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Abstract. When performing interval propagation on integer variables
with a large range, slow-convergence phenomena are often observed: it
becomes difficult to reach the fixpoint of the propagation. This problem
is practically important, as it hinders the use of propagation techniques
for problems with large numerical ranges, and notably problems arising
in program verification. A number of attempts to cope with this issue
have been investigated, yet all of the proposed techniques only guarantee
a fast convergence on specific instances. An important question is there-
fore whether slow convergence is intrinsic to propagation methods, or
whether an improved propagation algorithm may exist that would avoid
this problem. This paper proposes the first analysis of the slow con-
vergence problem under the light of complexity results. It answers the
question, by a negative result: if we allow propagators that are general
enough, computing the fixpoint of constraint propagation is shown to
be intractable. Slow convergence is therefore unavoidable unless P=NP.
The result holds for the propagators of a basic class of constraints.

1 Introduction

Constraint propagation is probably the most developed component of CP (Con-
straint Programming) solvers, and the propagation of many constraints has been
intensely studied. In particular, a considerable literature has been devoted to
arc-consistency in constraints represented as binary or n-ary arbitrary predi-
cates (e.g., tables), see for instance [5]. Many efficient propagators for complex
global constraints have also been proposed [27].

Propagation methods can be roughly classified as domain propagation or
interval propagation methods, depending on whether the set of values allowed
for each variable is represented exactly as a list/bit-vector, or approximated by
its bounds. The interval representation is typically preferred for numerical vari-
ables, because they can have a very high number of values. Interval propagation
is therefore used for numerical constraints by most CP solvers. This paper ana-
lyzes bound propagation [2, 4, 6, 7] and focuses specifically on the case where the
variables take discrete (integer) values. The question we address, put quickly, is
whether interval propagation is effective against variables with a large range.

⋆ Part of this work was done while this author was visiting Microsoft Research, Cam-
bridge, UK.



When performing interval propagation on numerical variables with a large
range, which are common, for instance, in program verification, slow-convergence
phenomena have been reported by many authors, e.g., [13, 17]: propagation tends
to go on for a prohibitively long number of steps. A number of approaches, which
are briefly reviewed in the paper, have been proposed to address this problem,
but all of these approaches have limitations and none of them completely pre-
vents the risk of slow convergence. In this paper we explain the absence of defini-
tive solution to this problem: slow convergence is not an issue of implementation,
nor a problem that could potentially be avoided by algorithmic tricks, but an
intrinsic problem of interval propagation, in the precise sense that it cannot be
avoided unless P = NP. More precisely, our approach is the following:

– In interval propagation, the problem is to compute fixpoints of certain types
of operators. We investigate the computational complexity of these fixpoint
computations.

– This complexity is pseudo-polynomial and, as we explain, the question is
whether a strongly polynomial algorithm exists for the fixpoint computation
problem.

– We answer this question by the negative: we first analyze the complexity
of the fixpoint computation problem in its general version, and show that
strongly polynomial algorithms for this problem cannot exist if P 6= NP. We
then consider particular types of ”operators” and, in particular, when we
mix the propagators of linear constraints with simple non-linear propagators
(one squaring constraint suffices), we still have the hardness result. If we
particularize further the problem to purely linear constraints, the problem
is open but we conjecture, here again, that the complexity is NP-complete.

The paper introduces required material on fixpoint computation in Section 2,
on interval propagation in Section 3, and gives more details on the slow conver-
gence problem in Section 4. Then follows Section 5 with a discussion of strongly
polynomial vs. pseudo polynomial complexity. Our main results are presented in
Section 6. These results are commented and put in perspective in Section 7.

2 Fixpoint Computations

We first review some basic material on fixpoint computations. For more reading
on this issue the reader is referred to [1].

2.1 Closure Operators.

Interval propagation is equivalent to the problem of computing certain fixpoints
of functions on Cartesian products of intervals. A Cartesian product of intervals
will be called box, for short:

Definition 1 (Box). An n-dimensional box is a tuple B = 〈B1 · · ·Bn〉 where
each Bi is an interval. Inclusion over boxes is defined as follows: B ⊆ B′ iff
B1 ⊆ B′

1 ∧ · · · ∧Bn ⊆ B′

n.



The functions we consider must have the following properties:

Definition 2 (Closure operator). We call closure operator a function f

which, given a box B, returns a box f(B), with the following properties (for
all B,B′):

1. f is ”narrowing”: f(B) ⊆ B;
2. f is monotonic: if B ⊆ B′ then we have f(B) ⊆ f(B′);
3. f is idempotent: f(f(B)) = B.

2.2 Computational Problems related to Fixpoints.

A fixpoint of a closure operator is a box that remains unchanged after application
of the operator. We are interested in common fixpoints, defined as follows:

Definition 3 (Common Fixpoint of a set of closure operators). Given a
set of closure operators {f1 · · · fm}, a common fixpoint of the operators is a box
B satisfying f1(B) = B ∧ · · · ∧ fm(B) = B.

We are given an initial n-dimensional box B, and a set of closure operators
{f1 · · · fm}. We consider the following computational problems (the first two
are ”function problems” in which we aim at computing a result, the third is a
”decision problem” in which we just aim at determining whether a certain result
exists):

Problem 1 (Computation of Common Interval Fixpoint) Compute a box
B′ such that (1) B′ ⊆ B, (2) B′ is non-empty and (3) B′ is a common fixpoint
of f1, . . . , fm. (An error value should be returned if no such fixpoint exists.)

Problem 2 (Computation of the Greatest Common Interval Fixpoint)
Compute a box B′ such that (1) B′ ⊆ B; (2) B′ is a common fixpoint of
f1, . . . , fm and (3) no box B′′ such that B′ ⊆ B′′ ⊆ B is a common fixpoint
of f1, . . . , fm.

Problem 3 (Existence of Common Interval Fixpoint) Determine whether
there exists a non-empty box B′ ⊆ B which is a common fixpoint of f1, . . . , fm.

2.3 Greatest Fixpoint Computation by ”Chaotic Iteration”.

To compute a greatest fixpoint, the standard approach is to run what [1] refers
to as a ”chaotic iteration” algorithm which, in its simplest and least optimized
form, can be presented as follows:

Algorithm 1: Standard Algorithm for Greatest Fixpoint Computation

while there exists fi such that fi(B) 6= B do
Choose one such fi

B ← fi(B)



The functions f1 . . . fm are applied to the box in turn, in any order that
is computationally convenient, until we reach a state where nothing changes.
A basic result, which directly follows from the Knaster-Tarski theorem [25], is
that this algorithm, although non-deterministic, always converges to the greatest
common fixpoint of f1 . . . fm. (The uniqueness of this fixpoint shows in particu-
lar, that the box satisfying the requirements of Problem 2 is unique, and allows
us to refer to it as the (unique) greatest common interval fixpoint.)

3 Interval Propagation

Readers are assumed familiar with basics of interval propagation and referred to
e.g., [2] otherwise.

3.1 Propagation as Fixpoint Computation.

Interval propagation is the problem of fixpoint computation as described above:

– Each of the n variables has its own interval of values and the state of the
variables is seen, altogether, as an n-dimensional box;

– The closure operators are ”propagators” which can be either predefined
(propagators associated with the standard constraints delivered by a sys-
tem), or user-defined (many systems, e.g., CHR [10], allow the users to define
their own propagators). A propagator is seen as a function which, from the
current ranges of the variables, computes ranges that are tighter or equal.

Let us recall briefly why the assumptions made in Def. 2 are reasonable. The
property of ”narrowing” is, obviously, absolutely desired, since the very aim of a
propagator is to remove some values that are inconsistent. Monotonicity reflects
the intuition that the more information is available on the ranges, the more de-
ductions the propagator should do. It is very difficult to think of propagators that
would not be monotonic, and this is typically not desired: the computed inter-
vals would be dependent on the order in which such propagators are considered,
making it very difficult to get a sense of what deductions are made. Idempo-
tence reflects the intuition that ”applying the propagator twice in a row does
not pay”. Some authors, e.g., [23], impose narrowing and monotonicity but see
idempotence as optional. We occasionally consider operators that are narrowing
and monotonic but not idempotent; we call them narrowing operators.

A fixpoint characterizes the state of the problem when propagation has
stopped, i.e., no propagator is able to reduce the intervals anymore. More specif-
ically, propagation computes the largest such fixpoint.

3.2 Examples of Propagators.

We now give the precise definitions of the propagators that are used for examples
and proofs in the rest of the paper. Variables are numbered from 1 to n; the kth



variable is denoted Xk and the interval that is associated with this variable
is denoted [lk, rk]. The notation ”[lk, rk] ← rhs” denotes an operator f which,
given a box B, returns a box f(B) in which the kth interval has been modified
as specified by the right-hand side (rhs), and all other intervals are unchanged.

The following propagators are used when we have a constraint Xi < Xj :

[li, ri]← [li,min(ri, rj − 1)]
[lj , rj ]← [max(lj , li + 1), rj ]

(1)

(For readers who would have trouble with the notation: the upper bound of the
ith interval, the one associated with Xi, is updated so that it is at most rj − 1,
and the lower bound of the jth interval is updated so that it is at least lj + 1.)

The propagators for a constraint Xi = X2
j are:

[li, ri]← [max(li, l
2
j ),min(ri, r

2
j )]

[lj , rj ]← [max(lj , ⌈
√

li⌉),min(rj , ⌊
√

ri⌋)]
(2)

The propagators for a constraint aXi + bXj = c, where a, b and c are non-
negative integer constants, are:

[li, ri]← [max(li, ⌈ c−b·rj

a
⌉),min(ri, ⌊ c−b·lj

a
⌋)]

[lj , rj ]← [max(lj , ⌈ c−a·ri

b
⌉),min(rj , ⌊ c−a·li

b
⌋)]

(3)

(The constraint aXi + bXj = c is, of course, only a particular case of linear
constraint, and the way we have expressed the propagator is just one way of
expressing what general propagators for linear constraints would do [12].)

One can check that all these operators are narrowing, monotonic and idem-
potent. They are also correct w.r.t. the constraint, in that they never remove a
solution.

4 Slow Convergence

This section gives more background on the slow convergence phenomenon, why
it is a serious issue, and which approaches have been proposed to tackle it.

4.1 Examples of Slow Convergence.

The problem of slow convergence is easily understood by considering simple
examples:

– Consider the problem X1 < X2 ∧ X2 < X1, with X1 and X2 ranging over
[0, 230]. Bound propagation alone detects the inconsistency. On this example,
standard propagation algorithms discover that X1 ∈ [1, 230] because 0 ≤
X2 < X1, then X2 ∈ [2, 230] because 1 ≤ X1 < X2, and propagation goes
ahead narrowing a lower or upper bound by one unit at every step. We
ultimately obtain empty intervals, but this requires about 230 operations.



– As mentioned in [17], the problem sometimes even occurs when we have a
single constraint. For instance if we take the constraint 2X1 + 2X2 = 1 with
X1 and X2 ranging over [−230, 230], we have a similar problem as before:
propagation slowly narrows the bounds of the intervals by a few units until
reaching empty intervals.

Readers are encouraged to run the propagation-based solvers they have at
their disposal against these straightforward problems: except if problem-specific
optimizations such as those described in [17] are available, propagation alone
invariably takes several seconds. More severe is the fact that, if similar con-
straints are not stated by themselves but together with other constraints, the
runtime can become arbitrarily high, as propagation may regularly reconsider
many propagators between each reduction of the bounds of X1 and X2.

4.2 Problems with Large Numerical Ranges.

It would be a mistake to consider slow convergence as a mere curiosity arising
only in annoying, yet artificial examples. Our own experience is that the prob-
lem is unavoidable when solving problems in program verification, for instance
problems from Satisfiability Modulo Theories1.

In verification problems, the ranges of numerical variables are typically ex-
tremely large, because the aim is typically one of the following:

– To verify a property for all integers. Typically, if the constraints are simple
enough, so-called ”small-domain” properties are used to bring the problem
down to finite bounds. These properties guarantee that, if the problem is sat-
isfiable, a solution can be found within some finite bounds. But these bounds
are typically quite large: for instance for purely linear equality constraints,
[20] proves that when we have m constraints over n variables, the variables
can be restricted to the range [0, n(ma)2m+1], where a is the maximum of
the absolute values of the coefficients of the linear constraints. If we have
only 10 variables, 10 equalities and coefficients within [−10, 10], this bound
already goes as high as 10 · 10021 = 1043. These bounds can be refined [24]
but we cannot, in general, avoid the use of large numbers represented in
infinite-precision.

– To reflect machine encoding of numbers. In this case we typically compute
within bounds of about 232 or 264. Extra care typically has to be taken, so
that overflows are correctly handled (which requires ”modular arithmetics”).
Here the domains are smaller, but nonetheless large enough for the slow
propagation problem to become a serious issue.

In examples arising from our own experiments in software verification, reach-
ing the fixpoint of one propagation step alone takes seconds or minutes on many
instances, and up to 37 hours (in finite precision!) in some of the longer examples
where we waited until completion. Note that propagation is supposed to be the

1 www.smt-lib.org



fast part of constraint solving: it is done at every node of the branch & prune
process, and we are supposed to be exploring many nodes per second.

4.3 Attempted Solutions.

Several solutions to the slow convergence problem have been investigated in the
literature. It was, for instance, suggested to:

– Detect some cases of slow convergence and find ways to prevent them. One
way, suggested by colleagues in personal communications, would be to use
symbolic techniques to get rid of constraints of the form X1 < X2∧X2 < X1

and similar ”cycles of inequalities”. A related approach was suggested in [18]
(in the context of real-valued intervals): it dynamically detects ”cycles” in
the propagation and deals with them separately, for instance by postpon-
ing the corresponding operators. Unfortunately, these methods only prevent
particular cases of slow convergence.

– Reinforce interval propagation by other reasoning techniques. A noticeable
recent work on the issue is [17], which use congruence computations in ad-
dition to interval propagation. Congruences capture information of the type
”all possible values of the variable have the form ax + b for some x”. This
allows to directly deduce the inconsistency of constraints like 2X1 +2X2 = 1
(congruences find out that the sum is even while the right-hand-side is odd).
Here again, the technique is however powerless against very simple cases of
slow convergence, for instance the example X1 < X2 ∧X2 < X1.

– Interrupt propagation after a given number of steps, or when a given precision
is reached (e.g., propagate further a variable only when its width has been
reduced by more than 5%). This is a pragmatic solution that it easy to
implement. What is frustrating, of course, is that the search space is then
left in a state where obvious deductions could be made but are postponed
simply by fear of slow convergence: we leave it up to the search mechanism
to perform these obvious deductions.

– Find a new algorithm that would avoid the pitfalls of the standard ”chaotic
iteration” presented before, and which provably converge quickly. For in-
stance, when investigating the question, we have struggled in vain to find
”dichotomic” algorithms that would compute a fixpoint more quickly. (This
investigation has failed, and led us to consider the question whether the
problem is intrinsically unsolvable.) An interesting related work is [16] which
(also in the context of continuous intervals) uses extrapolation methods to
”guess” the possible fixpoint—an exciting method which, by definition, offers
no proven guarantee.

– Do something else than interval propagation. If interval propagation does not
work well for some classes of problems, perhaps the best solution is to use
different pruning techniques. For instance, in [13], the authors note the slow
convergence phenomenon and introduce a method for dealing with certain
linear constraints between 2 variables. Significantly, state-of-the-art methods
in satisfiability modulo theories use bound reasoning methods that are not
based on interval propagation, but on linear relaxations [9].



All of these approaches are of interest but none of them completely solves
the problem: no approach allows to compute the fixpoint of interval propagation
while being guaranteed to avoid slow convergence.

5 Pseudo-Polynomial vs. Strongly Polynomial Algorithms

Interval propagation exhibits features that could, in some respects, sound un-
usual: the standard propagation algorithm is reputedly polynomial, yet its run-
time can grow unreasonably high for but simple instances. The question, when
discussing polynomial vs. exponential runtimes, is to be careful of not being
polynomial in some features that can grow exponentially.

5.1 Definitions.

The authors of [13] (introduction) are perfectly right in their analyzis of the slow
convergence of problems of the type X1 < X2 ∧X2 < X1: the slow convergence
is due to the fact that the number of steps is proportional to the width of the
intervals (the width of an interval is here defined as the number of integer values
in the interval). The question is whether we can reduce this to a number of
steps that grows significantly less than linearly in the width. This can be stated
precisely by saying that the complexity should be polynomial in the number of
bits of the integer values encoded in the problem i.e., poly-logarithmic in these
integer values.

As stated before, n is the dimension of the considered box (i.e., number of
variables), m is the number of operators whose fixpoint we compute. Further-
more, let w denote the maximum of the widths. We use the following definitions,
which follow classical terminology [11]:

– A pseudo-polynomial algorithm is an algorithm whose runtime is bounded
in the worst case by P (n,m,w), for some polynomial P ;

– A strongly polynomial algorithm is an algorithm whose runtime is bounded
in the worst case by P (n,m, log w), for some polynomial P .

The question we address is whether there exists a strongly polynomial algo-
rithm for interval propagation.

5.2 Pseudo-Polynomiality and Fixed-Parameter Tractability.

As the name suggests, a ”pseudo”-polynomial algorithm is in fact exponential:
the complexity of an algorithm is, strictly speaking, measured as the function
of the length (number of bits) of the machine representation of the problem,
and using k bits to represent w we have an upper bound of P (n,m, 2k) on
the runtime. A pseudo-polynomial complexity has nevertheless some advantages
compared to a complexity that would be exponential, say, in n (e.g., O(mwn)).
In particular the availability of a pseudo-polynomial algorithm for a problem



shows that the problem is fixed-parameter tractable [8], i.e., if we bound the
number of bits allowed for the numbers (i.e., we work in fixed precision, in 32
bits), the problem becomes, strictly speaking, polynomial. But what can make
the algorithm slow remains the same issue: if the constant is huge, say w = 232,
the question is whether we can reduce this constant down dramatically, or if we
are forced to run the propagators about w times before reaching the fixpoint.

5.3 Interval Propagation is Pseudo-Polynomial.

It is easy to see that even the naive version of the standard interval propagation
algorithm (Algorithm 1, Section 2.3) is pseudo-polynomial: at each loop iteration
we reduce at least one interval by one unit, and the number of iterations is
therefore bounded by nw. Within each loop we have to go through all operators
and see whether applying one of them has an effect, which gives overall a bound
of O(mnw) operator applications. (If we consider a typical basic operator, the
cost of its application is typically constant or linear in the number of variables
it connects.) Note that these worst-case time complexities are ironically not
significantly different from the ones obtained for the domain propagation [1] of,
say, numerical constraints: even though interval representation is more space
efficient and to some extent more adapted to large domains, the worst-case time
complexities are essentially the same.

5.4 Pseudo-Polynomial NP-complete Problems.

Some problems can be solved in pseudo-polynomial time, yet are NP-complete:
any other NP problem can be reduced to them using a reduction that creates
numbers whose size in bits grows polynomially in the size of the original problem
The most famous such problem is the knapsack—solving one linear equality
of the form

∑
i∈1..n kixi = r, where the kis and r are constants and the xs

are variables ranging over {0, 1}. This is an NP-complete problem which can
nonetheless be solved in time O(nK), where K is the sum of the kis, using
dynamic programming algorithms similar to the one used in a CP context by
[26]. Knowing that such problems are NP-complete tells us that the problem
cannot be solved in strongly polynomial time, unless P=NP.

6 Intractability of Interval Propagation

In this section we present our main results, which show that, under some well-
defined assumptions concerning the operators, computing the fixpoint of these
operators cannot be achieved in strongly polynomial time.

6.1 General Case.

We first consider the ”general case”, in which the closure operators are defined
as arbitrary functions. This captures, for instance, the ability of systems like



Constraint Handling Rules (CHR) [10], in which the propagators can be user-
defined. The question is whether one can avoid slow convergences in this general
context.

We assume that the propagators f1 . . . fm are defined as programs (written
in any appropriate language, like CHR), which have the additional guarantee to
run in time polynomial in the length of the problem. This is because we want to
show that the problem is intractable even when restricted to simple propagators
(a hardness result would hardly be a surprise in the case where the execution
of a propagator is itself intractable.) More precisely, the input of the fixpoint
representation problem is as follows:

Input Representation 1 The input is given as a box B = 〈B1 . . . Bn〉 together
with a set of closure operators {f1 . . . fm} which are defined as programs whose
runtime is guaranteed to be worst-case polynomial in the total input size.

Proposition 1. If the input is encoded using Representation 1, the problem of
existence of a common interval fixpoint (Problem 3) is NP-complete. 2

Proof. Membership in NP is due to the fact that a certificate of yes answers
to the decision problem is simply a box (its being a fixpoint can be checked in
polynomial time).

For the hardness we directly reduce from SAT: given a SAT instance in n

variables x0 . . . xn−1, we create a 1-dimensional instance described by one initial
interval [l, r] and 2 operators f0, f1. The interval [l, r] is defined as [0, 2n]. The
programs f0 and f1 use a common piece of code check(v) which, given an n-
bit integer v, returns true iff assigning each xi to the ith bit of v satisfies the
formula. (Such a program is straightforward to define: we essentially encode the
SAT formula into the instructions of the program.) The operator f0([l, r]) is
simply defined as:

if ¬check(r) ∧ r mod 2 = 0 then return [l, r − 1] else return [l, r]

And the operator f1([l, r]) as:

if ¬check(r) ∧ r mod 2 = 1 then return [l, r − 1] else return [l, r]

It is straightforward to see that the resulting instance satisfies our requirements
(the operators are narrowing, idempotent, monotonic; their size and runtimes
are polynomially bounded) and that it has a fixpoint iff the SAT instance has a
solution. (The upper bound of a fixpoint encodes a solution.) �

2 The hardness part of this result can alternatively be proved as a direct consequence
of Prop. 3. We prove Prop. 1 separately for 3 reasons: it states the membership in
NP under the more general assumptions (the closure operators need be polytime
computable); it states the NP-hardness under the least restrictive assumptions (one-
dimensional case, two operators); Prop. 2 is best presented by first presenting the
proof of Prop. 1.



Note that the result even holds in dimension one and for only two operators.
Indeed, if we consider (non-idempotent) narrowing operators instead of closure
operators, it is easy to show that computing the fixpoint of one single operator in
one dimension is NP-complete. One can show, by straightforward modifications
of the proof, that the corresponding function problem, computing an arbitrary
fixpoint (Problem 1), is FNP-complete3. Interestingly, propagation algorithms do
not compute an arbitrary fixpoint, but the largest one (Problem 2). The problem
is therefore an optimization problem and, in fact, its complexity is higher than
FNP:

Proposition 2. If the input is encoded using Representation 1, the computation
of the greatest common fixpoint (Problem 2) is OptP-complete.

Proof. The membership in OptP is straightforward. The problem of maximum
satisfying assignment (computing the lexicographically maximum assignment to
a SAT instance) is OptP-complete [15]; the hardness is then proved by the same
reduction presented in Prop. 1, where we simply notice that the reduction is a
metric reduction in the sense of [15]. �

OptP is a class introduced in [15] to characterize the complexity of opti-
mization problems (many optimization problems are FNP-hard but not in FNP
because the optimality of the result cannot be checked in polynomial time).

6.2 Basic Numerical constraints.

Here our goal is to analyze the complexity of computing the fixpoint of ”ba-
sic propagators”: what if the user does not have the possibility to write her
own propagators, but can only use a set of predefined propagators for basic
constraints? For the sake of concreteness we consider the particular set of 3
predefined operators listed in Section 3.2, e.g., the propagators for inequality,
squaring and binary linear constraints.

Input Representation 2 The problem is given as a box B = 〈B1 . . . Bn〉 to-
gether with a set of constraints {c1 . . . cm} which are all of one of the 3 forms:

1. Xj < Xj, for some i, j ∈ 1..n;
2. Xi = X2

j , for some i, j ∈ 1..n; or
3. aXi + bXj = c, for some i, j ∈ 1..n and some constants a, b and c.

The closure operators represented in each of these three cases are as defined in
Section 3.2.

Proposition 3. If the input is encoded using Representation 2, the problem of
existence of a common interval fixpoint (Section 2, Problem 3) is NP-complete.

3 FNP, or ”functional” NP, is closely related to NP, the difference being that instead
of being asked whether a solution exists (say, to a SAT instance), we are asked to
produce a solution [21].



Proof. The membership in NP follows from the more general result obtained in
Prop. 1. To prove the hardness we use an NP-completeness result due to Manders
and Adleman [19], which states that determining whether an equation of the form
aX2

1 + bX2 = c has solutions, where a, b and c are three non-negative integers
(in the sense of finding whether there exist natural values for the variables X1

and X2 that satisfy the equation), is NP-complete.
The reduction is simple: given the three constants a, b and c (encoded

in binary) describing the input, we simply create an instance of the prob-
lem of existence of common fixpoint in dimension 3 where the initial box is
〈[0, c], [0, c], [0, c]〉 and with two constraints: X3 = X2

1 and aX3 + bX2 = c. In
other words, we focus on the fixpoint of the following operators:

(1) [l3, r3]← [max(l3, l
2
1),min(r3, r

2
1)]

(2) [l1, r1]← [max(l1, ⌈
√

l3⌉),min(r1, ⌊
√

r3⌋)]

(3) [l3, r3]← [max(l3, ⌈ c−b·r2

a
⌉),min(r3, ⌊ c−b·l2

a
⌋)]

(4) [l2, r2]← [max(l2, ⌈ c−a·r3

b
⌉),min(r2, ⌊ c−a·l3

b
⌋)]

We now show that a common fixpoint to these operators exists iff the original
equation has a solution.

– If a (non-empty) common fixpoint 〈[l1, r1], [l2, r2], [l3, r3]〉 exists, then its
bounds satisfy the following:
• l3 = max(l3, l

2
1) by Eq. (1), from which we deduce l3 ≥ l21;

• l1 = max(l1, ⌈
√

l3⌉) by Eq. (2), from which we deduce l3 ≤ l21;
• l3 = max(l3, ⌈ c−b·r2

a
⌉) by Eq. (3), from which we deduce l3 ≥ c−b·r2

a
, and

al3 + br2 ≥ c;
• r2 = min(r2, ⌊ c−a·l3

b
⌋) by Eq. (4), from which we deduce r2 ≤ c−a·l3

b
,

and al3 + br2 ≤ c.

Altogether this proves that al3 +br2 = c∧ l3 = l21, therefore X1 = l1,X2 = r2

is a solution to the original equation aX2
1 + bX2 = c.

– If the equation aX2
1 + bX2 = c has a solution X1 = m,X2 = n, then it is

easy to verify that the box 〈[m,m], [n, n], [p, p]〉 where p = m2 is a common
fixpoint of the operators:
• p = m2 therefore [p, p] = [max(p,m2),min(p,m2)];
• p = m2 therefore

√
p = m is an integer and

√
p = ⌈√p⌉ = ⌊√p⌋, and we

have [m,m] = [max(m, ⌈√p⌉),min(m, ⌊√p⌋)];
• ap + bn = c therefore c−b·n

a
= p is an integer and ⌈ c−b·n

a
⌉ = ⌊ c−b·n

a
⌋ =

c−b·n
a

. As a consequence we have [p, p] = [max(p, ⌈ c−b·n
a
⌉),min(p, ⌊ c−b·n

a
⌋)];

• ap + bn = c therefore c−a·p

b
= n is an integer and ⌈ c−a·p

b
⌉ = ⌊ c−a·p

b
⌋ =

c−a·p

b
= n. As a consequence we have [n, n] = [max(n, ⌈ c−a·p

b
⌉),min(n, ⌊ c−a·p

b
⌋)].

Note, last, that the 3 values m, n and p are in [0, c] since we have ap+bn = c∧
p = m2 and all values are non-negative integers. The box 〈[m,m], [n, n], [p, p]〉
is therefore a fixpoint satisfying the conditions given for Problem 3. �



7 Conclusion

7.1 Summary of the Contributions.

We believe that this paper answers an important question concerning one of the
key propagation methods used in Constraint Programming. It is well-known that
interval propagation suffers from the slow convergence problem when dealing
with large intervals, and that this problem hinders its use in some important
areas of applications. The question whether this problem can be circumvented
is an important one.

We have shown that it cannot, in the precise sense that no algorithm com-
puting the greatest fixpoint of a set of interval propagators can be strongly
polynomial, unless P=NP. This result holds under assumptions on the type of
propagators available: what Prop. 3 shows is that as soon as the set of prop-
agators includes such basic constructs as linear constraints and squaring, the
problem of determining whether the operators have a common fixpoint is NP-
complete. This problem might become tractable when we restrict drastically the
set of propagators, and we notably leave open the question whether such would
be the case when we deal with purely linear constraints. However, it is clear that
CP was never meant to deal solely with linear constraints and our results show
what we believe is an intrinsic problem of interval propagation methods.

This result may come as a surprise to some readers, as it did to us: we
discussed the problem with several colleagues and our feeling is that there was
a general belief that slow convergence could be tackled and that there was no
underlying intractability result to be foreseen.

Our results ”put discrete interval propagation on the map” from the per-
spective of complexity classification. In this respect, it is interesting to notice
the following points:

– Interval propagation is the second AI problem we are aware of whose com-
plexity is pseudo-polynomial and that is solved by a ”propagation” process
whose convergence can be slow: the problem of reaching stable states in
Hopfield networks was the first such problem4; it has similarities but also
differences in that the propagation performed in Hopfield networks is not
monotonic in the same sense as interval propagation. See [21] (problem
”HAPPYNET”) for a textbook presentation of the problem.

– The complexity of computing greatest fixpoints for general propagators (Rep-
resentation 1) is in a sense higher than the one of the original problem
of constraint satisfaction (OptP-complete, as opposed to FNP-complete),
which is somehow surprising. This is reminiscent of some phenomena al-
ready observed in discrete propagation: notably, [14] prove that computing
k-consistency filtering is no less than EXPTIME-complete.

4 This problem is not NP-complete but it is shown in [22] that no strongly polynomial
algorithm exists for it under the weaker assumption that P 6=PLS.



7.2 Interpretation of the Results.

The message of the paper is clear: there are intrinsic issues in using discrete
interval propagation methods for large domains. The areas where constraint
propagation has been most successfully used concern combinatorial problems
in which, typically, domains do not get unreasonably large. The recent area of
Satisfiability Modulo Theories brought potential venues of new applications for
CP in software verification, but our results cast doubts on the use of key CP
techniques in this area. It is noteworthy that other propagation methods are
currently being used by SMT solvers [9].

Our feeling is nevertheless that it would be a mistake to keep an overly nega-
tive message from this paper. First, our results are worst-case results and there
are many instances where interval propagation just works fine, in which case it
can prove very helpful. Second, it is very easy to control the slow convergence
problem by interrupting propagation if it takes an excessive amount of time.
What has to be given-up, in our opinion, is the idea that we should absolutely
reach the fixpoint of interval propagation, as well as the idea that interval prop-
agation can be used on large domains without being complemented by other
relaxation techniques.

7.3 Future Works.

– An interesting open question is: if we restrict ourselves to the propagator of
linear constraints, can we compute their greatest fixpoint in strongly poly-
nomial time? (We suspect a negative answer.)

– It would, more generally, be interesting to exhibit useful classes of propaga-
tors whose fixpoint can be computed in strongly polynomial time.

– The paper has focused on variables ranging over the integers. Another area
of CP considers interval propagation techniques for real-valued variables. It
would be interesting to provide a similar complexity analysis in this context
and to see, in particular, whether the good behaviour of some key techniques
like Box-consistency can be explained by a better ability to avoid slow con-
vergence [3].
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