDD
algorithms.

QBF is an extension of propositional logic with quantifiefhie set of QBF for-
mulae is constructed from a sét= {xz;,...z,} of Boolean variables, and closed
under the Boolean connectivesand—, as well as the quantifiefz;. As usual, we
use other Boolean operators as abbreviations,Jandy> as shorthand forVz;.—.
Like propositional formulae, QBF formulae are interpretear truth assignments
7 : ® — {1,0}. The semantics of quantifiers is defined as usual for the Boole
part, and as follows for the quantifiers: = Vp.¢ iff 7[p/0] = ¢ andr[p/1] E ¢,
wherer[p/i] is obtained fromr by settingr(p) := i.

By Theorem 18, & formulay of modal depthd is satisfiable iff there exists a
sequenc® = (P, Py, ..., Py) of particle sets such that € p for somep € Py,. We
construct QBF formulagy, f1, . . . fq So that eaclf; encodes the particle s&}. The
construction is by backward induction foe d. . . 0. For everyy € sub;(v), we have
a corresponding variabte, ; as a free variable itf;. Then, for eaclp C sub;(¢), we

26 Journal of Applied Non-Classical Logies June 28, 2005, Special Issue on Implementa-
tion of Logics 1th submission.

define the truth assignmeﬁj as foIIows:T;;(:vw) = 1iff ¢ € p. The intention is to
haveP, = {p C subi(d))h—g E fi}. We then say thaf; characterized;.

To definef;, we need some notation: we userticle;(¢) for the set of all con-
sistent particle vectors aub;(1)). We start by constructing a propositional formula
le; such that, for each C sub;(¢) we have thap € particle;(¢) iff 7 = lc;. The
formulalc; is a conjunction of clauses as follows:

— Forp = =y’ € sub;(¢), we have the clause, ; — -z, ;.
—Forp = ¢’ A¢” € sub;(¢), we have the clauses, ; — z,; andz, ; — z,r ;.
—Forp = ¢’ v ¢" € sub;(¢), we have the clause, ; — (z,7; V Ty ;).

Fori = d we simply setf; := lcy. Indeed, we havé®; = particle (v) = {p C
subg(¢) | 74 |= fa}. Thus,f, characterizeSnity(1)).

Fori < d, suppose we have already constructed a QBF forrfiulathat charac-
terizesP; ;. We start by constructingi, which also characterizd. We setf) = f4
and

fli=le; A /\ MCop,
Opesub; ()
wheremco, ensures that, iy is in a particlep € P;, then<yp in p is witnessed by
a particle inP;;1. Thatis, forsub; 1 (v) = {01, ...,6k,, }, we set

MCoyp = Top; — 3%917i+1 e 3x9ki7i+1(fi+1 NZypip1 N tTi), where
tri = /\Dnesubi(w) [Tom.: = Ty,iv1]-

LEMMA 23. —If f/ | characterizes; , thenf] characterizes; = Update(P;;1,1).

PROOF. — By construction/c; characterizepart,(+/). For the witnessing require-
ment, we can see that, if. = mco, andzo, ;, then there is an assignmen;tﬁl
wherer;; U T;;H = fii1 A2y Atr. Thisis equivalent to asserting thate Py 1,
p € p' andR;(p,p’). "

COROLLARY 24. — v is satisfiable ifBzg, o . .. 3zg, 07y,0 A fj is satisfiable.
PROOF. — The claim follows from the soundness and completenef83%D. =

This reduction ofK to QBF is correct; unfortunately, it is not polynomial. The
problem is thatf/ requires a distinct copy of; 1 for each formula®y in sub; ().
This may cause an exponential blow-up f@§r To constructf; which uses only a
single copy off;;1, we replace the conjunction over &llp formulae insub; () by
a universal quantification. Létbe an upper bound on the numberkag formulae in
sub;(¢), for 0 <4 < depth(z)). We associate an indexe {0, ...,k — 1} with each
such subformula; thus, we Ie}' the j-th O subformula insub;(v), in which case
we denotep by strip(£}). Letm = [log(k)]. We introducen new Boolean variables
Y1, ---,Ym. Each truth assignment to the variablggepresents a number between
0 andk in binary coding, and we refer to this number &l (y) and use it to refer

BDD-based Decision Procedures i&r 27

to < subformulae. Letvitness; be the formula\/f;é ¢, which asserts that some
J
witnesses are required.

Using this notation, we can now wrifg in a compact way:

le ANVY1, - VY 2 39 54 1:{0esub 1 ()} © Witness; —
k—1

fix1 Aty A /\ ((val(y) = j A xs;l,i) — xstrip(s;l),iﬂ)
§=0

The formulaf; first asserts the local consistency constraint The quantification on
Y1, - - -, Ym Simulates the conjunction on &ll & subformulae irsub;(1)). We then
check ifwitness; holds, in which case we assert the existence of the witnggsin
ticle. We usef;; to ensure that this particle is i_; andtr; to ensure satisfaction
of O subformulae. Finally, we letal(y) point to the® subformulae that needs to be
witnesses. Note thgt contains only one copy of; ;.

LEmMmMA 25. — f; and f/ are logically equivalent.

As an immediate consequence of the above lemma and Cor@Harywe obtain
the following result.

COROLLARY 26. — ¢ is satisfiable ifBxg, o . . . 3xg,, 07y,0 A fo is satisfiable.

Analogously to our other approaches, this approach can timiapd further by
reducing redundancy, i.e., by restricting variables tséhepresenting non-Boolean
subformulae. We implemented this optimization and repomor experiments in the
next section.

7. Experimental Results

In this section, we report on our empirical evaluation of aitgorithms described
throughout this paper and their optimizations. We first repn comparisons between
the variousCBDD algorithms and analyze the effects of the different optations
and the influence of variable ordering. This allows us to uheitee the “best” config-
uration for ourCBDD approach. Secondly, we compare this BEBDD algorithm
with otherK solvers and with an implementation of the translation inBFQnethod
described in the previous section.

We implemented the BDD-based decision procedure and itgntarin C++ using
the CUDD 2.3.1 [SOM 98] package for BDDs, and we implementethfila simpli-
fication preprocessor in OCaml. The parser for the languages in the benchmark
suites are taken with permission from *SAT [TAC 99].

7. All tests were run on a Pentium 4 1.7GHz with 512MB of RAM, mimg Linux kernel
version 2.4.2. The solver is compiled with gcc 2.96 with pamtOCaml 3.04.

28 Journal of Applied Non-Classical Logies June 28, 2005, Special Issue on Implementa-
tion of Logics 1th submission.

7.1. Comparing theXXBDD variants

To analyze the usefulness of each optimization technigsed,we run the algo-
rithm with different optimization configurations on tk&part of TANCS 98 [HEU 96]
and the MODAL PSPACE division of TANCS 2000 [MAS 00]. Both argtes of scal-
able benchmarks which contain both provable and non-pfevaimulae. In TANCS
98, simple formulae have their difficulty increased by reeding them with super-
fluous subformulae. In TANCS 2000, formulae are construbtettanslating QBF
formulae intoK using three translation schemes, namely Schmidt-ScHamsska
translation, which gives easy formulae, Ladner trangfatichich gives medium dif-
ficulty formulae, and Halpern translation, which gives h&dnulae. TANCS 98
provides more “easy” formulae, and we used it to provide arelepicture in case
that the unoptimized algorithms took too long on TANCS 2008 get a clearer pic-
ture and a guideline, each test was also run with *SAT, andimiged the memory
available for BDDs to 384MB and the time to 1000s.

7.1.1. The basic algorithms

To compare our basic algorithms, top-down and bottom-upg.fsill types, we run
them both on TANCS 98. The results are presented in Fig. 1. aflesee that *SAT
clearly outperforms our two basic algorithms. A reason fos t'weak” behavior
of our approaches is that the intermediate results of thenpage operation are so
large that the we ran out of memory. The difference betweprdtiwn and bottom-
up approaches is minor. Top-down slightly outperformsdrtup since top-down
removes types, which only requires the consistency reogn to be asserted once
before iteration, while bottom-up adds types, which reggiain extra conjunction to
ensure only consistent types are added.

Cases completed

100

ooo7T [AT

501 P il
st - - - topdown-full-type

T bottomup-full-type

10* 10° 10° 10* 10° 10°

Running Time (ms)

Figure 1. Top-down versus bottom-up on TANCS 98

7.1.2. Particle approaches

Next, we compare the variants using types with their fultipke-based variants.
The results are presented in Fig. 2. We can see that, on TANKCB® particle ap-

BDD-based Decision Procedures i§&r 29

proach slightly outperforms the type approach. Most of therovements come from
the use of negation normal form, which allows us to distisguietween diamonds and
boxes, resulting in a reduction of the number of operatior®Mmpute pre-images.

Cases completed

50 It e 50 e e

PSS - - - topdown-full-type T - - - bottomup-full-type
=T topdown—full-particle mmme T bottomup-full-particle
0 0
10 10° 10° 10" 10° 10° 10! 10° 10° 10* 10° 10°

Running Time (ms) Running Time (ms)

Figure 2. Particles vs. types on TANCS 98

7.1.3. Lean approaches

Since, so far, all variants behave quite similar, we comgaeefull” approaches
with their lean variants for types and particles, bottomand top-down. The results
can be found in Fig. 3 and Fig. 4. Intuitively, the full variatrade a larger number of
BDD variables in the representation of the transition fetafor simpler consistency
constraints. On TANCS 98, the lean approaches outperfoemfilil variants in each
combination. This indicates that, as a general guidelireskould attempt to reduce
the number of BDD variables since this results in smaller BDIdeed, experience
in symbolic model checking suggests that BDD size is typdale dominant factor
when evaluating the performance of BDD-based algorithms\ko8b].

Cases completed

50 R — *SAT 50 et [— AT
-7 - - - topdown-full-type P - - - bottomup-full-type
topdown-lean-type L

bottomup-lean-type

10 10° 10° 10" 10° 10 10' 10° 10° 10° 10° 10°
Running Time (ms) Running Time (ms)

Figure 3. Lean vs. full types on TANCS 98

30 Journal of Applied Non-Classical Logies June 28, 2005, Special Issue on Implementa-
tion of Logics 1th submission.

Cases completed

50 e *SAT 50 _--[—saT
P - - - topdown-full-particle P - - - bottomup-full-particle
e topdown-lean—particle I bottomup-lean—particle
05 2 3 0 5 3 T 3 g

10 10 10 10 10 10 10 10° 10 10° 10 10°
Running Time (ms) Running Time (ms)

Figure4. Lean vs. full particles on TANCS 98

7.1.4. Level-based evaluation

Next, we compare various level-based approaches with {hadan lean type
approach, see Fig. 5. It turns out that each level-basedapproutperforms the
top-down approach, and that, both for types and partickes|dan approach again
outperforms the full one. This superior performance of #wel-based approaches is,
again, due to a smaller BDD size: recall that, in the leveldobapproach, all BDDs
are split into smaller ones according to the level at whiehdbrresponding formulae
occur in the input. Moreover, the level-based approachluesa smaller number
of operations to compute the pre-image, and this turns obétsubstantial for most
formulae.

Summing up, our experimental comparison of the differenDBfased algorithms
indicate that level-based lean particle version perforest,band we thus use, in the
remainder of this papek;BDD to refer to this version of our algorithm.

Cases completed

N
a
=]

Cases completed

P 100 - L
e *SAT -t *SAT
sof = Lot - = level-full-type [== - level-full-particle
b= level-lean-type == level-lean—particle
- - topdown-lean-type - - topdown-lean—particle

10 10° 10° 10" 10° 10° 10! 10° 10° 10° 10° 10°
Running Time (ms) Running Time (ms)

Figureb. Level-based evaluation vs. top-down lean approaches orCBA®8

BDD-based Decision Procedures i&r 31

7.1.5. Variable ordering and formula simplification

To gain inside into the effects of variable ordering and folansimplification,
we testedCBDD with both naive and greedy variable ordering described io- Se
tion 5.3, and with and without the formula simplification deked in Section 4.4. We
compared the influence of these optimizations using TANG®)2asy and medium
formulae [MAS 00] (CBDD without formula simplification cannot handle the hard
formulae of TANCS 2000). The results are presented in Figure

—— simp-naive

- - simp-greedy
200 nosimp-naive
- - nosimp-greedy

200

N
a
=}

N

a

S

Cases completed
=
1S)
3

Cases completed

50

— naive

- -- greedy
simp-naive

- - simp-greedy

10 10 10 10° 10° *
Running Time (ms) Running Time (ms)

TANCS 2000 Easy (cnfSSS) TANCS 2000 Medium (cnfLadn)

1 2 10° a

10 10 °

Figure 6. Different optimizations folC DD on TANCS 2000

We see in Figure 6 that formula simplification yields a sigmifit performance
improvement. This improvements was observed for diffetgmés of formulae and
different variable-ordering algorithms. In particul@&BDD was able to avoid run-
ning out of memory in many cases. We can also see that greedyphlaordering is
useful in conjunction with simplification, improving the mber of completed cases
and sometimes run time as well. Without simplification, thsults for greedy vari-
able ordering are not consistent: the overhead of findingénable order seems to
sometimes offset any advantages of applying it.

Summing up, our experiments indicate that the combinatfainoplification and
greedy variable ordering significantly improves the parfance ofC5DD. In the fol-
lowing, we will use “optimizedCBDD” to refer to this variant, and we will compare
its performance with that of three other solvers.

7.2. Comparing/XCBDD with other solvers

To assess the effectiveness of BDD-based decision proegthn, we compare
the optimizedCBDD against three solvers: (1) DLP, which is a tableau-basegsol
[PAT 99], (2) MSPASS, which is a combination of an optimizeahislation of modal

32 Journal of Applied Non-Classical Logies June 28, 2005, Special Issue on Implementa-
tion of Logics 1th submission.

formulae to first-order formulae and a resolution-basedréra prover [HUS 06} (3)
K-QBF, which is a combination of our reduction Bf to QBF from Section 24 and
the highly optimized QBF solver semprop [LET 02]. For a faingarison, we first
checked for which our simplification optimization is usefahd then used it in these
two cases, namely for DLP and K-QBF.

In addition to the formulae from TANCS 98 and TANCS 2000, wsoalise ran-
domly generated formulae, as suggested in [PAT 01]. Thismsehgenerates random
modal-CNF formulae parameterized with the numbiveof propositions, the number
K of literals in each clause, the fractionof modal literals in each clause, the modal-
depth bound/, and the numbet of top level clausesL clauses are generated with
literals each, whera K literals are modal and the rest are propositional (the figlar
of the literals is chosen uniformly). Each modal literalXxpanded into a clause in the
same fashion. The modal depth of the formula is bounded e usedi = [1, 2],

K = 3 anda = 0.5 in our experiments. In each experiment,is fixed and the
propositional complexity of the formula was varied by iresing thedensityL /N .

7.2.1. Results on TANCS suites

In Figure 7 and Figure 8 we see that, on the TANCS 98 benchmath outper-
forms all other solvers whereas, on the more challenging@8N000 benchmarks,
KBDD outperforms the other solvers. The difference betwe&DD and the other
solvers is most noticeable on the harder portion of the switereXC5DD had to use
dynamic variable reordering. We take this as an indicatat; thdeed, BDD-based ap-
proaches may be useful in practice Irsatisfiability. MSPASS's performance could
have been enhanced by a different choice for its numeroasers. However, we
have chosen to stick to the setting that worked well for TAIN8Since (a) the current
investigation is merely a feasibility study, and (b) findimgtimal parameter settings
for MSPASS for each experiment would go beyond the scopei®ptiper. Finally, it
turns out that reducink satisfiability to a search-based QBF solver such as semprop
is not a viable approach: this approach was dominated bytladir@pproaches and
was only able to solve a small fraction of the benchmark fdamin TANCS 98. For
TANCS 2000 this approach was so inefficient that we did nobreghe results.

7.2.2. Results on random modal CNF formulae

More insight into the behavior d€BDD can be gained by analyzing its behavior
on random modal-CNF formulae. The generation of the formtdlows the sugges-
tions in [PAT 01]. This scheme generates random modal-Cfditae parametrized
with the numberV of propositions, the numbét of literals in each clause, the frac-
tion « of modal literals in each clause, the modal-depth batjrahd the numbek. of
top level clausesL clauses are generated wikh literals each, where K literals are

8. We used MSPASS 1.0.0t1.3 with options -EMLTranslationsE@2IL FuncNary=1 -Select=2
-PProblem=0 -PGiven=0 -Sorts=0 -CNFOptSkolem=0 -CNHR&ieSn=0 -CNFRenOps=1 -
Split=-1 -Ordering=0 -CNFRenMatch=0 -TimeLimit=1000. m@piler used is gcc-3.1.1 be-
cause gcc-2.96 have a serious bug that crashes the resxéngtable.

BDD-based Decision Procedures i&r 33

200

N
@
=]

=
15}
S

Cases completed
Cases completed

- — KBDD 50 3 : — KBDD
50 L --- DLP - --- DLP
- MSPASS 5= MSPASS
- - K-QBF-Semprop - - K-QBF-Semprop

0 . . o . ;

10" 10° 10° 10" 10° 10° 10! 10° 10° 10° 10° 10°

Running Time (ms) Running Time (ms)
TANCS 98 TANCS 2000 Easy (cnfSSS)

Figure7. KBDD vs. DLP, K-QBF and MSPASS on “easiK formulae

—— KBDD —— KBDD-reorder
- 501 - -- DLP

200

N
a
=]
w &
S S

Cases completed
N
15}
S}

Cases completed

N
=]

50 100

10 10° 10° 10° 10° 10° 10" 10° ° o* 10° 10°
Running Time (ms) Running Time (ms)
TANCS 2000 Medium (cnfLadn) TANCS 2000 Hard (cnf)

Figure8. KBDD vs. DLP, and MSPASS on more “difficulK formulae

modal and the rest are propositional (the polarity of thexdils is chosen uniformly).
Each modal literal is expanded into a clause in the samedashihe modal depth
of the formula is bounded by. We usedd = 1,2, K = 3 anda = 0.5 in our ex-
periments. In each experiment was fixed and the propositional complexity of the
formula was varied by increasing tdensityL /N

In Figure 9, we show the median run time (16 samples per datd) s a function

of the density [./N) to demonstrate the difference between the behavidt®DD
and DLP.

Ford = 1, DLP demonstrates the bell-shaped “easy-hard-easy’rpdttat is fa-
miliar from random propositional CNF formulae [SEL 96] amthdom QBF formulae
[GEN 99]. In contrast{CBDD’s run time is proportional to the density; that is, the
higher the density, the harder the problemX@®DD. This behavior is consistent with

34 Journal of Applied Non-Classical Logies June 28, 2005, Special Issue on Implementa-
tion of Logics 1th submission.

10° 10°
—— DLP N=3 —— DLP N=3
—e— DLP N=4 —e— DLP N=4
10° —— DLP N=5 —— DLP N=5
—— DLP N=6 . —— KBDD N=3
—— KBDD N=3 10
o 4 —v— KBDD N=4 o
£10 -+~ KBDD N=5 £
))
£ <
£ £
5 10° 5 10°
c c
]]
B0 3
s 10 s
10°
10 v e S
10° . . . 10"
20 40 60 80 100 0 20 40 60 80 100
Density (L/N) Density (L/N)

Figure9. Comparison of DLP andC3DD on Random formulae

known results on the performance of BDD-based algorithmesfiedom propositional
CNF formulae [COA 00]. For each modal lev&B3DD builds a BDD for the corre-
sponding particle set. The higher the density, the mordegihg the construction
of these BDDs becomes, often resulting in running out of nmgnoo requiring ex-

tensive variable reordering. This explains why DLP outperfs/\CBDD on random

modal-CNF formulae.

Comparing these findings with the ones on TANCS 98 and TANO® 2@e con-
clude that DLP is better suited for formulae with high praposal complexity such
as the randomly generated ones, wher€8DD is better suited for formulae with
high modal complexity such as the ones in TANCS 98 and TANG®20

8. Conclusions and outlook

We described here BDD-based decision procedure¥forOur approach is in-
spired by the automata-based approach, but it avoids éxglitomata construction.
We explored a variety of representation options and comadlubat, in general, it is
beneficial to work with representations that involve fewengtraints, i.e., with parti-
cles. In general, the best performance was obtained withgaesticles. It also turned
out that only a level-based approach yields a competitijdementation. Further-
more, formula preprocessing such as pure literal simpliioand syntactical simpli-
fication proved to have a significant influence on the perfaiweaeven though it is
not specialized to our method. Finally, we tested variou®Bi2ntric optimizations
such as clustering with early quantification and initialiahte ordering but the effect
proved to be rather modest.

We benchmarkef DD, our optimized BDD-based solver, against both a native
modal solver, DLP, and two translation-based solver, MSPASd K-QBF. Our re-

BDD-based Decision Procedures I&r 35

sults indicate that the BDD-based approach dominates fatathoheavy formulae,
while search-based approaches dominate for proposiljomedvy formulae.

One way to look at the results is the3DD, by using a more powerful underly-
ing data structure, BDDs, allows the use of a simpler degipimcedure. Instead of
requiring, in the worst case, an exponential number of ¢alks propositional satis-
fiability procedure XBDD only requires a polynomial number of calls to BDD op-
erations. The natural question arising is, of course, wdretich a dependence on
the data structure is reasonable. We know that the complekBDD operations is
highly dependent to the size of the BDDs. So, if we are abletdrol the size of the
BDDs, the performance of our decision procedure is accéptab

Another explanation is that we traded modal complexity faypgositional com-
plexity. This way, we managed to perform quite well on foramithat only have “big”
models. Such formulae are known to cause problems SAT badeers. We ob-
serve that, on formulae that are satisfiable in “small” meg8AT solvers outperform
KBDD. In contrast, on formulae that are only satisfiable in “bigddels, CBDD
outperform SAT solver. In both cases, the performance df bolvers degrades with
increasing propositional density.

Although our goal was a feasibility study for a BDD-based rapgh to modal
solvers, and not to develop the “fastdstsolver”, theXCBDD approach turned out
to behave quite well on a considerable number of benchmaikis.is mostly due to
the fact that our approach allowed us to compare and expghereffects of numer-
ous optimizations. One obvious optimization technique wendt explore is to avoid
the construction of a monolithic BDD, such as the technigesetbped for the purely
propositional case [San 01]. Further research is also redjtn quantify the distinc-
tion between “propositionally heavy” and “modally heavydrinulae. This would
enable the development of a combined solver which invokesfipropriate engine
for the formula under test. Another approach would be to lbgve hybrid solver,
combining BDD-based and search-based techniques (cf. [@JPr a hybrid ap-
proach in model checking), which would perform well on bothdally heavy and
propositionally heavy formulae. Finally, we hope the cartios betweerK and QBF
would be part of a call to a more comprehensive range of detmiocedures for QBF,
for example, the quantifier-elimination based solvers QudBIE 04] and QMRES
[PAN 04] that used Q-resolution [BUN 95]. We leave all this foture research.

Acknowledgements
The authors are supported in part by NSF grants CCR-9700D6R-9988322,

11S-9908435, 11S-9978135, and EIA-0086264, by BSF grat(#®6, and by a grant
from the Intel Corporation.

36 Journal of Applied Non-Classical Logies June 28, 2005, Special Issue on Implementa-
tion of Logics 1th submission.

9. References

[AND 98] ANDERSENH., “An Introduction to Binary Decision Diagrams”, reportl998,
Department of Information Technology, Technical Universif Denmark.

[ARE 00] ARECESC., GENNARIR., HEGUIABEHEREJ.,DE RIJKE M., “Tree-Based Heuris-
tics in Modal Theorem Proving”,Proc. of the 14th Eur. Conf. on Artif. Int2000, p. 199-
203.

[BAA 01] BAADER F., TOBIES S., “The inverse method implements the automata approach
for modal satisfiability”, report num. LTCS-Report 01-08(, Research group for theo-
retical computer science, Aachen university of Technalogy

[BEE 94] BEERI., BEN-DAVID S., GEISTD., GEWIRTZMAN R., YOELI M., “Methodology
and system for practical formal verification of reactivedveare”, Proc. 6th Conf. on CAV
vol. 818 of LNCS Stanford, June 1994, p. 182-193.

[BIE 99] BIEREA., CIMATTI A., CLARKE E., ZHU Y., “Symbolic Model Checking without
BDDs", Tools and Algorithms for Construction and Analysis of Systebth International
Conference, TACAS '990l. 1579 ofLNCS Springer-Verlag, 1999, p. 193-207.

[BIE 04] BIEREA., “Resolve and Expand”,Proc. 7th Int. Conf. on Theory and Applications
of Satisfiability Testing (SAT 2004004, p. 238-246.

[BLA01] BLACKBURN P.,DE RIJKE M., VENEMA Y., Modal logic Camb. Univ. Press,
2001.

[BOC 82] BocHMANN G. V., “Hardware specification with temporal logic: an exaeip
IEEE Transactions on Computerl. C-31, 1982, p. 223-231.

[BRA 94] BRAFMAN R., LATOMBE J.-C., MOSESY., SHOHAM Y., “Knowledge as a tool
in motion planning under uncertainty”, AEIN R., Ed., Theoretical Aspects of Reasoning
about Knowledge: Proc. Fifth Conferenge 208-224, Morgan Kaufmann, San Francisco,
Calif., 1994.

[BRY 86] BRYANT R., “Graph-based Algorithms for Boolean Function Manipioia’, IEEE
Trans. on Compwvol. Vol. C-35, num. 8, 1986, p. 677-691.

[BUN 95] BUNING H., KARPINSKI M., FLOGEL A., “Resolution for quantified Boolean for-
mulas”, Inf. and Comp.vol. 117(1), 1995, p. 12-18.

[BUR 88] BURROWSM., ABADI M., NEEDHAM R., “Authetication: a practical study in be-
lief and action”, Proc. 2nd Conference on Theoretical Aspects of Reasoniogtdnowl-
edge 1988, p. 325-342.

[BUR 91] BURCH J. R., QARKE E. M., LONG D. E., “Symbolic Model Checking with
Partitioned Transition Relations”nt. Conf. on VLSI1991, p. 49-58.

[BUR 92] BURCHJ., Q.ARKE E., MCMILLAN K., DiLL D., HWANG L., “Symbolic model
checking:lo20 states and beyondinformation and Computatigrvol. 98, num. 2, 1992,
p. 142-170.

[CAD 99] CADoOLI M., SCHAERF M., GIOVANARDI A., GIOVANARDI M., “An algorithm
to evaluate quantified Boolean formulae and its experinh@vi@uation”, report , 1999,
Dipartmento di Imformatica e Sistemistica, Universita deiR.

BDD-based Decision Procedures i&r 37

[CAS 82] CASTILHO J. M. V., CASANOVA M. A., FURTADO A. L., “A temporal framework
for database specification"Proc. 8th Int. Conf. on Very Large Data Basd982, p. 280-
291.

[CIM 00] CIMATTI A., CLARKE E., GIUNCHIGLIA F., ROVERI M., “NUSMV: A New Sym-
bolic Model Checker”,Int. J. on Software Tools for Tech. Transfeol. 2, num. 4, 2000,
p. 410-425.

[CLA 86] CLARKE E., EMERSONE., SSTLA A., “Automatic Verification of Finite-State
Concurrent Systems Using Temporal Logic Specification&CM Transactions on Pro-
gramming Languages and Systend. 8, num. 2, 1986, p. 244-263.

[COA 00] CoaARFA C., DEMOPOULOSD., SAN MIGUEL AGUIRREA., SUBRAMANIAN D.,
VARDI M., “Random 3-SAT: The Plot Thickens”,Proc. of the Int. Conf. on Constraint
Prog. (CP 2000)2000, p. 143-159.

[DAV 60] Davis S., RUTNAM M., “A computing procedure for quantification theory”].
ACM, vol. 7, 1960, p. 201-215.

[DAV 62] DAvis M., LOGEMANN G., LOVELAND D., “A machine program for theorem
proving”, Journal of the ACMvol. 5, 1962, p. 394-397.

[ETE 00] ETESsAMIK., HOLZMANN G., “Optimizing Blichi Automata”, CONCUR 2000 -
Concurrency Theory, 11th Int. Con2000, p. 153-167.

[GEI94] GEeIsTD., BEERH., “Efficient Model Checking by Automated Ordering of Trans
tion Relation Partitions”,Proc. of the sixth Int. Conf. on CAY994, p. 299-310.

[GEN 99] GENT I., WALSH T., “Beyond NP: The QSAT Phase Transition” AAAI: 16th
National Conference on Artificial IntelligencAAAIl / MIT Press, 1999, p. 648-653.

[GIU 00] GIUNCHIGLIA F., SEBASTIANI R., “Building Decision Procedures for Modal Log-
ics from Propositional Decision Procedure - The Case Stddyadal K(m)”, Inf. and
Comp, vol. 162, 2000, p. 158-178.

[GIU 01] GIUNCHIGLIA E., NARIZZANO M., TACCHELLA A., “QUBE, a system for deciding
guantified Boolean formulae satisfiability” Automated Reasoning, First Int. Joint Conf.,
IJCAR 20012001, p. 364-369.

[GUP 01] GUPTAA., YANG Z., ASHARP., ZHANG L., MALIK S., “Partition-Based Decision
Heuristics for Image Computation Using SAT and BDDsInternational Conference on
Computer-Aided Design (ICCAD 2002001, p. 286-292.

[HAA 01] HAARSLEV V., MOLLER R., “High Performance Reasoning with Very Large
Knowledge Bases: A Practical Case Study”, EB¥L B., Ed., Proceedings of the Sev-
enteenth International Joint Conference on Artificial Ihigeence (IJCAI-01) vol. 1847,
Morgan Kaufmann, Los Altos, 2001.

[HAL 90] HALPERNJ. Y., MOSESY., “Knowledge and Common Knowledge in a Distributed
Environment”, Journal of the ACMvol. 37, num. 3, 1990, p. 549-587, A preliminary
version appeared iRroc. 3rd ACM Symposium on Principles of Distributed Corirmt
1984.

[HAL 92] HALPERNJ., MOSESY., “A guide to completeness and complexity for modal logics
of knowledge and belief”Artificial Intelligence vol. 54, 1992, p. 319-379.

38 Journal of Applied Non-Classical Logies June 28, 2005, Special Issue on Implementa-
tion of Logics 1th submission.

[HEU 96] HEUERDINGA., SCHWENDIMANN S., “A benchmark method for the propositional
modal logics K, KT, S4”, report, 1996, Universitat Bern, &erland.

[HOR 00] HoRROCKSI., SATTLER U., TOBIESS., “Practical Reasoning for Very Expressive
Description Logics”,Logic Journal of the IGPLvol. 8, num. 3, 2000, p. 239-264.

[HUS 00] HUSTADT U., SCHMIDT R., “MSPASS: modal reasoning by translation and first
order resolution”, Automated Reasoning with Analytic Tableaux and Relatethddist Int.
Conf., TABLEAUX 200@000, p. 67-71.

[KAM 98a] KAMHI G., Fx L., “Adaptive variable reordering for symbolic model chagak,
International Conference on Computer-Aided Design (ICCADB8) 1998, p. 359-365.

[KAM 98b] KAMHI G., Fix L., BINvyaMmINI Z., “Symbolic Model Checking Visualization”,
Formal Methods in Computer-Aided Design, Second Inteomadi Conference FMCAD’98
vol. 1522 ofLNCS Springer-Verlag, November 1998, p. 290-303.

[LAD 77] LADNER R., “The Computational Complexity of Provability in Systemf Modal
Propositional Logic”,SIAM J. Comput.vol. 6, num. 3, 1977, p. 467-480.

[LET 02] LETZ R., “Lemma and Model Caching in Decision Procedures for @fiad
Boolean Formulas”, TABLEAUX 20022002, p. 160-175.

[LIP 77] Lipski W., “On the logic of incomplete information” Proc. 6th International Sym-
posium on Mathematical Foundations of Computer Scieheeture Notes in Computer
Science, Vol. 53, p. 374-381, Springer-Verlag, Berlin/Néwk, 1977.

[MAS 00] MAssAccIF., DoNINI F., “Design and results of TANCS-2000Automated Rea-
soning with Analytic Tableaux and Related Methods, Int.fCArABLEAUX 20002000,
p. 52-56.

[MCC 69] MCCARTHY J., HAYES P. J., “Some Philosophical Problems From the Standpoint
of Artificial Intelligence”, MicHIE D., Ed.,Machine Intelligence 4. 463-502, Edinburgh
University Press, Edinburgh, 1969.

[PAN 04] PaN G., VARDI M. Y., “Symbolic Decision Procedures for QBF"Proceedings of
10th Int. Conf. on Principles and Practice of Constraint framming (CP 2004)2004,
p. 453-467.

[PAT 99] PATEL-SCHNEIDERP., HORROCKSI., “DLP and FaCT”, Automated Reasoning
with Analytic Tableaux and Related Methods, Int. Conf., TBBUX '99, 1999, p. 19-23.

[PAT 01] PATEL-SCHNEIDERP., SEBASTIANI R., “A new system and methodology for gener-
ating random modal formulae”Automated Reasoning, First Int. Joint Conf., IJCAR 2001
2001, p. 464-468.

[PNU 77] PNUELI A., “The temporal logic of programs”Proc. 18th IEEE Symp. on Founda-
tion of Computer Scienc&977, p. 46-57.

[PRA 76] PrRATT V. R., “Semantical considerations on Floyd-Hoare logi€toc. 17th IEEE
Symp. on Foundations of Computer Scied®¥6, p. 109-121.

[PRA 80] PRATT V., “A near-optimal method for reasoning about actiodgurnal of Com-
puter and System Sciencesl. 20, num. 2, 1980, p. 231-254.

BDD-based Decision Procedures i§&r 39

[RAN 95] RANJAN R., Aziz A., BRAYTON R., PLESSIERB., PIXLEY C., “Efficient BDD al-
gorithms for FSM synthesis and verificationProc. of IEEE/ACM International Workshop
on Logic Synthesjs995.

[REI83] REIFJ.H., SsTLAA. P.,“A multiprocessor network logic with temporal and spk
modalities”, Proc. 12th International Collog. on Automata, Languagex] rogramming
Lecture Notes in Computer Science, Vol. 104, p. 629-639in§pr-Verlag, Berlin/New
York, 1983.

[RIN99] RINTANEN J., “Constructing conditional plans by a theorem-provérpf A. I. Res.
vol. 10, 1999, p. 323-352.

[RUD 93] RuDELL R., “Dynamic Variable Ordering for Ordered Binary Decisibiagrams”,
International Conference on Computer-Aided Design (ICCI®DB3) 1993, p. 42-47.

[San 01] N MIGUEL AGUIRRE A., VARDI M., “Random 3-SAT and BDDs: The Plot
Thickens Further”, Principles and Practice of Constraint Programming - CP 20@1h
Int. Conf, 2001, p. 121-136.

[SEL 96] SELMAN B., MITCHELL D., LEVESQUEH., “Generating Hard Satisfiability Prob-
lems”, Artificial Intelligence vol. 81, num. 1-2, 1996, p. 17-29.

[SOM 98] SomENzI F., “CUDD: CU Decision Diagram package”,
http://visi.colorado.edu/fabio/CUDD/, 1998.

[SOM 00] SomEeNzi F., BLOEM R., “Efficient Biichi automata from LTL formulae”,Com-
puter Aided Verification, 12th Int. Conf., CAV 20@D00, p. 247-263.

[STO 77] SrocKMEYER L., “The polynomial-time hierarchy”, Theo. Comp. Sgivol. 3,
1977, p. 1-22.

[TAC 99] TACCHELLA A., “*SAT system description”, Collected Papers from (DL’99).
CEUR 1999.

[TAN 93] TANI S., HAMAGUCHI K., YAJIMA S., “The Complexity of the Optimal Variable
Ordering Problems of Shared Binary Decision Diagram#&lgorithms and Computation,
4th International Symposium, ISAAC 993, p. 389-398.

[VAR 97] VARDI M., “What makes modal logic so robustly decidable?”MMERMAN N.,
KoLAITIs P., Eds.Descriptive Complexity and Finite Models. 149-183, AMS, 1997.

[VOR 01] VoroNkov A., “How to optimize proof-search in modal logics: new medbof
proving redundancy criteria for sequent calculiComp. Logi¢ vol. 2, num. 2, 2001,
p. 182-215.

