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Abstract

This paper presents a study of the satisfiability of random Horn
formulae and a search for a phase transition. This is a problem similar
to the Satisfiability problem, but, unlike the latter, Horn satisfiability
is tractable and thus it is easier to collect experimental data for large
instances. We are also interested in Horn formulae because of their re-
lation to finite automata. We study random Horn formulae generated
according to a variation of the fixed-clause-length distribution model.
Our experimental findings suggest that there is a sharp phase tran-
sition between a region where a random formula ¢ is almost surely
satisfiable to a region where ¢ is almost surely unsatisfiable. We also
use a result on random hypergraphs to generate a model that fits well
our experimental data. This model though, suggests that the problem
does not have a phase transition, showing how difficult it can be to es-
tablish experimentally a phase transition even for tractable problems
like 1-3-HornSAT.

1 Introduction

In the past decade phase transitions in combinatorial problems have been
studied intensively. Although the idea of phase transitions in combinato-
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rial problems was introduced as early as 1960 [17], in recent years it has
been a main subject of research in the communities of theoretical com-
puter science, artificial intelligence and statistical physics. Combinatorial
phase transitions are also known as threshold phenomena. Phase transi-
tions have been observed both on the probability that an instance of a
problem has a solution (k-SAT, 3-Colorability) and on the computational
cost for solving an instance (3-SAT, 3-Colorability). In few cases (2-SAT,
3-XORSAT, 1-in-k SAT) these phase transitions have been also formally
proved [5, 12, 19, 15, 2, 8|.

A problem that has been in the center of this research is that of 3-
satisfiability (3-SAT). An instance of 3-SAT consists of a conjunction of
clauses, where each clause is a disjunction of three literals. The goal is to
find a truth assignment that satisfies all clauses. The density of a 3-SAT
instance is the ratio of the number of clauses to the number of Boolean
variables. We call the number of variables the order of the instance. Ex-
perimental studies [9, 32, 31] show that there is a shift in the probability of
satisfiability of random 3-SAT instances, from 1 to 0, located at around den-
sity 4.26 (this is also called the crossover point). So far there is no proof of a
sharp phase transition at that density, cf. [18, 14, 1]. The same experimental
studies show a peak of the computational complexity around the crossover
point. In [26], finite-size scaling techniques were used to demonstrate a phase
transition at the crossover point. Later, in [6], further experiments showed
that a phase transition of the running time from polynomial in the order to
exponential is solver-dependent, and for several different solvers this tran-
sition occurs at density lower than the crossover point. A limitation on all
the experimental studies is imposed by the inherent difficulty of the prob-
lem, especially around the crossover point. We can only study instances of
limited order (usually up to few hundreds) before the problems get too hard
to be solved in reasonable time using the available computational resources.

A problem that is similar to random 3-SAT is that of the satisfiability of
random Horn formulae, also called random Horn-SAT. A Horn formula in
conjunctive normal form (CNF) is a conjunction of Horn clauses; each Horn
clause is a disjunction of literals' of which at most one can be positive.
Unlike 3-SAT, Horn-SAT is a tractable problem. The complexity of the
Horn-SAT is linear in the size of the formula [13]. The linear complexity of
Horn-SAT allows us to study experimentally the satisfiability of the problem
for much bigger input sizes than those used in similar research on other
problems like 3-SAT or 3-Colorability [21, 9, 32, 7].

LA positive literal is a variable; a negative literal is a negated variable.



An additional motivation for studying random Horn-SAT comes from the
fact that Horn formulae are connected to several other areas of Computer
Science and Mathematics [28]. In particular Horn formulae are connected
to automata theory, as the transition relation, the starting state, and the
set of final states of an automaton can be described using Horn clauses. For
example, if we consider automata on binary trees (see definition below), then
Horn clauses of length three can be used to describe its transition relation,
while Horn clauses of length one can describe the starting state and the set
of the final states of the automaton (we elaborate on that later). Then,
the question about the emptiness of the language of the automaton can be
translated to a question about the satisfiability of the formula. There is also
a close relation between knowledge-based systems and Horn formulae, but we
do not consider this relation in this work. Finally, there is a correspondence
between Horn formulae and hypergraphs that we use to show how results
on random hypergraphs relate to our research on random Horn formulae.

The probability of satisfiability of random Horn formulae generated ac-
cording to a variable-clause-length model has been studied by Istrate in [23].
In this work it is shown that according to this model random Horn formulae
have a coarse satisfiability threshold, i.e. the problem does not have a phase
transition. The variable-clause-length distribution model used by Istrate is
better suited if we study Horn formulae in connection to knowledge-based
systems [28].

Motivated by the connection between the automata emptiness problem
and Horn satisfiability, we studied the satisfiability of two types of random
Horn formulae in conjunctive normal form (CNF) that are generated ac-
cording to a variation of the fixed-clause-length distribution model. That is,
formulae that consist of clauses of length one and three only, and formulae
that consist of clauses of length one and two only. We call these problems
1-3-HornSAT and 1-2-HornSAT respectively. We are looking to identify re-
gions in the problems’ space where instances are almost surely satisfiable or
almost surely unsatisfiable. We are also interested in finding if the problems
exhibit a phase transition, i.e. a sharp threshold.

Notice that the random 1-2-HornSAT problem is related to the random
1-3-HornSAT problem in the same way that random 2-SAT is related to
random 3-SAT. That is, as some algorithm searches for a satisfying truth
assignement for a random 1-3-Horn formula by assigning truth values to the
variables, a random 1-2-Horn formula is created as a subformula of the orig-
inal formula. This is a result of 3-clauses being shortened to 2-clauses by a
subtitution of truth values. The relation between random 2-SAT and ran-
dom 3-SAT is exploited by Achlioptas in [1] to improve on the lower bound



for the threshold of random 3-SAT. In this work, Achlioptas uses differential
equations to analyze the execution of a broad family of SAT algorithms. In
general, one can try to analyze phase transitions using differential equations,
cf. [22] The 1-2-HornSAT problem can be analyzed with the help of random
graphs [4]. We show how results on random digraph connectivity, presented
by Karp in [24], can be used to model the satisfiability of random 1-2-Horn
formulae. These results can be used to show that there is no phase transition
for 1-2-HornSAT and are matched by our experimental data.

Our experimental investigation of 1-3-HornSAT shows that there are
regions where a random 1-3-Horn formula is almost surely satisfiable and
regions where is almost surely unsatisfiable. Analysis of the satisfiability
percentiles’” window and finite-size scaling [33] suggest that there is a “sharp
threshold line” between these two regions. As 1-2-HornSAT can be analyzed
using random digraphs, 1-3-HornSAT can be analyzed using random hyper-
graphs. We show that some recent results on random hypergraphs [11] fit
well our experimental data. Unlike the data analysis, the hypergraph-based
model suggests that the transition from the satisfiable to unsatisfiable re-
gions is rather a steep function than a step function. It is therefore not clear
if the problem exhibits a phase transition, even though we were able to get
experimental data for instances of large order.

Our work here also relates to that of Kolaitis and Raffill in [27]. There,
the authors carried out a search for a phase transition in another NP-
complete problem, that of AC-matching. The similarity between their work
and ours is that the experimental data provide evidence that both prob-
lems have a slowly emerging phase transition. The difference is that in our
case, because of the linear complexity of Horn satisfiability, we are able to
test instances of Horn satisfiability of much bigger size, than the instances
of AC-matching in [27] or actually most of the NP-complete problems like
3-SAT, 3-colorability etc.

2 Preliminaries

Let us review some definitions? related to combinatorial phase transitions.
Let X be a finite set and |X| = n. Let A be a random subset of X con-

structed by a random procedure according to the probability space (n,m) 2
(2%, 22X,Pr), where Pr is defined as :

2The definitions found in this paper as well as more definitions and results can be found
in [10]



_ )Gy if|Al=
PrQ(”’m)(A) - { 0 otherwise

where m is an integer and

0 ifm<o0O
m*=<{ m if0<m<n
n ifm>n

The random procedure consists of selecting m* elements of X without
replacement. A (set) property @Q of X is a subset of 2X. Q is increasing if
A€ Qand AC B C X implies B € Q. @ is non-trivial if ) € Q and X € Q.
A property sequence (@ consists of a sequence of sets { X, : n > 1} such that
| Xn| < |Xnt1| and a family {Q, : » > 1} where each @, is a property of
X,. @ is increasing (non-trivial) if @, is increasing (resp. non-trivial) for
every n > 1.

Let Q, be an increasing non-trivial property sequence # : N — R™ be
a strictly positive function. We say that 0 is a threshold for @ if for every
f:N—N:

L. If limy, 00 f(n)/0(n) = 0 then limy, 00 Prog, r(n)) (@n) =0

2. If limy, 00 f(1)/0(n) = oo then limy, 0 Pro, r(n))(@n) =1
0 is a sharp threshold Q if for every f: N — N1 :

L. If sup,_, f(n)/0(n) < 1 then limy, 0 Prog, r(n)) (@n) =0
2. Ifinf, 0 f(n)/0(n) > 1 then limy, 00 Progn, f(n)) (@Qn) = 1

We say that @) exhibits a phase transition if it has a sharp threshold. Our
interest is in satisfiability of Horn formulas. Thus, in our framework X, is
the set of Horn clauses over a set with n Boolean variables. A set of Horn
clauses is a Horn formula.

Our main motivation for studying the satisfiability of Horn formulae is
that, unlike 3-SAT, this problem is tractable. Therefore we will have data
for instances of much larger order to help us answer questions similar to
those previously asked about 3-SAT.

Apart from that, it is of interest to us that Horn formulae can be
used to describe finite automata. A finite automaton A is a 5-tuple A =
(S,3%,0,s, F), where S is a finite set of states, X is an alphabet, s is a start-
ing state, ' C S is the set of final (accepting) states and ¢ is a transition
relation.



In a word automaton, 4 is a function from S x ¥ to 2°. In a binary-tree
automaton § is a function from S x ¥ to 25%9. Intuitively, for word au-
tomata & provides a set of successor states, while for binary-tree automata
0 provides a set of successor state pairs. A run of an automaton on a word
a = ajas---a, is a sequence of states sgsy--- s, such that sg = s and
(si—1,ai,8;) € d. A run is succesful if s,, € F'; in this case we say that A ac-
cepts the word a. A run of an automaton on a binary tree ¢ labeled with let-
ters from 3, is a binary tree r labeled with states from S such that root(r) =
s and for a node 7 of ¢, (r(7), (i), r(left-child-of-i), r (right-child-of-7)) € §.
Thus, each pair in §(r(7),%(7)) is a possible labeling of the children of 7. A
run is succesfull if for all leaves [ of r, r(I) € F; in this case we say that A
accepts the tree t. The language L(A) of a word (resp. tree) automaton A,
is the set of all words a (resp. trees t) for which there is a successful run of
A on a (resp. t). An important question on automata theory that also is
of great practical importance in the field of formal verification [34] is, given
an automaton A is L(A) non-empty ? We can show how the problem of
non-emptiness of automata languages translates to Horn satisfiability.

Consider first a word automaton A = (S,%, 4, sg, F'). Construct a Horn
formula ¢4 over the set S of variables as follows:

e create a clause (sg)
e for each s; € F create a clause (s;)
e for each element (s;,a,s;) of § create a clause (sj, s;),

where (s;, -+, s) represents the clause s;V- - -Vsj and §; is the negation of s;.

Theorem 1 Let A be a word automaton and pa the Horn formula con-
structed as described above. Then L(A) is non-empty if and only if 4 is
unsatisfiable.

Proof.

(=) Assume that L(A) is non-empty, i.e. there is a path m = s;,s;, -+~ si,,,
in A such that s;, = so and s;,, = s, where si is a final state. Since sj is
a final state (si) is a clause in p4. Also (Sk,s;,, ,) is a clause in 4. For
@4 to be satisfiable s, should be true and consequently, s; |, must be true.
By induction on the length of the path m we can show that for ¢4 to be
satisfiable sy must be true, which is a contradiction.

(<) Assume that ¢4 is unsatisfiable. It then must have positive-unit reso-
lution refutation [20], i.e. a proof by contradiction where in each step one



of the resolvents must be a positive literal, where the last resolution step
is with the clause ($p). Let (s;) be the first positive literal resolvent in the
proof. By construction, s; is a final state of A. By induction on the length
of the refutation, we can construct a path in A from sy to s;, Therefore,
L(A) is non-empty. O

Similarly to the word automata case, we can show how to construct a
Horn formula from a binary-tree automaton. Let A = (S,%, 4, sg, F') be a
binary-tree automaton. Then we can construct a Horn formula ¢4 using
the construction above with the only difference that since § in this case is
a function from S x {a} to S x S, for each element (s;, @, sj,s;) of §, we
create a clause ($}, i, s;). It is not difficult to see that also in this case we
have:

Theorem 2 Let A be a binary-tree automaton and @4 the Horn formula
constructed as described above. Then L(A) is non-empty if and only if @
is unsatisfiable.

Motivated by the connection between tree automata and Horn formulas
described in Theorem 2 we studied the satisfiability of two types of random
Horn formulae. More precisely, let H 71131 4, denote a random formula in CNF
over a set of variables X = {z1,---,z,} that contains:

e a single negative literal chosen uniformly among the n possible negative
literals

e din positive literals that are chosen uniformly, independently and
without replacement among all n — 1 possible positive literals (the
negation of the single negative literal already chosen is not allowed)

e don clauses of length two that contain one positive and one negative lit-
eral chosen uniformly, independently and without replacement, among
all n(n — 1) possible clauses of that type.

We call the number of variables n the order of the instance.
Let also H. 711’31 ds denote a random formula in CNF over the set of vari-
ables X = {z1,---,z,} that contains:

e a single negative literal chosen uniformly among the n possible negative
literals

e din positive literals that are chosen uniformly, independently and
without replacement among all n — 1 possible positive literals (the
negation of the single negative literal already chosen is not allowed)



e dsn clauses of length three that contain one positive and two negative
literals chosen uniformly, independently and with replacementamong
all W possible clauses of that type.

The sampling spaces H"? and H"? are slightly different; we sample with
replacement in the first, and without replacement in the second. We explain
here why. Assume that we sample dn clauses out of N uniformly at random
with replacement. Let us consider the (asymptotic) expected number of
distinct clauses we get. Each one of the N clauses will be chosen with
probability 1 —(1— %)d". The expected number of distinct chosen clauses is
N(1—(1-%)). Notice that N(1—(1—+%)%") ~ N(1—exp =) = N(1—(1-
dwn + O((dW")Z))) ~ dn — O(%). In the case of a random Hﬁiil,dg formula

N = W and clearly the expected number of distinct clauses we

sample is asymptotically equivalent to dn; thus we sample with replacement
. 1,2

for experimental ease. In the case of a random H,’; , formula, we sample

without replacement to ensure that we do not have many repetitions among

the chosen clauses.

3 1-2-HornSAT

In this section we present our results on the probability of satisfiability of
random 1-2-Horn formulae. We first present an experimental investigation
of the satisfiability on the dy X ds quadrant. We then discuss the relation
between random 1-2-Horn formulae and random digraphs and show that our
data agree with analytical results on graph reachability presented in [24].

We studied the probability of satisfiability of H. 71131 4, Tandom formulae
in the d; x dy quadrant. We generated and solved 1200 random instances
of order 20000 per data point. See Figure 1 where we plot the average
probability of satisfiability against the two input parameters d; and do (left)
and the corresponding contour plot (right).

The satisfiability plot shown in Figure 1 indicates that the problem does
not have a phase transition. This can also been observed if we fix the
value of one of the input parameters. See Figure 2, where we show the
satisfiability plot for random 1-2-HornSAT for various order values ranging
from 500 to 32000, and for fixed d; = 0.1. We now explain why random
1-2-HornSAT does not have a phase transition, based on known results on
random digraphs.

There are two most frequently used models of random digraphs. The
first one, G(n,m) consists of all digraphs on n vertices having m edges; all
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Figure 1: Average satisfiability plot of a random 1-2-Horn formula of or-
der=20000 (left) and the corresponding contour plot (right).

digraphs have equal probability. The second model, G(n,p(edge) = p) with
0 < p < 1, consists of all digraphs on n vertices in which the edges are chosen
independently with probability p. It is known that in most investigations
the two models are interchangeable, provided certain conditions are met.
In what follows, we will take advantage of this equivalence in order to show
how our experimental results relate to analytical results on random digraphs
[24].

We will first show that there is a relation between the satisfiability of a
random H;;Zh@ formula and the vertex reachability of a random digraph

G(n,dsn). Let ¢ € HTlLﬁl,d2’ (Zp) be the unique single negative literal in ¢,
and F' be the set of all variables that appear as single positive literals in .
Obviously |F| = din. Construct a graph G, such that for every variable z;
in ¢ there is a corresponding node v; in G, and for each clause (z;, ;) of ¢
there is a directed edge in G, from v; to v;. G, is a random digraph from
the G(n, dan) model.

It is not difficult to see that ¢ is unsatisfiable if and only if the node vg
in G, is reachable from a node v; such that z; € F'. In other words, the
probability of unsatisfiability of a random H 711231, 4, formula ¢, is equal to the
probability that a vertex of the random digraph G(n, dsn) is reachable from
a set® of vertices of size din.

3A vertex is reachable from a set of vertices if it is reachable by at least one of the
vertices of the set.



satisfiability plot for random 1-2-HomSAT for several order values between 500 and 32000, where q=01
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Figure 2: Satisfiability plot of random 1-2-Horn formulae when d; = 0.1

As mentioned above the G(n,m) and G(n,p((edge) = p)) models can
be used interchangeably, when m ~ (J)p [4]. Therefore, the relation we
established between the satisfiability of a random H}Z:il’@ formula ¢ and
the vertex reachability of a random digraph G(n,dsn), holds also between
¢ and a random digraph G(n,p = %)

The vertex reachability of random digraphs generated according to the
model G(N,p) has been studied and analyzed by Karp in [24]. We use
his results to study the satisfiability of random Hrlzfil,dg formulae. Karp
showed that as n tends to infinity, when np < 1 — h, where h is a fixed
small positive constant, the expected size of a connected component of the
graph is bounded above by a constant C(h). When np > 1+ h, as n tends
to infinity, the set of vertices reachable from one vertex is either “small”
(expected size bounded above by C'(h)) or “large” (size close to ©On, where
O is the unique root of the equation 1 — 2 —e~(+"? = (0 in [0, 1]). Moreover,
a “giant” strongly connected component emerges of size approximately ©2n.

Let us now consider the two cases; do =1 — h and dy = 1 + h, where h
is a positive number. Remember that in our case p = %. In the analysis
below we use the notation w.h.p. (with high probability) as shorthand for
“with probability tending to 1 at the limit”.

In the case where do = 1 — h, that is np < 1 — h, the size of the set
X (v;) of vertices reachable by a vertex v; is w.h.p. less than or equal to
3Innh~2, and the expected size of this set is bounded above by a constant
related to h. Thus we get that the probability that vy is reachable by v;

10
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above by a constant. The expected probability that v is reachable by a set
of dyn vertices should increase with d;. See the plots in Figures 1 and 2,
which show that the probability of satisfiability of ¢ (which is 1 minus the
probability that vy is reachable by a set of din vertices in G,), while dy < 1,
is decreasing as we increase ds and/or d;.

When dy = 1 + h, that is np > 1 + h, we know that the set X (v;) of
vertices reachable by a vertex v; is w.h.p. either in the interval [0, (13J2;f’)2],
or around On. We also know that the probability that X (v;) is “small”
tends to 1 — ©. Therefore, w.h.p. at least one of the djn vertices will have
a “large” reachable set. That is, the probability that vy is reachable by a
set of din vertices is bounded below from ©. Notice that © increases with
do. Again, see the plots in Figures 1 and 2, where we can see that the
probability of satisfiability of ¢ when dy > 1 is decreasing as dy increases.
So the experimental observations are in agreement with the expectations
based on the digraph reachability analysis.

Going back to digraphs’ reachability, Karp’s results show that for each
vertex the set of its reachable vertices is very small up to the point where
np = 1. We can observe the same behaviour in 1-2-HornSAT if we change
our distribution model by setting d; = ¢/n for some constant c. By doing
that, we are adjusting our model to fit the reachability analysis done by
Karp that is based on a single starting vertex in the digraph. The result
of this modification is that d; is no longer a factor on the probability of
satisfiability of ¢, that depends now solely on do. See Figure 3, where
we show the satisfiability plot in that case, and contrast with the picture
that emerges when d; is a constant (shown in Figure 2). While before the
satisfiability probability was steadily decreasing as we increased ds, now the
satisfiability probability is practically 1, until do gets a value bigger than
one. In both cases, however, the reachability analysis and the experimental
data show that the satisfiability of random 1-2-Horn formulae is a problem
that lacks a phase transition.

w.h.p. lies in the interval [0 |, and its expected value is bounded

Remark 1 One of the referees pointed out that the probability of satisfiabil-
ity of 1-2-Horn can be calculated exactly. Using the combinatorics of labelled
trees, one can calculate exactly the probability P (k) that a given vertex v has
an oul-tree of size k, not including itself, in a random digraph with mean
out-degree do. This is

ef(k+1)d2d/2€

P(k) = ———(k+ 1)kt

11
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Figure 3: Satisfiability plot of random 1-2-Horn formulae when d; = 10/n
for orders 100(lower curve), 1K, 10K and 50K (higher curve).

The probability of satisfiability is then

P[SAT] = Z P(k)(1 - dy)*
Numerical computation indicates a close fit with our experimental results.

4 1-3-HornSAT

In this section we present our results on the probability of satisfiability
of random 1-3-Horn formulae. We first present a thorough experimental
investigation of the satisfiability on the d; x ds quadrant. We then show
that analytic results on vertex identifiability in random hypergraphs [11] fit
well our results on the satisfiablity of random 1-3-Horn formulae.

We studied the probability of satisfiability of H, , random formulae
in the d; X d3 quadrant. We generated and solved 3600 random instances
of order 20000 per data point. See Figure 4 where we plot the average
probability of satisfiability against the two input parameters d; and ds (left)
and the corresponding contour® plot (right).

“In this plot there are 25 lines that separate consecutive percentages intervals, i.e.

0% — 4%), [4% — 8%), - - -, [96% — 100%].

12
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Figure 4: Average satisfiability plot of a random 1-3-Horn formula of or-
der=20000 (left) and the corresponding contour plot (right).

From our experiments we see that there is a region where the formula is
underconstrained (small values of d; and d3) and the probability of satisfia-
bility is almost 1. As the values of the two input parameters increase, there
is a rapid change in the satisfiability terrain, what we call the waterfall. As
the values of dy and d3 cross some boundaries (the projection of the waterfall
shown in the contour plots) the probability of satisfiability becomes almost
0. In other words, we observe a transition similar to these observed in other
combinatorial problems like 3-SAT, 3-coloring etc.

There is a significant difference though, between these previously studied
transitions and the one we observe in 1-3-HornSAT. In cases like 3-SAT or
3-colorability there are two input parameters describing a random instance;
the order and the constrainedness (also called density in 3-SAT, and con-
nectivity in 3-colorability) of the instance. The constrainedness is defined
as the ratio of clauses for 3-SAT (or edges for 3-colorability) over variables
(resp. vertices). In random 1-3-HornSAT, there are three parameters: the
order of the instance and the two densities, namely d; and d3. By taking
a cut along the three dimensional surface shown in Figure 4 (left), we can
study the problem as if it had only two input parameters.

We took two straight line cuts of the surface. For the first cut, we
fixed d; to be 0.1, we let ds take values in the range [1,5.5] with step 0.1,
and we chose order values 500, 1000, 2500, 5000, 10000, 20000 and 40000.
See Figure 5(left), where we plot the probability of satisfiability along this
cut. This plot reveals a quick change on the probability of satisfiability as

13



the input parameter ds passes through a critical value (around 3). One
technique that has been used to support experimental evidence of a phase
transition is finite-size scaling. It is a technique coming from statistical
mechanics that has been used in studying the phase transitions of several
NP-complete problems, as k-SAT and AC-matching [26, 27]. This technique
uses data from finite size instances to extrapolate to infinite size instances.
The transformation is based on a rescaling according to a power law of the
form d' = %n’", where d is the density, d’ is the rescaled parameter, d, is
the critical vglue, n is the order of the instance and r is a scaling exponent.
As a result, a function f(d, n) is transformed to a function f(d’). We applied
finite-size scaling to our data to observe the sharpness of the transition. We
followed the procedure presented by Kolaitis et al. in [27]. Our analysis
yields the following finite-size scaling transformation:

ds — 3.0385
J = 0.4859
3.0385

We then superimposed the curves shown in Figure 5(left) rescaled according
to this transformation. The result is shown in Figure 5(right). The fit
appears to be very good around zero, where curves collapse to a single
universal curve, but as we move away from it is getting weaker. In the plot,
the universal curve seems to be monotonic with limits limg_, o f(d') =
1 and limgy_, f(d') = 0. This evidence suggests that there is a phase
transition near ds = 3 for d; = 0.1.

We repeated the same experiment and analysis with the second cut, a
straight line cut along the diagonal of the d; X d3 quadrant. In this case
our formal parameter is an integer ¢. An instance with input paremeter
value 7, corresponds to an instance with densities d; = ﬁ and ds = 1% + 1.
In this case, by making the two input parameters d; and d3 dependent, we
effectively reduce the input parameters of the problem from three, (dy,ds, n),
to two, (i,m). We let i take values in the range [1,40] with step 1, and we
chose order values 500, 1000, 2500, 5000, 10000, 20000 and 40000. See
Figure 6(left) where we plot the probability of satisfiability along this cut.
This plot, as the one for the previous cut, reveals a quick change on the
probability of satisfiability as the input parameter ¢ passes through a critical
value (around 19). We again used finite-size scaling on these data, looking
for further support of a phase transition. For this cut, the analysis yields
the following transformation:

g i —19.1901 980
~19.1901
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sat plot for 1-3-HornSAT, d=0.1 and order 500, 1K, 2500, 5K, 10K, 20K & 40K sat plot for 1-3-HornSAT with finite size scaling
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Figure 5: Average satisfiability plot of a random 1-3-Horn formula along the
d; = 0.1 cut (left) and the satisfiability plot with rescaled parameter using

finite-size scaling (right).

See Figure 6(right) where we superimpose the curves shown in the same
figure (left) using the above transformation. As with the previous cut, the
fit seems quite good, especially around zero, and the universal curve seems
to have limits 1 and 0 in the infinities.

In our search for more evidence of a phase transition, we performed
the following experiment for the cut used to produce the data in Figure 5
(dy = 0.1). For several values of order between 500 and 200000 and for
density d3 taking values in the range [2.7,3.8] with step 0.02, we generated
and solved 1200 instances. We recorded for each different order value the
values of density d3 for which the average probability of satisfiability was
0.1, 0.2, 0.8 and 0.9 respectively®. The idea behind this experiment is that
if the problem has a sharp threshold, i.e. a phase transition, then as the
order of the instances increases the window between 10th and 90th proba-
bility percentiles, as well as that between the 20th and the 80th probability
percentiles, should shrink and at the limit become zero. In Figure 7 we plot
these windows. Indeed, they get smaller as the order increases.

Although Figure 7 shows that these windows indeed shrink as the order
increases, it is not clear at all if at the limit they would go to zero. A
further curve fitting analysis is more revealing. See Figure 8, where we plot
the size of the 10%-90% probability of satisfiability window (left) and the

"We actually did linear regression on the two closest points to compute the density for
each satisfiability percentage.

15



sat plot for 1-3-HomSAT along the diagonal line for order 500, 1K, 2500, 5K, 10K, 20K & 40K sat plot for 1-3-HomSAT along the diagonal line with finite-size scaling
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Figure 6: Average satisfiability plot of a random 1-3-Horn formula along the
diagonal cut (left) and the satisfiability plot with rescaled parameter using
finite-size scaling (right).

20%-80% probability of satisfiability window (right) as a function of the
order. Using MATLAB to do curve fitting on our data, we find that both
windows decrease almost as fast as Ln The correlation coefficient 72 is
almost 0.999, which gives a high confidence for the validity of the fit. This
analysis suggests that indeed the two windows should be zero at the limit.
That is an evidence that supports the existence of a phase transition for
1-3-HornSAT.

Similar analysis has been done before for k-SAT. The width of the sat-
isfiability phase transition, which is the amount by which the number of
clauses of a random instance needs to be increased so that the probability
of satisfiability drops from 1 — € to ¢, is thought to grow as @(nk%). Notice
that the window that we estimate is equal to the normalized width (divided
by the order). The exponent v for 2 < k < 6 is estimated in [25, 26, 29, 30].
It was also conjectured that as k gets large, v tends to 1. Recently, Wilson
in [35] proved that for all £ > 3, v > 2, the transition width is at least
G)(n%) Our experiments suggest that the window of the satisfiability tran-

sition for 11—3—H0rnSAT shrinks as fast as rf%, thus the transition width
grows as n2. We believe that the analysis in [35] can be applicable in the
case of 1-3-HornSAT, and can complement our experimental findings.

In the rest of this section we will discuss the connection between random
Horn formulae and random hypergraphs. We will show how recent results
on random hypergraphs provide a good fit for our experimental data on
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random 1-3-HomSAT: windows of probability of satisfiability, 10%-90%(blue lines) & 20%-80%red lines)
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order n x10°

Figure 7: Windows of probability of satisfiability of random 1-3-Horn for-
mulae along the d; = 0.1 cut. The outer two curves show the 10%-90%
probability window, and the inner two curves show the 20%-80% probabil-
ity window.

random 1-3-HornSAT presented so far. On the other hand, these results
suggest that the transition is steep, but not a step function.

There is a one to one correspondence between random Horn formulae
and random directed hypergraphs. Let ¢ be a Hizl 4, Tandom formula. We

can represent ¢ with the following hypergraph G,°%:
e represent each variable z; in ¢ with a node v; in G,
e represent each unit clause {z;} as a hyperedge in G, over vy 7

e represent each clause {z;, 7}, 2;} as a directed hyperedge in G, over
the set {vj, vy, v}

In a recent development, Darling and Norris [11] proved some results
on vertex identifiability in random undirected hypergraphs. A vertex v of a
hypergraph is identifiable in one step if there is a hyperedge over v. A vertex
v is identifiable in n steps if there is a hyperedge over a set S, such that v € S
and all other elements of S are identifiable in less than n steps. Finally, a
vertex v is identifiable if it is identifiable in n steps for some positive n.

6This representation actually ommitts the single negative literal that appears in ¢.
"Hyperedges over vertices are called patches in [11] or loops in [16].
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plot showing the 10%-90% sat window size for 1-3-HomSAT decreasing polynomially with the order plot showing the 20%-80% sat window size for 1-3-HomSAT decreasing polynomially with the order
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Figure 8: Plot of the 10%-90% probability of satisfiability window as a
function of the order n (left) and of the 20%-80% probability of satisfiability
window (right)

We now establish the equivalence between the satisfiability of ¢ and
the identifiability of vertex vy of G, where ¢ = {Z}} is the unique single
negative literal clause of ¢. First, we introduce an algorithm for solving
Horn satisfiability.

We use a simple algorithm for deciding wether a Horn formula is satis-
fiable or not, presented by Dowling and Gallier in [13] (see also [3]). This
algorithm runs in time O(n?) where n is the number of variables in the for-
mula. Dowling and Gallier in their work actually describe how to improve
this algorithm to run in linear time. For our purposes and for the sake of
simplicity we use the simple quadratic algorithm.

Algorithm A.

begin

let ¢ ={c1,--,em}

consistent:=true; change:=true;

set each variable z; to be false;

for each variable z; such that {z;} is a clause in ¢
set z; to true

endfor;

while (change and consistent) do
change:=false;
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for each clause ¢; in ¢ do
if (¢; is of the form (27, ---, %)
and all z;,---,z, are set to true) then
consistent:=false;
else
if ¢j is of the form {z1, 22, -+, 74}
and all z3,-- -,z are set to true
and z; is set to false
then set z; to true; change:=true; ¢ := ¢ —¢;
endif
endif
endfor
endwhile
end

If Algorithm A terminates with consistent:=true then a satisfying truth
assignement has been found. Otherwise, the formula ¢ is unsatisfiable.

Given a formula ¢, its corresponding directed hypergraph G, and a
variable z;, we prove the following relation between the truth value that
Algorithm A assigns to z; and the identifiability of vertex v; of G:

Lemma 1 Algorithm A running on ¢ assigns the value true to z; if and
only if the vertex v; of G, 1is identifiable.

Proof. Tt is easy to show the equivalence by induction on the number of
steps required to identify vy (equivalently the number of iterations of the
while loop of Algorithm A needed to set the value of xj to true).

Base Case: If vy, is identifiable in one step, then {z} is a clause in ¢ and
Algorithm A immediately assigns the value true to it, and vice versa.
Inductive Hypothesis: A vertex is identifiable in n — 1 steps if and only if
the corresponding variable is set to true by Algorithm A in no more than
n — 1 iterations of the while loop.

Inductive Step: A vertex v; that is identifiable in n steps, corresponds to a
variable that appears in a clause of the form {v;,v7,,- - -, v;,} and since all of
Tiy, -+, T;, are already set to true, A will set z; to true in the nth iteration
of the while loop. Conversely, if z; is set to true in the nth iteraton of the
while loop of Algorithm A, then we derive that it appears in a clause of the

form {z;, 5 ,---,25,}, where all of 2;,,---,z;_ are already set to true. But
this implies that all v;,,-- -, v;, are identifiable in n — 1 steps; therefore v; is
identifiable in n steps.

O

19



As an immediate result of this lemma we get:

Corollary 1 Let ¢ be a Hrll::;l,dS random formula and ¢ = {z}} be the unique
single negative literal clause of p. Let G, be the directed hypergraph corre-
sponding to @. The formula ¢ is satisfiable if and only if the vertex vy of
G, is not identifiable.

Darling and Norris in [11] studied the vertex identifiability in random
undirected hypergraphs. Although Horn formulae correspond to directed
hypergraphs, we decided to use the results of Darling and Norris in an ef-
fort to approximate the satisfiability of Horn formulae. The authors use the
notion of a Poisson random hypergraph. A Poisson random hypergraph on
a set V of n vertices with non-negative parameters {;}7°, is a random hy-
pergraph A, where the numbers A(A) of hyperedges of A over sets A C V of
vertices are independent random variables, depending only on |A|, such that
A(A) has distribution Poisson(nf/(})), when |[A| = k. Thus, the number
of hyperedges of size k is Poisson(nf), and they are distributed uniformly
at random among all vertex sets of size k. (The Poisson distribution is a
discrete distribution that takes on the values X = 0,1,2,3,---. The distri-
bution is determined by a sin%le parameter A. The distribution function of
the Poisson()\) is f(z) = W The expectation of Poisson()\) is \.)
(Note that this model allows for more than one edge over a set A C V; for
our purposes we only care if A(4) =0 or not.)

One of the key results they proved is the following;:

Theorem 3 [Darling-Norris| Let 8 = (5 : j € Z) be a sequence of non-
negative parameters. Let B(t) = S;>0B8;t7 and B'(t) the derivative of B(t).
Let z* = inf{t € [0,1) : B'(t) + log(1 — t) < 0}; if the infimum is not well-
defined then let z* = 1. Denote by  the number of zeros of 5'(t) +log(1 —t)
in [0,2%).

Assume that z* <1 and ( =0. Forn € N, let V" be a set of n vertices
and let G™ be a Poisson(B) hypergraph on V™. Then, as n — oo the number
V™ of identifiable vertices satisfies the following limit w.h.p.: V™ [n — z*.

If we ignore the direction® of the hyperedges then the random hypergraph
G, representing a H, 71131 4, Tandom formula corresponds to a Poisson(S) hy-
pergraph G". To see that, notice that the hyperedges in G, are distributed

®Ignoring the direction of the hyperedges is equivalent to adding to the formula for
each clause (z V § V z) two more clauses: (ZVyV z) and TV gV z. Therefore we expect
that the probability of satisfiability we get from the hypergraph model should be lower
than the actual probability as it is measured by our experiments. This is indeed the case
as we can see in Figure 10.
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uniformly at random among all possible 1- and 3-sets of vertices, just like in
a Poisson random hypergraph with only two non-zero parameters, 81 and
Bs3. To find the values of these parameters, we set equal the probabilities
that a hyperedge exists in the two hypergraphs G, and G". In G, the
probability that a variable z; is selected as a positive unit literal is d;. In
G™, the probability that there are zero hyperedges on z; is €. From this
we get 31 = —log(1 —di). In G, the probability that a 3-clause is selected
(ignoring directions) is nds/(3). In G™, the probability that there are zero

edges on the three variables in that clause is e %/(5) ~ 1 — nPs/(3) (as
n — 00). From this we get 3 = ds.

We used MATLAB (www.mathworks.com) to compute z* for the hyper-
graph G™ on the quadrant d; x d3 ? . From Corollary 1, we get that the
probability of satisfiability of ¢ is 1 minus the probability that v is identifi-
able in G™, which, by Theorem 3, is 1 — z*. See Figure 9(left) where we plot
the probability of satisfiability of ¢ against the input parameters d; and ds.
A contour plot of the probability of satisfiability is given in Figure 9 (right).

probabiltyof satisfabilty for random 1-3-HomSAT based on Vertex dentifbilty in Hypergraphs probabilty ofsatifiabilty of random 1-3-HomSAT based on Vertex Identiabilty in Hypergraphs
1 T T T T T T T T T

0.04
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< 016 014 0.12 | | | |
N 02 o018 016 o014 012

01
density d; densityd, densiy

Figure 9: Probability of satisfiability plot of a random 1-3-Horn formula ac-
cording to the vertex-identifiability model(left) and the corresponding con-
tour plot (right).

Comparing the results derived by this model (Figure 9) and the results
obtained by our experiments (Figure 4), we see that the model derived by the
hypergraph analysis provides a very good fit of the experimental data. This
is also obvious in Figure 10 where we plot the 50% satisfiability line according

®The Darling-Norris Theorem does not provide us an explicit result for z*.
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the model above (the rough curve) and according to our experimental data
(smoother curve).

50% satisfabilty ine plot — experimental data (red line) & simulation (blue line)
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density d,

Figure 10: 50% satisfiability line — According to the model derived through
hypergraphs (rough line) and according to our experimental data (smoother
line).

Finally, we used our model to estimate the probability of satisfiability
along the same two cuts that we presented earlier (the d; = 0.1 and the
diagonal cut). See Figure 11 for the probability estimation along the two
cuts according to the hypergraph-based model, and compare with our ex-
perimental findings shown in Figure 5 (left) and Figure 6 (left). For both
cuts, the estimated probability has a steep drop that happens at the exact
same point that the respective drop is observed in the experimental data.
In Table 1 we give the raw data that correspond to the plots in Figure 11.
Notice that, despite the very quick transition, the estimated curve is not a
step function, as we would expect by looking our data and the limit curve
after the finite-size scaling analysis (Figures 5 and 6 (right)). Should this
be an accurate model for the 1-3-HornSAT, the probability of satisfiability
is not be a step function at the limit, that is, the threshold function is not
be a constant function.

22



d; = 0.1 cut diagonal cut

ds | prob. of sat. || input parameter ¢ | prob. of sat.
1 0.98775 1 0.99997
1.1 0.98619 2 0.99988
1.2 0.98455 3 0.9997
1.3 0.98282 4 0.99941
1.4 0.98098 5 0.99899
1.5 0.97903 6 0.99841
1.6 0.97694 7 0.99764
1.7 0.9747 8 0.99664
1.8 0.9723 9 0.99537
1.9 0.96969 10 0.99376
2 0.96685 11 0.99175
2.1 0.96372 12 0.98924
2.2 0.96026 13 0.98611
2.3 0.95637 14 0.98217
2.4 0.95194 15 0.97717
2.5 0.94679 16 0.97069
2.6 0.94062 17 0.96202
2.7 0.9329 18 0.94968
2.8 0.92244 19 0.9294
2.9 0.90522 20 0.072832
3 0.072832 21 0.063411
3.1 0.063588 22 0.055476
3.2 0.055745 23 0.048727
3.3 0.049039 24 0.042943
3.4 0.043267 25 0.038
3.5 0.038272 26 0.0335
3.6 0.033928 27 0.029856
3.7 0.030137 28 0.026559
3.8 0.026815 29 0.023665
3.9 0.023896 30 0.021117
4 0.021324 31 0.018868
4.1 0.019052 32 0.016878
4.2 0.017041 33 0.015114
4.3 0.015257 34 0.013547
4.4 0.013672 35 0.012153
4.5 0.012262 36 0.01091
4.6 0.011006 37 0.0098016
4.7 | 0.0098849 38 0.0088112
4.8 | 0.0088836 39 0.0079255
4.9 | 0.0079881 40 23 0.0071324

Table 1: Data for the probability of satisfiability of random 1-3-Horn formula
according to the vertex-identifiability model, along the d; = 0.1 and the
diagonal cut.
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Figure 11: Probability of satisfiability plot of a random 1-3-Horn formula
according to the vertex-identifiability model, along the d; = 0.1 cut (left)
and the diagonal cut (right). The solid line corresponds to the model; the
experimental data points are shown for comparison.

5 Conclusions

We set out to investigate the existence of a phase transition on the satisfia-
bility of the random 1-3-HornSAT problem. This is a problem that is similar
to 3-SAT, but its polynomial complexity allows us to collect data for much
higher order.

We first showed, through our experimental findings and an analysis based
on known results from digraphs’ reachability, that the 1-2-HornSAT is a
problem that lacks a phase transition.

On the contrary, our experiments provide evidence that the 1-3-HornSAT
has a phase transition. By thoroughly sampling the d; x d3 quadrant, solving
a large number of random instances of large order, we document a waterfall-
like probability of satisfiability surface. In addition, by taking cuts of this
surface, we are able to observe a quick transition from a satisfiable to an
unsatisfiable region. When finite-size scaling is applied on these cuts, it
suggests that there is a phase transition. Finally, analysis of the transition
window provide further evidence for the phase transition.

We then used some recent results on random hypergraphs to generate
a model for our experimental data. By comparing the waterfall-like proba-
bility surface against the estimated probability according to this model, we
see that the hypergraph-based model fits well our experimental data. This
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suggests that further analysis based on hypergraphs could provide a rigorous
analysis of the conjectured phase transition for the 1-3-HornSAT. This would
be very significant since there are very few phase transitions that have been
analytically proved (2-SAT, 3-XORSAT, 1-in-k SAT) [5, 12, 19, 15, 2, 8].
Although this model fits well our experimental data, when calculating the
estimated probability along the two cuts, we see that the probability of sat-
isfiability as the order goes to infinity is a very steep function, but not a step
function. This last finding, which is contrary to our experimental findings,
shows the difficulty of experimentally showing a phase transition, even for
tractable problems such as 1-3-HornSAT.
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