Branching vs. Linear Time: Final Showdown

Moshe Y. Vardi *

Rice University

*Acknowledging Orna Kupferman and the Intel FV team
Final Verification Today

Verification as debugging: Failure of verification identifies bugs.

- Both specifications and programs attempt to formalize informal requirements.
- Verification contrasts two independent formalizations.
- Failure of verification reveals inconsistency between the two formalizations.

Model checking: uncommonly effective debugging tool

- a systematic exploration of the design state space
- good at catching difficult “corner cases”
Designs are Labeled Graphs

Key Idea: Designs can be represented as transition systems (finite-state machines)

Transition System: $M = (W, I, R, F, \pi)$

- W: states
- $I \subseteq W$: initial states
- $R \subseteq W \times W$: transition relation
- $F \subseteq W$: fair states
- $\pi : W \rightarrow \text{Powerset}(Prop)$: Observation function

Fairness: An assumption of “reasonableness” – restrict attention to computations that visit F infinitely often, e.g., “the channel will be up infinitely often.”
Specifications

Linear-Time Specifications: properties of computations.

Examples:

- “No two processes can be in the critical section at the same time.” – safety
- “Every request is eventually granted.” – liveness
- “Every continuous request is eventually granted.”
 – liveness
- “Every repeated request is eventually granted.” – liveness
Linear Temporal Logic

Linear Temporal logic (LTL): logic of temporal sequences

Main feature: time is implicit

- *next* φ: φ holds in the next state.
- *eventually* φ: φ holds eventually
- *always* φ: φ holds from now on
- φ *until* ψ: φ holds until ψ holds.
Examples

• always not (CS₁ and CS₂): mutual exclusion (safety)

• always (Request implies eventually Grant): liveness

• always (Request implies Request until Grant): liveness

• always eventually Request implies eventually Grant: liveness
Linear vs. Branching

- **Linear time**: a system generates a set of computations

- **Specs**: describe computations

- **Branching time**: a program generates a computation tree

- **Specs**: describe computation trees
Program Equivalence

- P_1:

- P_2:

- Linear Time: $P_1 \equiv P_2$

- Branching Time: $P_1 \not\equiv P_2$
Temporal Logics

Specs: Every request is eventually granted

- **Linear** (*LTL*): always (Request implies eventually Grant)

- **Branching** (*CTL*): ∀ always (Request implies ∀ eventually Grant)
LTL vs. CTL: The Long Debate

- **Pnueli**: 1977
- **Lamport**: “‘Sometimes’ is sometimes ‘Not Never’”, 1980
- **Emerson and Clarke**: 1981
- **Ben-Ari, Pnueli, and Manna**: 1983
- **Pnueli**: 1985
- **Emerson and Lei**: “‘Branching-time logic strikes back’”, 1985
- **Emerson and Halpern**: “‘Sometimes’ and ‘Not Never’ Revisited”, 1986

Conclusion: Philosophically, a draw.
LTL vs. CTL: Expressiveness

Caveat: Linear and branching logics are incomparable.

- **LTL**: eventually always \(P \) – in every computation \(P \) is ultimately true.

- **CTL**: \((\forall \text{ eventually } \forall \text{ always } P) \) – \(P \) will stabilize at true within a bounded amount of time.

General Assessment:

- Interesting CTL-LTL: “small”

- Interesting LTL-CTL: “large”
LTL vs. CTL: Complexity

Model-Checking Problem: Does T satisfy φ?

$|T| = n$, $|\varphi| = m$

Time Complexity:

- **CTL**: $O(nm)$ [CES’86]
- **LTL**: $O(n2^m)$ (PSPACE-complete) [LP’86,SC’85]

Conclusions:

- Low complexity in $|T|$
- **CTL** exponentially easier than **LTL**
Pragmatics

Folk Wisdom: *CTL* is less expressive than *LTL*, but *CTL* is superior to *LTL* computationally.

Model Checking in practice: *CTL* usage dominates

- *CTL*: SMV, VIS, RuleBase, CheckOff, Motorola
- *Linear Time*: Cadence’s SMV, FormalCheck, SPIN, Intel

Note: Linear Time ≠ LTL!
CTL vs. LTL: A Fresh Perspective

- Expressiveness
- Computational Complexity
- Compositionality
- Pragmatics
Expressiveness

IBM’s Experience:

- IBM J. of Research and Development: *Formal Verification Made Easy*, 1997

 “We found only simple CTL equations to be intuitively comprehensible; nontrivial CTL equations are hard to understand and prone to error.”

 “CTL is difficult to use for most users and requires a new way of thinking about hardware.”

Facts:

- *Sugar, RuleBase*’s spec language, tries to hide away CTL

- In partice, users write “linear” CTL formulas.
Example

- **LTL:**
 - next eventually P
 - eventually next P

 Both formulas assert that P holds in the *strict* future.

- **CTL:**
 - \forall next \forall eventually P
 - \forall eventually \forall next P

 Are these formulas equivalent? What do they say? How do they relate to the LTL formulas?
Algorithmic Foundations

Basic Graph-Theoretic Problems:

● Reachability: Is there a finite path from I to F?

● Fair Reachability: Is there an infinite path from I that goes through F infinitely often.

Note: These paths may correspond to error traces, e.g., deadlock and livelock.
CTL Model Checking

Basic Algorithm:

- Iterated reachability analysis (i.e., reachability and fair reachability)

- Simple recursion on structure of formulas, e.g., \forall always \exists eventually P involves a reachability computation followed by a fair-reachability computation.

- Computational complexity is linear in size of design and size of spec.
Automata on Infinite Words

Büchi Automaton: \(A = (\Sigma, S, S_0, \rho, F) \)

- **Alphabet**: \(\Sigma \)
- **States**: \(S \)
- **Initial states**: \(S_0 \subseteq S \)
- **Transition relation**: \(\rho \subseteq S \times \Sigma \times S \)
- **Accepting states**: \(F \subseteq S \)

Input word: \(a_0, a_1, \ldots \)

Run: \(s_0, s_1, \ldots \)

- \(s_0 \in S_0 \)
- \((s_i, a_i, s_{i+1}) \in \rho \) for \(i \geq 0 \)

Acceptance: \(F \) visited infinitely often
Temporal Logic vs. Automata

Paradigm: Compile high-level logical specifications into low-level finite-state language

The Compilation Theorem: [V.-Wolper]

Given an LTL formula φ, one can construct an automaton A_φ such that a computation σ satisfies φ if and only if σ is accepted by A_φ. Furthermore, the size of A_φ is at most exponential in the length of φ.

Example:

- always eventually P:

- eventually always P
LTL Model Checking

The following are equivalent:

- \(M \) satisfies \(\varphi \)
- all computations in \(L(M) \) satisfy \(\varphi \)
- \(L(M) \subseteq L(A_{\varphi}) \)
- \(L(M \parallel A_{\neg \varphi}) = \emptyset \)

Bottom Line: To check that \(M \) satisfies \(\varphi \), compose \(M \) with \(A_{\neg \varphi} \) and check whether the composite system has a reachable (fair) path. Verification reduces to *reachability* or *fair reachability*.

Intuition: \(A_{\neg \varphi} \) is a “watchdog” for “bad” behaviors. A reachable (fair) path means a bad behavior.
Computational Complexity

Worst case: linear in the size of the design space and exponential in the size of the specification.

Real life: Specification is given in the form of a list of properties $\varphi_1, \ldots, \varphi_n$. It suffices to check that M satisfies φ_i for $1 \leq i \leq n$.

Moral: There is life after exponential explosion.

The real problem: too many design states – symbolic methods needed
CTL vs. LTL: Comparison

- **Invalid Comparison**: worst case of an inexpressive logic against worst case of an expressive logic

- **Valid Comparison**: competitive analysis – compare performance of CTL and LTL model checkers on formulas that are in both logics

 - always eventually P
 - \forall always \forall eventually P

Empirical Claim: On formulas in $\text{LTL} \cap \text{CTL}$, CTL and LTL model checkers behave similarly, and if they don’t, you can make them (see work by Bloem-Ravi-Somenzi in CAV’99 and by Maidl in FOCS’00).
Compositional Verification

State Explosion:

- $T = T_1 \parallel \ldots \parallel T_k$

- $|T| = |T_1| \cdot \ldots \cdot |T_k|$

\[\begin{array}{ll}
P_1 \text{ satisfies } \psi_1 \\
P_2 \text{ satisfies } \psi_2 \\
C(\psi, \psi_1, \psi_2)
\end{array} \quad \begin{array}{l}
P_1 \parallel P_2 \text{ satisfies } \psi
\end{array} \]

- $P_1 \parallel P_2$: composition of P_1 and P_2

- $C(\psi, \psi_1, \psi_2)$: logical condition relating ψ, ψ_1, and ψ_2

Advantage: apply model checking only to the underlying modules, which have smaller state spaces.
Assume-Guarantee Verification

M guarantees ψ assuming φ – $\langle \varphi \rangle M \langle \psi \rangle$: for an arbitrary M', if $M \parallel M' \models \varphi$, then $M \parallel M' \models \psi$

\[
\begin{align*}
\langle \text{true} \rangle M_1 \langle \varphi_1 \rangle \\
\langle \text{true} \rangle M_2 \langle \varphi_2 \rangle \\
\langle \varphi_2 \rangle M_1 \langle \psi_1 \rangle \\
\langle \varphi_1 \rangle M_2 \langle \psi_2 \rangle
\end{align*}
\]

\[
\langle \text{true} \rangle M_1 \parallel M_2 \langle \psi_1 \land \psi_2 \rangle
\]

Fact: Checking $\langle \varphi \rangle M \langle \psi \rangle$ is exponential in φ for both CTL and LTL [KV’95]
It Gets Worse!

CTL is too weak:

- **Crucial:** Assumptions have to be strong enough to ensure guarantee; **LTL** assumptions may be needed for a **CTL** guarantee.

- **But:** The combination of a **CTL** guarantee and an **LTL** assumption involves a *doubly exponential* cost in computational complexity.

In practice

- **CTL-based** model checkers do not support compositional reasoning

- Verifiers engage in unsafe reasoning when using **CTL-based** model checkers because assumptions are *always* needed.

Ken McMillan: “In compositional reasoning use **LTL**” *(Cadence’s SMV uses linear time).*
Pragmatics

The linear-time view has numerous other advantages:

- **Refinement:** \(L(T_{imp}) \subseteq L(T_{spec}) \) – linear view
- **Abstraction:** \(L(T_{conc}) \subseteq L(T_{abst}) \) – linear view
- **Dynamic validation:** only linear view available
- **Counterexamples:** validators want traces
- **Bounded Model Checking:** Search linear counterexamples of predetermined size size.
What about Concurrency Theory?

But: CTL characterizes bisimulation!

So what?

- **Bisimulation is about structure**
 \[\forall \text{ next } \forall \text{ eventually } P \text{ vs. } \forall \text{ eventually } \forall \text{ next } P \]

- **Model checking is about behavior**
 \[\text{next eventually } P \text{ vs. } \text{eventually next } P \]

- **Difference between** \(ab + ac \) **and** \(a(b + c) \) **become clear in a state-based model, in which deadlock is modeled explicitly**
Is LTL The Answer?

Question: “Ok, ok. You made your point. Can we finish the talk and go with *LTL* then?”

Answer: “Not so fast. Let us reconsider compositional reasoning.”
Compositional Reasoning Revisited

Crucial Points:

- *Assume-guarantee* reasoning is the *prevalent* way of reasoning about complicated systems – you *always* need assumptions.

- When trying to check that “M guarantees ψ assuming φ”, you can weaken ψ, but you have to make φ as strong as needed.

Corollary 1: Your spec language for *assumptions* needs to be as expressive as your hardware modeling language.

Crucial Point:

- Your *assume-guarantee* reasoning is not *sound*, unless you guarantee your assumptions – danger of *false positives*.

Corollary 2: Your spec language needs to be as expressive as your hardware modeling language.

Fact: *LTL* is too weak – cannot express finite-state machines.
Beyond Naive Hardware Modeling

Assumptions: abstracted hardware

- Replace gorry detail by nondeterminism

- Eliminate possible runs by using fairness

Note: Nondeterministic FSMs with fairness conditions are Büchi automata, which express ω-regularity (more expressive than LTL).

Question: Can we make Büchi automata into a spec language?
What Is Logic?

Features of Logic:

- Closure under *Boolean connectives*: if φ and ψ are formulas, then $\varphi \land \psi$, $\varphi \rightarrow \psi$ are formulas.

- Closure under *substitution*: atomic propositions can be replaced by formulas; if always p and eventually q are formulas, then always eventually q is a formula.
Extended Temporal Logic

ETL:

- Start with Büchi automata where the labels are atomic propositions
- Close under Boolean connectives (compositionality)
- Close under substitutions (re-usability)

Note: Closure under Boolean connectives and substitutions is not necessary for expressiveness. FormalCheck does not have it.

Example:
ETL: Pros and Cons

Advantages:

- Expressive enough for assume-guarantee reasoning

 Pnueli, 1986: “In order to perform compositional specification and verification, it is necessary to have the full power of ETL.”

- Formalism (FSMs) is very familiar to hardware designers

- Worst-case complexity same as LTL.

Disadvantages:

- Nesting of machines is conceptually difficult

- No experimental validation (yet)

- Complementation is known to be difficult

Bottom Line: More research needed
Other Formalisms

- **μ-calculus:**
 - One temporal connective (next) plus fixpoint operators
 - Unreadable: always eventually P

\[(gfp X)(lfp Y)(X \land next(P \lor Y))\]

- **QPTL:**
 - LTL plus propositional quantifiers
 - Example:

\[(\exists X)(X \land always(X \leftrightarrow next\neg X) \land always(X \rightarrow P))\]

- **Complexity:** nonelementary (unbounded stack of exponentials)!
A Pragmatic Proposal

Competing demands on real languages:

- **Expressiveness:** supports compositional reasoning
- **Usability:** can be used by verification engineers
- **Closure:** supports specification libraries
- **Implementability:** feasible implementation
- **History:** consistency with prior experience of users
FTL: ForSpec Temporal Logic

ForSpec: Intel’s new formal specification language

key features:

- linear-time logic, with fully ω-regularity

- rich set of operations of Boolean and arithmetical operations

- time windows (P until $[10, 15] Q$)

- regular events

\[
\text{always}((\text{req}, (\neg\text{ack})^*, \text{ack}) \text{ triggers} \\
(\text{true}^+, \text{grant}, (\neg\text{rel})^*, \text{rel}))
\]

- universal propositional quantification

- hardware-oriented features (*multiple clocks* and *resets*)
Did We Waste 20 Years on CTL?

Absolutely not!

- Usefulness of model checking demonstrated

- Symbolic reachability and fair reachability algorithms

- CTL model checkers as back-end for linear-time model checkers (*Cadence’s SMV* and *Intel’s ForSpec*)

- CTL is useful in checking correct modeling, e.g., \forall always \exists true says that there is a fair path from every state.

- Branching time is appropriate in game-theoretic settings, e.g., AI planning and controller synthesis.
Conclusions

• In spite of 20 years of research, this issue has not been resolved yet

• CTL is clearly not adequate as a spec language

• LTL is better, but has weaknesses

• FTL is a strong industrial contender

My bottom line:

• Let’s close the linear-time vs. branching time debate: linear time won!

• Let’s re-open the linear-time vs. linear-time debate (e.g., FTL vs. $FormalCheck$ vs. ITL).

• Let’s develop linear-time model checking technology.