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Abstrat

This paper presents a study of the satis�ability of random Horn

formulae and a searh for a phase transition. This is a problem similar

to the Satis�ability problem, but, unlike the latter, Horn satis�ability

is tratable and thus it is easier to ollet experimental data for large

instanes. We are also interested in Horn formulae beause of their re-

lation to �nite automata. We study random Horn formulae generated

aording to a variation of the �xed-lause-length distribution model.

Our experimental �ndings suggest that there is a sharp phase tran-

sition between a region where a random formula ' is almost surely

satis�able to a region where ' is almost surely unsatis�able. We also

use a result on random hypergraphs to generate a model that �ts well

our experimental data. This model though, suggests that the problem

does not have a phase transition, showing how diÆult it an be to es-

tablish experimentally a phase transition even for tratable problems

like 1-3-HornSAT.

1 Introdution

In the past deade phase transitions in ombinatorial problems have been

studied intensively. Although the idea of phase transitions in ombinato-
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rial problems was introdued as early as 1960 [17℄, in reent years it has

been a main subjet of researh in the ommunities of theoretial om-

puter siene, arti�ial intelligene and statistial physis. Combinatorial

phase transitions are also known as threshold phenomena. Phase transi-

tions have been observed both on the probability that an instane of a

problem has a solution (k-SAT, 3-Colorability) and on the omputational

ost for solving an instane (3-SAT, 3-Colorability). In few ases (2-SAT,

3-XORSAT, 1-in-k SAT) these phase transitions have been also formally

proved [5, 12, 19, 15, 2, 8℄.

A problem that has been in the enter of this researh is that of 3-

satis�ability (3-SAT). An instane of 3-SAT onsists of a onjuntion of

lauses, where eah lause is a disjuntion of three literals. The goal is to

�nd a truth assignment that satis�es all lauses. The density of a 3-SAT

instane is the ratio of the number of lauses to the number of Boolean

variables. We all the number of variables the order of the instane. Ex-

perimental studies [9, 32, 31℄ show that there is a shift in the probability of

satis�ability of random 3-SAT instanes, from 1 to 0, loated at around den-

sity 4.26 (this is also alled the rossover point). So far there is no proof of a

sharp phase transition at that density, f. [18, 14, 1℄. The same experimental

studies show a peak of the omputational omplexity around the rossover

point. In [26℄, �nite-size saling tehniques were used to demonstrate a phase

transition at the rossover point. Later, in [6℄, further experiments showed

that a phase transition of the running time from polynomial in the order to

exponential is solver-dependent, and for several di�erent solvers this tran-

sition ours at density lower than the rossover point. A limitation on all

the experimental studies is imposed by the inherent diÆulty of the prob-

lem, espeially around the rossover point. We an only study instanes of

limited order (usually up to few hundreds) before the problems get too hard

to be solved in reasonable time using the available omputational resoures.

A problem that is similar to random 3-SAT is that of the satis�ability of

random Horn formulae, also alled random Horn-SAT. A Horn formula in

onjuntive normal form (CNF) is a onjuntion of Horn lauses; eah Horn

lause is a disjuntion of literals

1

of whih at most one an be positive.

Unlike 3-SAT, Horn-SAT is a tratable problem. The omplexity of the

Horn-SAT is linear in the size of the formula [13℄. The linear omplexity of

Horn-SAT allows us to study experimentally the satis�ability of the problem

for muh bigger input sizes than those used in similar researh on other

problems like 3-SAT or 3-Colorability [21, 9, 32, 7℄.

1

A positive literal is a variable; a negative literal is a negated variable.
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An additional motivation for studying random Horn-SAT omes from the

fat that Horn formulae are onneted to several other areas of Computer

Siene and Mathematis [28℄. In partiular Horn formulae are onneted

to automata theory, as the transition relation, the starting state, and the

set of �nal states of an automaton an be desribed using Horn lauses. For

example, if we onsider automata on binary trees (see de�nition below), then

Horn lauses of length three an be used to desribe its transition relation,

while Horn lauses of length one an desribe the starting state and the set

of the �nal states of the automaton (we elaborate on that later). Then,

the question about the emptiness of the language of the automaton an be

translated to a question about the satis�ability of the formula. There is also

a lose relation between knowledge-based systems and Horn formulae, but we

do not onsider this relation in this work. Finally, there is a orrespondene

between Horn formulae and hypergraphs that we use to show how results

on random hypergraphs relate to our researh on random Horn formulae.

The probability of satis�ability of random Horn formulae generated a-

ording to a variable-lause-length model has been studied by Istrate in [23℄.

In this work it is shown that aording to this model random Horn formulae

have a oarse satis�ability threshold, i.e. the problem does not have a phase

transition. The variable-lause-length distribution model used by Istrate is

better suited if we study Horn formulae in onnetion to knowledge-based

systems [28℄.

Motivated by the onnetion between the automata emptiness problem

and Horn satis�ability, we studied the satis�ability of two types of random

Horn formulae in onjuntive normal form (CNF) that are generated a-

ording to a variation of the �xed-lause-length distribution model. That is,

formulae that onsist of lauses of length one and three only, and formulae

that onsist of lauses of length one and two only. We all these problems

1-3-HornSAT and 1-2-HornSAT respetively. We are looking to identify re-

gions in the problems' spae where instanes are almost surely satis�able or

almost surely unsatis�able. We are also interested in �nding if the problems

exhibit a phase transition, i.e. a sharp threshold.

Notie that the random 1-2-HornSAT problem is related to the random

1-3-HornSAT problem in the same way that random 2-SAT is related to

random 3-SAT. That is, as some algorithm searhes for a satisfying truth

assignement for a random 1-3-Horn formula by assigning truth values to the

variables, a random 1-2-Horn formula is reated as a subformula of the orig-

inal formula. This is a result of 3-lauses being shortened to 2-lauses by a

subtitution of truth values. The relation between random 2-SAT and ran-

dom 3-SAT is exploited by Ahlioptas in [1℄ to improve on the lower bound
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for the threshold of random 3-SAT. In this work, Ahlioptas uses di�erential

equations to analyze the exeution of a broad family of SAT algorithms. In

general, one an try to analyze phase transitions using di�erential equations,

f. [22℄ The 1-2-HornSAT problem an be analyzed with the help of random

graphs [4℄. We show how results on random digraph onnetivity, presented

by Karp in [24℄, an be used to model the satis�ability of random 1-2-Horn

formulae. These results an be used to show that there is no phase transition

for 1-2-HornSAT and are mathed by our experimental data.

Our experimental investigation of 1-3-HornSAT shows that there are

regions where a random 1-3-Horn formula is almost surely satis�able and

regions where is almost surely unsatis�able. Analysis of the satis�ability

perentiles' window and �nite-size saling [33℄ suggest that there is a \sharp

threshold line" between these two regions. As 1-2-HornSAT an be analyzed

using random digraphs, 1-3-HornSAT an be analyzed using random hyper-

graphs. We show that some reent results on random hypergraphs [11℄ �t

well our experimental data. Unlike the data analysis, the hypergraph-based

model suggests that the transition from the satis�able to unsatis�able re-

gions is rather a steep funtion than a step funtion. It is therefore not lear

if the problem exhibits a phase transition, even though we were able to get

experimental data for instanes of large order.

Our work here also relates to that of Kolaitis and RaÆll in [27℄. There,

the authors arried out a searh for a phase transition in another NP-

omplete problem, that of AC-mathing. The similarity between their work

and ours is that the experimental data provide evidene that both prob-

lems have a slowly emerging phase transition. The di�erene is that in our

ase, beause of the linear omplexity of Horn satis�ability, we are able to

test instanes of Horn satis�ability of muh bigger size, than the instanes

of AC-mathing in [27℄ or atually most of the NP-omplete problems like

3-SAT, 3-olorability et.

2 Preliminaries

Let us review some de�nitions

2

related to ombinatorial phase transitions.

Let X be a �nite set and jXj = n. Let A be a random subset of X on-

struted by a random proedure aording to the probability spae 
(n;m)

D

=

(2

X

; 2

2

X

;Pr), where Pr is de�ned as :

2

The de�nitions found in this paper as well as more de�nitions and results an be found

in [10℄
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Pr


(n;m)

(A) =

(

1=

�

n

m

�

�

if jAj = m

�

0 otherwise

;

where m is an integer and

m

�

=

8

>

<

>

:

0 if m < 0

m if 0 �m � n

n if m > n

The random proedure onsists of seleting m

�

elements of X without

replaement. A (set) property Q of X is a subset of 2

X

. Q is inreasing if

A 2 Q and A � B � X implies B 2 Q. Q is non-trivial if ; 62 Q and X 2 Q.

A property sequene Q onsists of a sequene of sets fX

n

: n � 1g suh that

jX

n

j < jX

n+1

j and a family fQ

n

: n � 1g where eah Q

n

is a property of

X

n

. Q is inreasing (non-trivial) if Q

n

is inreasing (resp. non-trivial) for

every n � 1.

Let Q

n

be an inreasing non-trivial property sequene � : N ! R

+

be

a stritly positive funtion. We say that � is a threshold for Q if for every

f : N ! N :

1. If lim

n!1

f(n)=�(n) = 0 then lim

n!1

Pr


(n;f(n))

(Q

n

) = 0

2. If lim

n!1

f(n)=�(n) =1 then lim

n!1

Pr


(n;f(n))

(Q

n

) = 1

� is a sharp threshold Q if for every f : N ! N

+

:

1. If sup

n!1

f(n)=�(n) < 1 then lim

n!1

Pr


(n;f(n))

(Q

n

) = 0

2. If inf

n!1

f(n)=�(n) > 1 then lim

n!1

Pr


(n;f(n))

(Q

n

) = 1

We say that Q exhibits a phase transition if it has a sharp threshold. Our

interest is in satis�ability of Horn formulas. Thus, in our framework X

n

is

the set of Horn lauses over a set with n Boolean variables. A set of Horn

lauses is a Horn formula.

Our main motivation for studying the satis�ability of Horn formulae is

that, unlike 3-SAT, this problem is tratable. Therefore we will have data

for instanes of muh larger order to help us answer questions similar to

those previously asked about 3-SAT.

Apart from that, it is of interest to us that Horn formulae an be

used to desribe �nite automata. A �nite automaton A is a 5-tuple A =

(S;�; Æ; s; F ), where S is a �nite set of states, � is an alphabet, s is a start-

ing state, F � S is the set of �nal (aepting) states and Æ is a transition

relation.
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In a word automaton, Æ is a funtion from S�� to 2

S

. In a binary-tree

automaton Æ is a funtion from S � � to 2

S�S

. Intuitively, for word au-

tomata Æ provides a set of suessor states, while for binary-tree automata

Æ provides a set of suessor state pairs. A run of an automaton on a word

a = a

1

a

2

� � � a

n

is a sequene of states s

0

s

1

� � � s

n

suh that s

0

= s and

(s

i�1

; a

i

; s

i

) 2 Æ. A run is suesful if s

n

2 F ; in this ase we say that A a-

epts the word a. A run of an automaton on a binary tree t labeled with let-

ters from �, is a binary tree r labeled with states from S suh that root(r) =

s and for a node i of t, (r(i); t(i); r(left-hild-of-i); r(right-hild-of-i)) 2 Æ.

Thus, eah pair in Æ(r(i); t(i)) is a possible labeling of the hildren of i. A

run is suesfull if for all leaves l of r, r(l) 2 F ; in this ase we say that A

aepts the tree t. The language L(A) of a word (resp. tree) automaton A,

is the set of all words a (resp. trees t) for whih there is a suessful run of

A on a (resp. t). An important question on automata theory that also is

of great pratial importane in the �eld of formal veri�ation [34℄ is, given

an automaton A is L(A) non-empty ? We an show how the problem of

non-emptiness of automata languages translates to Horn satis�ability.

Consider �rst a word automaton A = (S;�; Æ; s

0

; F ). Construt a Horn

formula '

A

over the set S of variables as follows:

� reate a lause ( �s

0

)

� for eah s

i

2 F reate a lause (s

i

)

� for eah element (s

i

; a; s

j

) of Æ reate a lause ( �s

j

; s

i

),

where (s

i

; � � � ; s

k

) represents the lause s

i

_� � �_s

k

and �s

j

is the negation of s

j

.

Theorem 1 Let A be a word automaton and '

A

the Horn formula on-

struted as desribed above. Then L(A) is non-empty if and only if '

A

is

unsatis�able.

Proof.

()) Assume that L(A) is non-empty, i.e. there is a path � = s

i

0

s

i

1

� � � s

i

m

in A suh that s

i

0

= s

0

and s

i

m

= s

k

where s

k

is a �nal state. Sine s

k

is

a �nal state (s

k

) is a lause in '

A

. Also ( �s

k

; s

i

m�1

) is a lause in '

A

. For

'

A

to be satis�able s

k

should be true and onsequently, s

i

m�1

must be true.

By indution on the length of the path � we an show that for '

A

to be

satis�able s

0

must be true, whih is a ontradition.

(() Assume that '

A

is unsatis�able. It then must have positive-unit reso-

lution refutation [20℄, i.e. a proof by ontradition where in eah step one
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of the resolvents must be a positive literal, where the last resolution step

is with the lause ( �s

0

). Let (s

i

) be the �rst positive literal resolvent in the

proof. By onstrution, s

i

is a �nal state of A. By indution on the length

of the refutation, we an onstrut a path in A from s

0

to s

i

, Therefore,

L(A) is non-empty. 2

Similarly to the word automata ase, we an show how to onstrut a

Horn formula from a binary-tree automaton. Let A = (S;�; Æ; s

0

; F ) be a

binary-tree automaton. Then we an onstrut a Horn formula '

A

using

the onstrution above with the only di�erene that sine Æ in this ase is

a funtion from S � f�g to S � S, for eah element (s

i

; �; s

j

; s

k

) of Æ, we

reate a lause ( �s

j

; �s

k

; s

i

). It is not diÆult to see that also in this ase we

have:

Theorem 2 Let A be a binary-tree automaton and '

A

the Horn formula

onstruted as desribed above. Then L(A) is non-empty if and only if '

A

is unsatis�able.

Motivated by the onnetion between tree automata and Horn formulas

desribed in Theorem 2 we studied the satis�ability of two types of random

Horn formulae. More preisely, let H

1;2

n;d

1

;d

2

denote a random formula in CNF

over a set of variables X = fx

1

; � � � ; x

n

g that ontains:

� a single negative literal hosen uniformly among the n possible negative

literals

� d

1

n positive literals that are hosen uniformly, independently and

without replaement among all n � 1 possible positive literals (the

negation of the single negative literal already hosen is not allowed)

� d

2

n lauses of length two that ontain one positive and one negative lit-

eral hosen uniformly, independently and without replaement, among

all n(n� 1) possible lauses of that type.

We all the number of variables n the order of the instane.

Let also H

1;3

n;d

1

;d

3

denote a random formula in CNF over the set of vari-

ables X = fx

1

; � � � ; x

n

g that ontains:

� a single negative literal hosen uniformly among the n possible negative

literals

� d

1

n positive literals that are hosen uniformly, independently and

without replaement among all n � 1 possible positive literals (the

negation of the single negative literal already hosen is not allowed)
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� d

3

n lauses of length three that ontain one positive and two negative

literals hosen uniformly, independently and with replaementamong

all

n(n�1)(n�2)

2

possible lauses of that type.

The sampling spaes H

1;3

and H

1;2

are slightly di�erent; we sample with

replaement in the �rst, and without replaement in the seond. We explain

here why. Assume that we sample dn lauses out of N uniformly at random

with replaement. Let us onsider the (asymptoti) expeted number of

distint lauses we get. Eah one of the N lauses will be hosen with

probability 1� (1�

1

N

)

dn

. The expeted number of distint hosen lauses is

N(1�(1�

1

N

)

dn

). Notie thatN(1�(1�

1

N

)

dn

) � N(1�exp

�dn

N

) = N(1�(1�

dn

N

+ O((

dn

N

)

2

))) � dn� O(

(dn)

2

N

). In the ase of a random H

1;3

n;d

1

;d

3

formula

N =

n(n�1)(n�2)

2

and learly the expeted number of distint lauses we

sample is asymptotially equivalent to dn; thus we sample with replaement

for experimental ease. In the ase of a random H

1;2

n;d

1

;d

2

formula, we sample

without replaement to ensure that we do not have many repetitions among

the hosen lauses.

3 1-2-HornSAT

In this setion we present our results on the probability of satis�ability of

random 1-2-Horn formulae. We �rst present an experimental investigation

of the satis�ability on the d

1

� d

2

quadrant. We then disuss the relation

between random 1-2-Horn formulae and random digraphs and show that our

data agree with analytial results on graph reahability presented in [24℄.

We studied the probability of satis�ability of H

1;2

n;d

1

;d

2

random formulae

in the d

1

� d

2

quadrant. We generated and solved 1200 random instanes

of order 20000 per data point. See Figure 1 where we plot the average

probability of satis�ability against the two input parameters d

1

and d

2

(left)

and the orresponding ontour plot (right).

The satis�ability plot shown in Figure 1 indiates that the problem does

not have a phase transition. This an also been observed if we �x the

value of one of the input parameters. See Figure 2, where we show the

satis�ability plot for random 1-2-HornSAT for various order values ranging

from 500 to 32000, and for �xed d

1

= 0:1. We now explain why random

1-2-HornSAT does not have a phase transition, based on known results on

random digraphs.

There are two most frequently used models of random digraphs. The

�rst one, G(n;m) onsists of all digraphs on n verties having m edges; all
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Figure 1: Average satis�ability plot of a random 1-2-Horn formula of or-

der=20000 (left) and the orresponding ontour plot (right).

digraphs have equal probability. The seond model, G(n; p(edge) = p) with

0 < p < 1, onsists of all digraphs on n verties in whih the edges are hosen

independently with probability p. It is known that in most investigations

the two models are interhangeable, provided ertain onditions are met.

In what follows, we will take advantage of this equivalene in order to show

how our experimental results relate to analytial results on random digraphs

[24℄.

We will �rst show that there is a relation between the satis�ability of a

random H

1;2

n;d

1

;d

2

formula and the vertex reahability of a random digraph

G(n; d

2

n). Let ' 2 H

1;2

n;d

1

;d

2

, ( �x

0

) be the unique single negative literal in ',

and F be the set of all variables that appear as single positive literals in '.

Obviously jF j = d

1

n. Construt a graph G

'

suh that for every variable x

i

in ' there is a orresponding node v

i

in G

'

and for eah lause ( �x

i

; x

j

) of '

there is a direted edge in G

'

from v

i

to v

j

. G

'

is a random digraph from

the G(n; d

2

n) model.

It is not diÆult to see that ' is unsatis�able if and only if the node v

0

in G

'

is reahable from a node v

i

suh that x

i

2 F . In other words, the

probability of unsatis�ability of a random H

1;2

n;d

1

;d

2

formula ', is equal to the

probability that a vertex of the random digraph G(n; d

2

n) is reahable from

a set

3

of verties of size d

1

n.

3

A vertex is reahable from a set of verties if it is reahable by at least one of the

verties of the set.

9



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

density d
2

p
ro

b
a

b
il
it
y
 o

f 
s
a

ti
s
fi
a

b
il
it
y
 (

a
v
e

ra
g

e
 o

v
e

r 
1

2
0

0
 i
n

s
ta

n
c
e

s
)

satisfiability plot for random 1−2−HornSAT for several order values between 500 and 32000, where d
1
=0.1
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As mentioned above the G(n;m) and G(n; p((edge) = p)) models an

be used interhangeably, when m �

�

n

2

�

p [4℄. Therefore, the relation we

established between the satis�ability of a random H

1;2

n;d

1

;d

2

formula ' and

the vertex reahability of a random digraph G(n; d

2

n), holds also between

' and a random digraph G(n; p =

d

2

n

).

The vertex reahability of random digraphs generated aording to the

model G(N; p) has been studied and analyzed by Karp in [24℄. We use

his results to study the satis�ability of random H

1;2

n;d

1

;d

2

formulae. Karp

showed that as n tends to in�nity, when np < 1 � h, where h is a �xed

small positive onstant, the expeted size of a onneted omponent of the

graph is bounded above by a onstant C(h). When np > 1 + h, as n tends

to in�nity, the set of verties reahable from one vertex is either \small"

(expeted size bounded above by C(h)) or \large" (size lose to �n, where

� is the unique root of the equation 1�x�e

�(1+h)x

= 0 in [0; 1℄). Moreover,

a \giant" strongly onneted omponent emerges of size approximately �

2

n.

Let us now onsider the two ases; d

2

= 1 � h and d

2

= 1 + h, where h

is a positive number. Remember that in our ase p =

d

2

n

. In the analysis

below we use the notation w.h.p. (with high probability) as shorthand for

\with probability tending to 1 at the limit".

In the ase where d

2

= 1 � h, that is np < 1 � h, the size of the set

X(v

i

) of verties reahable by a vertex v

i

is w.h.p. less than or equal to

3 lnnh

�2

, and the expeted size of this set is bounded above by a onstant

related to h. Thus we get that the probability that v

0

is reahable by v

i

10



w.h.p. lies in the interval [0;

3 lnn

n(1�d

2

)

2

℄, and its expeted value is bounded

above by a onstant. The expeted probability that v

0

is reahable by a set

of d

1

n verties should inrease with d

1

. See the plots in Figures 1 and 2,

whih show that the probability of satis�ability of ' (whih is 1 minus the

probability that v

0

is reahable by a set of d

1

n verties in G

'

), while d

2

< 1,

is dereasing as we inrease d

2

and/or d

1

.

When d

2

= 1 + h, that is np > 1 + h, we know that the set X(v

i

) of

verties reahable by a vertex v

i

is w.h.p. either in the interval [0;

3 lnn

(1�d

2

)

2

℄,

or around �n. We also know that the probability that X(v

i

) is \small"

tends to 1 ��. Therefore, w.h.p. at least one of the d

1

n verties will have

a \large" reahable set. That is, the probability that v

0

is reahable by a

set of d

1

n verties is bounded below from �. Notie that � inreases with

d

2

. Again, see the plots in Figures 1 and 2, where we an see that the

probability of satis�ability of ' when d

2

> 1 is dereasing as d

2

inreases.

So the experimental observations are in agreement with the expetations

based on the digraph reahability analysis.

Going bak to digraphs' reahability, Karp's results show that for eah

vertex the set of its reahable verties is very small up to the point where

np = 1. We an observe the same behaviour in 1-2-HornSAT if we hange

our distribution model by setting d

1

= =n for some onstant . By doing

that, we are adjusting our model to �t the reahability analysis done by

Karp that is based on a single starting vertex in the digraph. The result

of this modi�ation is that d

1

is no longer a fator on the probability of

satis�ability of ', that depends now solely on d

2

. See Figure 3, where

we show the satis�ability plot in that ase, and ontrast with the piture

that emerges when d

1

is a onstant (shown in Figure 2). While before the

satis�ability probability was steadily dereasing as we inreased d

2

, now the

satis�ability probability is pratially 1, until d

2

gets a value bigger than

one. In both ases, however, the reahability analysis and the experimental

data show that the satis�ability of random 1-2-Horn formulae is a problem

that laks a phase transition.

Remark 1 One of the referees pointed out that the probability of satis�abil-

ity of 1-2-Horn an be alulated exatly. Using the ombinatoris of labelled

trees, one an alulate exatly the probability P (k) that a given vertex v has

an out-tree of size k, not inluding itself, in a random digraph with mean

out-degree d

2

. This is

P (k) =

e

�(k+1)d

2

d

k

2

k!

(k + 1)

k�1

11
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Figure 3: Satis�ability plot of random 1-2-Horn formulae when d

1

= 10=n

for orders 100(lower urve), 1K, 10K and 50K(higher urve).

The probability of satis�ability is then

P [SAT℄ =

1

X

k=0

P (k)(1 � d

1

)

k

Numerial omputation indiates a lose �t with our experimental results.

4 1-3-HornSAT

In this setion we present our results on the probability of satis�ability

of random 1-3-Horn formulae. We �rst present a thorough experimental

investigation of the satis�ability on the d

1

� d

3

quadrant. We then show

that analyti results on vertex identi�ability in random hypergraphs [11℄ �t

well our results on the satis�ablity of random 1-3-Horn formulae.

We studied the probability of satis�ability of H

1;3

n;d

1

;d

3

random formulae

in the d

1

� d

3

quadrant. We generated and solved 3600 random instanes

of order 20000 per data point. See Figure 4 where we plot the average

probability of satis�ability against the two input parameters d

1

and d

3

(left)

and the orresponding ontour

4

plot (right).

4

In this plot there are 25 lines that separate onseutive perentages intervals, i.e.

[0%� 4%); [4%� 8%); � � � ; [96% � 100%℄.
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der=20000 (left) and the orresponding ontour plot (right).

From our experiments we see that there is a region where the formula is

underonstrained (small values of d

1

and d

3

) and the probability of satis�a-

bility is almost 1. As the values of the two input parameters inrease, there

is a rapid hange in the satis�ability terrain, what we all the waterfall. As

the values of d

1

and d

3

ross some boundaries (the projetion of the waterfall

shown in the ontour plots) the probability of satis�ability beomes almost

0. In other words, we observe a transition similar to these observed in other

ombinatorial problems like 3-SAT, 3-oloring et.

There is a signi�ant di�erene though, between these previously studied

transitions and the one we observe in 1-3-HornSAT. In ases like 3-SAT or

3-olorability there are two input parameters desribing a random instane;

the order and the onstrainedness (also alled density in 3-SAT, and on-

netivity in 3-olorability) of the instane. The onstrainedness is de�ned

as the ratio of lauses for 3-SAT (or edges for 3-olorability) over variables

(resp. verties). In random 1-3-HornSAT, there are three parameters: the

order of the instane and the two densities, namely d

1

and d

3

. By taking

a ut along the three dimensional surfae shown in Figure 4 (left), we an

study the problem as if it had only two input parameters.

We took two straight line uts of the surfae. For the �rst ut, we

�xed d

1

to be 0.1, we let d

3

take values in the range [1; 5:5℄ with step 0.1,

and we hose order values 500, 1000, 2500, 5000, 10000, 20000 and 40000.

See Figure 5(left), where we plot the probability of satis�ability along this

ut. This plot reveals a quik hange on the probability of satis�ability as

13



the input parameter d

3

passes through a ritial value (around 3). One

tehnique that has been used to support experimental evidene of a phase

transition is �nite-size saling. It is a tehnique oming from statistial

mehanis that has been used in studying the phase transitions of several

NP-omplete problems, as k-SAT and AC-mathing [26, 27℄. This tehnique

uses data from �nite size instanes to extrapolate to in�nite size instanes.

The transformation is based on a resaling aording to a power law of the

form d

0

=

d�d



d



n

r

, where d is the density, d

0

is the resaled parameter, d



is

the ritial value, n is the order of the instane and r is a saling exponent.

As a result, a funtion f(d; n) is transformed to a funtion f(d

0

). We applied

�nite-size saling to our data to observe the sharpness of the transition. We

followed the proedure presented by Kolaitis et al. in [27℄. Our analysis

yields the following �nite-size saling transformation:

d

0

=

d

3

� 3:0385

3:0385

n

0:4859

We then superimposed the urves shown in Figure 5(left) resaled aording

to this transformation. The result is shown in Figure 5(right). The �t

appears to be very good around zero, where urves ollapse to a single

universal urve, but as we move away from it is getting weaker. In the plot,

the universal urve seems to be monotoni with limits lim

d

0

!�1

f(d

0

) =

1 and lim

d

0

!1

f(d

0

) = 0. This evidene suggests that there is a phase

transition near d

3

= 3 for d

1

= 0:1.

We repeated the same experiment and analysis with the seond ut, a

straight line ut along the diagonal of the d

1

� d

3

quadrant. In this ase

our formal parameter is an integer i. An instane with input paremeter

value i, orresponds to an instane with densities d

1

=

i

200

and d

3

=

i

10

+1.

In this ase, by making the two input parameters d

1

and d

3

dependent, we

e�etively redue the input parameters of the problem from three, (d

1

; d

3

; n),

to two, (i; n). We let i take values in the range [1; 40℄ with step 1, and we

hose order values 500, 1000, 2500, 5000, 10000, 20000 and 40000. See

Figure 6(left) where we plot the probability of satis�ability along this ut.

This plot, as the one for the previous ut, reveals a quik hange on the

probability of satis�ability as the input parameter i passes through a ritial

value (around 19). We again used �nite-size saling on these data, looking

for further support of a phase transition. For this ut, the analysis yields

the following transformation:

i

0

=

i� 19:1901

19:1901

n

0:2889
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Figure 5: Average satis�ability plot of a random 1-3-Horn formula along the

d

1

= 0:1 ut (left) and the satis�ability plot with resaled parameter using

�nite-size saling (right).

See Figure 6(right) where we superimpose the urves shown in the same

�gure (left) using the above transformation. As with the previous ut, the

�t seems quite good, espeially around zero, and the universal urve seems

to have limits 1 and 0 in the in�nities.

In our searh for more evidene of a phase transition, we performed

the following experiment for the ut used to produe the data in Figure 5

(d

1

= 0:1). For several values of order between 500 and 200000 and for

density d

3

taking values in the range [2:7; 3:8℄ with step 0.02, we generated

and solved 1200 instanes. We reorded for eah di�erent order value the

values of density d

3

for whih the average probability of satis�ability was

0.1, 0.2, 0.8 and 0.9 respetively

5

. The idea behind this experiment is that

if the problem has a sharp threshold, i.e. a phase transition, then as the

order of the instanes inreases the window between 10th and 90th proba-

bility perentiles, as well as that between the 20th and the 80th probability

perentiles, should shrink and at the limit beome zero. In Figure 7 we plot

these windows. Indeed, they get smaller as the order inreases.

Although Figure 7 shows that these windows indeed shrink as the order

inreases, it is not lear at all if at the limit they would go to zero. A

further urve �tting analysis is more revealing. See Figure 8, where we plot

the size of the 10%-90% probability of satis�ability window (left) and the

5

We atually did linear regression on the two losest points to ompute the density for

eah satis�ability perentage.
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�nite-size saling (right).

20%-80% probability of satis�ability window (right) as a funtion of the

order. Using MATLAB to do urve �tting on our data, we �nd that both

windows derease almost as fast as

1

p

n

. The orrelation oeÆient r

2

is

almost 0.999, whih gives a high on�dene for the validity of the �t. This

analysis suggests that indeed the two windows should be zero at the limit.

That is an evidene that supports the existene of a phase transition for

1-3-HornSAT.

Similar analysis has been done before for k-SAT. The width of the sat-

is�ability phase transition, whih is the amount by whih the number of

lauses of a random instane needs to be inreased so that the probability

of satis�ability drops from 1� � to �, is thought to grow as �(n

1�

1

�

). Notie

that the window that we estimate is equal to the normalized width (divided

by the order). The exponent � for 2 � k � 6 is estimated in [25, 26, 29, 30℄.

It was also onjetured that as k gets large, � tends to 1. Reently, Wilson

in [35℄ proved that for all k � 3, � � 2, the transition width is at least

�(n

1

2

). Our experiments suggest that the window of the satis�ability tran-

sition for 1-3-HornSAT shrinks as fast as n

�

1

2

, thus the transition width

grows as n

1

2

. We believe that the analysis in [35℄ an be appliable in the

ase of 1-3-HornSAT, and an omplement our experimental �ndings.

In the rest of this setion we will disuss the onnetion between random

Horn formulae and random hypergraphs. We will show how reent results

on random hypergraphs provide a good �t for our experimental data on
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random 1-3-HornSAT presented so far. On the other hand, these results

suggest that the transition is steep, but not a step funtion.

There is a one to one orrespondene between random Horn formulae

and random direted hypergraphs. Let ' be a H

1;3

n;d

1

;d

3

random formula. We

an represent ' with the following hypergraph G

'

6

:

� represent eah variable x

i

in ' with a node v

i

in G

'

� represent eah unit lause fx

k

g as a hyperedge in G

'

over v

k

7

� represent eah lause fx

j

; �x

k

; �x

l

g as a direted hyperedge in G

'

over

the set fv

j

; v

k

; v

l

g

In a reent development, Darling and Norris [11℄ proved some results

on vertex identi�ability in random undireted hypergraphs. A vertex v of a

hypergraph is identi�able in one step if there is a hyperedge over v. A vertex

v is identi�able in n steps if there is a hyperedge over a set S, suh that v 2 S

and all other elements of S are identi�able in less than n steps. Finally, a

vertex v is identi�able if it is identi�able in n steps for some positive n.

6

This representation atually ommitts the single negative literal that appears in '.

7

Hyperedges over verties are alled pathes in [11℄ or loops in [16℄.

17



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

order n

d
e
n
s
it
y
 d

if
fe

re
n
c
e
 b

e
tw

e
e
n
 1

0
%

 a
n
d
 9

0
%

 s
a
ti
s
fi
a
b
il
it
y

plot showing the 10%−90% sat window size for 1−3−HornSAT decreasing polynomially with the order

y=20.6284x
−0.4488

r
2
=0.9984

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

order n

d
e
n
s
it
y
 d

if
fe

re
n
c
e
 b

e
tw

e
e
n
 2

0
%

 a
n
d
 8

0
%

 s
a
ti
s
fi
a
b
il
it
y

plot showing the 20%−80% sat window size for 1−3−HornSAT decreasing polynomially with the order

y=15.6141x
−0.4784

r
2
=0.9985
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funtion of the order n (left) and of the 20%-80% probability of satis�ability

window (right)

We now establish the equivalene between the satis�ability of ' and

the identi�ability of vertex v

k

of G

'

, where  = fx

k

g is the unique single

negative literal lause of '. First, we introdue an algorithm for solving

Horn satis�ability.

We use a simple algorithm for deiding wether a Horn formula is satis-

�able or not, presented by Dowling and Gallier in [13℄ (see also [3℄). This

algorithm runs in time O(n

2

) where n is the number of variables in the for-

mula. Dowling and Gallier in their work atually desribe how to improve

this algorithm to run in linear time. For our purposes and for the sake of

simpliity we use the simple quadrati algorithm.

Algorithm A.

begin

let ' = f

1

; � � � ; 

m

g

onsistent:=true; hange:=true;

set eah variable x

i

to be false;

for eah variable x

i

suh that fx

i

g is a lause in '

set x

i

to true

endfor;

while (hange and onsistent) do

hange:=false;

18



for eah lause 

j

in ' do

if (

j

is of the form ( �x

1

; � � � ; �x

q

)

and all x

1

; � � � ; x

q

are set to true) then

onsistent:=false;

else

if 

j

is of the form fx

1

; �x

2

; � � � ; �x

q

g

and all x

2

; � � � ; x

q

are set to true

and x

1

is set to false

then set x

1

to true; hange:=true; ' := '� 

j

endif

endif

endfor

endwhile

end

If Algorithm A terminates with onsistent:=true then a satisfying truth

assignement has been found. Otherwise, the formula ' is unsatis�able.

Given a formula ', its orresponding direted hypergraph G

'

, and a

variable x

i

, we prove the following relation between the truth value that

Algorithm A assigns to x

i

and the identi�ability of vertex v

i

of G

'

:

Lemma 1 Algorithm A running on ' assigns the value true to x

i

if and

only if the vertex v

i

of G

'

is identi�able.

Proof. It is easy to show the equivalene by indution on the number of

steps required to identify v

k

(equivalently the number of iterations of the

while loop of Algorithm A needed to set the value of x

k

to true).

Base Case: If v

k

is identi�able in one step, then fx

k

g is a lause in ' and

Algorithm A immediately assigns the value true to it, and vie versa.

Indutive Hypothesis: A vertex is identi�able in n � 1 steps if and only if

the orresponding variable is set to true by Algorithm A in no more than

n� 1 iterations of the while loop.

Indutive Step: A vertex v

j

that is identi�able in n steps, orresponds to a

variable that appears in a lause of the form fv

j

; �v

i

1

; � � � ; �v

i

q

g and sine all of

x

i

1

; � � � ; x

i

q

are already set to true, A will set x

j

to true in the nth iteration

of the while loop. Conversely, if x

j

is set to true in the nth iteraton of the

while loop of Algorithm A, then we derive that it appears in a lause of the

form fx

j

; �x

i

1

; � � � ; �x

i

q

g, where all of x

i

1

; � � � ; x

i

q

are already set to true. But

this implies that all v

i

1

; � � � ; v

i

q

are identi�able in n� 1 steps; therefore v

j

is

identi�able in n steps.

2
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As an immediate result of this lemma we get:

Corollary 1 Let ' be a H

1;3

n;d

1

;d

3

random formula and  = f �x

k

g be the unique

single negative literal lause of '. Let G

'

be the direted hypergraph orre-

sponding to '. The formula ' is satis�able if and only if the vertex v

k

of

G

'

is not identi�able.

Darling and Norris in [11℄ studied the vertex identi�ability in random

undireted hypergraphs. Although Horn formulae orrespond to direted

hypergraphs, we deided to use the results of Darling and Norris in an ef-

fort to approximate the satis�ability of Horn formulae. The authors use the

notion of a Poisson random hypergraph. A Poisson random hypergraph on

a set V of n verties with non-negative parameters f�

k

g

1

k=0

is a random hy-

pergraph �, where the numbers �(A) of hyperedges of � over sets A � V of

verties are independent random variables, depending only on jAj, suh that

�(A) has distribution Poisson(n�

k

=

�

n

k

�

), when jAj = k. Thus, the number

of hyperedges of size k is Poisson(n�

k

), and they are distributed uniformly

at random among all vertex sets of size k. (The Poisson distribution is a

disrete distribution that takes on the values X = 0; 1; 2; 3; � � �. The distri-

bution is determined by a single parameter �. The distribution funtion of

the Poisson(�) is f(x) =

exp (��)�

x

x!

. The expetation of Poisson(�) is �.)

(Note that this model allows for more than one edge over a set A � V ; for

our purposes we only are if �(A) = 0 or not.)

One of the key results they proved is the following:

Theorem 3 [Darling-Norris℄ Let � = (�

j

: j 2 Z) be a sequene of non-

negative parameters. Let �(t) = �

j�0

�

j

t

j

and �

0

(t) the derivative of �(t).

Let z

�

= infft 2 [0; 1) : �

0

(t) + log(1 � t) < 0g; if the in�mum is not well-

de�ned then let z

�

= 1. Denote by � the number of zeros of �

0

(t)+ log(1� t)

in [0; z

�

).

Assume that z

�

< 1 and � = 0. For n 2 N , let V

n

be a set of n verties

and let G

n

be a Poisson(�) hypergraph on V

n

. Then, as n!1 the number

V

n�

of identi�able verties satis�es the following limit w.h.p.: V

n�

=n! z

�

.

If we ignore the diretion

8

of the hyperedges then the random hypergraph

G

'

representing a H

1;3

n;d

1

;d

3

random formula orresponds to a Poisson(�) hy-

pergraph G

n

. To see that, notie that the hyperedges in G

'

are distributed

8

Ignoring the diretion of the hyperedges is equivalent to adding to the formula for

eah lause (x _ �y _ �z) two more lauses: (�x _ y _ �z) and �x _ �y _ z. Therefore we expet

that the probability of satis�ability we get from the hypergraph model should be lower

than the atual probability as it is measured by our experiments. This is indeed the ase

as we an see in Figure 10.
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uniformly at random among all possible 1- and 3-sets of verties, just like in

a Poisson random hypergraph with only two non-zero parameters, �

1

and

�

3

. To �nd the values of these parameters, we set equal the probabilities

that a hyperedge exists in the two hypergraphs G

'

and G

n

. In G

'

, the

probability that a variable x

i

is seleted as a positive unit literal is d

1

. In

G

n

, the probability that there are zero hyperedges on x

i

is e

�

1

. From this

we get �

1

= � log(1� d

1

). In G

'

, the probability that a 3-lause is seleted

(ignoring diretions) is nd

3

=

�

n

3

�

. In G

n

, the probability that there are zero

edges on the three variables in that lause is e

�n�

3

=

(

n

3

)

� 1 � n�

3

=

�

n

3

�

(as

n!1). From this we get �

3

= d

3

.

We used MATLAB (www.mathworks.om) to ompute z

�

for the hyper-

graph G

n

on the quadrant d

1

� d

3

9

. From Corollary 1, we get that the

probability of satis�ability of ' is 1 minus the probability that v

k

is identi�-

able in G

n

, whih, by Theorem 3, is 1� z

�

. See Figure 9(left) where we plot

the probability of satis�ability of ' against the input parameters d

1

and d

3

.

A ontour plot of the probability of satis�ability is given in Figure 9 (right).
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Figure 9: Probability of satis�ability plot of a random 1-3-Horn formula a-

ording to the vertex-identi�ability model(left) and the orresponding on-

tour plot (right).

Comparing the results derived by this model (Figure 9) and the results

obtained by our experiments (Figure 4), we see that the model derived by the

hypergraph analysis provides a very good �t of the experimental data. This

is also obvious in Figure 10 where we plot the 50% satis�ability line aording

9

The Darling-Norris Theorem does not provide us an expliit result for z

�

.
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the model above (the rough urve) and aording to our experimental data

(smoother urve).
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Figure 10: 50% satis�ability line { Aording to the model derived through

hypergraphs (rough line) and aording to our experimental data (smoother

line).

Finally, we used our model to estimate the probability of satis�ability

along the same two uts that we presented earlier (the d

1

= 0:1 and the

diagonal ut). See Figure 11 for the probability estimation along the two

uts aording to the hypergraph-based model, and ompare with our ex-

perimental �ndings shown in Figure 5 (left) and Figure 6 (left). For both

uts, the estimated probability has a steep drop that happens at the exat

same point that the respetive drop is observed in the experimental data.

In Table 1 we give the raw data that orrespond to the plots in Figure 11.

Notie that, despite the very quik transition, the estimated urve is not a

step funtion, as we would expet by looking our data and the limit urve

after the �nite-size saling analysis (Figures 5 and 6 (right)). Should this

be an aurate model for the 1-3-HornSAT, the probability of satis�ability

is not be a step funtion at the limit, that is, the threshold funtion is not

be a onstant funtion.
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d

1

= 0:1 ut diagonal ut

d

3

prob. of sat. input parameter i prob. of sat.

1 0.98775 1 0.99997

1.1 0.98619 2 0.99988

1.2 0.98455 3 0.9997

1.3 0.98282 4 0.99941

1.4 0.98098 5 0.99899

1.5 0.97903 6 0.99841

1.6 0.97694 7 0.99764

1.7 0.9747 8 0.99664

1.8 0.9723 9 0.99537

1.9 0.96969 10 0.99376

2 0.96685 11 0.99175

2.1 0.96372 12 0.98924

2.2 0.96026 13 0.98611

2.3 0.95637 14 0.98217

2.4 0.95194 15 0.97717

2.5 0.94679 16 0.97069

2.6 0.94062 17 0.96202

2.7 0.9329 18 0.94968

2.8 0.92244 19 0.9294

2.9 0.90522 20 0.072832

3 0.072832 21 0.063411

3.1 0.063588 22 0.055476

3.2 0.055745 23 0.048727

3.3 0.049039 24 0.042943

3.4 0.043267 25 0.038

3.5 0.038272 26 0.0335

3.6 0.033928 27 0.029856

3.7 0.030137 28 0.026559

3.8 0.026815 29 0.023665

3.9 0.023896 30 0.021117

4 0.021324 31 0.018868

4.1 0.019052 32 0.016878

4.2 0.017041 33 0.015114

4.3 0.015257 34 0.013547

4.4 0.013672 35 0.012153

4.5 0.012262 36 0.01091

4.6 0.011006 37 0.0098016

4.7 0.0098849 38 0.0088112

4.8 0.0088836 39 0.0079255

4.9 0.0079881 40 0.0071324

Table 1: Data for the probability of satis�ability of random 1-3-Horn formula

aording to the vertex-identi�ability model, along the d

1

= 0:1 and the

diagonal ut.
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Figure 11: Probability of satis�ability plot of a random 1-3-Horn formula

aording to the vertex-identi�ability model, along the d

1

= 0:1 ut (left)

and the diagonal ut (right). The solid line orresponds to the model; the

experimental data points are shown for omparison.

5 Conlusions

We set out to investigate the existene of a phase transition on the satis�a-

bility of the random 1-3-HornSAT problem. This is a problem that is similar

to 3-SAT, but its polynomial omplexity allows us to ollet data for muh

higher order.

We �rst showed, through our experimental �ndings and an analysis based

on known results from digraphs' reahability, that the 1-2-HornSAT is a

problem that laks a phase transition.

On the ontrary, our experiments provide evidene that the 1-3-HornSAT

has a phase transition. By thoroughly sampling the d

1

�d

3

quadrant, solving

a large number of random instanes of large order, we doument a waterfall-

like probability of satis�ability surfae. In addition, by taking uts of this

surfae, we are able to observe a quik transition from a satis�able to an

unsatis�able region. When �nite-size saling is applied on these uts, it

suggests that there is a phase transition. Finally, analysis of the transition

window provide further evidene for the phase transition.

We then used some reent results on random hypergraphs to generate

a model for our experimental data. By omparing the waterfall-like proba-

bility surfae against the estimated probability aording to this model, we

see that the hypergraph-based model �ts well our experimental data. This
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suggests that further analysis based on hypergraphs ould provide a rigorous

analysis of the onjetured phase transition for the 1-3-HornSAT. This would

be very signi�ant sine there are very few phase transitions that have been

analytially proved (2-SAT, 3-XORSAT, 1-in-k SAT) [5, 12, 19, 15, 2, 8℄.

Although this model �ts well our experimental data, when alulating the

estimated probability along the two uts, we see that the probability of sat-

is�ability as the order goes to in�nity is a very steep funtion, but not a step

funtion. This last �nding, whih is ontrary to our experimental �ndings,

shows the diÆulty of experimentally showing a phase transition, even for

tratable problems suh as 1-3-HornSAT.
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