
BDD-Based Decision Procedures for the Modal
Logic K

1

Guoqiang Pan* — Ulrike Sattler** — Moshe Y. Vardi***

* Department of Computer Science, Rice University, Houston,Texas, 77005, USA.

gqpan@cs.rice.edu

** School of Computer Science, University of Manchester, Oxford Road, Manchester
M13 9PL, UK

sattler@cs.man.ac.uk

*** Department of Computer Science, Rice University, Houston,Texas, 77005, USA.

vardi@cs.rice.edu

ABSTRACT.We describe BDD-based decision procedures for the modal logic K. Our approach
is inspired by the automata-theoretic approach, but we avoid explicit automata construction.
Instead, we compute certain fixpoints of a set of types—whichcan be viewed as an on-the-fly
emptiness of the automaton. We use BDDs to represent and manipulate such type sets, and
investigate different kinds of representations as well as a“level-based” representation scheme.
The latter turns out to speed up construction and reduce memory consumption considerably.
We also study the effect of formula simplification on our decision procedures. To proof the
viability of our approach, we compare our approach with a representative selection of other
approaches, including a translation ofK to QBF. Our results indicate that the BDD-based
approach dominates for modally heavy formulae, while search-based approaches dominate for
propositionally heavy formulae.

KEYWORDS:Modal Logic, Binary Decision Diagram

1. Introduction

In the last 20 years, modal logic has been applied to numerousareas of com-
puter science, including artificial intelligence [BRA 94, MCC 69], program verifica-
tion [CLA 86, PRA 76, PNU 77], hardware verification [BOC 82, REI 83], database
theory [CAS 82, LIP 77], and distributed computing [BUR 88, HAL 90]. In these
applications, deciding satisfiability of a modal formula isone of the most basic rea-

1. Portions of this paper have been presented at CADE-18 and CADE-19.

Journal of Applied Non-Classical Logics— June 28, 2005, Special Issue on Implementation
of Logics 1th submission.

2 Journal of Applied Non-Classical Logics— June 28, 2005, Special Issue on Implementa-
tion of Logics 1th submission.

soning problem, and various techniques have been developedand optimized to de-
cide it. Since satisfiability of even the smallest normal modal logic,K, is PSPACE-
complete [LAD 77, STO 77, HAL 92], it is clear that different techniques are use-
ful for inputs of different characteristics, and that it is unlikely that one technique
would be able to always outperform others. As modal logic extends propositional
logic, the study in modal satisfiability is deeply connectedwith that of propositional
satisfiability. For example, tableau-based decision procedures forK are presented
in [LAD 77, HAL 92, PAT 99]. Such methods are built on top of thepropositional
tableau construction procedure by forming a fully expandedpropositional tableau
and generating successor nodes “on demand”. A similar method uses the Davis-
Logemann-Loveland method [DAV 62] as the propositional engine by treating all
modal subformulae as propositions and, when a satisfying assignment is found, check-
ing modal subformulae for the legality of this assignment [GIU 00, TAC 99]. In the
last years, we have seen efforts to combine the optimizations used in tableau and
DPLL based approaches. For example, using semantic branching and Boolean con-
straint propagation in a tableau-based solver made DLP and FaCT some of the fastest
K solvers [PAT 99].

Non-propositional methods take a different approach to theproblem. It has been
shown recently that, by embeddingK into first order logic, a first-order theorem
prover can be used for deciding modal satisfiability [HUS 00,ARE 00]. The latter
approach works nicely with a resolution-based first-order theorem prover, which can
be used as a decision procedure for modal satisfiability by using appropriate reso-
lution strategies [HUS 00]. Other approaches for modal satisfiability such as mo-
saics, type elimination, or automata-theoretic approaches are well-suited for prov-
ing exact upper complexity bounds, but are rarely used in actual implementations
[BLA 01, HAL 92, VAR 97].

In this paper, we restrict our attention to the smallest normal modal logicK, and
describe a novel approach to decide the satisfiability of formulae in this logic. The
basic algorithms presented here are inspired by the automata-theoretic approach for
logics with the tree-model property [VAR 97]. In that approach, one proceeds in two
steps. First, an input formula is translated to a tree automaton that accepts all tree mod-
els of the formula. Second, the automaton is tested for non-emptiness, i.e., whether
it accepts some tree. In our approach, we combine, in essence, the two steps, and
we carry out the non-emptiness test without explicitly constructing the automaton.
As pointed out in [BAA 01], the inverse method described in [VOR 01] can also be
viewed as an application of the automata-theoretic approach that avoids an explicit
automata construction.

The logicK is simple enough that the automaton’s non-emptiness test consists
of a single fixpoint computation, which starts with a set of states and then repeat-
edly applies a monotone operator until a fixpoint is reached.1 In the automaton that
correspond to a formula, each state is atype, i.e., a set of formulae satisfying some
consistency conditions. The algorithms presented here allstart from some set of types,

1. This approach can be easily extended toK (m).

BDD-based Decision Procedures forK 3

and then repeatedly apply a monotone operator until a fixpoint is reached: either they
start with the set ofall types and remove those types with “possibilities”3ϕ for which
no “witness” can be found, or they start with the set of types having no possibilities
3ϕ, and add those types whose possibilities are witnessed by a type in the set. The
two approaches, top-down and bottom-up, corresponds to thetwo ways in which non-
emptiness can be tested for automata forK : via a greatest fixpoint computation for
automata on infinite trees or via a least fixpoint computationfor automata on finite
trees. The bottom-up approach is closely related to the inverse method described in
[VOR 01], while the top-down approach is reminiscent of the type-elimination method
developed for propositional dynamic logic in [PRA 80].

The key idea underlying our implementation is that of representing sets of types
and operating on them symbolically. Our implementation uses Binary Decision Di-
agrams (BDDs) [BRY 86]: BDDs are compact representations ofpropositional for-
mulae, and are commonly used as a compact representation of states. One of their
advantages is that they come with efficient operations for certain manipulations. By
representing a set of types by a BDD, we are able to symbolically construct fixpoint
type sets efficiently.

We then study optimization issues for BDD-basedK solvers. First, we focus on
alternative representations that can be used for a set of states. Types exert a strict
consistency requirement on the assignment to related subformulae, which is a major
factor in the size of the BDD used to represent the type sets. For example, if a type
contains a conjunction, then it must also contain both conjuncts. For the type-based
approach, we have employed thebox normal form: negation can only be applied to
atoms or box formulae (and no diamonds are available). In contrast, in theparticle-
based approach, we employ the standard negation normal form, and thus deal with
both diamond and box formulae.

Secondly, for both the type- and the particle-approach, we investigate aleanap-
proach: intuitively, our lean sets only capture the minimal, atomic information. E.g.,
conjunctions are only implicitly represented by the presence of both conjuncts. This
clearly reduces BDD size, but also makes the manipulation ofBDDs more complex.

Thirdly, we take advantage of the properties ofK, namely the finite-tree-model
property. A set of types/particles can be seen to encode a model for the formula. By
considering a layered model instead of a general model, we modify the bottom-up
procedure so that each step only checks witness for diamond operators occurring at a
specific depth. This approach yields further performance improvements.

Fourthly, we turn to a pre-processing optimization. The idea is to apply some light-
weight reasoning to simplify the input formula before starting to apply heavy-weight
BDD operations. In the propositional case, a well-known preprocessing rule is the
pure-literal rule [DAV 62]. Preprocessing has also been shown to be usefulfor linear-
time formulae [SOM 00, ETE 00]. Our preprocessing is based ona modal pure-literal
simplification which takes advantage of the tree-model property ofK. We show that
adding preprocessing yields a fairly significant performance improvements, enabling
us to handle the hard formulae of TANCS 2000.

4 Journal of Applied Non-Classical Logics— June 28, 2005, Special Issue on Implementa-
tion of Logics 1th submission.

Finally, we also focus on BDD-specific optimizations on our implementation of the
algorithm. Besides using optimized image finding techniques like conjunctive clus-
tering with early quantification [BUR 91, GEI 94, RAN 95, CIM 00], we also study
the issue of variable order, which is known to be of critical importance to BDD-
based algorithms. The performance of BDD-based depends crucially on the size of
the BDDs and variable order is a major factor in determining BDD size, as a “bad”
order may cause an exponential blow-up [BRY 86]. While finding an optimal variable
order is known to be intractable [TAN 93], heuristics often work quite well in prac-
tice [RUD 93]. We focus here on finding a good initial variableorder tailored to the
application at hand, but for large problem instances we haveno choice but to invoke
dynamic variable ordering, provided by the BDD package. Ourfinding is that choos-
ing a good initial variable order does improve performance,but the improvement is
rather modest.

This paper describes a viability study for our approach. To compare the differ-
ent optimizations of BDD-based approaches, we use existingbenchmarks of modal
formulae, TANCS 98 [HEU 96] and TANCS 2000 [MAS 00], and we used *SAT
[TAC 99] as a reference. A straightforward implementation of our approach did not
yield a competitive implementation, but an optimized implementation did yield a com-
petitive implementation, calledKBDD, indicating the viability of our approach.

To assess the competitiveness of our optimized solver, we compare it with the
native solvers *SAT and DLP as well as the translation-basedsolver MSPASS. Ad-
ditionally, we also developed a translation fromK to QBF (which is of independent
interest), and apply semprop, which is a highly optimized QBF solver [LET 02]. Our
results indicate that the BDD-based approach dominates formodally heavy formulae
while search-based approaches dominate for propositionally-heavy formulae.

The paper is organized as follows. After introducing the modal logic K in Sec-
tion 2, we present our algorithms and show them to be sound andcomplete in Sec-
tion 3. In Section 4, we discuss four optimizations that we applied. In Section 5, we
present a BDD-based implementation. An embedding ofK into QBF is presented in
Section 6. Finally, we present the empirical evaluation, both between different opti-
mizations in the BDD-based framework and with other solvers, in Section 7.

2. Preliminaries

In this section, we introduce the syntax and semantics of themodal logicK, as
well as types and how they can be used to encode a Kripke structure.

The set ofK formulae is constructed from a set of propositional variablesΦ =
{q1, q2, . . .}, and is the least set containingΦ and being closed under the Boolean
operators∧ and¬ and the unary modality2. As usual, we use other Boolean operators
as abbreviations, and3ϕ as an abbreviation for¬2¬ϕ. The set of propositional
variables used in a formulaϕ is denotedAP (ϕ).

BDD-based Decision Procedures forK 5

A formula inK is interpreted in a Kripke structureK = 〈V,W,R,L〉, whereV is
a set (containingΦ) of propositions,W is a set of possible worlds,R ⊆ W ×W is
the accessibility relation on worlds, andL : V → 2W is a labeling function for each
state. The notion of a formulaϕ beingsatisfiedin a worldw of a Kripke structureK
(written asK,w |= ϕ) is inductively defined as follows:

–K,w |= q for q ∈ Φ iff w ∈ L(q)

–K,w |= ϕ ∧ ψ iff K,w |= ϕ andK,w |= ψ

–K,w |= ¬ϕ iff K,w 6|= ϕ

–K,w |= 2ϕ iff, for all w′, if (w,w′) ∈ R, thenK,w′ |= ϕ

The abbreviated operators can be defined as follows:

–K,w |= ϕ ∨ ψ iff K,w |= ϕ orK,w |= ψ

–K,w |= 3ϕ iff there existsw′ with (w,w′) ∈ R andK,w′ |= ϕ.

A formulaψ is satisfiableif there existK,w with K,w |= ψ. In this case,K is called
a modelof ψ. Two formulaeϕ andψ are said to the equivalent if, for all structuresK
and all worldsw ∈W ,K,w |= ϕ if and only ofK,w |= ψ.

For our concern here, the most important property ofK is the tree-model prop-
erty, which allows automata-theoretic approaches to be applied. In fact, it has the
strongerfinite-tree-model property, which will allow both top-down and bottom-up
construction of such automata.

THEOREM 1 ([BLA 01]). — K has the finite-tree-model property, i.e., every sat-
isfiable formulaϕ has a modelK,w such thatR is a finite tree with rootw0 and
K,w0 |= ϕ.

In fact, a formulaψ has a finite tree model that is only as deep as itsmodal depth,
which we define next as usual; and we will use this “small tree model” property for
the “level” optimizations in our algorithm.

Given a formulaψ, call its set of subformulaesub(ψ). Forϕ ∈ sub(ψ), we define
depth(ϕ) as follows:

– if ϕ ∈ Φ, thendepth(ϕ) = 0;

– if ϕ = ¬ϕ′, thendepth(ϕ) = depth(ϕ′);

– If ϕ = ϕ′ ∧ϕ′′ orϕ = ϕ′ ∨ϕ′′, thendepth(ϕ) = max{depth(ϕ′), depth(ϕ′′)},

– If ϕ = 2ϕ′ orϕ = 3ϕ′, thendepth(ϕ) = depth(ϕ′) + 1.

We restrict our attention to formulae in a certain normal form. A formulaψ is said
to be inbox normal form(BNF) if all its subformulae are of the formϕ ∧ ϕ′, ϕ ∨ ϕ′,
2ϕ, ¬2ϕ, q, or¬q whereq ∈ AP (ψ). EachK formulae can be obviously converted
into an equivalent one in BNF that is of linear size. If not stated otherwise, we assume
all formulae to be in BNF.

6 Journal of Applied Non-Classical Logics— June 28, 2005, Special Issue on Implementa-
tion of Logics 1th submission.

The closureof a formulacl(ψ) is defined as the smallest set such that, for all
subformulaϕ of ψ, if ϕ is not¬ϕ′, then{ϕ,¬ϕ} ⊆ cl(ψ). Please note thatcl(ψ) may
contain negated conjunctions and negations, and thus formulae that are not in BNF.

The first algorithms we present work ontypes, i.e., maximal sets of formulae that
are consistent w.r.t. the Boolean operators, and where (negated) box formulae are
treated as atoms. A set of formulaea ⊆ cl(ψ) is called aψ-type(or simply a type ifψ
is clear from the context) if it satisfies the following conditions:

– If ϕ = ¬ϕ′, thenϕ ∈ a iff ϕ′ /∈ a.

– If ϕ = ϕ′ ∧ ϕ′′, thenϕ ∈ a iff ϕ′ ∈ a andϕ′′ ∈ a.

– If ϕ = ϕ′ ∨ ϕ′′, thenϕ ∈ a iff ϕ′ ∈ a orϕ′′ ∈ a.

For a set of typesA, we define a maximal accessibility relation∆ ⊆ A×A as follows.

∆(a, a′) iff for all 2ϕ′ ∈ a, we haveϕ′ ∈ a′.

Given a set of typesA ⊆ 2cl(ψ), we can construct a Kripke structureKA using∆ as
follows: KA = 〈AP (ψ), A,∆, L〉 with a ∈ L(q) iff q ∈ a. Such a Kripke structure
KA is almosta canonical model [BLA 01]—the only difference can be seen when
trying to prove thatKA satisfies, for allϕ ∈ cl(ψ):

CLAIM 2. — KA, a |= ϕ iff ϕ ∈ a.

This statement is clearly true for atomic and propositionalϕ by definition of types,
and it is also true forϕ = 2ϕ′ by construction of∆. The only case that fails is the
caseϕ = ¬2ϕ′ ∈ a: it might be the case thatϕ′ ∈ b for all b with ∆(a, b). If this
is the case, then we say that the negated box formula¬2ϕ′ in a is not witnessedby
any b in A. In the following section, we will describe operators on type sets whose
fixpointA then indeed satisfies Claim 2.

3. Our algorithms

The two algorithms presented here take a certain initial setof types and repeatedly
apply a monotone operator to it. If this application reachesa fixpointA, we can show
that the above construction ofKA indeed a satisfies Claim 2, i.e., all negated box
formulae are indeed “witnessed” by someb ∈ A. This Kripke structure is then a
model ofψ iff ψ ∈ a for somea ∈ A.

The first algorithm follows a “top-down” approach, i.e., it starts with the setA ⊆
2cl(ψ) of all valid types, and the monotone operator removes those types containing
negated box formulae which are not witnessed in the current set of types. Dually, the
second, “bottom-up” approach starts with the set of types that do not contain negated
box formulae, and then adds those types whose negated box formulae are witnessed
in the current set of types.

In the following, we will call our class of algorithmsKBDD since we intend to
use BDD as the state set representation.

BDD-based Decision Procedures forK 7

Both algorithms follow the following scheme:

X ⇐ Init(ψ)
repeat
X ′ ⇐ X
X ⇐ Update(X ′)

until X = X ′

if existsx ∈ X such thatψ ∈ x then
return “ψ is satisfiable”

else
return “ψ is not satisfiable”

end if

If this algorithm is started with a finite setInit(ψ) and uses a monotoneUpdate(·)
operator, it obviously terminates. In fact, after defining these two operators, we will
show that it will terminate indepth(ψ) + 1 iterations.

3.1. Top-down approach

The top-down approach is closely related to the type elimination approach which
is, in general, used for more complex modal logics, see, e.g., Section 6 of [HAL 92].
For the top-down algorithm, the functionsInit(ψ) andUpdate(·) are defined as fol-
lows:

– Init(ψ) is the set ofall ψ-types.

– Update(A) := A \ bad(A), wherebad(A) are the types inA that contain un-
witnessed negated box formulae. More precisely,

bad(A) := {a ∈ A | there exists¬2ϕ ∈ a and, for allb ∈ A with ∆(a, b),
we haveϕ ∈ b}.

THEOREM 3. — The top-down algorithm decides satisfiability ofK formulae.

PROOF. — LetA be the set of types that is the fixpoint of the top-down algorithm, i.e.,
Update(A) = A. We useA0 for Init(ψ) andAi for the set of types afteri iterations.
SinceUpdate(·) is monotone and eachAi is a subset of the finitecl(ψ), the top-down
algorithm terminates. More precisely,Ai+1 is obtained fromAi by removing types
containing a formulaϕ with depth(ϕ) > i. As a consequence, the algorithm stops
after at mostdepth(ψ) + 1 iterations. To finish the proof, it thus suffices to prove
soundness and completeness.

LEMMA 4 (SOUNDNESS). — For each typea ∈ A and formulaϕ ∈ cl(ψ), if ϕ ∈ a,
thenKA, a |= ϕ.

PROOF. — By induction on the structure of formulae:

– if ϕ ∈ AP (ψ), thenKA, a |= ϕ iff ϕ ∈ a by construction ofL.

8 Journal of Applied Non-Classical Logics— June 28, 2005, Special Issue on Implementa-
tion of Logics 1th submission.

– if ϕ = ¬q, ϕ = ϕ′ ∧ ϕ′′, or ϕ = ϕ′ ∨ ϕ′′, the claim follows immediately by
induction and the definition of types.

– if ϕ = ¬(ϕ′ ∧ ϕ′′), thenϕ ∈ a implies thatϕ′ 6∈ a or ϕ′′ 6∈ a since, otherwise,
ϕ′ ∧ ϕ′′ would be ina. By maximality ofa, this implies that¬ϕ′ ∈ a or ¬ϕ′′ ∈ a,
and thus we haveKA, a |= ¬ϕ′ orKA, a |= ¬ϕ′′ by induction. HenceKA, a |= ¬ϕ.

– the caseϕ = ¬(ϕ′ ∨ ϕ′′) is completely analogous.

– let ϕ = 2ϕ′ ∈ a. The definition of∆ implies thatϕ′ ∈ a′ for all a′ with
∆(a, a′). By induction,KA, a

′ |= ϕ′, for all a′ with ϕ′ ∈ a′, and thusKA, a |= 2ϕ′ .

– if ϕ = ¬2ϕ′ ∈ a, thena /∈ bad(A) becauseUpdate(A) = A, and thus there
existsb ∈ A with ∆(a, b) andϕ′ /∈ b. By definition of types,¬ϕ′ ∈ b, and thus we
haveKA, b |= ¬ϕ′ by induction. HenceKA, a |= ¬2ϕ′.

■

LEMMA 5 (COMPLETENESS). — For all ϕ in cl(ψ), if ϕ is satisfiable, then there
exists somea ∈ A with ϕ ∈ a.

PROOF. — Given a satisfiable formulaϕ, take a modelK = 〈AP (ψ),W,R,L〉 with
K,wϕ |= ϕ. For a worldw ∈W , we define its typea(w) = {% ∈ cl(ψ) | K,w |= %},
and we defineA(W) = {a(w) | w ∈ W}. Obviously, due to the semantics of the
box modality,R(v, w) implies∆(a(v), a(w)). Then we show, by induction oni, that
A(W) ⊆ Ai. Sinceϕ ∈ a(wϕ) by construction, this proves the lemma.

– A(W) ⊆ A0 sinceA0 containsall typesa ⊆ cl(ψ).

– LetA(W) ⊆ Ai and assume thatA(W) * Ai+1. Then there is somew ∈ K
such thata(w) ∈ bad(Ai). So there is some¬2% ∈ a(w) and, for allb ∈ Ai with
∆(a(w), b), we have% ∈ b. Hence there is nov ∈ W with R(w, v) andK, v |= ¬%,
in contradiction toK,w |= ¬2%.

■

■

3.2. Bottom-up approach

As mentioned above, the top-down algorithm starts with all valid types, and repeat-
edly removes types with unwitnessed formulae. In contrast,the bottom-up algorithm
starts with a small set of types (i.e., those without negatedbox formulae), and re-
peatedly adds those types whose negated box formulae are witnessed in the current
set. For the bottom-up approach, the functionsInit(ψ) andUpdate(·) are defined as
follows:

– Init(ψ) is the set of all those types that do not require any witnesses, which
means that they do not contain any negated box formula or, equivalently, that they
contain all positive box formulae incl(ψ). More precisely,

Init(ψ) := {a ⊆ cl(ψ) | a is a type and2ϕ ∈ a for each2ϕ ∈ cl(ψ)}.

BDD-based Decision Procedures forK 9

– Update(A) := A ∪ supp(A), wheresupp(A) is the set of those types whose
negated box formulae are witnessed by types inA. More precisely,

supp(A) := {a ⊆ cl(ψ) | a is a type and, for all¬2ϕ ∈ a, there existsb ∈ A
with ¬ϕ ∈ b and∆(a, b)}.

We say that a type insupp(A) is witnessedby a type inA.

THEOREM 6. — The bottom-up algorithm decides satisfiability ofK formulae.

PROOF. — As in the proof of Theorem 3, we useA for the fixpoint of the bottom-
up algorithm,A0 for Init(ψ), andAi for the set of types afteri iterations. Again,
Update(·) is monotone andA0 is finite, and thus the bottom-up algorithm terminates.
More precisely,Ai+1 is obtained fromAi by adding types containing a formulaϕ
with depth(ϕ) > i. As a consequence, the algorithm stops after at mostdepth(ψ)+1
iterations. To finish the proof, we prove soundness and completeness.

LEMMA 7 (SOUNDNESS). — For each typea ∈ A and formulaϕ ∈ cl(ψ), if ϕ ∈ a,
thenKA, a |= ϕ.

PROOF. — Again, soundness can be proved by induction on the structure of formulae.
We restrict our attention to the only interesting case, namely ϕ = ¬2ϕ′ ∈ a. Let
ϕ ∈ a. By construction ofA, there is someb ∈ A with ¬ϕ′ ∈ b and∆(a, b). Thus,
by induction,KA, b |= ¬ϕ′, and thusKA, a |= ϕ. .

■

LEMMA 8 (COMPLETENESS). — For all ϕ ∈ cl(ψ), if ϕ is satisfiable, then there
exists somea ∈ A with ϕ ∈ a.

PROOF. — It is well-known thatK has the finite-tree-model property (see, e.g.
[HAL 92]), i.e., each satisfiableK formulaψ has a model whose relational struc-
ture forms a finite tree. Take such a modelK = 〈AP (ψ),W,R,L〉 with K,wϕ |= ϕ,
and define the mappingsa(·) andA(·) from worlds inK to types as in the proof of
Lemma 5. We show by induction oni that, if i is the maximal distance between a node
w ∈W and the leaves ofK ’s subtree rooted atw, thena(w) ∈ Ai. SinceAj ⊆ Aj+1

for all j andK forms a finite tree model ofϕ, this proves the lemma.

– If i = 0, thenw is a leaf inK (i.e., there is now′ ∈ W with R(w,w′)), and thus
K,w 6|= ¬2ϕ′ holds for all¬2ϕ′ ∈ cl(ψ). Hencea(w) ∈ A0.

– Let i > 0 andw a node withi the maximal distance betweenw and the leaves of
K ’s subtree rooted atw. Then, by induction, for each childw′ of w, we havea(w′) ∈
Ai−1. NowR(w,w′) implies∆(a(v), a(w)). Thus, for each¬2ϕ′ ∈ a(w), there is
somew′ ∈ W with a(w′) ∈ Ai−1 and¬ϕ′ ∈ a(w′). Thusa(w) ∈ supp(Ai−1) ⊆ Ai.

■

■

10 Journal of Applied Non-Classical Logics— June 28, 2005, Special Issue on Implementa-
tion of Logics 1th submission.

4. Optimizations

The decision procedures described above handles a formula in three steps. First,
the formula is converted into box normal form. Then, the initial set of types is
generated—we can think of this set as being represented by a set of bit vectors. Finally,
this set is updated through a fixpoint process. The answer of the decision procedure
depends on a simple syntactic check of this fixpoint. In this section, we will describe
four orthogonal optimization techniques, working on different stages in the procedure.

4.1. Particles

The approaches presented so far strongly depend on the fact that we use the box
normal form, and they can be said to be redundant: if a type contains two conjuncts of
some subformula of the input, then it also contains the corresponding conjunction—
although the truth value of the latter is determined by the truth values of the former.
Now we propose a representation where we do not insist on sucha redundancy, which
possibly reduces the size of the representation of the corresponding sets. To do so, it
is convenient to work on formulae in a different normal form.

A K formulaψ is said to be innegation normal form(NNF) if all its subformulae
are of the formϕ∧ϕ′, ϕ∨ϕ′, 2ϕ, 3ϕ, q, or¬q whereq ∈ AP (ψ). It is well-known
that everyK formula can be converted into an equivalent on in NNF that is of linear
size. When talking about “particles”, we assume that all formulae are in NNF. As
before, we usesub(ψ) to denote the set of subformulae ofψ.

A setp ⊆ sub(ψ) is aψ-particle if it satisfies the following conditions:

– If ϕ = ¬ϕ′, thenϕ ∈ p impliesϕ′ /∈ p.

– If ϕ = ϕ′ ∧ ϕ′′, thenϕ ∈ p impliesϕ′ ∈ p andϕ′′ ∈ p.

– If ϕ = ϕ′ ∨ ϕ′′, thenϕ ∈ p impliesϕ′ ∈ p orϕ′′ ∈ p.

Thus, in contrast to a type, a particle may contain bothϕ′ andϕ′′, but neitherϕ′ ∧ ϕ′′

norϕ′ ∨ ϕ′′.

For particles,∆(·, ·) is defined as for types. From a set of particlesP and the
corresponding∆(·, ·), we can construct a Kripke structureKP in the same way as
from a set of types.

For the top-down approach, the auxiliary functionsInit(·) andUpdate(·) for
particles are defined as follows:

– Init(ψ) is the set of allψ-particles.

– Update(P) = P \ bad(P), wherebad(P) is the particles inP that contain
unwitnessed diamond formulae, i.e.

bad(P) := {p ∈ P | there exists3ϕ ∈ p such that, for allq ∈ P
with ∆(p, q), we haveϕ /∈ q}.

BDD-based Decision Procedures forK 11

THEOREM 9. — The top-down algorithm for particles decides satisfiability of K
formulae.

PROOF. — Termination and the linear bound on the number of iterations are identical
to the one of Theorem 3.

LEMMA 10. — (Soundness)For each particlep ∈ P and formulaϕ ∈ sub(ψ), if
ϕ ∈ p, thenKP , p |= ϕ.

PROOF. — The proof is analogous to one of Lemma 4, except for the factthat the
¬2ϕ′ case needs to be replaced with the3ϕ′ one.

– if ϕ = 3ϕ′ ∈ p, thenp /∈ bad(P) implies that there existsq ∈ P with ∆(p, q)
andϕ′ ∈ q. By induction,KP , q |= ϕ′, and thusKP , p |= 3ϕ′.

■

LEMMA 11. — (Completeness)For all ϕ ∈ sub(ψ), if ϕ is satisfiable, then there
exists somep ∈ P with ϕ ∈ p.

PROOF. — The proof is analogous to the one of Lemma 5: we take a modelK of
ϕ, generate a particle setP (W) from the states ofK, and show thatP (W) ⊆ P by
induction on the number of iterationsi:

– P (W) ⊂ P 0 sinceP 0 containsall particlesp ⊆ sub(ψ).

– LetP (W) ⊆ P i and assume thatP (W) * P i+1. Then there is somew ∈ K
such thatp(w) ∈ bad(P i). So there is some3ϕ ∈ p(w) and, for allq ∈ Ai with
∆(p(w), q), we haveϕ /∈ q. Hence there is nov ∈ W with R(w, v) andK, v |= ¬ϕ,
in contradiction toK,w |= 3ϕ.

■

■

As for types, we also define a bottom-up algorithm for particles, and we do this by
simply setting our two auxiliary functions accordingly:

– Init(ψ) := {p ⊆ sub(ψ) | p is a particle and3ϕ /∈ p for all 3ϕ ∈ sub(ψ)} is
the set ofψ-particlesp that do not contain diamond formulae.

– Update(P) := P ∪ supp(P), wheresupp(P) is the set of witnessed particles
defined as follows:

supp(P) := {p ⊆ sub(ψ) | p is aψ-particle and, for all3ϕ ∈ p,
there existsq ∈ P with ϕ ∈ q and∆(p, q)}.

Again, we obtain a decision procedure, and this can be provedas before.

THEOREM 12. — The bottom-up algorithm for particles decides satisfiability of K
formulae.

As mentioned before, we can represent a particle or a type as abit vector, and we
can encode a set of bit vectors in a BDD. It is easy to see that bit vectors for particles

12 Journal of Applied Non-Classical Logics— June 28, 2005, Special Issue on Implementa-
tion of Logics 1th submission.

may be longer than bit vectors for types because, for example, our input may involve
subformulae2p and 3¬p. This, in turn, means that encoding particle sets using
BDDs may require more BDD variables than their encoding of types. The size of the
BDD may, however, be smaller for particles since particles impose fewer constraints
than types.2 Beside a possible reduction in the size required to encode a bit-vector
representation of particle sets, the particle-based approaches also can improve run
time of our algorithms. From the definition ofbad andsupp, we can see that, in the
type-based approaches, for each fixpoint iteration and eachtype, we have to check all
box formulae—even though the “real” test is only required onthe negated ones that
are present in the type considered. In contrast, in the particle-based approaches, we
only have to check all diamond formulae that are subformulaeof the input.

4.2. Lean approaches

Even though the particle approach imposes less constraintsthan type approach, it
still involves redundant information: like types, particles may contain both a conjunc-
tion and the corresponding conjuncts. Next, to further reduce the size of the corre-
sponding BDDs, we propose a representation where we only keep track of the “non-
redundant” subformulae. We call this variation the lean approach, and we present it
for both the type and the particle approach and, for both top-down and bottom-up.

First, we define a set of “non-redundant” subformulaeatom(ψ) as the set of
those formulae incl(ψ) that are neither conjunctions nor disjunctions, i.e., each
ϕ ∈ atom(ψ) is of the form2ϕ′, q, ¬2ϕ′, or ¬q. By definition of types, each
ψ-typea ⊆ cl(ψ), corresponds one-to-one to alean typelean(a) := a ∩ atom(ψ).
To specify our algorithms for lean types, we define inductively a relation∈̇ between
(non-atomic) formulae and lean types as follows:ϕ ∈̇ a if

– ϕ ∈ atom(ψ) andϕ ∈ a,

– ϕ = ¬ϕ′ and notϕ′ ∈̇ a,

– ϕ = ϕ′ ∧ ϕ′′, ϕ′ ∈̇ a, andϕ′′ ∈̇ a, or

– ϕ = ϕ′ ∨ ϕ′′ andϕ′ ∈̇ a orϕ′′ ∈̇ a.

The top-down and bottom-up approach for types can be easily modified to work for
lean types: it suffices to modify the definition of the functionsbad andsupp as follows:

bad(A) := {a ∈ A | there exists¬2ϕ ∈ a and, for allb ∈ A with ∆(a, b),
we haveϕ ∈̇ b}.

supp(A) := {a ⊆ cl(ψ) | a is a type and, for all¬2ϕ ∈ a, there existsb ∈ A
with ¬ϕ ∈̇ b and∆(a, b)}.

2. Of course, BDD size is always formula dependent. In our experiments, we observed that
particle approaches gives BDD sizes between a small constant factor (i.e., 2-3) larger to orders
of magnitudes smaller compared to type approaches.

BDD-based Decision Procedures forK 13

The following theorem is then a direct consequence of the correctness of our algo-
rithms for types: given the one-to-one relationship between types and lean types, we
can easily see that, for a typea, its lean versiona′ = a∩ atom(ψ), and allϕ, we have
ϕ ∈̇ a′ iff ϕ ∈ a.

THEOREM 13. — The top-down and the bottom-up algorithm for lean types decide
satisfiability forK.

Analogously, we can define a lean representation for particles. First, we define
the relevant subformulaepart(ψ) as follows: Forϕ ∈ sub(ψ), if ϕ is 3ϕ′, 2ϕ′, q,
or ¬q, thenϕ is in part(ψ). For a particlep ⊆ sub(ψ), we define the corresponding
lean particlelean(p) as follows: lean(p) = p ∩ part(ψ). Because the constraints on
particles are more relaxed than those of types, more than oneparticle may lead to the
same lean particle. Secondly, we define the relation∈̃ between formulae and particles
as follows:ϕ ∈̃ a if

– ϕ ∈ part(ψ) andϕ ∈ a,

– ϕ = ϕ′ ∧ ϕ′′, ϕ′ ∈̃ a, andϕ′′ ∈̃ a, or

– ϕ = ϕ′ ∨ ϕ′′ andϕ′ ∈̃ a orϕ′′ ∈̃ a.

Thirdly, we define the relationssupp andbad for lean particles as follows:

bad(P) := {p ∈ P | there exists3ϕ ∈ p such that, for allq ∈ P
with ∆(p, q), we have notϕ ∈̃ q}.

supp(P) := {p ⊆ sub(ψ) | p is aψ-particle and, for all3ϕ ∈ p,
there existsq ∈ P with ϕ ∈̃ q and∆(p, q)}.

Again, correctness of the lean approach for particles follows from the correctness of
the particle algorithms.

THEOREM 14. — The top-down and the bottom-up algorithm for lean particlesde-
cide satisfiability forK.

Although lean approaches can possibly reduce the size required for representing
worlds, we have to pay for these savings since computingbad andsupp using lean
types and particles can be more complicated.

4.3. Level-based evaluation

In this last variation of our basic algorithms, we exploit the fact thatK enjoys the
finite-tree-model property, i.e., each satisfiable formulaψ of K has a finite tree model
of depth bounded by the depth of nested modal operatorsdepth(ψ) of ψ . We can think
of such a model as being partitioned intolayers, where all worlds that are at distancei
from the root are said to be in layeri. Instead of representing a complete model using a
set of particles or types, we represent each layer in the model using a separate set. For
a level-based approach in the context of the first-order approach toK, see [ARE 00].
Since only a subset of all subformulae appears in one layer, the representation can

14 Journal of Applied Non-Classical Logics— June 28, 2005, Special Issue on Implementa-
tion of Logics 1th submission.

be more compact. We only present this optimization for the approach using (full)
types—the particle approach and the lean approach can be constructed analogously.
For0 ≤ i ≤ depth(ψ), we write

cli(ψ) := {ϕ ∈ cl(ψ) | ϕ occurs at modal depthi in ψ},

and we adapt the definition of the maximal accessibility relation ∆ accordingly:

∆i(a, a
′) iff a ⊆ cli, a′ ⊆ cli+1, andϕ′ ∈ a′ for all 2ϕ′ ∈ a.

A sequence of sets of typesA = 〈A0, A1, . . . , Ad〉 with Ai ⊆ 2cli(ψ) can be
converted into a tree Kripke structure

KA = 〈AP (ψ), A0] . . .]Ad, R, L〉

as follows, where] denotes the disjoint union:

– For a worlda ∈ Ai andq ∈ AP (ψ), we definea ∈ L(q) iff q ∈ a.

– For a pair of statesa, a′, R(w,w′) = 1 iff, for somei, a ∈ Ai anda′ ∈ Ai+1

and∆i(a, a
′).

We define a bottom-up algorithm for level-based evaluation as follows:

d⇐ depth(ψ)
Xd ⇐ Initd(ψ)
for i = d− 1 downto0 do
Xi ⇐ Update(Xi+1, i)

end for
if existsx ∈ X0 whereψ ∈ x then
ψ is satisfiable.

else
ψ is not satisfiable.

end if

Please note that this algorithm works bottom-up in the sensethat it starts with the
leaves of a tree modelat the deepest leveland then moves up the tree model toward the
root, adding nodes that are “witnessed”. In contrast, the bottom-up approach presented
earlier starts withall leaves of a tree model.

For the level-based algorithm and types as data structure, the auxiliary functions
can be defined as follows:

– Initi(ψ) = {a ⊆ cli(ψ) | a is a type}.

– Update(A, i) = {a ∈ Initi(ψ) | for all ¬2ϕ ∈ a there existsb ∈
A with ¬ϕ ∈ b and∆i(a, b)}.

For a setA of types of formulae at leveli + 1, Update(A, i) represents all types
of formulae at leveli that are witnessed inA.

THEOREM 15. — The level-based algorithm for types is sound and complete.

BDD-based Decision Procedures forK 15

PROOF. — We write the sequence of assignment sets constructed by the level based
algorithm asA = 〈A0, A1, . . . , Ad〉 whered = depth(ψ). Termination afterd steps
is trivial.

LEMMA 16. — (Soundness)For all ϕ ∈ cli(ψ), anda ∈ Ai, if ϕ ∈ a, thenKA, a |=
ϕ.

Soundness can be proved as for the bottom-up approach, with the additional ob-
servation thatR only relates worlds inAi with worlds inAi+1.

LEMMA 17. — (Completeness)For ϕ ∈ cli(ψ), if ϕ is satisfiable, then there is a
typea ∈ Ai with ϕ ∈ a.

PROOF. — Letϕ ∈ cli(ψ) be satisfiable. We know from [HAL 92] thatϕ has a finite
tree modelKϕ = 〈AP (ψ),W,R,L〉 of depthdϕ = depth(ϕ) such thatKϕ, w0 |= ϕ
for the rootw0 ofKϕ. We also know from the definition ofdepth andcli thati+dϕ ≤
dψ = depth(ψ), and thus we have thatdϕ ≤ dψ− i. SinceKϕ is a tree model, we can
partition its set of worldsW into {W0,W1, . . . ,Wdϕ} such that eachw ∈ Wj occurs
at distancej from the root. Similar to our completeness proofs before, from a world
w ∈ Wj , we define a typea(w) as follows:a(w) = {% ∈ cl i+ jψ) | Kϕ, w |= %}.
We defineA(Wj) = {a(w) | w ∈ Wj} and now show thatA(Wj) ⊆ Ai+j by
induction on depthj:

– if j = dϕ, then, for each worldw ∈ Wdϕ , there is no worldw′ that isR-
accessible fromw. It follows that, for all% = ¬2%′, we haveKϕ, w 6|= %, and thus
% /∈ a(w). Sincea(w) is a type, we thus havea(w) ∈ Ai+j .

– let j < d and let% = ¬2%′ ∈ a(w). Hence there exists somew′ ∈ Wj+1 with
¬%′ ∈ a(w′). By induction,a(w′) ∈ Ai+j+1. Since this is true for each negated box
formula ina(w), we have thata(w) ∈ Ai+j by definition ofUpdate.

■

■

Analogously, a level-based algorithm can be defined for particles: letsubi(ψ) de-
note the set ofψ’s subformulae occurring at depthi in ψ, and define the auxiliary
functions as follows:

– Initi(ψ) = {p ⊆ subi(ψ) | p is a particle}.

– Update(P, i) = {p ∈ Initi(ψ) | for all 3ϕ ∈ p there existsq ∈ P with ϕ ∈
q and∆i(p, q)}.

The following theorem can be proved like the one for the type approach.

THEOREM 18. — The level-based algorithm for particle assignments is sound and
complete.

16 Journal of Applied Non-Classical Logics— June 28, 2005, Special Issue on Implementa-
tion of Logics 1th submission.

4.4. Formula simplification

We now turn to a high-level optimization, in which we apply some preprocessing
to the formula before submitting it toKBDD. The idea is to apply some light-weight
reasoning to simplify the input formula before starting to apply heavy-weight BDD
operations. In the propositional case, a well-known preprocessing rule is thepure-
literal rule [DAV 62], which can be applied both in a preprocessing step as well as
dynamically, following the unit-propagation step. Preprocessing has also been shown
to be useful for linear-time formulae [SOM 00, ETE 00] and fordescription logic
reasoner [HOR 00, HAA 01]. Our preprocessing is based on a modal pure-literal sim-
plification, which takes advantage of the layered-model property ofK.

When studying preprocessing for satisfiability solvers, two types of transformation
should be considered.

– Equivalence preserving transformations, when applied to someϕ, yield a for-
mulaϕ′ which is logically equivalent toϕ. Unit propagation is an example of an equiv-
alence preserving transformation which is used in model checking [SOM 00, ETE 00],
where the semantics of the formula needs to be preserved. Clearly, applying an equiv-
alence preserving transformation to a subformula yields anequivalent formula, and
thus these transformations can be applied to subformulae.

– Satisfiability preserving transformations, when applied to someϕ, yield a for-
mulaϕ′ which is satisfiable if and only ifϕ is satisfiable. Pure-literal simplification
[DAV 60] is an example of a satisfiability-preserving transformation. Such transfor-
mations allow for more aggressive simplifications, but cannot be applied to subformu-
lae, and they cannot be used for model checking.

Our preprocessing was designed to reduce the number of BDD operations called
by KBDD, though its correctness is algorithm independent. The focus of the simpli-
fication is on the following aspects:

1) The primary goal is to minimize the size of the formula. A smaller formula
leads to a reduction in BDD size as well as a reduction in the number of BDD opera-
tions and dynamic variable re-orderings.

2) We also aim at minimizing the number of modal operators in the formula. This
leads to a smaller transition relation, where we have a constraint for each2 sub-
formula, as well as a smaller number of BDD operations involved in witnessing3
subformulae.

We found that our preprocessing was beneficial for DLP, a tableau-based modal solver,
as well as *SAT, a DPLL-based solver, but not for MSPASS, a resolution-based solver.

4.4.1. Rewrite rules

Our preprocessing includes rewriting according to the rewrite rules given in Ta-
ble 1. It is easy to see that the rules are equivalence or satisfiability preserving. These
rules by themselves are only modestly effective forK formulae; they do become quite
effective, however, when implemented in combination with pure-literal simplification,

BDD-based Decision Procedures forK 17

described below. These rules allows us to propagate the effects of pure-literal simplifi-
cation by removing redundant portions of the formula after pure-literal simplification.
This usually allows more pure literals to be found and can greatly reduce the size of
the formula.

Table 1. Simplification rewriting rules forK

Propositional rules

Equivalence f ∧ true ; f f ∧ false ; false

f ∨ true ; true f ∨ false ; f
f ∧ f ; f f ∨ f ; f

f ∧ ¬f ; false f ∨ ¬f ; true

Modal rules

Equivalence 3 false ; false 2 true ; true

3f ∨ 3g ; 3(f ∨ g) 2f ∧ 2g ; 2(f ∧ g)
Satisfiability 3f ∧ 2g ∧ h ; 3(f ∧ g) ∧ h 3f ; f
preserving wheredepth(h) = 0.

4.4.2. Pure-literal simplification

To apply pure-literal simplification toK satisfiability solving, we first need to
extend it to the modal setting.

DEFINITION 19. — Given a setS of (propositional or modal) formulae in NNF, we
definelit(S) = {` ∈ S | ` = q or ` = ¬q, for someq ∈ Φ} as the set of literals ofS.
The setpure(S) is defined as the set of literals that have a pure-polarity occurrence in
S, i.e.,pure(S) := {` ∈ lit(S) | ¬̇` /∈ lit(S)} for ¬̇` the negation normal form of¬`.

It is well known that pure-literal simplification preservespropositional satisfiabil-
ity; that is, given a propositional formulaϕ, for any literal̀ ∈ pure(ϕ), ϕ is satisfiable
iff ϕ[`/ true] is satisfiable. There are a number of ways to extend the definition of pure
literals to modal logics. We first present a naive definition,and then explain how to
extend it.

DEFINITION 20. — For a formulaψ in NNF, we definepure(ψ) = pure(sub(ψ)) as
the set ofglobally pure literalsof ψ. Applying pure literal simplification toψ yields
a formulaψ′

G that is obtained fromψ by replacing each occurrence of each literal in
pure(ψ) with true.

Pure literal simplification can be made more efficient because K’s tree model
property implies that assignments to literals at differentmodal depths are in different
worlds, and thus independent of each other. Hence we define the following, stronger
version of pure literals simplification.

18 Journal of Applied Non-Classical Logics— June 28, 2005, Special Issue on Implementa-
tion of Logics 1th submission.

DEFINITION 21. — First, we define the levellevel(ψ, ϕ) of the occurrence of a sub-
formulaϕ in a formulaφ as follows:3

– If ψ = ϕ, thenlevel(ψ, ϕ) = 0;

– If ϕ = ϕ′∧ϕ′′,ϕ′∨ϕ′′, or ¬ϕ′, thenlevel(ψ, ϕ′) = level(ψ, ϕ′′) = level(ψ, ϕ);

– If ϕ = 2ϕ′ or 3ϕ′, thenlevel(ψ, ϕ′) = level(ψ, ϕ) + 1.

For ψ in NNF, we definelevel-pure literalsby purei(ψ) = pure(subi(ψ)), for
0 ≤ i ≤ depth(ψ), and we defineψ[purei(ψ)/ true]i to be the result of substitut-
ing each occurrence at leveli of a literal in purei(ψ) with true. Applying level-
wise pure literal simplification toψ yields a formulaψ′

L = ψ[pure0(ψ)/ true]0 . . .
[puredepth(ψ)(ψ)/ true]depth(ψ).

It is possible to push this idea of “separation” further. Because each world in the
model may satisfy a different subset of formula, if a literaloccurs both positively and
negatively at leveli inside a diamond subformula, then we still might replace it with
true whilst preserving satisfiability. However, checking whether a subformula may be
substituted withtrue then involves such a huge overhead that we do not believe thatit
justifies its implementation.

We now prove that pure-literal simplification preserves satisfiability.

THEOREM 22. — Letψ be in NNF. Thenψ is satisfiable iffψ′
G is satisfiable iffψ′

L is
satisfiable.

PROOF. — We writeψ′ instead ofψ′
G orψ′

L, when the formula used is clear from the
context. First, we show that substituting a single pure literal ` preserves satisfiability.
Theorem 22 follows then by induction on the number of pure literals.

The only-if direction is due to the fact that the2 and3 operators aremonotone
[BLA 01]. More precisely, letψ be a formula in NNF,α a subformula occurrence of
ψ, andβ a formula that is logically implied byα, thenψ[α/β] is logically implied by
ψ. Since everỳ impliestrue, satisfiability ofψ implies satisfiability ofψ′.

For the if direction, letK ′ = 〈Φ,W,R,L′〉 be a finite tree Kripke structures of
depthdepth(ψ) with w0 ∈ W the root of the tree andK ′, w0 |= ψ′.

– Globally pure literals, i.e.,ψ′ = ψ′
G. Since` does not occur inψ′

G, we can as-
sume thatL′ does not define a truth value for`. We construct a modelK = (W,R,L)
fromK ′ by takingL to be the following extension ofL′: if ` ∈ AP , thenL(`) = W ,
otherwisè = ¬q for someq ∈ AP and we setL(`) = ∅. We claim that, for every
worldw ∈W and every formulaϕ ∈ sub(ψ),K ′, w |= ϕ[`/ true] impliesK,w |= ϕ.

This claim is an immediate consequence of the fact that, for all w ∈ W ,K,w |= `.

– Level-pure literals: AssumeK ′, w0 |= ψ′, and consider the occurrence of` in ψ
at leveli. For 0 ≤ i ≤ depth(ψ), letWi = {w | distance betweenw andw0 = i}.
We constructK from K ′ by definingL as follows: (1)L(q) = L′(q) for eachq ∈

3. Please note that a subfomula can occur at more than one levelin a formula.

BDD-based Decision Procedures forK 19

Φ \ AP (l). (2) L(q) ∩Wj = L′(q) ∩ Wj for eachj 6= i, (3) if ` ∈ AP , then set
L(`) ∩Wi = Wi, otherwise setL(`) ∩Wi = ∅.

For eachϕ ∈ subi(ψ) andw ∈ Wi, we have thatK ′, w |= ϕ[`/ true]d−i implies
K,w |= ϕ. This is an immediate consequence of the fact that, for allw ∈ Wi,
K,w |= `. SinceK andK ′ coincide on the interpretation of all propositional variables
in worlds inW \Wi, and on the interpretation of all propositional variables different
fromAP (`) in all worlds, it follows thatK,w0 |= ψ[`/ true]d.

■

5. Implementation

In this section, we describe how to implement our algorithmsand their variations
using Binary Decision Diagrams (BDDs).

5.1. Base algorithms

We use Binary Decision Diagrams (BDDs) [BRY 86, AND 98] to represent sets
of types. BDDs, or more precisely, Reduced Ordered Binary Decision Diagrams
(ROBDDs), are obtained from binary decision trees by following a fixed variable
splitting order and by merging nodes that have identical child-diagrams. BDDs pro-
vide a canonical representation for Boolean functions. Experience has shown that
BDDs often provide a very compact representation for very large Boolean functions,
and that various operations on Boolean functions can be carried out efficiently on
their BDD representation. Consequently, over the last decade, BDDs have had a
dramatic impact in the areas of synthesis, testing, and verification of digital sys-
tems [BEE 94, BUR 92].

In this section, we describe how our two basic algorithms, top-down and bottom up
with types, are implemented using BDDs. First, we define abit-vector representation
of types. Since types are complete in the sense that either a subformula or its negation
must belong to a type, it is possible for a formula and its negation to be represented
using a single BDD variable.

The representation of typesa ⊆ cl(ψ) as bit vectors is defined as follows: first, we
split cl(ψ) into positive and negative formulae, i.e.,

cl+(ψ) := {ϕi ∈ cl(ψ) | ϕi is not of the form¬ϕ′} and
cl−(ψ) := {¬ϕ | ϕ ∈ cl+(ψ)},

and we usem for | cl+(ψ)| = | cl(ψ)|/2. Then, forcl+(ψ) = {ϕ1, . . . , ϕm}, a vector
~a = 〈a1, . . . , am〉 ∈ {0, 1}m represents the set4 a ⊆ cl(ψ) with ϕi ∈ a iff ai = 1.

4. Please note that this set is not necessarily a type.

20 Journal of Applied Non-Classical Logics— June 28, 2005, Special Issue on Implementa-
tion of Logics 1th submission.

A set of such bit vectors can obviously be represented using aBDD with m vari-
ables. It remains to “filter out” those bit vectors that represent types.

We defineconsistentψ as the characteristic predicate for types:consistentψ(~a) =
∧

1≤i≤m consistentiψ(~a), whereconsistentiψ(~a) is defined as follows:

– if ϕi is neither of the formϕ′ ∧ ϕ′′ norϕ′ ∨ ϕ′′, thenconsistentiψ(~a) = 1,

– if ϕi = ϕ′ ∧ ϕ′′, thenconsistentiψ(~a) = (ai ∧ a′ ∧ a′′) ∨ (¬ai ∧ (¬a′ ∨ ¬a′′)),

– if ϕi = ϕ′ ∨ ϕ′′, thenconsistentiψ(~a) = (ai ∧ (a′ ∨ a′′) ∨ (¬ai ∧ ¬a′ ∧ ¬a′′)),

wherea′ = a` if ϕ′ = ϕ` ∈ cl+(ψ), anda′ = ¬a` if ϕ′ = ¬ϕ` for ϕ` ∈ cl+(ψ),
anda′′ = ak if ϕ′′ = ϕk ∈ cl+(ψ), anda′′ = ¬ak if ϕ′′ = ¬ϕk for ϕk ∈ cl+(ψ).

From this, the implementation ofInit is fairly straightforward: For the top-down
algorithm,

Init(ψ) := {~a ∈ {0, 1}m | consistentψ(~a)},

and for the bottom-up algorithm,

Init(ψ) := {~a ∈ {0, 1}m | consistentψ(~a) ∧
∧

ϕi=2ϕ′

ai = 1}.

In the following, we do not distinguish between a type and itsrepresentation as a
bit vector~a. Next, to specifybad(·) andsupp(·), we define auxiliary predicates:

– 31,i(~x) is read as “~x needs a witness for a diamond operator at positioni” and
is true iff xi = 0 andϕi = 2ϕ′.

– 32,i(~y) is read as “~y is a witness for a negated box formula at positioni” and is
true iff ϕi = 2ϕj andyj = 0 orϕi = 2¬ϕj andyj = 1.

– 21,i(~x) is read as “~x requires support for a box operator at positioni” and is true
iff xi = 1 andϕi = 2ϕ′.

– 22,i(~y) is read as “~y provides support for a box operator at positioni” and is
true iff ϕi = 2ϕj andyj = 1 orϕi = 2¬ϕj andyj = 0.

For a setA of types, we construct the BDD that represents the “maximal”accessi-
bility relation∆, i.e., a relation that includes all those pairs(~x, ~y) such that~y supports
all of ~x’s box formulae. For types~x, ~y ∈ {0, 1}m, we define

∆(~x, ~y) =
∧

1≤i≤m

(21,i(~x) → 22,i(~y)).

Given a setA of types, we write the corresponding characteristic function asχA, and
we useχA for the characteristic function of the complement ofA. Next, we show how
to implement the top-down and the bottom-up algorithm usingthe predicatesχA, ∆,
3j,i, and2j,i.

BDD-based Decision Procedures forK 21

For the top-down approach, the predicatebad is true on those types that contain
a negated box formula which is not witnessed in the current set of types. Thus, for a
negated box formulaϕi = ¬2ϕj , we define the predicatebadi as follows:

χbadi(X)(~x) = 31,i(~x) ∧ ∀~y : ((χX(~y) ∧ ∆(~x, ~y)) → ¬32,i(~y)),

and thusbad(X) can be written as

χbad(X)(~x) =
∨

1≤i≤m

χbadi(X)(~x).

In our implementation, we compute eachχ
badi(X) and use it in the implementation of

the top-down and the bottom-up algorithm. It is easy to see thatχ
badi(X) is equivalent

to
31,i(~x) → ∃~y : (χX(~y) ∧ ∆(x, y) ∧ 32,i(~y)).

For the top-down algorithm, theUpdate function can be written as:

χX\bad(X)(~x) := χX(~x) ∧
∧

1≤i≤m

(χ
badi(X)(~x))

For the bottom-up algorithm, we must take care to only add bitvectors representing
types, and so theUpdate function can be implemented as:

χX∪supp(X)(~x) := χX(~x) ∨ (χconsistentψ (~x) ∧
∧

1≤i≤m

(χ
badi(X)(~x))

These functions can be written more succinctly using the pre-image function for the
relation∆:

preim∆(χN)(~x) = ∃~y : χN (~y) ∧ ∆(~x, ~y).

Using pre-images, we can rewriteχ
badi(X)

as follows:

χ
badi(X)(~x) = 31,i(~x) → preim∆(χX ∧ 32,i)(~x).

Finally, the bottom-up algorithms can be implemented as iterations over the sets
χX∪supp(X), and the top-down algorithms can be implemented as iterations over the
setsχX\bad(X) until a fixpoint is reached. Then checking whetherψ is present in a
type of this fixpoint is trivial.

The pre-image operation is a key operation in both the bottom-up and the top-
down approaches. It is also known to be a key operation in symbolic model checking
[BUR 92] and it has been the subject of extensive research (cf. [BUR 91, GEI 94,
RAN 95, CIM 00]) since it can be a quite time and space consuming operation. Vari-
ous optimizations can be applied to the pre-image computation to reduce the time and
space requirements. A method of choice is that ofconjunctive partitioningcombined

22 Journal of Applied Non-Classical Logics— June 28, 2005, Special Issue on Implementa-
tion of Logics 1th submission.

with early quantification. The idea is to avoid building a monolithic BDD for the rela-
tion ∆, since this BDD can be quite large. Rather, we take advantageof the fact that∆
is defined as a conjunction of simple conditions, namely one for each box subformula.
Thus, to compute the pre-imagepreim∆, we have to evaluate a quantified Boolean
formula of the form∃y1 . . .∃yn(c1 ∧ . . . ∧ cm), where thecis are Boolean formulae.
Suppose, however, that the variableyj does not occur in the clausesci+1, . . . , cm.
Then the formula above can be rewritten as

∃y1 . . .∃yj−1∃yj+1 . . .∃yn(∃yj(c1 ∧ . . . ∧ ci)) ∧ (ci+1 ∧ . . . ∧ cm).

This enables us to apply existential quantification to smaller BDDs.

Of course, there are many ways in which one can cluster and re-order thecis.
One way we used is the methodology developed in [RAN 95], called the “IWLS 95”
methodology, to compute pre-images. We have also tried other clustering mecha-
nisms, namely the “bucket-elimination” approach described in [San 01]. Given a set
of conjunctive componentsc1, . . . , cn, we first compute the variable support set for
each component asY1, . . . , Yn. Then, a graph of interference of variables is con-
structed: every vertex represents a variable, and there is an edge between variablesyi
andyj if yi andyj occur together in someYk. We conduct a “maximum cardinality
ordering” of the variables, after whichy1 is the variable that occurs with the maximal
number of edges, andyi has the maximum number of edges intoy1, . . . , yi−1. Given
such a variable order, we can order the conjunctive components in the order of the first
occurrence of the highest (or lowest) ordered variables (either forward or backward).
We have implemented all four combinations in this case, but it will turn out that the
performance improvements are minimal.

5.2. Optimizations

5.2.1. Particles

The encoding of the particle-based approach with BDDs is analogous to the en-
coding of the type-based approach. Since the consistency requirement for particles is
more relaxed than that of types, each subformula insub(ψ) (also the negated ones) is
represented by a variable. Givensub(ψ) = {ϕ1, ...ϕn}, a vector~p = 〈p1, ...pm〉 ∈
{0, 1}n represents a setp ⊆ sub(ψ) with ϕi ∈ p iff pi = 1.

Then, as for types, we define a characteristic predicate for particle vectors
consistentψ(~p) := ∧1≤i≤n consistentiψ(~p), whereconsistentiψ(~p) is defined as fol-
lows:

– if ϕi is neither of the formϕj ∧ ϕk norϕj ∨ ϕk, thenconsistentiψ(~p) = 1,

– if ϕi = ϕj ∧ ϕk, thenconsistentiψ(~p) = (pi → (pj ∧ pk)),

– if ϕi = ϕj ∨ ϕk, thenconsistentiψ(~p) = (pi → (pj ∨ pk)), and

– if ϕi = ¬ϕj , thenconsistentiψ(~p) = ¬(pi ∧ pj).

BDD-based Decision Procedures forK 23

Finally, we update the auxiliary predicates for particles:

– 31,i(~x) is true iff xi = 1 andϕi = 3ϕ′,

– 32,i(~y) is true iffϕi = 3ϕj andyj = 1,

– 21,i(~x) is true iff xi = 1 andϕi = 2ϕ′ (the same as for types), and

– 22,i(~y) is true iffϕi = 2ϕj andyj = 1.

All other predicates such aspreim andbad do not change.

5.2.2. Lean vector approaches

Lean approaches have much more relaxed consistency predicates at the cost of
bigger witness/support predicates. For lean approaches, we first need to define

Only theconsistenti(~x) that is related to thoseϕi in atom(ψ) (or part(ψ)) are
used.

In contrast, the auxiliary (witness/support) predicate for the lean approach is sig-
nificantly more complex. We now define the corresponding auxiliary functions for
lean assignments.

For lean types and lean particles,31,i and21,i are the same as for full types and
particles. However, since the subformula occurring insidea modal operator may be
a Boolean combination, we need to redefine the functions32,i, 22,i with the same
intuition as for full type and particle vectors. To do this, we first define the auxiliary
functionstripi as follows:

strip i(~y) =















stripj(~y) ∧ stripk(~y) if ϕi = ϕj ∧ ϕk
stripj(~y) ∨ stripk(~y) if ϕi = ϕj ∨ ϕk
¬ stripj(~y) if ϕi = ¬ϕj
yi if ϕi ∈ atom(ψ) for types orpart(ψ) for particles

Obviously, for both lean types and lean particles ,stripi can be computed when parsing
the input formula, and be kept in a table.

Next,32,i and22,i can be defined as follows:

32,i(~y) =







stripj(~y) for particles, ifϕi = 3ϕj
¬ stripj(~y) for types, ifϕi = 2ϕj
stripj(~y) for types, ifϕi = 2¬ϕj

22,i(~y) = strip j(~y) for ϕi = 2ϕj

Again, all other predicates such aspreim andbad do not change.

5.2.3. Level-based evaluation

The level-based evaluation approaches is computed in a similar way. However,
since all levels are treated separately, at each level, we only need to consider those

24 Journal of Applied Non-Classical Logics— June 28, 2005, Special Issue on Implementa-
tion of Logics 1th submission.

unwitnessed box formulae of that level—before, we had to consider all possibly un-
witnessed negated box formulae—which leads to the relativized predicatebadj(X).
Similarly, to test whether a given vector indeed representsa type, the constraint pred-
icateconsistentiψ for the level-based approach only needs to consider subformulae of
the same leveli. So, we can relativize both the lean and the full variant of the type
approach by definingχleveli(X) as follows:

χleveli(X)(~x) = χconsistenti
ψ
(~x) ∧

∧

{j|ϕj∈cli(ψ)}

(χ
badj(X)(~x)).

Then we can specify the level-based variants by settingχIniti(~a) = consistenti(~a)
andχUpdate(A,i)(~a) = χconsistenti(~a) ∧ χleveli(A)(~a).

The level-based evaluation for particles can be implemented in the same way by
replacingcli with subi and relativizing the corresponding predicates for particles.

5.3. Variable ordering

It is well-known that the performance of BDD-based algorithms is very sensitive
to BDD variable order since it is a primary factor influencingBDD size [BRY 86].
In our experiments, a major factor in performance degradation is space blow-ups of
BDDs, including the intermediate BDDs computed during pre-image operation. In all
our algorithms, however, every step in the REPEAT loop uses BDDs with variables
from different modal depth, and thus dynamic variable ordering is of limited benefit
for KBDD (though it is necessary when dealing with intermediate BDDsblowups)
because there may not be sufficient reuse to make it worthwhile. Thus, we focused
here on heuristics to construct a good initial variable order, i.e., one that is appropriate
for KBDD. In this, we follow the work of Kamhi and Fix [KAM 98a] who argued in
favor of application-dependent variable order. As we show in Section 7.1.5, choosing
a good initial variable order does improve performance, butthe improvement is rather
modest.

A naive method for assigning an initial variable order to a set of subformulae
would be to traverse the syntax DAG of the input formula5 in some order. We used a
depth-first, pre-order traversal. This order, however, does not meet the basic principle
of BDD variable ordering, which is to keep related variablesin close proximity. Our
heuristic is aimed at identifying such “close” variables. We found that related variables
correspond to subformulae that are related via the “sibling” or “niece” relationships.
More precisely, we say thatvx is achild of vy if, for the corresponding subformulae,
we have thatϕx ∈ subi(ψ), ϕy ∈ subi+1(ψ), andϕy is a subformula ofϕx, for some
0 ≤ i < depth(ψ).6 We say thatvx andvy aresiblingsif either bothϕx andϕy are
in subi(ψ) or they are both children of another variablevz . We say thatvy is aniece

5. The syntax DAG is obtained from the syntax tree of a formula by identifying nodes labeled
with the same subformula.
6. For the type approach,subi has to be replaced withcli accordingly.

BDD-based Decision Procedures forK 25

of vx if there is a variablevz such thatvz is a sibling ofvx andvy is a child ofvx.
We say thatvx andvy aredependentif they are related via the sibling or the niece
relationship. The rationale is that we want to optimize state-set representation for
pre-image operations. Keeping siblings close helps in keeping state-set representation
compact. Keeping nieces close to their “aunts”, helps in keeping intermediate BDDs
compact.

Our heuristics builds a variable order from the root of the formula DAG down.
We start with left-to-right traversal order of top variables in the parse tree ofψ as the
order for variables corresponding to subformulae insub0(ψ). Given an order of the
variables of modal depth< i, a greedy approach is used to determine the placement
of variables at modal depthi. When we insert a new variablev, we measure the
cumulative distance ofv from all variables already in the order that are dependent
on v, and choose a location forv that minimizes the cumulative distance from other
dependent variables. We refer to this approach as thegreedyapproach, as opposed to
thenaiveapproach of depth-first pre-order.

6. Reducing K to QBF

BothK and QBF have PSPACE-complete satisfiability problems [LAD 77, STO 77],
and thus these two problems are polynomially reducible to each other. A natural
reduction from QBF toK is described in [HAL 92]. In the last few years, exten-
sive effort was carried out into the development of highly-optimized QBF solvers
[GIU 01, CAD 99, LET 02]. One motivation for this effort is thehope of using QBF
solvers as generic search engines [RIN 99], much is the same way that SAT solvers
are being used as generic search engines, cf. [BIE 99]. This suggests that we can
realistically hope to decideK satisfiability by using a natural reduction ofK to QBF,
and then applying one of the highly optimized QBF solver. Such an approach is sug-
gested in [CAD 99] without providing either details or results. Next, we describe such
a reduction, and evaluate it empirically in the next section, together with ourKBDD
algorithms.

QBF is an extension of propositional logic with quantifiers.The set of QBF for-
mulae is constructed from a setΦ = {x1, . . . xn} of Boolean variables, and closed
under the Boolean connectives∧ and¬, as well as the quantifier∀xi. As usual, we
use other Boolean operators as abbreviations, and∃xi.ϕ as shorthand for¬∀xi.¬ϕ.
Like propositional formulae, QBF formulae are interpretedover truth assignments
τ : Φ −→ {1, 0}. The semantics of quantifiers is defined as usual for the Boolean
part, and as follows for the quantifiers:τ |= ∀p.ϕ iff τ [p/0] |= ϕ andτ [p/1] |= ϕ,
whereτ [p/i] is obtained fromτ by settingτ(p) := i.

By Theorem 18, aK formulaψ of modal depthd is satisfiable iff there exists a
sequenceP = 〈P0, P1, . . . , Pd〉 of particle sets such thatψ ∈ p for somep ∈ P0. We
construct QBF formulaef0, f1, . . . fd so that eachfi encodes the particle setPi. The
construction is by backward induction fori = d . . . 0. For everyϕ ∈ subi(ψ), we have
a corresponding variablexϕ,i as a free variable infi. Then, for eachp ⊆ subi(ψ), we

26 Journal of Applied Non-Classical Logics— June 28, 2005, Special Issue on Implementa-
tion of Logics 1th submission.

define the truth assignmentτ ip as follows:τ ip(xϕ,i) = 1 iff ϕ ∈ p. The intention is to
havePi = {p ⊆ subi(ψ)|τ ip |= fi}. We then say thatfi characterizesPi.

To definefi, we need some notation: we useparticlei(ψ) for the set of all con-
sistent particle vectors ofsubi(ψ). We start by constructing a propositional formula
lci such that, for eachp ⊆ subi(ψ) we have thatp ∈ particlei(ψ) iff τ ip |= lci. The
formulalci is a conjunction of clauses as follows:

– Forϕ = ¬ϕ′ ∈ subi(ψ), we have the clausexϕ,i → ¬xϕ′,i.

– Forϕ = ϕ′∧ϕ′′ ∈ subi(ψ), we have the clausesxϕ,i → xϕ′,i andxϕ,i → xϕ′′,i.

– Forϕ = ϕ′ ∨ ϕ′′ ∈ subi(ψ), we have the clausexϕ,i → (xϕ′′,i ∨ xϕ′′,i).

For i = d we simply setfd := lcd. Indeed, we havePd = particled(ψ) = {p ⊆
subd(ψ) | τdp |= fd}. Thus,fd characterizesInitd(ψ).

For i < d, suppose we have already constructed a QBF formulafi+1 that charac-
terizesPi+1. We start by constructingf ′

i , which also characterizesPi. We setf ′
d = fd

and
f ′
i := lci ∧

∧

3ϕ∈subi(ψ)

mc3ϕ,

wheremc3ϕ ensures that, if3ϕ is in a particlep ∈ Pi, then3ϕ in p is witnessed by
a particle inPi+1. That is, forsubi+1(ψ) = {θ1, . . . , θki+1

}, we set

mc3ϕ := x3ϕ,i → ∃xθ1,i+1 . . .∃xθki ,i+1(fi+1 ∧ xϕ,i+1 ∧ tri), where
tri :=

∧

2η∈subi(ψ)[x2η,i → xη,i+1].

LEMMA 23. — If f ′
i+1 characterizesPi+1, thenf ′

i characterizesPi = Update(Pi+1, i).

PROOF. — By construction,lci characterizesparti(ψ). For the witnessing require-
ment, we can see that, ifτ ip |= mc3ϕ andx3ϕ,i, then there is an assignmentτ i+1

p′

whereτ ip ∪ τ
i+1
p′ |= f ′

i+1 ∧xϕ,i+1 ∧ tri. This is equivalent to asserting thatp′ ∈ Pi+1,
ϕ ∈ p′ andRi(p, p′). ■

COROLLARY 24. — ψ is satisfiable iff∃xθ1,0 . . .∃xθk0 ,0xψ,0 ∧ f
′
0 is satisfiable.

PROOF. — The claim follows from the soundness and completeness ofKBDD. ■

This reduction ofK to QBF is correct; unfortunately, it is not polynomial. The
problem is thatf ′

i requires a distinct copy offi+1 for each formula3ϕ in subi(ψ).
This may cause an exponential blow-up forf ′

0. To constructfi which uses only a
single copy offi+1, we replace the conjunction over all3ϕ formulae insubi(ψ) by
a universal quantification. Letk be an upper bound on the number of3ϕ formulae in
subi(ψ), for 0 ≤ i ≤ depth(ψ). We associate an indexj ∈ {0, . . . , k − 1} with each
such subformula; thus, we letξij the j-th 3ϕ subformula insubi(ψ), in which case
we denoteϕ by strip(ξij). Letm = dlog(k)e. We introducem new Boolean variables
y1, . . . , ym. Each truth assignment to the variablesyi represents a number between
0 andk in binary coding, and we refer to this number byval(y) and use it to refer

BDD-based Decision Procedures forK 27

to 3 subformulae. Letwitnessi be the formula
∨k−1
j=0 xξij , which asserts that some

witnesses are required.

Using this notation, we can now writefi in a compact way:

lci ∧ ∀y1, . . . ,∀ym : ∃xθ,i+1:{θ∈subi+1(ψ)} : witnessi →



fi+1 ∧ tri ∧
k−1
∧

j=0

((val(y) = j ∧ xξi
j
,i) → xstrip(ξi

j
),i+1)



 .

The formulafi first asserts the local consistency constraintlci. The quantification on
y1, . . . , ym simulates the conjunction on allk 3 subformulae insubi(ψ). We then
check ifwitnessi holds, in which case we assert the existence of the witnessing par-
ticle. We usefi+1 to ensure that this particle is inPi+1 andtri to ensure satisfaction
of 2 subformulae. Finally, we letval(y) point to the3 subformulae that needs to be
witnesses. Note thatfi contains only one copy offi+1.

LEMMA 25. — fi andf ′
i are logically equivalent.

As an immediate consequence of the above lemma and Corollary24, we obtain
the following result.

COROLLARY 26. — ψ is satisfiable iff∃xθ1,0 . . .∃xθk0 ,0xψ,0 ∧ f0 is satisfiable.

Analogously to our other approaches, this approach can be optimized further by
reducing redundancy, i.e., by restricting variables to those representing non-Boolean
subformulae. We implemented this optimization and report on our experiments in the
next section.

7. Experimental Results

In this section, we report on our empirical evaluation of thealgorithms described
throughout this paper and their optimizations. We first report on comparisons between
the variousKBDD algorithms and analyze the effects of the different optimizations
and the influence of variable ordering. This allows us to determine the “best” config-
uration for ourKBDD approach. Secondly, we compare this bestKBDD algorithm
with otherK solvers and with an implementation of the translation into QBF method
described in the previous section.

We implemented the BDD-based decision procedure and its variants in C++ using
the CUDD 2.3.1 [SOM 98] package for BDDs, and we implemented formula simpli-
fication preprocessor in OCaml. The parser for the languagesused in the benchmark
suites are taken with permission from *SAT [TAC 99].7

7. All tests were run on a Pentium 4 1.7GHz with 512MB of RAM, running Linux kernel
version 2.4.2. The solver is compiled with gcc 2.96 with parts in OCaml 3.04.

28 Journal of Applied Non-Classical Logics— June 28, 2005, Special Issue on Implementa-
tion of Logics 1th submission.

7.1. Comparing theKBDD variants

To analyze the usefulness of each optimization techniques used, we run the algo-
rithm with different optimization configurations on theK part of TANCS 98 [HEU 96]
and the MODAL PSPACE division of TANCS 2000 [MAS 00]. Both aresuites of scal-
able benchmarks which contain both provable and non-provable formulae. In TANCS
98, simple formulae have their difficulty increased by re-encoding them with super-
fluous subformulae. In TANCS 2000, formulae are constructedby translating QBF
formulae intoK using three translation schemes, namely Schmidt-Schauss-Smolka
translation, which gives easy formulae, Ladner translation, which gives medium dif-
ficulty formulae, and Halpern translation, which gives hardformulae. TANCS 98
provides more “easy” formulae, and we used it to provide a clearer picture in case
that the unoptimized algorithms took too long on TANCS 2000.To get a clearer pic-
ture and a guideline, each test was also run with *SAT, and we limited the memory
available for BDDs to 384MB and the time to 1000s.

7.1.1. The basic algorithms

To compare our basic algorithms, top-down and bottom-up using full types, we run
them both on TANCS 98. The results are presented in Fig. 1. We can see that *SAT
clearly outperforms our two basic algorithms. A reason for this “weak” behavior
of our approaches is that the intermediate results of the pre-image operation are so
large that the we ran out of memory. The difference between top-down and bottom-
up approaches is minor. Top-down slightly outperforms bottom-up since top-down
removes types, which only requires the consistency requirement to be asserted once
before iteration, while bottom-up adds types, which requires an extra conjunction to
ensure only consistent types are added.

10
1

10
2

10
3

10
4

10
5

10
6

0

50

100

150

200

250

300

350

Running Time (ms)

C
as

es
 c

om
pl

et
ed

*SAT
topdown−full−type
bottomup−full−type

Figure 1. Top-down versus bottom-up on TANCS 98

7.1.2. Particle approaches

Next, we compare the variants using types with their full particle-based variants.
The results are presented in Fig. 2. We can see that, on TANCS 98, the particle ap-

BDD-based Decision Procedures forK 29

proach slightly outperforms the type approach. Most of the improvements come from
the use of negation normal form, which allows us to distinguish between diamonds and
boxes, resulting in a reduction of the number of operations to compute pre-images.

10
1

10
2

10
3

10
4

10
5

10
6

0

50

100

150

200

250

300

350

Running Time (ms)

C
as

es
 c

om
pl

et
ed

*SAT
topdown−full−type
topdown−full−particle

10
1

10
2

10
3

10
4

10
5

10
6

0

50

100

150

200

250

300

350

Running Time (ms)

C
as

es
 c

om
pl

et
ed

*SAT
bottomup−full−type
bottomup−full−particle

Figure 2. Particles vs. types on TANCS 98

7.1.3. Lean approaches

Since, so far, all variants behave quite similar, we comparethe “full” approaches
with their lean variants for types and particles, bottom-upand top-down. The results
can be found in Fig. 3 and Fig. 4. Intuitively, the full variants trade a larger number of
BDD variables in the representation of the transition relation for simpler consistency
constraints. On TANCS 98, the lean approaches outperform their full variants in each
combination. This indicates that, as a general guideline, we should attempt to reduce
the number of BDD variables since this results in smaller BDDs. Indeed, experience
in symbolic model checking suggests that BDD size is typically the dominant factor
when evaluating the performance of BDD-based algorithms [KAM 98b].

10
1

10
2

10
3

10
4

10
5

10
6

0

50

100

150

200

250

300

350

Running Time (ms)

C
as

es
 c

om
pl

et
ed

*SAT
topdown−full−type
topdown−lean−type

10
1

10
2

10
3

10
4

10
5

10
6

0

50

100

150

200

250

300

350

Running Time (ms)

C
as

es
 c

om
pl

et
ed

*SAT
bottomup−full−type
bottomup−lean−type

Figure 3. Lean vs. full types on TANCS 98

30 Journal of Applied Non-Classical Logics— June 28, 2005, Special Issue on Implementa-
tion of Logics 1th submission.

10
1

10
2

10
3

10
4

10
5

10
6

0

50

100

150

200

250

300

350

Running Time (ms)

C
as

es
 c

om
pl

et
ed

*SAT
topdown−full−particle
topdown−lean−particle

10
1

10
2

10
3

10
4

10
5

10
6

0

50

100

150

200

250

300

350

Running Time (ms)

C
as

es
 c

om
pl

et
ed

*SAT
bottomup−full−particle
bottomup−lean−particle

Figure 4. Lean vs. full particles on TANCS 98

7.1.4. Level-based evaluation

Next, we compare various level-based approaches with the top-down lean type
approach, see Fig. 5. It turns out that each level-based approach outperforms the
top-down approach, and that, both for types and particles, the lean approach again
outperforms the full one. This superior performance of the level-based approaches is,
again, due to a smaller BDD size: recall that, in the level-based approach, all BDDs
are split into smaller ones according to the level at which the corresponding formulae
occur in the input. Moreover, the level-based approach involves a smaller number
of operations to compute the pre-image, and this turns out tobe substantial for most
formulae.

Summing up, our experimental comparison of the different BDD-based algorithms
indicate that level-based lean particle version performs best, and we thus use, in the
remainder of this paper,KBDD to refer to this version of our algorithm.

10
1

10
2

10
3

10
4

10
5

10
6

0

50

100

150

200

250

300

350

Running Time (ms)

C
as

es
 c

om
pl

et
ed

*SAT
level−full−type
level−lean−type
topdown−lean−type

10
1

10
2

10
3

10
4

10
5

10
6

0

50

100

150

200

250

300

350

Running Time (ms)

C
as

es
 c

om
pl

et
ed

*SAT
level−full−particle
level−lean−particle
topdown−lean−particle

Figure 5. Level-based evaluation vs. top-down lean approaches on TANCS 98

BDD-based Decision Procedures forK 31

7.1.5. Variable ordering and formula simplification

To gain inside into the effects of variable ordering and formula simplification,
we testedKBDD with both naive and greedy variable ordering described in Sec-
tion 5.3, and with and without the formula simplification described in Section 4.4. We
compared the influence of these optimizations using TANCS 2000 easy and medium
formulae [MAS 00] (KBDD without formula simplification cannot handle the hard
formulae of TANCS 2000). The results are presented in Figure6.

10
1

10
2

10
3

10
4

10
5

10
6

0

50

100

150

200

Running Time (ms)

C
as

es
 c

om
pl

et
ed

naive
greedy
simp−naive
simp−greedy

10
1

10
2

10
3

10
4

10
5

10
6

0

50

100

150

200

Running Time (ms)

C
as

es
 c

om
pl

et
ed

simp−naive
simp−greedy
nosimp−naive
nosimp−greedy

����� ���� ��	
 ��
����� ����� ���� ������ ��
����
�

Figure 6. Different optimizations forKBDD on TANCS 2000

We see in Figure 6 that formula simplification yields a significant performance
improvement. This improvements was observed for differenttypes of formulae and
different variable-ordering algorithms. In particular,KBDD was able to avoid run-
ning out of memory in many cases. We can also see that greedy variable ordering is
useful in conjunction with simplification, improving the number of completed cases
and sometimes run time as well. Without simplification, the results for greedy vari-
able ordering are not consistent: the overhead of finding thevariable order seems to
sometimes offset any advantages of applying it.

Summing up, our experiments indicate that the combination of simplification and
greedy variable ordering significantly improves the performance ofKBDD. In the fol-
lowing, we will use “optimizedKBDD” to refer to this variant, and we will compare
its performance with that of three other solvers.

7.2. ComparingKBDD with other solvers

To assess the effectiveness of BDD-based decision procedures forK, we compare
the optimizedKBDD against three solvers: (1) DLP, which is a tableau-based solver
[PAT 99], (2) MSPASS, which is a combination of an optimized translation of modal

32 Journal of Applied Non-Classical Logics— June 28, 2005, Special Issue on Implementa-
tion of Logics 1th submission.

formulae to first-order formulae and a resolution-based theorem prover [HUS 00]8, (3)
K-QBF, which is a combination of our reduction ofK to QBF from Section 24 and
the highly optimized QBF solver semprop [LET 02]. For a fair comparison, we first
checked for which our simplification optimization is useful, and then used it in these
two cases, namely for DLP and K-QBF.

In addition to the formulae from TANCS 98 and TANCS 2000, we also use ran-
domly generated formulae, as suggested in [PAT 01]. This scheme generates random
modal-CNF formulae parameterized with the numberN of propositions, the number
K of literals in each clause, the fractionα of modal literals in each clause, the modal-
depth boundd, and the numberL of top level clauses.L clauses are generated withK
literals each, whereαK literals are modal and the rest are propositional (the polarity
of the literals is chosen uniformly). Each modal literal is expanded into a clause in the
same fashion. The modal depth of the formula is bounded byd. We usedd = [1, 2],
K = 3 andα = 0.5 in our experiments. In each experiment,N is fixed and the
propositional complexity of the formula was varied by increasing thedensityL/N .

7.2.1. Results on TANCS suites

In Figure 7 and Figure 8 we see that, on the TANCS 98 benchmarks, DLP outper-
forms all other solvers whereas, on the more challenging TANCS 2000 benchmarks,
KBDD outperforms the other solvers. The difference betweenKBDD and the other
solvers is most noticeable on the harder portion of the suite, whereKBDD had to use
dynamic variable reordering. We take this as an indicator that, indeed, BDD-based ap-
proaches may be useful in practice forK satisfiability. MSPASS’s performance could
have been enhanced by a different choice for its numerous parameters. However, we
have chosen to stick to the setting that worked well for TANCS98 since (a) the current
investigation is merely a feasibility study, and (b) findingoptimal parameter settings
for MSPASS for each experiment would go beyond the scope of this paper. Finally, it
turns out that reducingK satisfiability to a search-based QBF solver such as semprop
is not a viable approach: this approach was dominated by all other approaches and
was only able to solve a small fraction of the benchmark formulae in TANCS 98. For
TANCS 2000 this approach was so inefficient that we did not report the results.

7.2.2. Results on random modal CNF formulae

More insight into the behavior ofKBDD can be gained by analyzing its behavior
on random modal-CNF formulae. The generation of the formulae follows the sugges-
tions in [PAT 01]. This scheme generates random modal-CNF formulae parametrized
with the numberN of propositions, the numberK of literals in each clause, the frac-
tionα of modal literals in each clause, the modal-depth boundd, and the numberL of
top level clauses.L clauses are generated withK literals each, whereαK literals are

8. We used MSPASS 1.0.0t1.3 with options -EMLTranslations=2-EMLFuncNary=1 -Select=2
-PProblem=0 -PGiven=0 -Sorts=0 -CNFOptSkolem=0 -CNFStrSkolem=0 -CNFRenOps=1 -
Split=-1 -Ordering=0 -CNFRenMatch=0 -TimeLimit=1000. Compiler used is gcc-3.1.1 be-
cause gcc-2.96 have a serious bug that crashes the resultingexecutable.

BDD-based Decision Procedures forK 33

10
1

10
2

10
3

10
4

10
5

10
6

0

50

100

150

200

250

300

350

Running Time (ms)

C
as

es
 c

om
pl

et
ed

KBDD
DLP
MSPASS
K−QBF−Semprop

10
1

10
2

10
3

10
4

10
5

10
6

0

50

100

150

200

Running Time (ms)

C
as

es
 c

om
pl

et
ed

KBDD
DLP
MSPASS
K−QBF−Semprop

����� �� ����� ���� 	
��
�������

Figure 7. KBDD vs. DLP, K-QBF and MSPASS on “easy”K formulae

10
1

10
2

10
3

10
4

10
5

10
6

0

50

100

150

200

Running Time (ms)

C
as

es
 c

om
pl

et
ed

KBDD
DLP
MSPASS

10
1

10
2

10
3

10
4

10
5

10
6

0

10

20

30

40

50

Running Time (ms)

C
as

es
 c

om
pl

et
ed

KBDD−reorder
DLP

����� ���� ������ � !"#$�!% ����� ���� &$'� � !" %

Figure 8. KBDD vs. DLP, and MSPASS on more “difficult”K formulae

modal and the rest are propositional (the polarity of the literals is chosen uniformly).
Each modal literal is expanded into a clause in the same fashion. The modal depth
of the formula is bounded byd. We usedd = 1, 2, K = 3 andα = 0.5 in our ex-
periments. In each experimentN was fixed and the propositional complexity of the
formula was varied by increasing thedensityL/N .

In Figure 9, we show the median run time (16 samples per data point) as a function
of the density (L/N) to demonstrate the difference between the behavior ofKBDD
and DLP.

For d = 1, DLP demonstrates the bell-shaped “easy-hard-easy” pattern that is fa-
miliar from random propositional CNF formulae [SEL 96] and random QBF formulae
[GEN 99]. In contrast,KBDD’s run time is proportional to the density; that is, the
higher the density, the harder the problem forKBDD. This behavior is consistent with

34 Journal of Applied Non-Classical Logics— June 28, 2005, Special Issue on Implementa-
tion of Logics 1th submission.

0 20 40 60 80 100
10

0

10
1

10
2

10
3

10
4

10
5

10
6

Density (L/N)

M
ed

ia
n

ru
nn

in
g

tim
e

DLP N=3
DLP N=4
DLP N=5
DLP N=6
KBDD N=3
KBDD N=4
KBDD N=5

0 20 40 60 80 100
10

1

10
2

10
3

10
4

10
5

Density (L/N)

M
ed

ia
n

ru
nn

in
g

tim
e

DLP N=3
DLP N=4
DLP N=5
KBDD N=3

� � � � � �

Figure 9. Comparison of DLP andKBDD on Random formulae

known results on the performance of BDD-based algorithms for random propositional
CNF formulae [COA 00]. For each modal level,KBDD builds a BDD for the corre-
sponding particle set. The higher the density, the more challenging the construction
of these BDDs becomes, often resulting in running out of memory or requiring ex-
tensive variable reordering. This explains why DLP outperformsKBDD on random
modal-CNF formulae.

Comparing these findings with the ones on TANCS 98 and TANCS 2000, we con-
clude that DLP is better suited for formulae with high propositional complexity such
as the randomly generated ones, whereasKBDD is better suited for formulae with
high modal complexity such as the ones in TANCS 98 and TANCS 2000.

8. Conclusions and outlook

We described here BDD-based decision procedures forK. Our approach is in-
spired by the automata-based approach, but it avoids explicit automata construction.
We explored a variety of representation options and concluded that, in general, it is
beneficial to work with representations that involve fewer constraints, i.e., with parti-
cles. In general, the best performance was obtained with lean particles. It also turned
out that only a level-based approach yields a competitive implementation. Further-
more, formula preprocessing such as pure literal simplification and syntactical simpli-
fication proved to have a significant influence on the performance, even though it is
not specialized to our method. Finally, we tested various BDD-centric optimizations
such as clustering with early quantification and initial variable ordering but the effect
proved to be rather modest.

We benchmarkedKBDD, our optimized BDD-based solver, against both a native
modal solver, DLP, and two translation-based solver, MSPASS and K-QBF. Our re-

BDD-based Decision Procedures forK 35

sults indicate that the BDD-based approach dominates for modally heavy formulae,
while search-based approaches dominate for propositionally heavy formulae.

One way to look at the results is thatKBDD, by using a more powerful underly-
ing data structure, BDDs, allows the use of a simpler decision procedure. Instead of
requiring, in the worst case, an exponential number of callsto a propositional satis-
fiability procedure,KBDD only requires a polynomial number of calls to BDD op-
erations. The natural question arising is, of course, whether such a dependence on
the data structure is reasonable. We know that the complexity of BDD operations is
highly dependent to the size of the BDDs. So, if we are able to control the size of the
BDDs, the performance of our decision procedure is acceptable.

Another explanation is that we traded modal complexity for propositional com-
plexity. This way, we managed to perform quite well on formulae that only have “big”
models. Such formulae are known to cause problems SAT based solvers. We ob-
serve that, on formulae that are satisfiable in “small” models, SAT solvers outperform
KBDD. In contrast, on formulae that are only satisfiable in “big” models,KBDD
outperform SAT solver. In both cases, the performance of both solvers degrades with
increasing propositional density.

Although our goal was a feasibility study for a BDD-based approach to modal
solvers, and not to develop the “fastestK solver”, theKBDD approach turned out
to behave quite well on a considerable number of benchmarks.This is mostly due to
the fact that our approach allowed us to compare and explore the effects of numer-
ous optimizations. One obvious optimization technique we did not explore is to avoid
the construction of a monolithic BDD, such as the technique developed for the purely
propositional case [San 01]. Further research is also required to quantify the distinc-
tion between “propositionally heavy” and “modally heavy” formulae. This would
enable the development of a combined solver which invokes the appropriate engine
for the formula under test. Another approach would be to develop a hybrid solver,
combining BDD-based and search-based techniques (cf. [GUP01] for a hybrid ap-
proach in model checking), which would perform well on both modally heavy and
propositionally heavy formulae. Finally, we hope the connection betweenK and QBF
would be part of a call to a more comprehensive range of decision procedures for QBF,
for example, the quantifier-elimination based solvers Quantor [BIE 04] and QMRES
[PAN 04] that used Q-resolution [BUN 95]. We leave all this for future research.

Acknowledgements

The authors are supported in part by NSF grants CCR-9700061,CCR-9988322,
IIS-9908435, IIS-9978135, and EIA-0086264, by BSF grant 9800096, and by a grant
from the Intel Corporation.

36 Journal of Applied Non-Classical Logics— June 28, 2005, Special Issue on Implementa-
tion of Logics 1th submission.

9. References

[AND 98] A NDERSEN H., “An Introduction to Binary Decision Diagrams”, report ,1998,
Department of Information Technology, Technical University of Denmark.

[ARE 00] ARECESC., GENNARI R., HEGUIABEHEREJ.,DE RIJKE M., “Tree-Based Heuris-
tics in Modal Theorem Proving”,Proc. of the 14th Eur. Conf. on Artif. Int., 2000, p. 199-
203.

[BAA 01] B AADER F., TOBIES S., “The inverse method implements the automata approach
for modal satisfiability”, report num. LTCS-Report 01-03, 2001, Research group for theo-
retical computer science, Aachen university of Technology.

[BEE 94] BEER I., BEN-DAVID S., GEIST D., GEWIRTZMAN R., YOELI M., “Methodology
and system for practical formal verification of reactive hardware”, Proc. 6th Conf. on CAV,
vol. 818 ofLNCS, Stanford, June 1994, p. 182–193.

[BIE 99] BIERE A., CIMATTI A., CLARKE E., ZHU Y., “Symbolic Model Checking without
BDDs”, Tools and Algorithms for Construction and Analysis of Systems, 5th International
Conference, TACAS ’99, vol. 1579 ofLNCS, Springer-Verlag, 1999, p. 193-207.

[BIE 04] BIERE A., “Resolve and Expand”,Proc. 7th Int. Conf. on Theory and Applications
of Satisfiability Testing (SAT 2004), 2004, p. 238-246.

[BLA 01] B LACKBURN P., DE RIJKE M., VENEMA Y., Modal logic, Camb. Univ. Press,
2001.

[BOC 82] BOCHMANN G. V., “Hardware specification with temporal logic: an example”,
IEEE Transactions on Computers, vol. C-31, 1982, p. 223–231.

[BRA 94] BRAFMAN R., LATOMBE J.-C., MOSESY., SHOHAM Y., “Knowledge as a tool
in motion planning under uncertainty”, FAGIN R., Ed.,Theoretical Aspects of Reasoning
about Knowledge: Proc. Fifth Conference, p. 208–224, Morgan Kaufmann, San Francisco,
Calif., 1994.

[BRY 86] BRYANT R., “Graph-based Algorithms for Boolean Function Manipulation”, IEEE
Trans. on Comp., vol. Vol. C-35, num. 8, 1986, p. 677-691.

[BUN 95] BUNING H., KARPINSKI M., FLOGEL A., “Resolution for quantified Boolean for-
mulas”, Inf. and Comp., vol. 117(1), 1995, p. 12-18.

[BUR 88] BURROWSM., ABADI M., NEEDHAM R., “Authetication: a practical study in be-
lief and action”, Proc. 2nd Conference on Theoretical Aspects of Reasoning about Knowl-
edge, 1988, p. 325–342.

[BUR 91] BURCH J. R., CLARKE E. M., LONG D. E., “Symbolic Model Checking with
Partitioned Transition Relations”,Int. Conf. on VLSI, 1991, p. 49–58.

[BUR 92] BURCH J., CLARKE E., MCM ILLAN K., DILL D., HWANG L., “Symbolic model
checking:1020 states and beyond”,Information and Computation, vol. 98, num. 2, 1992,
p. 142–170.

[CAD 99] CADOLI M., SCHAERF M., GIOVANARDI A., GIOVANARDI M., “An algorithm
to evaluate quantified Boolean formulae and its experimental evaluation”, report , 1999,
Dipartmento di Imformatica e Sistemistica, Universita de Roma.

BDD-based Decision Procedures forK 37

[CAS 82] CASTILHO J. M. V., CASANOVA M. A., FURTADO A. L., “A temporal framework
for database specification”,Proc. 8th Int. Conf. on Very Large Data Bases, 1982, p. 280-
291.

[CIM 00] CIMATTI A., CLARKE E., GIUNCHIGLIA F., ROVERI M., “NUSMV: A New Sym-
bolic Model Checker”,Int. J. on Software Tools for Tech. Transfer, vol. 2, num. 4, 2000,
p. 410-425.

[CLA 86] CLARKE E., EMERSON E., SISTLA A., “Automatic Verification of Finite-State
Concurrent Systems Using Temporal Logic Specifications”,ACM Transactions on Pro-
gramming Languages and Systems, vol. 8, num. 2, 1986, p. 244-263.

[COA 00] COARFA C., DEMOPOULOSD., SAN M IGUEL AGUIRRE A., SUBRAMANIAN D.,
VARDI M., “Random 3-SAT: The Plot Thickens”,Proc. of the Int. Conf. on Constraint
Prog. (CP 2000), 2000, p. 143-159.

[DAV 60] DAVIS S., PUTNAM M., “A computing procedure for quantification theory”,J.
ACM, vol. 7, 1960, p. 201-215.

[DAV 62] DAVIS M., LOGEMANN G., LOVELAND D., “A machine program for theorem
proving”, Journal of the ACM, vol. 5, 1962, p. 394-397.

[ETE 00] ETESSAMI K., HOLZMANN G., “Optimizing Büchi Automata”, CONCUR 2000 -
Concurrency Theory, 11th Int. Conf., 2000, p. 153-167.

[GEI 94] GEIST D., BEER H., “Efficient Model Checking by Automated Ordering of Transi-
tion Relation Partitions”,Proc. of the sixth Int. Conf. on CAV, 1994, p. 299–310.

[GEN 99] GENT I., WALSH T., “Beyond NP: The QSAT Phase Transition”,AAAI: 16th
National Conference on Artificial Intelligence, AAAI / MIT Press, 1999, p. 648-653.

[GIU 00] GIUNCHIGLIA F., SEBASTIANI R., “Building Decision Procedures for Modal Log-
ics from Propositional Decision Procedure - The Case Study of Modal K(m)”, Inf. and
Comp., vol. 162, 2000, p. 158-178.

[GIU 01] GIUNCHIGLIA E., NARIZZANO M., TACCHELLA A., “QuBE, a system for deciding
quantified Boolean formulae satisfiability”,Automated Reasoning, First Int. Joint Conf.,
IJCAR 2001, 2001, p. 364-369.

[GUP 01] GUPTA A., YANG Z., ASHAR P., ZHANG L., MALIK S., “Partition-Based Decision
Heuristics for Image Computation Using SAT and BDDs”,International Conference on
Computer-Aided Design (ICCAD 2001), 2001, p. 286-292.

[HAA 01] H AARSLEV V., MÖLLER R., “High Performance Reasoning with Very Large
Knowledge Bases: A Practical Case Study”, NEBEL B., Ed., Proceedings of the Sev-
enteenth International Joint Conference on Artificial Intelligence (IJCAI-01), vol. 1847,
Morgan Kaufmann, Los Altos, 2001.

[HAL 90] H ALPERN J. Y., MOSESY., “Knowledge and Common Knowledge in a Distributed
Environment”, Journal of the ACM, vol. 37, num. 3, 1990, p. 549–587, A preliminary
version appeared inProc. 3rd ACM Symposium on Principles of Distributed Computing,
1984.

[HAL 92] H ALPERNJ., MOSESY., “A guide to completeness and complexity for modal logics
of knowledge and belief”,Artificial Intelligence, vol. 54, 1992, p. 319-379.

38 Journal of Applied Non-Classical Logics— June 28, 2005, Special Issue on Implementa-
tion of Logics 1th submission.

[HEU 96] HEUERDINGA., SCHWENDIMANN S., “A benchmark method for the propositional
modal logics K, KT, S4”, report , 1996, Universität Bern, Switzerland.

[HOR 00] HORROCKSI., SATTLER U., TOBIESS., “Practical Reasoning for Very Expressive
Description Logics”,Logic Journal of the IGPL, vol. 8, num. 3, 2000, p. 239–264.

[HUS 00] HUSTADT U., SCHMIDT R., “MSPASS: modal reasoning by translation and first
order resolution”,Automated Reasoning with Analytic Tableaux and Related Methods, Int.
Conf., TABLEAUX 2000, 2000, p. 67-71.

[KAM 98a] K AMHI G., FIX L., “Adaptive variable reordering for symbolic model checking”,
International Conference on Computer-Aided Design (ICCAD1998), 1998, p. 359-365.

[KAM 98b] K AMHI G., FIX L., BINYAMINI Z., “Symbolic Model Checking Visualization”,
Formal Methods in Computer-Aided Design, Second International Conference FMCAD’98,
vol. 1522 ofLNCS, Springer-Verlag, November 1998, p. 290-303.

[LAD 77] L ADNER R., “The Computational Complexity of Provability in Systems of Modal
Propositional Logic”,SIAM J. Comput., vol. 6, num. 3, 1977, p. 467-480.

[LET 02] LETZ R., “Lemma and Model Caching in Decision Procedures for Quantified
Boolean Formulas”,TABLEAUX 2002, 2002, p. 160-175.

[LIP 77] L IPSKI W., “On the logic of incomplete information”,Proc. 6th International Sym-
posium on Mathematical Foundations of Computer Science, Lecture Notes in Computer
Science, Vol. 53, p. 374–381, Springer-Verlag, Berlin/NewYork, 1977.

[MAS 00] MASSACCIF., DONINI F., “Design and results of TANCS-2000”,Automated Rea-
soning with Analytic Tableaux and Related Methods, Int. Conf., TABLEAUX 2000, 2000,
p. 52-56.

[MCC 69] MCCARTHY J., HAYES P. J., “Some Philosophical Problems From the Standpoint
of Artificial Intelligence”, MICHIE D., Ed.,Machine Intelligence 4, p. 463–502, Edinburgh
University Press, Edinburgh, 1969.

[PAN 04] PAN G., VARDI M. Y., “Symbolic Decision Procedures for QBF”,Proceedings of
10th Int. Conf. on Principles and Practice of Constraint Programming (CP 2004), 2004,
p. 453-467.

[PAT 99] PATEL -SCHNEIDER P., HORROCKS I., “DLP and FaCT”, Automated Reasoning
with Analytic Tableaux and Related Methods, Int. Conf., TABLEAUX ’99, 1999, p. 19-23.

[PAT 01] PATEL -SCHNEIDERP., SEBASTIANI R., “A new system and methodology for gener-
ating random modal formulae”,Automated Reasoning, First Int. Joint Conf., IJCAR 2001,
2001, p. 464-468.

[PNU 77] PNUELI A., “The temporal logic of programs”,Proc. 18th IEEE Symp. on Founda-
tion of Computer Science, 1977, p. 46–57.

[PRA 76] PRATT V. R., “Semantical considerations on Floyd-Hoare logic”,Proc. 17th IEEE
Symp. on Foundations of Computer Science, 1976, p. 109–121.

[PRA 80] PRATT V., “A near-optimal method for reasoning about action”,Journal of Com-
puter and System Sciences, vol. 20, num. 2, 1980, p. 231–254.

BDD-based Decision Procedures forK 39

[RAN 95] RANJAN R., AZIZ A., BRAYTON R., PLESSIERB., PIXLEY C., “Efficient BDD al-
gorithms for FSM synthesis and verification”,Proc. of IEEE/ACM International Workshop
on Logic Synthesis, 1995.

[REI 83] REIF J. H., SISTLA A. P., “A multiprocessor network logic with temporal and spatial
modalities”, Proc. 12th International Colloq. on Automata, Languages, and Programming,
Lecture Notes in Computer Science, Vol. 104, p. 629-639, Springer-Verlag, Berlin/New
York, 1983.

[RIN 99] RINTANEN J., “Constructing conditional plans by a theorem-prover”,J. of A. I. Res.,
vol. 10, 1999, p. 323-352.

[RUD 93] RUDELL R., “Dynamic Variable Ordering for Ordered Binary DecisionDiagrams”,
International Conference on Computer-Aided Design (ICCAD1993), 1993, p. 42-47.

[San 01] SAN M IGUEL AGUIRRE A., VARDI M., “Random 3-SAT and BDDs: The Plot
Thickens Further”, Principles and Practice of Constraint Programming - CP 2001, 7th
Int. Conf., 2001, p. 121-136.

[SEL 96] SELMAN B., MITCHELL D., LEVESQUEH., “Generating Hard Satisfiability Prob-
lems”, Artificial Intelligence, vol. 81, num. 1-2, 1996, p. 17–29.

[SOM 98] SOMENZI F., “CUDD: CU Decision Diagram package”,
http://vlsi.colorado.edu/˜fabio/CUDD/, 1998.

[SOM 00] SOMENZI F., BLOEM R., “Efficient Büchi automata from LTL formulae”,Com-
puter Aided Verification, 12th Int. Conf., CAV 2000, 2000, p. 247-263.

[STO 77] STOCKMEYER L., “The polynomial-time hierarchy”, Theo. Comp. Sci., vol. 3,
1977, p. 1–22.

[TAC 99] TACCHELLA A., “*SAT system description”, Collected Papers from (DL’99).
CEUR, 1999.

[TAN 93] TANI S., HAMAGUCHI K., YAJIMA S., “The Complexity of the Optimal Variable
Ordering Problems of Shared Binary Decision Diagrams”,Algorithms and Computation,
4th International Symposium, ISAAC ’93, 1993, p. 389-398.

[VAR 97] VARDI M., “What makes modal logic so robustly decidable?”, IMMERMAN N.,
KOLAITIS P., Eds.,Descriptive Complexity and Finite Models, p. 149-183, AMS, 1997.

[VOR 01] VORONKOV A., “How to optimize proof-search in modal logics: new methods of
proving redundancy criteria for sequent calculi”,Comp. Logic, vol. 2, num. 2, 2001,
p. 182-215.

