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ABSTRACT

The verification problem for probabilistic concurrent finite-state program is to decide
whether such a program satisfies its linear temporal logic specification. We describe an
automata-theoretic approach, whereby probabilistic quantification over sets of computa-
tions is reduced to standard quantification over individual computations. Using new deter-
minization construction for w-automata, we manage to improve the time complexity of the
algorithm by two exponentials. The time complexity of the final algorithm is polynomial
in the size of the program and doubly exponential in the size of the specification.

1. Introduction

One of the emerging trends in the area of
algorithm design is the introduction of randomiza-
*"~n into algorithms. Of particular interest to us is
- introduction of randomization into protocols
for synchronization, communication, and coordina-
tion between concurrent processes (cf. [CLP84,
FR80, LR81, Ra80, Ra82, Ra83]). Some of these
protocols solve problems that have been proven
unsolvable by deterministic protocols [FR80,
LR81]. Others improve on deterministic protocols
by various measures [Ra80, Ra83]).

Unfortunately, designing a correct concurrent
protocol is not an easy task. To quote from
[OL82]: “There is rather large body of sad experi-
ence to indicate that a concurrent program can
withstand very careful scrutiny without revealing
its errors.”. The introduction of randomization
compounds the problem, since ‘‘intuition often
fails to grasp the full intricacy of the algorithm”
[PZ84], and ‘“‘proofs of correctness for probabilistic

distributed systems are extremely slippery”
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[LR81]. While for non-probabilistic concurrent
programs there are reasonable verification methods
[MP83,0L82], this is not the case for probabilistic
programs.

There have been some investigations into the
logic of probabilistic concurrent programs [HS84,
LS82]. Nevertheless, it is not clear how these log-
ics can be used to actually verify programs. More
promising is the work in [HSP83], which gives a
complete decision procedure for checking liveness
properties of finite-state programs, that is, pro-
grams with a fixed number of processes and vari-
ables that range over bounded domains. In this
case the program can be viewed as a certain
cooperation of several finite Markov chains. The
work in [HSP83] constitutes, however, only a par-
tial solution to the general problem of verifying
probabilistic concurrent programs, since it gives
only an isolated proof principle for liveness proper-
ties. Pnueli presented a verification method for
probabilistic concurrent programs [Pn83], but his
method is incomplete and hard to use (cf. [PZ84]).

We extend here the results in [HSP83] by
describing a complete decision procedure for veri-
fying probabilistic concurrent finite-state pro-
Our starting point is that the correctness
criteria for the programs are specified in linear

grams.




temporal logic. We allow not only “vanilla” tem-
poral logic [Pn81], but also various extensions of it
[GPSS80, LPZ85, Wo83, WVS83]. Our approach
is essentially the so-called model checking approach
[CES83, EL85, LP85]. Rather than prove correct-
ness as some theorem of the logic, we check that
the program is a model of its specification. We
view the program as a generator of computations
and we view the specification as an acceptor of
computations. In the context of non-probabilistic
programs, we say that the program is a model of
its specification if every computation generated by
the program is accepted by the specification (note
that the program can have many computations
due to concurrency).

We take here an automata-theoretic
approach to model-checking, rather the tableauz-
based approach of [CES83, EL85, LP85]. The
basic idea is that infinite computations of finite-
state programs can be viewed as infinite words
over some finite alphabet. Temporal logic
specifications turn out to be essentially finite-state
acceptors of infinite words. More precisely, it is
shown in [WVS83,SVW85] that given any linear
time formula, one can construct an w-automaton
(whose size is exponential in the size of the for-
mula), ie., a finite-state automaton on infinite
words [Buc62,Mu63], that accepts precisely the
computations that satisfy the formula. It can be
shown that, based on this idea, the model checking
problem can be reduced to a purely automata-
theoretic problem.

In the context of probabilistic programs, the
notion of correctness is also probabilistic: a pro-
gram is correct if almost all computations satisfy
the specification, i.e., the specification is satisfied
with probability 1 [HS84,LS82]. (Thus this
approach differs from previous attempts to tackle
probabilistic programs by quantitative methods
(cf. [HSP84, Ko85, Fe83]).) Viewed from the
automata-theoretic perspective, and ignoring for
the moment the effect of concurrency, the
verification problem reduces to what we call the
probabilistic universality problem. Recall that the
standard universality problem is to determine
whether a given automaton accepts all words.
Here we have stochastic input, and we ask whether
the given automaton accepts with probabslity 1.
That is, we have a finite Markov chain that gen-
erates infinite words (i.e., computations), and we
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want to know whether the w-automaton that
corresponds to the temporal logic specification
accepts these words with probability 1. Alterna-
tively, we can look at the dual problem, which is
whether there is a positive probability that a com-
putation does not satisfy the specification. Viewed
from the automata-theoretic perspective, the dual
problem reduces to what we call the probabilistic
emptiness problems. Recall that the standard
emptiness problem is to determine whether a given
some word. Here we ask
whether there is a positive probability that the
automaton accepts.

automaton accepts

For deterministic automata, we prove that
probabilistic quantification (‘‘there exists a set of
words of a positive probability’’) can be reduced to
standard quantification (‘‘there exists a word”). In
fact, we reduce both probabilistic emptiness and
probabilistic universality to the standard emptiness
problem. Using this characterization we show that
both the probabilistic emptiness and universality
problems are in O Aé’ in the logarithmic hierarchy
of Ruzzo et al. [RST84] (i.e., DL).

Further difficulty arises when the automata
are nondeterministic, where our previous tech-
niques are completely inapplicable. In fact, it
seems that the only reasonable approach to the
problem is to first determinize the given automa-
ton. Unfortunately, unlike the case for automata
on finite words, determinizing w-automata is no
easy task. (We encourage the reader to figure out
why the classical subset construction fails for w-
automata.) The doubly exponential determiniza-
tion construction in [McN66] is perhaps the most
fundamental result in the theory of w-automata,
and it has numerous applications (e.g., [BL69,
GH82, Ra69, St82]).! The construction has been
described as ‘“‘original and ingenious’ [Ch74], and
‘““the most intricate this writer has seen in action”
[Buc65}. Unfortunately, the construction is not
completely correct. Not only it is ‘“‘very informal’
[Ei74] and “not easily grasped” [Ch74] but also “it
contains some inaccuracies which, when properly
remedied, make it even more complicated’ [Ch74],
which explains why ‘‘there are those who want to
see an error in McNaughton’s proof”’ [Buc83]. In
view of the importance of McNaughton's construc-

T The exponential determinization construction in [ES84]
is not general enough for our purposes.
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tion, many authors have taken to supply a
rigorous and correct proof of McNaughton's con-
‘truction [Buc73, Ei74, Ch74, Ra72, TB73]. Unfor-

~-tunately, in all of these proofs the complexity of

the construction is at least triply ezponential,
rather than doubly ezponential as it was in
[McN66]. In our context that would mean that
this approach to the probabilistic emptiness prob-
lem yields a decision procedure that runs in at
least doubly ezponential space.

We describe here a new doubly ezxponential
determinization construction. While the proof bor-
rows one of MecNaughton's idea, it is rather
different. Its essence is a generalized subset con-
struction that was introduced in [SVWS85]. Our
determinization construction is not only more
economical, but it is also more transparent than
the previous construction. Furthermore, using an
intermediate step in the construction, we eliminate
the need for a complete determinization of the
given automaton. Rather, a ‘‘partial” singly
ezxponential determinization is sufficient, yielding
an polynomial space decision procedures for proba-
bilistic emptiness and universality. We also prove
a matching lower bound of PSPACE-hardness.

So far we have dealt with the probabilistic

_aspect of the program but not with its concurrent

aspect. Concurrency implies that certain transi-
tions of the program are nondeterministic rather
than probabilistic. We introduce concurrent Mar-
kov chains as models for probabilistic concurrent
programs, and extend our techniques to deal with
concurrency. The bottom line is that we have a
decision procedure for the verification of finite-
state probabilistic concurrent programs, whose
time complexity is linear in the size of the program
and doubly exponential in the size of the
specification. We discuss the practical significance
of the algorithm at the concluding section of the

paper.
2. Background

2.1. Automata

A (transition) table is a tuple ™=(Z,S,p),
where X is the alphabet, S is a set of states, and
p:SxE—25 is the transition function. 7 is deter-
ministic if |p(s,a)}<1 for all states s€S and letters
acX. A run of 7 over a finite word w=gq,; - - - @,

wwver ¥ is a sequence of states s=s,, . .. ,s, such
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that 8;41€p(3;,a,) for 0<i<n-1. A run of 7 over an
infinite word w=aja; - - - is an infinite sequence
of states s=sp,8; - -+ such that s ,Ep(s;a;) for
t20. For an infinite run s, the set inf{s) is the set
of states that repeat infinitely often in s, ie.,
infis)={s:|{#:s;=3}]=00}.

An automaton consists of a table r=(%,S5,p),
a set of starting states S,C.S, and a set of accept-
ing states FCF. The automaton A=(7,5,F) is
deterministic if 7 is deterministic and |So|=1. A
accepts a word w if 7 has a run s on w that starts
with a state in S; and ends with a state in F. The
set of words accepted by A is L(A).

An w-automaton, consists of a table
=(L%,5,p), a set of starting states SoC S, and am
acceptance condition. The automaton is deter-
minislic if 7 is deterministic and |Sy|=1. Various
acceptance conditions give rise to different kinds of
w-automata.

A Bichi acceptance condition is specified by
a set of repeating states [Buc62]. That is, a Biichi
automaton A is a pair (7,5,F), where 7=(X,5,p) is
a table, SoCS, and FCS. A accepts an infinite
word w if there is a run s of 7 on w such that s
start with a state in Sy and some state in F repeats
in s infinitely often, that is, infs)NF=£0.

A Streelt acceptance condition is also a col-
lection of pairs of sets of states [St80]. Intuitively,
a pair (L,U) means that if some state in L repeats
infinitely often then some state in U repeats
infinitely often. Formally, a Streett automaton A
is a pair (1,5 F), where =(X,5,p) is a table and
and FC(2%2. A accepts an infinite word w if
there is a run s of 7 on w such that s starts with a
state in Sy and for all (L, U)EF, if infs)NL=t0 then
inf[s)NU=£P. Note that Biichi acceptance condi-
tion can be viewed as a special case of Streett
acceptance condition where F={(S$,F)}.

For an w-automaton A, L (A} is the set of
infinite words accepted by A. If L, (A)=#0, then A
is said to be empty. If L (A)=X % then A is said
to be unsversal.

Theorem 2.1. [Buc73, Ei74, Ch74, McN66, Ra72,
TB73]

1. Let A be a Streett automaton. There is a
Biichi automaton B such that L (A)=L,(B).




2 Let B be a Biichi automaton. Then there is

a deterministic Streett automaton A such
that L, (B)=L,A). [I

2.2. Temporal Logic

Temporal logic is a formalism in which one
can make assertions about the ongoing behavior of
a program. The simplicity of the formalism stems
from the fact that it does not mention time expli-
citly but rather implicitly. This makes it rather
easy to specify different correctness criteria, such
as partial correctness, deadlock freedom, mutual
ezclusion, liveliness, and more [La83Pn81]. We
are interested here in linear time temporal logic
rather than branching time temporal logic (cf.
[EH83]).

The basic idea is that one can describe a
state of the computation by a truth assignment to
atomic proposition. These propositions may
describe the locations of the program control or
the values of program variables. Thus we assume
a set Prop of atomic propositions. A computation
is an infinite sequence of truth assignments, i.e., a
function m:N—277? that assigns truth values to
the atomic propositions at each state of the com-
putation. (The restriction to infinite computation
is without loss of generality, since a finite compu-
tation can be viewed as staying forever in its final
state.) We use 7 to denote the i-th tail of , i.e,
r(kK)=n(i+k).

Temporal logic formulas are built from
atomic propositions by means of Boolean and tem-
poral connectives. We describe here the temporal
logic of [GPSS80]. Some extensions were studied
in [LPZ85, Wo83, WVS83].

The set of formulas in the logic is built from
a set Prop of atomic propositions by Boolean con-
nectives and the temporal connectives X (‘‘next’’)
and U (“until”). The formulas are interpreted
over computations in the following way:

. m=Q for QEProp if QE(0).
. m=¢/\¢ if 7l=¢ and 7=1.
. rE==¢ if not m=¢.

. =X ¢ if 7l=¢, i.e., X ¢ holds in a state if
¢ holds in the next state.
) m=¢ Uy if for some >0 we have that

7'=¢ and for all 0<j<i we have that
7ik=¢, i.e, ¢ U holds in a state if ¢ holds
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in all states until ¢ holds.

The automata-theoretic approach views com-
putations as the alphabet
$.=2P7  The basic results is that temporal logic
formulas are essentially w-automata.

Theorem 2.2. [SVW85, VW85, WVS83]. Given
a temporal logic formula ¢ of length n, one car
build a a Biichi automaton A4 on the alphabet
2ProP such that L,(Ag) is precisely the set of com-
putations satisfying ¢, and A4 has at most 20r?)
states. [|

infinite words on

We note that for most temporal logics the
bound in the theorem can be improved to 29"
[VW85,WVS83].

2.3. Program Verification

Following [HS83, LS82] we model probabilis-
tic programs by Markov chains. A (labelled) Mar-
kov chain II=(W,P,wy,V) over an alphabet £ con-
sists of a state space W, an initial state woEW, a
transition probability P:WZ2—[0,1] such that
EWP(u,v)=1 for all weW, and a valuation
L4

V:W—-L. For an infinite sequence
w=wp,wy, - - - of states, we define V(w) as the
infinite word V{wo) V(wy) - - - .

As in the theory of Markov processes (see
[KSK66]), we now define a probability space called
the sequence space ¥=(Q,A,u), where 1= WY is
the set of all infinite sequences of states starting at
wy, A is a Borel field generated by the basic cylin-
dric sets

A(w(!)wl) CEEa ,w,,)={w€0 W=, Wy, . . . Wy " })

and p is a probability distribution defined by

”(A(w(hwl)”'vwn))':P(wval)'P(wlrwn)' o P(w»—lrwn)'

A program is a Markov chain over the alphabet
oPror Thus, if wefl, then V(w) is a computation.
We now want to define satisfaction of a formula
by a program. We first have to show that formu-
las define measurable sets. The proof of the fol-
lowing proposition uses Theorem 2.1.

Proposition 2.3. Let II=(W,P,uy, V) be a Mar-
kov process over £ with ¥p=(Q,A,p) its associ-
ated sequence space, and let Bbe a Biichi automa-
ton on £. Then the set A(B)={w : V(w)EL.(B)}
is measurable. []

Using now Theorem 2.2, we get the following
corollary.




Corollary 2.4. Let [I=(W,P,w,, V) be a program
with ¥=(0,A,u) its associated probability space,

let ¢ be a formula. Then the set
Alp)={w : V[w)=¢} is measurable. {]

(For the temporal logic defined above, Corollary
2.4 can be proven directly. The proof via Proposi-
tion 2.3 is, however, more general and holds for
extended temporal logics as well.)

We say that the program II satisfies the for-
mula ¢ if p(A(¢))=1, that is, if almost all compu-
tations of the program II satisfy ¢.

In general, the state space of the program
can be infinite. But for a large class of applica-
tions (in particular synchronization and coordina-
tion protocols), the state space is finite, which we
assume to be the case from now on. The
verification problem is to decide, given a program
II and a formula ¢, whether II satisfies ¢. As we
shall see later, our algorithms do not depend on
the actual transition probabilities. Thus we take
the size of the program to be the number of
nonzero entries in the transition matrix.

3. Probabilistic Universality and Emptiness

Theorem 2.2 enables us to consider the
_ification problem from a purely automata-
theoretic perspective. Let II=(W,P,w,,V) be a
finite Markov chain over L, with ¥=(Q,A,u) its
associated sequence space, and let B be an w-
automaton on X. Recall that A(B) is the set
{w:Vw)EL,(B)} of sequences accepted by B. We
say that B is universal with respect to II if
p(A(B))=1. The probabilistic universality problem
is to decide, given I1 and B, whether B is universal
with respect to II. Clearly, the verification prob-
lem is reducible to the probabilistic universality
problem. For technical reasons it is also useful to
investigate the dual notion. We say that B is
empty with respect to Il if p(A(B))=0. The proba-
bilistic emptiness problem is to decide, given II and
B, whether B is empty with respect to II.

The standard emptiness and universality
problem for Biichi automata (i.e, does a given
Biichi automaton accept some word, or does a
given Biichi automaton accept all words) have
been studied in [SVWS85]. It is shown there that
the emptiness problem is NL-complete and the
universality problem is PSPACE-complete. The

ndard emptiness problem for Streett automata
was been studied in [EL85], where a quadratic time
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algorithm for the problem is presented.

3.1. Probabilistic Universality and Empti-
ness for Deterministic Automata

If we restrict ourselves to deterministic auto-
mata, then we can replace probabilistic
quantification (‘‘there exists a set of words with
positive probability’’) by standard quantification
(“‘there exists a word").

Theorem 3.1. Probabilistic emptiness and
universality of deterministic Streett automata are
logspace reducible to standard emptiness of Streett
automata.

Sketch of Proof. Given a Markov chain
II=(W,P,wy,V) over L and deterministic table
7=(X,5,p), we define a new table over one-letter
alphabet rq=({a}, WX S,pp1), where

p(Wx S)x {a}—2%*5 is defined by:

pil(v,8),a)={(v,8) : P(v,v)>0 and p(s, u))={t}).
(Note that ppy essentially ignores its input.)

We now reduce probabilistic emptiness to
standard emptiness. Let A=(r,$,F) be a deter-
ministic Streett automaton, we define a new
Streett automaton Apg=(mm,(wo,%),Gr), where 7y is
defined as above, and the acceptance condition G
is

({(w,8)}{v8) : (v)€pn((v,9),0)}U
{{WxL,WxU: (L,UEF}.

Now A is empty with respect to I iff A is empty.
We now reduce probabilistic universality to
standard emptiness. Let A=(7,8,,F) be a deter-
ministic Streett automaton, For each pair of sets
L,UE2°, we define a new Streett automaton
Anz,v=(mm(wo,%),Gm,L,v), where 7 is defined as
above and the acceptance condition Gz v is

({(w9)},{v8}) : (v,)€pn((v3),0)}U
{(Wx S, WX L),(Wx U,8)}.

Now A is universal with respect to II iff A yis
empty for all (L,V)€F. (]

What we have done is reducing probabilistic
quantification to standard quantification over pro-
babilistically fair sequences, that 1is, sequences
where every probabilistic choice is taken infinitely
often. (This is closely related to the notion of a-
fairnessin But while they require fairness with

!
{
!
:
£
S




respect to all regular expressions, we require only
fairness with respect to the given automaton.

In general, emptiness of Streett automata
can be tested in quadratic time [EL85], so proba-
bilistic universality and emptiness of Street auto-
mata can be tested in quadratic time. It turns out
that the automata that we get in the reduction of
Theorem 3.1 have a special structure, so we can
get a better upper bound.

Theorem 3.2. The probabilistic universality and
emptiness problems for deterministic Streett auto-
mata are in DL,

Sketch of Proof. Recall that DL is the class of
languages that can be recognized by logspace-
bounded oracle Turing machines, with an oracle
set that can be recognized by a nondeterministic
logspace-bounded Turing machines. (It is the class

OA% in the logarithmic hierarchy of Ruzzo et al.
[RST84]).

Let A=(7,80,F) be a deterministic Streett
automaton. Then Ap is nonempty iff its transition
graph has a terminal strongly connected com-
ponent « (i.e., o« is a strongly connected com-
ponent without outgoing edges) such that for all
(L,V)€F if o has a node (u,8) with s€L then o« also
has a node (v,f) with t€U. This condition can be
expressed as follows: there exists a node z such
that (1) there exists a node y such that z is con-
nected to y, (2) for all nodes y, if « is connected to
y then y is connected to z (so z is in a terminal
strongly connected component) and, (3) for all
(L,U)eF, if z is connected to a node (u,s) with
s€L, then z is also connected to a node (v,f) with
teU. Clearly, this can be checked by a logspace-
bounded Turing machine with an oracle in NL. A
similar argument holds for probabilistic universal-
ity. [

The proof of Theorem 3.1 depends crucially,
unfortunately, on the fact that we are dealing with
deterministic automata. The automata obtained
from temporal logic formulas are, however, non-
deterministicc. We can use McNaughton’s con-
struction (Theorem 2.1) to determinize these auto-
mata, but, as discussed in §1, the complexity of
that construction is apparently triply exponential,
yielding a doubly exponential space bound for the
probabilistic universality and emptiness problems.
In the next section we describe a better determini-
zation construction.
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3.2. Determinizing Buchi Automata

Qur determinization construction is based on
the generalized subset construction of [SVWS85].
Let ==(X,5,p) be a table, and let FCS. We con-
struct a deterministic table 7=(X%,S,p). T captures
the behavior of 7 with respect to F. The informa-
tion that we are trying to capture is as follows.
Given a finite nonempty finite word z and two
states u,vES:

1. is there a run of ¢ on z starting with u and
ending with o?

2. is there a run of A on z starting with u, end-
ing with v, and containing some state in F?

Let S={s,, ...,s,}. Define S' =5x{0,1}
and $=(2°")~ S has m states, denoted
Pi, - - - ;Pm, Where m=4". Intuitively, a state in S

is an n-tuple of sets of states of S labeled by 0 or
1. We need an n-tuple of sets rather then a single
set, because we are trying to capture information
about runs that can start in any state of S. The
label on the state (0 or 1) indicates whether the
run contains a state in F. The state set of T is
S=J{po}, i.e., we add to S a special state py..

_ The_ deterministic transition
7:SX TS is defined as follows:

L F(Po,a)=<51, ..

function

. ,5,>, where
S={<4,0>:u€p(s;,0)}U{ < u,1>:u€p(s;,a)NF}.

. A<L<Ty, ..., T,>,00=<S5, ...,S.>, where

S={< 4,0>:u€p(v,a) for some <v,j>ET}U
{< u,1>:u€p(v,a) for some <v,1>€T;}U
{<u,1>:u€p(v,a)NF for some <v,j>ET;}.

We now define automata on finite words A;,
and A 1<i<m: A=(7,p0.{p}), and
Ai=(1p:{p})- The following lemma follows
immediately from the fact that the A;/s are deter-
ministic.

Lemma 3.3. L(A)),...,L(A,,) is a partition of T+

l

Consider_ now the languages
Yi=L(A)(L(AYNL(Aj))*, where 1<+j<m. The
crucial fact about Yj; is that it is the product of
two languages (one of finite words, and the other
of infinite words) that are accepted by determinis-
tic automata of exponential size.
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Lemma 3.4. We can construct a deterministic
Biichi automaton A;j such that
Aj)=(L{A)NL(A};)), and B; has 3m+1 states.
Sketch of Proof. We first need the following

fact.

Fact. Let 1<p,g<m. Then there is a unique
1<r<m such that L{A,) L(A)CL(A,).

We abuse notation and denote the unique r for
each p and ¢ as pgq.

A; is the deterministic Biichi automaton
(Z,T,6,p0,G), where T={po}U(£x {0,1,2}),
G=S8x% {2}, and 6: TX X— T is defined as follows:

o 8(po,a)=<p(po,a),0>.
o U(<p:0>,0)=<pp,0>,
if py=7(psa) and kekik.
o U(<py0>,8)=<ppl>,
if py=p(p;a) and k=jk.
o 0(<p;1>,0)=<ppl>,

if pe=Fpaa), iA, and k4ik.
e H<pyl>,0)=<pp2>,

if pi=p(p;a), i=#j, and k=jk.
o H(<pyl>,a)=<ppl>,

if pr=p(po,a) and i=j.

(<py2>,a)=<ppl>,

if pe=p(p1,0) and i=#j.

b H<pi2>,0)=<ppl>,

if pr=p(po,a) and i=j. ||

We now prove two important lemmas about
the languages Y,

Lemma 3.5. | j;Yy=2" ||
Lemma 3.5 is proven by a combinatorial analysis

(which is a refinement of the analysis in [SVW85])
of infinite runs of 7, and uses Ramsey’s Theorem.

Let now A=(7,5p,F) be a Biichi automaton.

Lemma 3.8. For 1<i4,j<m, either Y,NL,(A)=0
or Y;CL,(A).
Proof. Consider the languages Z;J=L(;‘i_,-)~L(XJ.-) v,
Clearly, Y;C Z; It is shown in [SVWS85] that
either Z;NL,(A)=0 or Z;C L, (A). The claim fol-
lows. []

Corollary 3.7.
L L(A)=J{YYyCL(A)}.
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2. E(LA)=U{ Y YinL(A)=0}. [
Finally we prove:

Theorem 3.8. Let B be a Biichi automaton.
Then we can construct a deterministic Streett
automata A, and A, with O(ezp?(n?)) such that
L(A1)=Ly(B) and L,(Az)=X“~(L.(B)).

Sketch of Proof. The first step is to construct
deterministic automata A; for the languages Y
By Lemma 3.4, Y;=IL(A) L, Aj). We can con-
struct deterministic automata for Y; using
Choueka’s flag construction [Ch74]. (The flag con-
struction is a construction for running many auto-
mata in parallel under a central control.) This con-
struction, which is implicit in [McN66], is exponen-
tial in the size of A;. (The flag construction is the
only part in out determinization construction that
is borrowed from McNaughton's construction.)
Thus the A;; are doubly exponential in the size of
A. Now we use Corollary 3.7, and we get B and

B, by taking the cross product of the appropriate
Ag. i

3.3. Probabilistic Universality and Empti-
ness for Nondeterministic Automata

We can now combine Theorems 3.2 and 3.8
to solve the probabilistic universality and empti-
ness problems. This would yield an exponential
space upper bound. Studying carefully the results
of §3.2, we observe that it is not really necessary
to determinize the given automata. Rather we can
use directly Lemma 3.4 and Corollary 3.7 without
going through the exponential flag construction of
Theorem 3.8.

Theorem 3.9. Let II=(W,P,w,,V) be a Markov
chain over ¥, and let__A=(‘r,So,F) be a Biichi auto-
maton over ¥. Let A; and A, 1Si$4"2, the auto-
mata described in the previous section.

1. A is nonempty with respect to IT iff there are

some A; Aj, and a finite sequence
w=uw,, . .. ,w; of states in W such that
b L(Ai)'Lw(Aj).ng(A),

° Plw,w;)>0 for 1<i<k-1.

° A; is nonempty with respect to
("V,Prwk"/)-
e VwELA,).




2. A is nonuniversal with respect to II iff there
are some A; A; and a finite sequence

. ,wi of states in W such that
d (L(Ai)'Lw(Aj))an(A)zﬂ,
. P(w;,w;)>0 for 1<i<k-1.

WwW=1uwp, . .

] A; is nonempty with
(VV,P, wk? V)

o WVIwlel(4). [}
We can now give tight bounds for the proba-

bilistic universality and emptiness problem.

Theorem 3.10.
and

respect to

The probabilistic universality

problems for
LNL

emptiness non-deterministic
Biichi automata are in D with respect to the
size of the chain and PSPACE-complete with

respect to the size of the automaton.

Idea of Proof. To get the upper bounds we com-
bine Theorems 3.2 and Theorem 3.9. To prove the
lower bound we use a reduction from the univer-
sality problem for automata on finite words, which
was shown to be PSPACE-complete in [MS72].
Given an automaton A, we construct a Bichi auto-
maton B and a Markov chain II such that if A is
universal, then B is also universal, and in particu-
lar it is universal with respect to I, and if A is not
universal, then B is empty with respect to IL

Thus the universality problem is reduced to both-

the probabilistic universality problem and the pro-
babilistic emptiness problem. ||

4. Verifying Probabilistic Concurrent Pro-
grams

Theorems 2.2 together with Theorem 3.10
yield a complete solution to the verification prob-
lem for probabilistic sequential programs. The
space complexity of the algorithm is O(log2n) in
the size of the program and O(expn?) in the size of
the specification.

Unfortunately, we do not believe in the
approach of modelling probabilistic concurrent
programs by Markov chains (as suggested in
[HS83,1.582]). The problem with this model is that
it assumes that all transitions of the programs are
probabilistic. This is adequate for sequential pro-
grams, since a nonprobabilistic transition can be
viewed as a transition with probability 1. But for
concurrent programs, where many processes are
running concurrently, some are,
inherently nondeterministic.

transitions
The nondeterminism
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arises from two sources. The first source is the
processes themselves. First, processor can die and
restart at arbitrary times. Furthermore, processes
start running certain protocols only when they
need to, e.g., when they are trying to use some
shared resource, and we do not want to make any
probabilistic assumptions about that. The second
source of nondeterminism is the asynchronicity of
the system; some processes may run much faster
than other process. It is convenient to imagine a
scheduler, that decide which process is going to
perform the next step. Though we do not want to

make any probabilistic assumption about the

. scheduler, we will assume that it is not a patholog-

ical one, i.e., it satisfies some fairness condition.
We now describe a model for probabilistic con-
current programs that allows for nondeterminism.

A concurrent Markov chain
II=(W,N,F,P,w,, V) over an alphabet ¥ consists of
a state space W, a set of nondetermsnistic states
NC W, a set of fair states FC N, transition proba-
bility P: W2—[0,1] such that é‘:WP(u,v)zl for all

vl

u€ W-N, a starting state wp€EW, and a valuation
V- W—X. The idea is that W-N is the set of states
where a probabilistic transition has to be made, N
is the set of states where a nondeterministic transi-
tion has to be made, and F is the set of states
where the nondeterminism comes from the fair
If uEN, then we interpret P(u,v) to
mean that there is a possible transition from u to v
if and only if P(u,v)>0. A concurrent probabilistic
program is a concurrent Markov chain over the
alphabet 9Pror. This model is more general than
that in [HSP83] where a concurrent probabilistic
program is modelled by an interleaving of many
Markov chains.

scheduler.

To define the sequence of a concurrent Mar-
kov chain we need the notion of a scheduler. A
scheduler  for a concurrent ~ Markov chain
MI=( W,N,F,P,w,,V) is a function o: W*N—W, i.e.,
a function that assigns a state to each sequence of
states that end with a nondeterministic state, such
that o(wy, . . .,w,)=w only if Plw,w)>0. A
sequence w=wj,wy, - - - is fair if for all states
uweF, if |{i: w=u}l=w and P(y,9)>0, then
|{i : w=v}|=w. That is, if a fair state occurs in
the sequence infinitely often, then all possible tran-
sitions are taken infinitely often. This notion is
called state fairness in [Pn83] and fair choice from
states in [QS82).




Let I=(W,N,F,P,wp, V) be a concurrent Mar-

kov chain. A scheduler o for II gives rise to a
rkov chain I,=(W*,P,w,, V), where
Viwy, . . ., wp)=V(w), and PW'XW[0,1] is

defined as follows (where z and y are arbitrary
members of W*):

° F(zu,a:uv):P(u,v) if ue W-N,

. P(zu,zuv)=1, if €N and o(zu)=v, and

. I?(z,y)=0, otherwise.

It is easy to verify that ¥ P(z,y)=1 for all 2€ W’
€W

so II, is indeed a Markov chain. Intuitively, II,

describes the behavior of the system under the

scheduler . Note that II, has infinitely many
states even when II has finitely many states.

We can now define the sequence space
¥,,=(Q,A,u,) relative to the scheduler o, where
Q=W?%“ A is the Borel field generated by the
cylindric sets

A{wg,wy, . . . ,w)={wWEQ:w=wg,wy, . . . ,w, " " " },
and p, is the probability distribution defined by

BoAlwo,wy, . .
awo,wowl)‘f-;(wowl»wowlwﬂ T

Bl - - -

. ;wn)———

Wy y,Wo ~ " - wn—lwn)‘

Lemma 4.1. The set of fair executions is measur-
able. ]

A scheduler is fafr is the set of fair sequences
in the sequence space ¥y, has probability 1, i.e.,
almost all sequences are fair. A probabilistic con-
current program II satisfies a formula ¢, if the set
of sequences that satisfy ¢ in the sequence space

¥, has probability 1 for all fair schedulers o of
IL.

We can now define emptiness and universal-
ity with respect to concurrent Markov chains. Let
IM=(W,N,F,P,w, V) be a concurrent Markov chain,
and let B be an w-automaton. Recall that A(B) is
the set {w:V(w)€L,(B)} of sequences accepted by
B. B is universal with respect to IT if u{A(B))=1
for each fair scheduler o for II. B is empty with
respect to II if pu(A(B))=0 for each fair scheduler
o for I

Theorem 4.2. Probabilistic emptiness and
universality of deterministic Streett automata with
spect to concurrent Markov chain are logspace
ducible to standard emptiness of Streett auto-
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mata.

Sketch of Proof. The proof is similar to the
proof of Theorem 3.1, so we show only the reduc-
tion from probabilistic emptiness to standard emp-
tiness. Given a concurrent Markov chain
II=(W,N,F,P,w, V) over ¥ and deterministic table
=(%,5,p), we define a new table over one-letter
alphabet r=({a}, WX S,pr1), where

pre( WX Sy X {a}—2%"*S is defined by:

prl(w,8),a)={(v,2) : P(x,9)>0 and p(s, V[u))={1}).

Let A=(7,80,F) be a deterministic Streett
automaton, we define a new Streett automaton
An=(m1,(wo,%),G1), where ry is defined as above,
and the acceptance condition Gp is

({(w,8)},{vnt}) : (v,0)€pn((v,8),0)}U
{({u} X S,{v} X S) : u€F and P(u,v)>0}U
{(WXL,WxU): (L, U)EF}.

The above reduction and the quadratic time
algorithm for testing emptiness of Streett auto-
mata [EL85] yields quadratic time algorithms for
probabilistic universality and emptiness. Since the
Streett automata produced by the reduction have
a special structure, we can do better, though not
as good as we did for non-concurrent Markov
chain.

Theorem 4.3. Probabilistic emptiness and
universality of deterministic Streett automata with
respect to concurrent Markov chains are solvable
in linear time. ||

To test probabilistic and emptiness for non-

deterministic automata we use the construction of
Theorem 3.9.

Theorem 4.4. Probabilistic universality and
emptiness of nondeterministic Buchi automata
with respect to concurrent Markov chains are solv-
able in time that is linear in the size of the chain
and exponential in the size of the automaton. []

Finally, combining Theorem 2.2 and
Theorem 4.4, we get an upper bound for the
verification problem.

Theorem 4.5. The verification problem for pro-
babilistic concurrent programs can be solved in
time polynomial in the size of the program and
doubly exponential in the size of the specification.

[




The only lower bound that we know how to prove
for the verification problem is essentially the
PSPACE-hardness of Theorem 3.10.

5. Concluding Remarks

We have developed an algorithm for the
verification of probabilistic concurrent finite-state
programs. The time complexity of the algorithm
is linear in the size of the program and doubly
exponential in the size of the specification. The
reader may feel that this complexity renders our
algorithm rather impractical. But the truth is that
in practice most correctness specifications are
rather short (cf. [LR81, OL82, Pn81]). We believe
that this fact, together with several heuristics that
can be used to improve the running time of the
algorithm, may render the algorithm tractable in
some applications. Also, it turns out that for cer-
tain fragments of temporal logic the time complex-
ity of the algorithm can be improved by one
exponential [PZ85,VW85].

Another weakness of the algorithm is that it
deals only with finite-state programs. While proto-
cols for distributed systems are often finite state,
we usually want to prove their correctness for an
arbitrary number of processes. Our algorithm, on
the other hand, will work only for a fixed number
of processes. It is known that the verification
problem for concurrent programs with an arbitrary
number undecidable [AKS85].
Nevertheless, we believe that our algorithm will
constitutes a basic step in any verification method
for such protocols.

of processes s

Finally, we note that we have dealt only
with qualitative correctness. One has often quanti-
tative correctness conditions, such as bounded
waiting time [Ra80|, or real-time response [RS84].
Verification of these conditions requires totally
different techniques.
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