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Abstra
t

This paper presents a study of the satis�ability of random Horn

formulae and a sear
h for a phase transition. This is a problem similar

to the Satis�ability problem, but, unlike the latter, Horn satis�ability

is tra
table and thus it is easier to 
olle
t experimental data for large

instan
es. We are also interested in Horn formulae be
ause of their re-

lation to �nite automata. We study random Horn formulae generated

a

ording to a variation of the �xed-
lause-length distribution model.

Our experimental �ndings suggest that there is a sharp phase tran-

sition between a region where a random formula ' is almost surely

satis�able to a region where ' is almost surely unsatis�able. We also

use a result on random hypergraphs to generate a model that �ts well

our experimental data. This model though, suggests that the problem

does not have a phase transition, showing how diÆ
ult it 
an be to es-

tablish experimentally a phase transition even for tra
table problems

like 1-3-HornSAT.

1 Introdu
tion

In the past de
ade phase transitions in 
ombinatorial problems have been

studied intensively. Although the idea of phase transitions in 
ombinato-

�
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rial problems was introdu
ed as early as 1960 [17℄, in re
ent years it has

been a main subje
t of resear
h in the 
ommunities of theoreti
al 
om-

puter s
ien
e, arti�
ial intelligen
e and statisti
al physi
s. Combinatorial

phase transitions are also known as threshold phenomena. Phase transi-

tions have been observed both on the probability that an instan
e of a

problem has a solution (k-SAT, 3-Colorability) and on the 
omputational


ost for solving an instan
e (3-SAT, 3-Colorability). In few 
ases (2-SAT,

3-XORSAT, 1-in-k SAT) these phase transitions have been also formally

proved [5, 12, 19, 15, 2, 8℄.

A problem that has been in the 
enter of this resear
h is that of 3-

satis�ability (3-SAT). An instan
e of 3-SAT 
onsists of a 
onjun
tion of


lauses, where ea
h 
lause is a disjun
tion of three literals. The goal is to

�nd a truth assignment that satis�es all 
lauses. The density of a 3-SAT

instan
e is the ratio of the number of 
lauses to the number of Boolean

variables. We 
all the number of variables the order of the instan
e. Ex-

perimental studies [9, 32, 31℄ show that there is a shift in the probability of

satis�ability of random 3-SAT instan
es, from 1 to 0, lo
ated at around den-

sity 4.26 (this is also 
alled the 
rossover point). So far there is no proof of a

sharp phase transition at that density, 
f. [18, 14, 1℄. The same experimental

studies show a peak of the 
omputational 
omplexity around the 
rossover

point. In [26℄, �nite-size s
aling te
hniques were used to demonstrate a phase

transition at the 
rossover point. Later, in [6℄, further experiments showed

that a phase transition of the running time from polynomial in the order to

exponential is solver-dependent, and for several di�erent solvers this tran-

sition o

urs at density lower than the 
rossover point. A limitation on all

the experimental studies is imposed by the inherent diÆ
ulty of the prob-

lem, espe
ially around the 
rossover point. We 
an only study instan
es of

limited order (usually up to few hundreds) before the problems get too hard

to be solved in reasonable time using the available 
omputational resour
es.

A problem that is similar to random 3-SAT is that of the satis�ability of

random Horn formulae, also 
alled random Horn-SAT. A Horn formula in


onjun
tive normal form (CNF) is a 
onjun
tion of Horn 
lauses; ea
h Horn


lause is a disjun
tion of literals

1

of whi
h at most one 
an be positive.

Unlike 3-SAT, Horn-SAT is a tra
table problem. The 
omplexity of the

Horn-SAT is linear in the size of the formula [13℄. The linear 
omplexity of

Horn-SAT allows us to study experimentally the satis�ability of the problem

for mu
h bigger input sizes than those used in similar resear
h on other

problems like 3-SAT or 3-Colorability [21, 9, 32, 7℄.

1

A positive literal is a variable; a negative literal is a negated variable.

2



An additional motivation for studying random Horn-SAT 
omes from the

fa
t that Horn formulae are 
onne
ted to several other areas of Computer

S
ien
e and Mathemati
s [28℄. In parti
ular Horn formulae are 
onne
ted

to automata theory, as the transition relation, the starting state, and the

set of �nal states of an automaton 
an be des
ribed using Horn 
lauses. For

example, if we 
onsider automata on binary trees (see de�nition below), then

Horn 
lauses of length three 
an be used to des
ribe its transition relation,

while Horn 
lauses of length one 
an des
ribe the starting state and the set

of the �nal states of the automaton (we elaborate on that later). Then,

the question about the emptiness of the language of the automaton 
an be

translated to a question about the satis�ability of the formula. There is also

a 
lose relation between knowledge-based systems and Horn formulae, but we

do not 
onsider this relation in this work. Finally, there is a 
orresponden
e

between Horn formulae and hypergraphs that we use to show how results

on random hypergraphs relate to our resear
h on random Horn formulae.

The probability of satis�ability of random Horn formulae generated a
-


ording to a variable-
lause-length model has been studied by Istrate in [23℄.

In this work it is shown that a

ording to this model random Horn formulae

have a 
oarse satis�ability threshold, i.e. the problem does not have a phase

transition. The variable-
lause-length distribution model used by Istrate is

better suited if we study Horn formulae in 
onne
tion to knowledge-based

systems [28℄.

Motivated by the 
onne
tion between the automata emptiness problem

and Horn satis�ability, we studied the satis�ability of two types of random

Horn formulae in 
onjun
tive normal form (CNF) that are generated a
-


ording to a variation of the �xed-
lause-length distribution model. That is,

formulae that 
onsist of 
lauses of length one and three only, and formulae

that 
onsist of 
lauses of length one and two only. We 
all these problems

1-3-HornSAT and 1-2-HornSAT respe
tively. We are looking to identify re-

gions in the problems' spa
e where instan
es are almost surely satis�able or

almost surely unsatis�able. We are also interested in �nding if the problems

exhibit a phase transition, i.e. a sharp threshold.

Noti
e that the random 1-2-HornSAT problem is related to the random

1-3-HornSAT problem in the same way that random 2-SAT is related to

random 3-SAT. That is, as some algorithm sear
hes for a satisfying truth

assignement for a random 1-3-Horn formula by assigning truth values to the

variables, a random 1-2-Horn formula is 
reated as a subformula of the orig-

inal formula. This is a result of 3-
lauses being shortened to 2-
lauses by a

subtitution of truth values. The relation between random 2-SAT and ran-

dom 3-SAT is exploited by A
hlioptas in [1℄ to improve on the lower bound
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for the threshold of random 3-SAT. In this work, A
hlioptas uses di�erential

equations to analyze the exe
ution of a broad family of SAT algorithms. In

general, one 
an try to analyze phase transitions using di�erential equations,


f. [22℄ The 1-2-HornSAT problem 
an be analyzed with the help of random

graphs [4℄. We show how results on random digraph 
onne
tivity, presented

by Karp in [24℄, 
an be used to model the satis�ability of random 1-2-Horn

formulae. These results 
an be used to show that there is no phase transition

for 1-2-HornSAT and are mat
hed by our experimental data.

Our experimental investigation of 1-3-HornSAT shows that there are

regions where a random 1-3-Horn formula is almost surely satis�able and

regions where is almost surely unsatis�able. Analysis of the satis�ability

per
entiles' window and �nite-size s
aling [33℄ suggest that there is a \sharp

threshold line" between these two regions. As 1-2-HornSAT 
an be analyzed

using random digraphs, 1-3-HornSAT 
an be analyzed using random hyper-

graphs. We show that some re
ent results on random hypergraphs [11℄ �t

well our experimental data. Unlike the data analysis, the hypergraph-based

model suggests that the transition from the satis�able to unsatis�able re-

gions is rather a steep fun
tion than a step fun
tion. It is therefore not 
lear

if the problem exhibits a phase transition, even though we were able to get

experimental data for instan
es of large order.

Our work here also relates to that of Kolaitis and RaÆll in [27℄. There,

the authors 
arried out a sear
h for a phase transition in another NP-


omplete problem, that of AC-mat
hing. The similarity between their work

and ours is that the experimental data provide eviden
e that both prob-

lems have a slowly emerging phase transition. The di�eren
e is that in our


ase, be
ause of the linear 
omplexity of Horn satis�ability, we are able to

test instan
es of Horn satis�ability of mu
h bigger size, than the instan
es

of AC-mat
hing in [27℄ or a
tually most of the NP-
omplete problems like

3-SAT, 3-
olorability et
.

2 Preliminaries

Let us review some de�nitions

2

related to 
ombinatorial phase transitions.

Let X be a �nite set and jXj = n. Let A be a random subset of X 
on-

stru
ted by a random pro
edure a

ording to the probability spa
e 
(n;m)

D

=

(2

X

; 2

2

X

;Pr), where Pr is de�ned as :

2

The de�nitions found in this paper as well as more de�nitions and results 
an be found

in [10℄
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Pr


(n;m)

(A) =

(

1=

�

n

m

�

�

if jAj = m

�

0 otherwise

;

where m is an integer and

m

�

=

8

>

<

>

:

0 if m < 0

m if 0 �m � n

n if m > n

The random pro
edure 
onsists of sele
ting m

�

elements of X without

repla
ement. A (set) property Q of X is a subset of 2

X

. Q is in
reasing if

A 2 Q and A � B � X implies B 2 Q. Q is non-trivial if ; 62 Q and X 2 Q.

A property sequen
e Q 
onsists of a sequen
e of sets fX

n

: n � 1g su
h that

jX

n

j < jX

n+1

j and a family fQ

n

: n � 1g where ea
h Q

n

is a property of

X

n

. Q is in
reasing (non-trivial) if Q

n

is in
reasing (resp. non-trivial) for

every n � 1.

Let Q

n

be an in
reasing non-trivial property sequen
e � : N ! R

+

be

a stri
tly positive fun
tion. We say that � is a threshold for Q if for every

f : N ! N :

1. If lim

n!1

f(n)=�(n) = 0 then lim

n!1

Pr


(n;f(n))

(Q

n

) = 0

2. If lim

n!1

f(n)=�(n) =1 then lim

n!1

Pr


(n;f(n))

(Q

n

) = 1

� is a sharp threshold Q if for every f : N ! N

+

:

1. If sup

n!1

f(n)=�(n) < 1 then lim

n!1

Pr


(n;f(n))

(Q

n

) = 0

2. If inf

n!1

f(n)=�(n) > 1 then lim

n!1

Pr


(n;f(n))

(Q

n

) = 1

We say that Q exhibits a phase transition if it has a sharp threshold. Our

interest is in satis�ability of Horn formulas. Thus, in our framework X

n

is

the set of Horn 
lauses over a set with n Boolean variables. A set of Horn


lauses is a Horn formula.

Our main motivation for studying the satis�ability of Horn formulae is

that, unlike 3-SAT, this problem is tra
table. Therefore we will have data

for instan
es of mu
h larger order to help us answer questions similar to

those previously asked about 3-SAT.

Apart from that, it is of interest to us that Horn formulae 
an be

used to des
ribe �nite automata. A �nite automaton A is a 5-tuple A =

(S;�; Æ; s; F ), where S is a �nite set of states, � is an alphabet, s is a start-

ing state, F � S is the set of �nal (a

epting) states and Æ is a transition

relation.

5



In a word automaton, Æ is a fun
tion from S�� to 2

S

. In a binary-tree

automaton Æ is a fun
tion from S � � to 2

S�S

. Intuitively, for word au-

tomata Æ provides a set of su

essor states, while for binary-tree automata

Æ provides a set of su

essor state pairs. A run of an automaton on a word

a = a

1

a

2

� � � a

n

is a sequen
e of states s

0

s

1

� � � s

n

su
h that s

0

= s and

(s

i�1

; a

i

; s

i

) 2 Æ. A run is su

esful if s

n

2 F ; in this 
ase we say that A a
-


epts the word a. A run of an automaton on a binary tree t labeled with let-

ters from �, is a binary tree r labeled with states from S su
h that root(r) =

s and for a node i of t, (r(i); t(i); r(left-
hild-of-i); r(right-
hild-of-i)) 2 Æ.

Thus, ea
h pair in Æ(r(i); t(i)) is a possible labeling of the 
hildren of i. A

run is su

esfull if for all leaves l of r, r(l) 2 F ; in this 
ase we say that A

a

epts the tree t. The language L(A) of a word (resp. tree) automaton A,

is the set of all words a (resp. trees t) for whi
h there is a su

essful run of

A on a (resp. t). An important question on automata theory that also is

of great pra
ti
al importan
e in the �eld of formal veri�
ation [34℄ is, given

an automaton A is L(A) non-empty ? We 
an show how the problem of

non-emptiness of automata languages translates to Horn satis�ability.

Consider �rst a word automaton A = (S;�; Æ; s

0

; F ). Constru
t a Horn

formula '

A

over the set S of variables as follows:

� 
reate a 
lause ( �s

0

)

� for ea
h s

i

2 F 
reate a 
lause (s

i

)

� for ea
h element (s

i

; a; s

j

) of Æ 
reate a 
lause ( �s

j

; s

i

),

where (s

i

; � � � ; s

k

) represents the 
lause s

i

_� � �_s

k

and �s

j

is the negation of s

j

.

Theorem 1 Let A be a word automaton and '

A

the Horn formula 
on-

stru
ted as des
ribed above. Then L(A) is non-empty if and only if '

A

is

unsatis�able.

Proof.

()) Assume that L(A) is non-empty, i.e. there is a path � = s

i

0

s

i

1

� � � s

i

m

in A su
h that s

i

0

= s

0

and s

i

m

= s

k

where s

k

is a �nal state. Sin
e s

k

is

a �nal state (s

k

) is a 
lause in '

A

. Also ( �s

k

; s

i

m�1

) is a 
lause in '

A

. For

'

A

to be satis�able s

k

should be true and 
onsequently, s

i

m�1

must be true.

By indu
tion on the length of the path � we 
an show that for '

A

to be

satis�able s

0

must be true, whi
h is a 
ontradi
tion.

(() Assume that '

A

is unsatis�able. It then must have positive-unit reso-

lution refutation [20℄, i.e. a proof by 
ontradi
tion where in ea
h step one

6



of the resolvents must be a positive literal, where the last resolution step

is with the 
lause ( �s

0

). Let (s

i

) be the �rst positive literal resolvent in the

proof. By 
onstru
tion, s

i

is a �nal state of A. By indu
tion on the length

of the refutation, we 
an 
onstru
t a path in A from s

0

to s

i

, Therefore,

L(A) is non-empty. 2

Similarly to the word automata 
ase, we 
an show how to 
onstru
t a

Horn formula from a binary-tree automaton. Let A = (S;�; Æ; s

0

; F ) be a

binary-tree automaton. Then we 
an 
onstru
t a Horn formula '

A

using

the 
onstru
tion above with the only di�eren
e that sin
e Æ in this 
ase is

a fun
tion from S � f�g to S � S, for ea
h element (s

i

; �; s

j

; s

k

) of Æ, we


reate a 
lause ( �s

j

; �s

k

; s

i

). It is not diÆ
ult to see that also in this 
ase we

have:

Theorem 2 Let A be a binary-tree automaton and '

A

the Horn formula


onstru
ted as des
ribed above. Then L(A) is non-empty if and only if '

A

is unsatis�able.

Motivated by the 
onne
tion between tree automata and Horn formulas

des
ribed in Theorem 2 we studied the satis�ability of two types of random

Horn formulae. More pre
isely, let H

1;2

n;d

1

;d

2

denote a random formula in CNF

over a set of variables X = fx

1

; � � � ; x

n

g that 
ontains:

� a single negative literal 
hosen uniformly among the n possible negative

literals

� d

1

n positive literals that are 
hosen uniformly, independently and

without repla
ement among all n � 1 possible positive literals (the

negation of the single negative literal already 
hosen is not allowed)

� d

2

n 
lauses of length two that 
ontain one positive and one negative lit-

eral 
hosen uniformly, independently and without repla
ement, among

all n(n� 1) possible 
lauses of that type.

We 
all the number of variables n the order of the instan
e.

Let also H

1;3

n;d

1

;d

3

denote a random formula in CNF over the set of vari-

ables X = fx

1

; � � � ; x

n

g that 
ontains:

� a single negative literal 
hosen uniformly among the n possible negative

literals

� d

1

n positive literals that are 
hosen uniformly, independently and

without repla
ement among all n � 1 possible positive literals (the

negation of the single negative literal already 
hosen is not allowed)
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� d

3

n 
lauses of length three that 
ontain one positive and two negative

literals 
hosen uniformly, independently and with repla
ementamong

all

n(n�1)(n�2)

2

possible 
lauses of that type.

The sampling spa
es H

1;3

and H

1;2

are slightly di�erent; we sample with

repla
ement in the �rst, and without repla
ement in the se
ond. We explain

here why. Assume that we sample dn 
lauses out of N uniformly at random

with repla
ement. Let us 
onsider the (asymptoti
) expe
ted number of

distin
t 
lauses we get. Ea
h one of the N 
lauses will be 
hosen with

probability 1� (1�

1

N

)

dn

. The expe
ted number of distin
t 
hosen 
lauses is

N(1�(1�

1

N

)

dn

). Noti
e thatN(1�(1�

1

N

)

dn

) � N(1�exp

�dn

N

) = N(1�(1�

dn

N

+ O((

dn

N

)

2

))) � dn� O(

(dn)

2

N

). In the 
ase of a random H

1;3

n;d

1

;d

3

formula

N =

n(n�1)(n�2)

2

and 
learly the expe
ted number of distin
t 
lauses we

sample is asymptoti
ally equivalent to dn; thus we sample with repla
ement

for experimental ease. In the 
ase of a random H

1;2

n;d

1

;d

2

formula, we sample

without repla
ement to ensure that we do not have many repetitions among

the 
hosen 
lauses.

3 1-2-HornSAT

In this se
tion we present our results on the probability of satis�ability of

random 1-2-Horn formulae. We �rst present an experimental investigation

of the satis�ability on the d

1

� d

2

quadrant. We then dis
uss the relation

between random 1-2-Horn formulae and random digraphs and show that our

data agree with analyti
al results on graph rea
hability presented in [24℄.

We studied the probability of satis�ability of H

1;2

n;d

1

;d

2

random formulae

in the d

1

� d

2

quadrant. We generated and solved 1200 random instan
es

of order 20000 per data point. See Figure 1 where we plot the average

probability of satis�ability against the two input parameters d

1

and d

2

(left)

and the 
orresponding 
ontour plot (right).

The satis�ability plot shown in Figure 1 indi
ates that the problem does

not have a phase transition. This 
an also been observed if we �x the

value of one of the input parameters. See Figure 2, where we show the

satis�ability plot for random 1-2-HornSAT for various order values ranging

from 500 to 32000, and for �xed d

1

= 0:1. We now explain why random

1-2-HornSAT does not have a phase transition, based on known results on

random digraphs.

There are two most frequently used models of random digraphs. The

�rst one, G(n;m) 
onsists of all digraphs on n verti
es having m edges; all

8
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Figure 1: Average satis�ability plot of a random 1-2-Horn formula of or-

der=20000 (left) and the 
orresponding 
ontour plot (right).

digraphs have equal probability. The se
ond model, G(n; p(edge) = p) with

0 < p < 1, 
onsists of all digraphs on n verti
es in whi
h the edges are 
hosen

independently with probability p. It is known that in most investigations

the two models are inter
hangeable, provided 
ertain 
onditions are met.

In what follows, we will take advantage of this equivalen
e in order to show

how our experimental results relate to analyti
al results on random digraphs

[24℄.

We will �rst show that there is a relation between the satis�ability of a

random H

1;2

n;d

1

;d

2

formula and the vertex rea
hability of a random digraph

G(n; d

2

n). Let ' 2 H

1;2

n;d

1

;d

2

, ( �x

0

) be the unique single negative literal in ',

and F be the set of all variables that appear as single positive literals in '.

Obviously jF j = d

1

n. Constru
t a graph G

'

su
h that for every variable x

i

in ' there is a 
orresponding node v

i

in G

'

and for ea
h 
lause ( �x

i

; x

j

) of '

there is a dire
ted edge in G

'

from v

i

to v

j

. G

'

is a random digraph from

the G(n; d

2

n) model.

It is not diÆ
ult to see that ' is unsatis�able if and only if the node v

0

in G

'

is rea
hable from a node v

i

su
h that x

i

2 F . In other words, the

probability of unsatis�ability of a random H

1;2

n;d

1

;d

2

formula ', is equal to the

probability that a vertex of the random digraph G(n; d

2

n) is rea
hable from

a set

3

of verti
es of size d

1

n.

3

A vertex is rea
hable from a set of verti
es if it is rea
hable by at least one of the

verti
es of the set.
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satisfiability plot for random 1−2−HornSAT for several order values between 500 and 32000, where d
1
=0.1

Figure 2: Satis�ability plot of random 1-2-Horn formulae when d

1

= 0:1

As mentioned above the G(n;m) and G(n; p((edge) = p)) models 
an

be used inter
hangeably, when m �

�

n

2

�

p [4℄. Therefore, the relation we

established between the satis�ability of a random H

1;2

n;d

1

;d

2

formula ' and

the vertex rea
hability of a random digraph G(n; d

2

n), holds also between

' and a random digraph G(n; p =

d

2

n

).

The vertex rea
hability of random digraphs generated a

ording to the

model G(N; p) has been studied and analyzed by Karp in [24℄. We use

his results to study the satis�ability of random H

1;2

n;d

1

;d

2

formulae. Karp

showed that as n tends to in�nity, when np < 1 � h, where h is a �xed

small positive 
onstant, the expe
ted size of a 
onne
ted 
omponent of the

graph is bounded above by a 
onstant C(h). When np > 1 + h, as n tends

to in�nity, the set of verti
es rea
hable from one vertex is either \small"

(expe
ted size bounded above by C(h)) or \large" (size 
lose to �n, where

� is the unique root of the equation 1�x�e

�(1+h)x

= 0 in [0; 1℄). Moreover,

a \giant" strongly 
onne
ted 
omponent emerges of size approximately �

2

n.

Let us now 
onsider the two 
ases; d

2

= 1 � h and d

2

= 1 + h, where h

is a positive number. Remember that in our 
ase p =

d

2

n

. In the analysis

below we use the notation w.h.p. (with high probability) as shorthand for

\with probability tending to 1 at the limit".

In the 
ase where d

2

= 1 � h, that is np < 1 � h, the size of the set

X(v

i

) of verti
es rea
hable by a vertex v

i

is w.h.p. less than or equal to

3 lnnh

�2

, and the expe
ted size of this set is bounded above by a 
onstant

related to h. Thus we get that the probability that v

0

is rea
hable by v

i

10



w.h.p. lies in the interval [0;

3 lnn

n(1�d

2

)

2

℄, and its expe
ted value is bounded

above by a 
onstant. The expe
ted probability that v

0

is rea
hable by a set

of d

1

n verti
es should in
rease with d

1

. See the plots in Figures 1 and 2,

whi
h show that the probability of satis�ability of ' (whi
h is 1 minus the

probability that v

0

is rea
hable by a set of d

1

n verti
es in G

'

), while d

2

< 1,

is de
reasing as we in
rease d

2

and/or d

1

.

When d

2

= 1 + h, that is np > 1 + h, we know that the set X(v

i

) of

verti
es rea
hable by a vertex v

i

is w.h.p. either in the interval [0;

3 lnn

(1�d

2

)

2

℄,

or around �n. We also know that the probability that X(v

i

) is \small"

tends to 1 ��. Therefore, w.h.p. at least one of the d

1

n verti
es will have

a \large" rea
hable set. That is, the probability that v

0

is rea
hable by a

set of d

1

n verti
es is bounded below from �. Noti
e that � in
reases with

d

2

. Again, see the plots in Figures 1 and 2, where we 
an see that the

probability of satis�ability of ' when d

2

> 1 is de
reasing as d

2

in
reases.

So the experimental observations are in agreement with the expe
tations

based on the digraph rea
hability analysis.

Going ba
k to digraphs' rea
hability, Karp's results show that for ea
h

vertex the set of its rea
hable verti
es is very small up to the point where

np = 1. We 
an observe the same behaviour in 1-2-HornSAT if we 
hange

our distribution model by setting d

1

= 
=n for some 
onstant 
. By doing

that, we are adjusting our model to �t the rea
hability analysis done by

Karp that is based on a single starting vertex in the digraph. The result

of this modi�
ation is that d

1

is no longer a fa
tor on the probability of

satis�ability of ', that depends now solely on d

2

. See Figure 3, where

we show the satis�ability plot in that 
ase, and 
ontrast with the pi
ture

that emerges when d

1

is a 
onstant (shown in Figure 2). While before the

satis�ability probability was steadily de
reasing as we in
reased d

2

, now the

satis�ability probability is pra
ti
ally 1, until d

2

gets a value bigger than

one. In both 
ases, however, the rea
hability analysis and the experimental

data show that the satis�ability of random 1-2-Horn formulae is a problem

that la
ks a phase transition.

Remark 1 One of the referees pointed out that the probability of satis�abil-

ity of 1-2-Horn 
an be 
al
ulated exa
tly. Using the 
ombinatori
s of labelled

trees, one 
an 
al
ulate exa
tly the probability P (k) that a given vertex v has

an out-tree of size k, not in
luding itself, in a random digraph with mean

out-degree d

2

. This is

P (k) =

e

�(k+1)d

2

d

k

2

k!

(k + 1)

k�1
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satisfiability plot for orders 100(black),1K(green), 10K(blue) & 50k(red) and fixed #facts=10

Figure 3: Satis�ability plot of random 1-2-Horn formulae when d

1

= 10=n

for orders 100(lower 
urve), 1K, 10K and 50K(higher 
urve).

The probability of satis�ability is then

P [SAT℄ =

1

X

k=0

P (k)(1 � d

1

)

k

Numeri
al 
omputation indi
ates a 
lose �t with our experimental results.

4 1-3-HornSAT

In this se
tion we present our results on the probability of satis�ability

of random 1-3-Horn formulae. We �rst present a thorough experimental

investigation of the satis�ability on the d

1

� d

3

quadrant. We then show

that analyti
 results on vertex identi�ability in random hypergraphs [11℄ �t

well our results on the satis�ablity of random 1-3-Horn formulae.

We studied the probability of satis�ability of H

1;3

n;d

1

;d

3

random formulae

in the d

1

� d

3

quadrant. We generated and solved 3600 random instan
es

of order 20000 per data point. See Figure 4 where we plot the average

probability of satis�ability against the two input parameters d

1

and d

3

(left)

and the 
orresponding 
ontour

4

plot (right).

4

In this plot there are 25 lines that separate 
onse
utive per
entages intervals, i.e.

[0%� 4%); [4%� 8%); � � � ; [96% � 100%℄.
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Figure 4: Average satis�ability plot of a random 1-3-Horn formula of or-

der=20000 (left) and the 
orresponding 
ontour plot (right).

From our experiments we see that there is a region where the formula is

under
onstrained (small values of d

1

and d

3

) and the probability of satis�a-

bility is almost 1. As the values of the two input parameters in
rease, there

is a rapid 
hange in the satis�ability terrain, what we 
all the waterfall. As

the values of d

1

and d

3


ross some boundaries (the proje
tion of the waterfall

shown in the 
ontour plots) the probability of satis�ability be
omes almost

0. In other words, we observe a transition similar to these observed in other


ombinatorial problems like 3-SAT, 3-
oloring et
.

There is a signi�
ant di�eren
e though, between these previously studied

transitions and the one we observe in 1-3-HornSAT. In 
ases like 3-SAT or

3-
olorability there are two input parameters des
ribing a random instan
e;

the order and the 
onstrainedness (also 
alled density in 3-SAT, and 
on-

ne
tivity in 3-
olorability) of the instan
e. The 
onstrainedness is de�ned

as the ratio of 
lauses for 3-SAT (or edges for 3-
olorability) over variables

(resp. verti
es). In random 1-3-HornSAT, there are three parameters: the

order of the instan
e and the two densities, namely d

1

and d

3

. By taking

a 
ut along the three dimensional surfa
e shown in Figure 4 (left), we 
an

study the problem as if it had only two input parameters.

We took two straight line 
uts of the surfa
e. For the �rst 
ut, we

�xed d

1

to be 0.1, we let d

3

take values in the range [1; 5:5℄ with step 0.1,

and we 
hose order values 500, 1000, 2500, 5000, 10000, 20000 and 40000.

See Figure 5(left), where we plot the probability of satis�ability along this


ut. This plot reveals a qui
k 
hange on the probability of satis�ability as

13



the input parameter d

3

passes through a 
riti
al value (around 3). One

te
hnique that has been used to support experimental eviden
e of a phase

transition is �nite-size s
aling. It is a te
hnique 
oming from statisti
al

me
hani
s that has been used in studying the phase transitions of several

NP-
omplete problems, as k-SAT and AC-mat
hing [26, 27℄. This te
hnique

uses data from �nite size instan
es to extrapolate to in�nite size instan
es.

The transformation is based on a res
aling a

ording to a power law of the

form d

0

=

d�d




d




n

r

, where d is the density, d

0

is the res
aled parameter, d




is

the 
riti
al value, n is the order of the instan
e and r is a s
aling exponent.

As a result, a fun
tion f(d; n) is transformed to a fun
tion f(d

0

). We applied

�nite-size s
aling to our data to observe the sharpness of the transition. We

followed the pro
edure presented by Kolaitis et al. in [27℄. Our analysis

yields the following �nite-size s
aling transformation:

d

0

=

d

3

� 3:0385

3:0385

n

0:4859

We then superimposed the 
urves shown in Figure 5(left) res
aled a

ording

to this transformation. The result is shown in Figure 5(right). The �t

appears to be very good around zero, where 
urves 
ollapse to a single

universal 
urve, but as we move away from it is getting weaker. In the plot,

the universal 
urve seems to be monotoni
 with limits lim

d

0

!�1

f(d

0

) =

1 and lim

d

0

!1

f(d

0

) = 0. This eviden
e suggests that there is a phase

transition near d

3

= 3 for d

1

= 0:1.

We repeated the same experiment and analysis with the se
ond 
ut, a

straight line 
ut along the diagonal of the d

1

� d

3

quadrant. In this 
ase

our formal parameter is an integer i. An instan
e with input paremeter

value i, 
orresponds to an instan
e with densities d

1

=

i

200

and d

3

=

i

10

+1.

In this 
ase, by making the two input parameters d

1

and d

3

dependent, we

e�e
tively redu
e the input parameters of the problem from three, (d

1

; d

3

; n),

to two, (i; n). We let i take values in the range [1; 40℄ with step 1, and we


hose order values 500, 1000, 2500, 5000, 10000, 20000 and 40000. See

Figure 6(left) where we plot the probability of satis�ability along this 
ut.

This plot, as the one for the previous 
ut, reveals a qui
k 
hange on the

probability of satis�ability as the input parameter i passes through a 
riti
al

value (around 19). We again used �nite-size s
aling on these data, looking

for further support of a phase transition. For this 
ut, the analysis yields

the following transformation:

i

0

=

i� 19:1901

19:1901

n

0:2889
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Figure 5: Average satis�ability plot of a random 1-3-Horn formula along the

d

1

= 0:1 
ut (left) and the satis�ability plot with res
aled parameter using

�nite-size s
aling (right).

See Figure 6(right) where we superimpose the 
urves shown in the same

�gure (left) using the above transformation. As with the previous 
ut, the

�t seems quite good, espe
ially around zero, and the universal 
urve seems

to have limits 1 and 0 in the in�nities.

In our sear
h for more eviden
e of a phase transition, we performed

the following experiment for the 
ut used to produ
e the data in Figure 5

(d

1

= 0:1). For several values of order between 500 and 200000 and for

density d

3

taking values in the range [2:7; 3:8℄ with step 0.02, we generated

and solved 1200 instan
es. We re
orded for ea
h di�erent order value the

values of density d

3

for whi
h the average probability of satis�ability was

0.1, 0.2, 0.8 and 0.9 respe
tively

5

. The idea behind this experiment is that

if the problem has a sharp threshold, i.e. a phase transition, then as the

order of the instan
es in
reases the window between 10th and 90th proba-

bility per
entiles, as well as that between the 20th and the 80th probability

per
entiles, should shrink and at the limit be
ome zero. In Figure 7 we plot

these windows. Indeed, they get smaller as the order in
reases.

Although Figure 7 shows that these windows indeed shrink as the order

in
reases, it is not 
lear at all if at the limit they would go to zero. A

further 
urve �tting analysis is more revealing. See Figure 8, where we plot

the size of the 10%-90% probability of satis�ability window (left) and the

5

We a
tually did linear regression on the two 
losest points to 
ompute the density for

ea
h satis�ability per
entage.
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20%-80% probability of satis�ability window (right) as a fun
tion of the

order. Using MATLAB to do 
urve �tting on our data, we �nd that both

windows de
rease almost as fast as

1

p

n

. The 
orrelation 
oeÆ
ient r

2

is

almost 0.999, whi
h gives a high 
on�den
e for the validity of the �t. This

analysis suggests that indeed the two windows should be zero at the limit.

That is an eviden
e that supports the existen
e of a phase transition for

1-3-HornSAT.

Similar analysis has been done before for k-SAT. The width of the sat-

is�ability phase transition, whi
h is the amount by whi
h the number of


lauses of a random instan
e needs to be in
reased so that the probability

of satis�ability drops from 1� � to �, is thought to grow as �(n

1�

1

�

). Noti
e

that the window that we estimate is equal to the normalized width (divided

by the order). The exponent � for 2 � k � 6 is estimated in [25, 26, 29, 30℄.

It was also 
onje
tured that as k gets large, � tends to 1. Re
ently, Wilson

in [35℄ proved that for all k � 3, � � 2, the transition width is at least

�(n

1

2

). Our experiments suggest that the window of the satis�ability tran-

sition for 1-3-HornSAT shrinks as fast as n

�

1

2

, thus the transition width

grows as n

1

2

. We believe that the analysis in [35℄ 
an be appli
able in the


ase of 1-3-HornSAT, and 
an 
omplement our experimental �ndings.

In the rest of this se
tion we will dis
uss the 
onne
tion between random

Horn formulae and random hypergraphs. We will show how re
ent results

on random hypergraphs provide a good �t for our experimental data on
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random 1-3-HornSAT presented so far. On the other hand, these results

suggest that the transition is steep, but not a step fun
tion.

There is a one to one 
orresponden
e between random Horn formulae

and random dire
ted hypergraphs. Let ' be a H

1;3

n;d

1

;d

3

random formula. We


an represent ' with the following hypergraph G

'

6

:

� represent ea
h variable x

i

in ' with a node v

i

in G

'

� represent ea
h unit 
lause fx

k

g as a hyperedge in G

'

over v

k

7

� represent ea
h 
lause fx

j

; �x

k

; �x

l

g as a dire
ted hyperedge in G

'

over

the set fv

j

; v

k

; v

l

g

In a re
ent development, Darling and Norris [11℄ proved some results

on vertex identi�ability in random undire
ted hypergraphs. A vertex v of a

hypergraph is identi�able in one step if there is a hyperedge over v. A vertex

v is identi�able in n steps if there is a hyperedge over a set S, su
h that v 2 S

and all other elements of S are identi�able in less than n steps. Finally, a

vertex v is identi�able if it is identi�able in n steps for some positive n.

6

This representation a
tually ommitts the single negative literal that appears in '.

7

Hyperedges over verti
es are 
alled pat
hes in [11℄ or loops in [16℄.
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We now establish the equivalen
e between the satis�ability of ' and

the identi�ability of vertex v

k

of G

'

, where 
 = fx

k

g is the unique single

negative literal 
lause of '. First, we introdu
e an algorithm for solving

Horn satis�ability.

We use a simple algorithm for de
iding wether a Horn formula is satis-

�able or not, presented by Dowling and Gallier in [13℄ (see also [3℄). This

algorithm runs in time O(n

2

) where n is the number of variables in the for-

mula. Dowling and Gallier in their work a
tually des
ribe how to improve

this algorithm to run in linear time. For our purposes and for the sake of

simpli
ity we use the simple quadrati
 algorithm.

Algorithm A.

begin

let ' = f


1

; � � � ; 


m

g


onsistent:=true; 
hange:=true;

set ea
h variable x

i

to be false;

for ea
h variable x

i

su
h that fx

i

g is a 
lause in '

set x

i

to true

endfor;

while (
hange and 
onsistent) do


hange:=false;
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for ea
h 
lause 


j

in ' do

if (


j

is of the form ( �x

1

; � � � ; �x

q

)

and all x

1

; � � � ; x

q

are set to true) then


onsistent:=false;

else

if 


j

is of the form fx

1

; �x

2

; � � � ; �x

q

g

and all x

2

; � � � ; x

q

are set to true

and x

1

is set to false

then set x

1

to true; 
hange:=true; ' := '� 


j

endif

endif

endfor

endwhile

end

If Algorithm A terminates with 
onsistent:=true then a satisfying truth

assignement has been found. Otherwise, the formula ' is unsatis�able.

Given a formula ', its 
orresponding dire
ted hypergraph G

'

, and a

variable x

i

, we prove the following relation between the truth value that

Algorithm A assigns to x

i

and the identi�ability of vertex v

i

of G

'

:

Lemma 1 Algorithm A running on ' assigns the value true to x

i

if and

only if the vertex v

i

of G

'

is identi�able.

Proof. It is easy to show the equivalen
e by indu
tion on the number of

steps required to identify v

k

(equivalently the number of iterations of the

while loop of Algorithm A needed to set the value of x

k

to true).

Base Case: If v

k

is identi�able in one step, then fx

k

g is a 
lause in ' and

Algorithm A immediately assigns the value true to it, and vi
e versa.

Indu
tive Hypothesis: A vertex is identi�able in n � 1 steps if and only if

the 
orresponding variable is set to true by Algorithm A in no more than

n� 1 iterations of the while loop.

Indu
tive Step: A vertex v

j

that is identi�able in n steps, 
orresponds to a

variable that appears in a 
lause of the form fv

j

; �v

i

1

; � � � ; �v

i

q

g and sin
e all of

x

i

1

; � � � ; x

i

q

are already set to true, A will set x

j

to true in the nth iteration

of the while loop. Conversely, if x

j

is set to true in the nth iteraton of the

while loop of Algorithm A, then we derive that it appears in a 
lause of the

form fx

j

; �x

i

1

; � � � ; �x

i

q

g, where all of x

i

1

; � � � ; x

i

q

are already set to true. But

this implies that all v

i

1

; � � � ; v

i

q

are identi�able in n� 1 steps; therefore v

j

is

identi�able in n steps.

2
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As an immediate result of this lemma we get:

Corollary 1 Let ' be a H

1;3

n;d

1

;d

3

random formula and 
 = f �x

k

g be the unique

single negative literal 
lause of '. Let G

'

be the dire
ted hypergraph 
orre-

sponding to '. The formula ' is satis�able if and only if the vertex v

k

of

G

'

is not identi�able.

Darling and Norris in [11℄ studied the vertex identi�ability in random

undire
ted hypergraphs. Although Horn formulae 
orrespond to dire
ted

hypergraphs, we de
ided to use the results of Darling and Norris in an ef-

fort to approximate the satis�ability of Horn formulae. The authors use the

notion of a Poisson random hypergraph. A Poisson random hypergraph on

a set V of n verti
es with non-negative parameters f�

k

g

1

k=0

is a random hy-

pergraph �, where the numbers �(A) of hyperedges of � over sets A � V of

verti
es are independent random variables, depending only on jAj, su
h that

�(A) has distribution Poisson(n�

k

=

�

n

k

�

), when jAj = k. Thus, the number

of hyperedges of size k is Poisson(n�

k

), and they are distributed uniformly

at random among all vertex sets of size k. (The Poisson distribution is a

dis
rete distribution that takes on the values X = 0; 1; 2; 3; � � �. The distri-

bution is determined by a single parameter �. The distribution fun
tion of

the Poisson(�) is f(x) =

exp (��)�

x

x!

. The expe
tation of Poisson(�) is �.)

(Note that this model allows for more than one edge over a set A � V ; for

our purposes we only 
are if �(A) = 0 or not.)

One of the key results they proved is the following:

Theorem 3 [Darling-Norris℄ Let � = (�

j

: j 2 Z) be a sequen
e of non-

negative parameters. Let �(t) = �

j�0

�

j

t

j

and �

0

(t) the derivative of �(t).

Let z

�

= infft 2 [0; 1) : �

0

(t) + log(1 � t) < 0g; if the in�mum is not well-

de�ned then let z

�

= 1. Denote by � the number of zeros of �

0

(t)+ log(1� t)

in [0; z

�

).

Assume that z

�

< 1 and � = 0. For n 2 N , let V

n

be a set of n verti
es

and let G

n

be a Poisson(�) hypergraph on V

n

. Then, as n!1 the number

V

n�

of identi�able verti
es satis�es the following limit w.h.p.: V

n�

=n! z

�

.

If we ignore the dire
tion

8

of the hyperedges then the random hypergraph

G

'

representing a H

1;3

n;d

1

;d

3

random formula 
orresponds to a Poisson(�) hy-

pergraph G

n

. To see that, noti
e that the hyperedges in G

'

are distributed

8

Ignoring the dire
tion of the hyperedges is equivalent to adding to the formula for

ea
h 
lause (x _ �y _ �z) two more 
lauses: (�x _ y _ �z) and �x _ �y _ z. Therefore we expe
t

that the probability of satis�ability we get from the hypergraph model should be lower

than the a
tual probability as it is measured by our experiments. This is indeed the 
ase

as we 
an see in Figure 10.
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uniformly at random among all possible 1- and 3-sets of verti
es, just like in

a Poisson random hypergraph with only two non-zero parameters, �

1

and

�

3

. To �nd the values of these parameters, we set equal the probabilities

that a hyperedge exists in the two hypergraphs G

'

and G

n

. In G

'

, the

probability that a variable x

i

is sele
ted as a positive unit literal is d

1

. In

G

n

, the probability that there are zero hyperedges on x

i

is e

�

1

. From this

we get �

1

= � log(1� d

1

). In G

'

, the probability that a 3-
lause is sele
ted

(ignoring dire
tions) is nd

3

=

�

n

3

�

. In G

n

, the probability that there are zero

edges on the three variables in that 
lause is e

�n�

3

=

(

n

3

)

� 1 � n�

3

=

�

n

3

�

(as

n!1). From this we get �

3

= d

3

.

We used MATLAB (www.mathworks.
om) to 
ompute z

�

for the hyper-

graph G

n

on the quadrant d

1

� d

3

9

. From Corollary 1, we get that the

probability of satis�ability of ' is 1 minus the probability that v

k

is identi�-

able in G

n

, whi
h, by Theorem 3, is 1� z

�

. See Figure 9(left) where we plot

the probability of satis�ability of ' against the input parameters d

1

and d

3

.

A 
ontour plot of the probability of satis�ability is given in Figure 9 (right).
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Figure 9: Probability of satis�ability plot of a random 1-3-Horn formula a
-


ording to the vertex-identi�ability model(left) and the 
orresponding 
on-

tour plot (right).

Comparing the results derived by this model (Figure 9) and the results

obtained by our experiments (Figure 4), we see that the model derived by the

hypergraph analysis provides a very good �t of the experimental data. This

is also obvious in Figure 10 where we plot the 50% satis�ability line a

ording

9

The Darling-Norris Theorem does not provide us an expli
it result for z

�

.
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the model above (the rough 
urve) and a

ording to our experimental data

(smoother 
urve).
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Figure 10: 50% satis�ability line { A

ording to the model derived through

hypergraphs (rough line) and a

ording to our experimental data (smoother

line).

Finally, we used our model to estimate the probability of satis�ability

along the same two 
uts that we presented earlier (the d

1

= 0:1 and the

diagonal 
ut). See Figure 11 for the probability estimation along the two


uts a

ording to the hypergraph-based model, and 
ompare with our ex-

perimental �ndings shown in Figure 5 (left) and Figure 6 (left). For both


uts, the estimated probability has a steep drop that happens at the exa
t

same point that the respe
tive drop is observed in the experimental data.

In Table 1 we give the raw data that 
orrespond to the plots in Figure 11.

Noti
e that, despite the very qui
k transition, the estimated 
urve is not a

step fun
tion, as we would expe
t by looking our data and the limit 
urve

after the �nite-size s
aling analysis (Figures 5 and 6 (right)). Should this

be an a

urate model for the 1-3-HornSAT, the probability of satis�ability

is not be a step fun
tion at the limit, that is, the threshold fun
tion is not

be a 
onstant fun
tion.

22



d

1

= 0:1 
ut diagonal 
ut

d

3

prob. of sat. input parameter i prob. of sat.

1 0.98775 1 0.99997

1.1 0.98619 2 0.99988

1.2 0.98455 3 0.9997

1.3 0.98282 4 0.99941

1.4 0.98098 5 0.99899

1.5 0.97903 6 0.99841

1.6 0.97694 7 0.99764

1.7 0.9747 8 0.99664

1.8 0.9723 9 0.99537

1.9 0.96969 10 0.99376

2 0.96685 11 0.99175

2.1 0.96372 12 0.98924

2.2 0.96026 13 0.98611

2.3 0.95637 14 0.98217

2.4 0.95194 15 0.97717

2.5 0.94679 16 0.97069

2.6 0.94062 17 0.96202

2.7 0.9329 18 0.94968

2.8 0.92244 19 0.9294

2.9 0.90522 20 0.072832

3 0.072832 21 0.063411

3.1 0.063588 22 0.055476

3.2 0.055745 23 0.048727

3.3 0.049039 24 0.042943

3.4 0.043267 25 0.038

3.5 0.038272 26 0.0335

3.6 0.033928 27 0.029856

3.7 0.030137 28 0.026559

3.8 0.026815 29 0.023665

3.9 0.023896 30 0.021117

4 0.021324 31 0.018868

4.1 0.019052 32 0.016878

4.2 0.017041 33 0.015114

4.3 0.015257 34 0.013547

4.4 0.013672 35 0.012153

4.5 0.012262 36 0.01091

4.6 0.011006 37 0.0098016

4.7 0.0098849 38 0.0088112

4.8 0.0088836 39 0.0079255

4.9 0.0079881 40 0.0071324

Table 1: Data for the probability of satis�ability of random 1-3-Horn formula

a

ording to the vertex-identi�ability model, along the d

1

= 0:1 and the

diagonal 
ut.
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Figure 11: Probability of satis�ability plot of a random 1-3-Horn formula

a

ording to the vertex-identi�ability model, along the d

1

= 0:1 
ut (left)

and the diagonal 
ut (right). The solid line 
orresponds to the model; the

experimental data points are shown for 
omparison.

5 Con
lusions

We set out to investigate the existen
e of a phase transition on the satis�a-

bility of the random 1-3-HornSAT problem. This is a problem that is similar

to 3-SAT, but its polynomial 
omplexity allows us to 
olle
t data for mu
h

higher order.

We �rst showed, through our experimental �ndings and an analysis based

on known results from digraphs' rea
hability, that the 1-2-HornSAT is a

problem that la
ks a phase transition.

On the 
ontrary, our experiments provide eviden
e that the 1-3-HornSAT

has a phase transition. By thoroughly sampling the d

1

�d

3

quadrant, solving

a large number of random instan
es of large order, we do
ument a waterfall-

like probability of satis�ability surfa
e. In addition, by taking 
uts of this

surfa
e, we are able to observe a qui
k transition from a satis�able to an

unsatis�able region. When �nite-size s
aling is applied on these 
uts, it

suggests that there is a phase transition. Finally, analysis of the transition

window provide further eviden
e for the phase transition.

We then used some re
ent results on random hypergraphs to generate

a model for our experimental data. By 
omparing the waterfall-like proba-

bility surfa
e against the estimated probability a

ording to this model, we

see that the hypergraph-based model �ts well our experimental data. This
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suggests that further analysis based on hypergraphs 
ould provide a rigorous

analysis of the 
onje
tured phase transition for the 1-3-HornSAT. This would

be very signi�
ant sin
e there are very few phase transitions that have been

analyti
ally proved (2-SAT, 3-XORSAT, 1-in-k SAT) [5, 12, 19, 15, 2, 8℄.

Although this model �ts well our experimental data, when 
al
ulating the

estimated probability along the two 
uts, we see that the probability of sat-

is�ability as the order goes to in�nity is a very steep fun
tion, but not a step

fun
tion. This last �nding, whi
h is 
ontrary to our experimental �ndings,

shows the diÆ
ulty of experimentally showing a phase transition, even for

tra
table problems su
h as 1-3-HornSAT.
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