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ABSTRACT

In this paper we study the implication problem for data dependencies.
We show that the problem is unsolvable even for a fairly restricted
class of dependencies. For some subclasses of dependencies the problem
is shown to be solvable but probably computationally intractable.
Deciding whether a dependency is trivial is NP-complete, and deciding
whether a dependency is implied by a total dependency is NP-hard. We
prove that two meta decision problems related to implication are
unsoclvable. Finally, we show that a subclass of dependencies of a very

simple structure is a reduction class for the implication problem.



paper. We show that it is unsolvable by reducing to it unsolvable
problems of equational logic. Actually, some sets of dependencies
characterized by implication are shown to be non-recursive. We also

show several solvable subclasses, and provide some complexity bounds.

The formalism is that of first order logic. We do not show how the
various dependencies mentioned above can be writtenm in this formalism,
and the reader interested in that aspect is refered to [Nico2]. In
fact, we mostly refrain from using "relational" terminology, and
except for a few remarks this paper is essentially concerned with a

fragment of first order logic, which is relevant to database theory.

The outline of the paper is as follows. In Section 2 we define
dependencies, and distinguish between several classes of dependencies.
In Section 3 we introduce our decision problems: the implication,
finite implication, triviality and finite triviality problems. Some
solvable cases are shown in Section 4, however, it is shown that they
are probably computationally intractable. The main result of the paper
- the unsolvability of the implication and the finite implication
problems is proven in Section 5, and in Section 6 we sharpen this
result. The inequivalence of implication and finite implication is
demonstrated in Section 7. In Section 8 we describe a reduction class
for (finite) implication. Finally, in Section 9 wWe pose some open

problems.

In this preliminary report most of the proof are either omitted or

briefly sketched.
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1. INTRODUCTION

One of the important issues in the design of relational database
schemas is the specification of the constraints that the data must
satisfy to model correctly the part of the world under consideration.

These constraints determine which databases are considered meaningful.

Of particular interest are the constraints called data
dependencies. The first dependencies to be studied were the
functional dependencies [Codd], which were followed by the multivalued
dependencies [Fag,Zan]. Recently, a number of generalizations of these
4ependencies have appeared: mutual dependencies [Nico1l, _cin
dependencies [ABU,Riss], transitive dependencies [Pal, general
dependencies [JP), subset dependencies [SW], and template dependencies
[SU]. In this paper we define tuple generating dependencies and
equality generating dependencies which generalizes all the above
mentioned dependencies. Intuitively, the meaning of a dependency is
that if some tuples, fulfilling certain conditions, exist in the
gatabase, then either some other tuples must also exist in the
database, or some values in the given tuples must be equal. The

gependency can be either interrelational or intrarelational.

A utilization of the above dependencies in the design of a
relational database requires an algorithm for solving the implication
problem, i.e.,to decide whether a given set of dependencies logically
implies another dependency. In some cases this problem is known to be

solvable ([MMS,BV]). It is the general case with which we deal in this
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2. DEPENDENCIES

We use the language L of first order logic with identity with no
function symbols. The gignature of the language 1is the sequence of
arities of its predicate symbols, i.e., a language with signature
<1,2> has one unary and one binary predicate symbols, denoted L(1,2).
Indexed x's are used for existentially quantified variable symbols,
and indexed y's are used for universally quantified variable symbols.
Indexed v's are syntactical variables ranging over variable symbols.
An atomic formula R(v1,...,vm) is called a predicated formula and an
atomic formula vizvj is called an jidentity formula. A dependency is a
sentence

Y Vqoe .V Ve 3x ees -:{xl(A1/\.. ./\Ap->B1/\.. ./\Bq) , where:

a) k,p,q 2 1, 1 2 0.

b) the A's and the B's are atomic formulas.

¢) at least one Ai is a predicated formula.

d)the set of variables occuring in the A's is the same as the set of

variables occuring in the predicated A's, and is exactly {y1,...,yk}.

Suppose now that some Ar is yi=yj. Obviously, we can identify vy
and y‘j wherever they occur in the dependency, and eliminate Ar to get
an equivalent dependency. Thus, we can assume

e) all the A's are predicated formulas.

Suppose now that some Br is X =V, Again, we can identify Xy and

J

vj and eliminate Br to get an equivalent dependency. Thus, we can

assume:



f) all identity formulas are of the form yi=yj.

Finally, recalling that VY y(A->B/\C) is equivalent to
Yy(aA->B) /\ V¥ y(A->C), if y is free in A,B and C, we assume:
g) either all the B's are predicated formulas or q=1 and B1 is an

identity formula.

Intuitively, the meaning of a dependency is that if some tuples,
fulfilling certain conditions, exist in the database, then either
some other tuples must also exist in the database, or some values in
the given tuples must be equal. The dependency can be either

interrelational or intrarelational.

\We distinguish now between several subclasses of dependencies.

This is summarized in the following table.

e



| all B's are predicated formulas | tuple generating | tgd

| a=1 and B, is an identity formila | equality  |esd |
i i generating i i
1150 (no existential quantifier) | total {ta !
1o T ekl ipd b
Ve T T T hany to one | imod i
e T ke to many | foma 4
U ptand g1 | one to one ood
| cach variable y,, 1< 1<k, | cross e
| has a unique oclurence in the A's | | |
| oross dependency with a=1 | cross to ome | cod |
| many sorted (see definition) | many sorted imsd |

Let D be a set of dependencies with B;{R1,...,Rm} the set of
predicate symbols occuring in D. For each R € R, let np be the arity
of R. Consider the set of argument positions
Pos={<R,i> | R6 R, 11K np }. Let = be a binary relation
defined on Pos in the following way. <Ri,f> 5_<Rj,g> if for some

d 6 D there are variables VsV such that £ occurs as the f-th

2
argument of Ri, and Vs occurs as the g-th argument of Rj’ and either
£ and v, are identical or v,=v, occurs in d. We extend = to its
transitive closure, .D (and every d 6 D) is many sorted if for no
ReR and 1<£1,j < Nps i#j, we have <R,i> = <R,j>. Intuitively,
that means that the set of variables can be partitioned to different
sorts, and all arguments of each predicate symbol must be of
different sorts. Observe that this property depends on the

collection of dependencies under consideration and not on a single
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dependency.

From now on, unless explicitly stated otherwise, we consider only
languages L(n) with one n-ary predicate symbol, say R. The arity of
a dependency is the arity of its predicate symbol, i.e., a binary
dependency is a dependency with a binary predicate symbol. Observe
that a dependency with a single predicate symbol is an msd if no
variable occurs in two different argument positions, and only
variables which occur in the same argument position can be the

arguments of an identity.

Almost all dependencies dealt with in the literature are msd's.
For example, for msd's:
1) an egd with p=2 is a functional dependency [Codd].

2) a tgd with p=2 and q=1 is a subset dependency [SW].

In section 6 we will study the consequences of enriching the
language with individual constants. Specifically, we will allow
constants to be arguments of a predicate symbol.Unless explicitly

specified otherwise, no constants are used.

In the sequel we use d to denote a dependency, and D to denote a

set of dependencies.

3. IMPLICATION PROBLEMS



Let U=<A,R1,...,Rm> be a structure for a language with predicate
symbols R1""’Rm (the distinction between a predicate symbol and
its interpretation is left to the reader). U is finite if A is
finite (and consequently, all R's are finite). U is gemifinite if
all the R's are finite (8 can be infinite). U is infinite if at
least some Ri is infinite (and obviously, A is infinite). U is
empty if all the R's are empty, and is tpivial if it is emgty or if

{Aj=1., (Note that A is always assumed to be nonempty).

A set of dependencies D implies a dependency d, denoted D |= d,
if d holds in all models of D. D semifinitely implies d, denoted
D Igfd, if d holds in all semifinite models of D. D finitely implies
d, denoted D I§ d, if d holds in all finite models of D. Clearly,
real-life databases are finite, but the domain of values might be
conceptually infinite. However, for dependencies ng and !§ are

equivalent.

[ s |-
M_l. D lsfd lff D Ir d. <>

By Lemma 1 it suffices to deal with |= and }§. Our decision
problems are:
a) The implication problem - for a given D and d, decide whether
D i= d.
b) The fipite implication problem - for a given D and d, decide

whether 4 |z d.

The (finite) implication problem of type (C1 ; 02) , Where C1 and

02 are classes of dependencies is the (finite) implication problem
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for D¢g C, and d 6 C2. The class of all dependencies is denoted by

1
Dep.

As is known, both the implication and the finite implication
problems are unsolvable for arbitray first order sentences [Ch,Tr].
Note that D = d entails D l§ d, but not vice versa, hence, the
implication and the finite implication problems are independent. In
fact, their equivalence entails their solvability.

Lemma 2. The following sets are recursively enumerable:
a) {<D,d> | D |= d}.
b) {<D,d> | D !f d. &
Corolarry. If for classes of dependencies C

1
D¢ C1 and d 6 C2, D = d iff D }§ d, then the implication problem

and 02 we have that for

of type (C1 H CZ) is equivalent to the finite implication problem

and is solvable., <>

Let us now consider the case that D is the empty set. A
dependency d is trivial if it holds in all structures, denoted = d,
and 1s [finitely trivial if it holds in all finite structures,
.denoted I? d. Thus, as special cases of the (finite) implication
problem, we get:

a) The triviality problem - for a given.d, decide whether d is

trivial.

b) The finite triviality problem - for a given d, decide whether d

is finitely trivial.
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4, SOME SOLVABLE CASES

If we restrict D to be a set of td's, then the (finite)
implication problem is equivalent to the (finite) validity problem
for V*‘ﬂ* sentences (Schonfinkel-Bernays class), whose solvability
follows from Lemma 2 [BS].

Theorem j. The implication problem of type (td's ; Dep) is

equivalent to the finite implication problem, and is solvable. <>

As a special case we get the solvability of the (finite)
triviality problem.
Theorem 2. A dependency d is trivial iff it is finitely trivial iff
a) d is a egd and B1 is y =y, or
b) d is a tgd and for some substitution sequence 1 £ i1"”’il £ k,

{B1,...,Bq}(x1/yi ,...,xl/yi ) g_{A1,...,Ap}. <O

1 1
Remark. The (finite) implication problem of type (td's ; Dep) is

solvable also for a language with an arbitrary signature.

A decision procedure for the implication problem of type
(td's ; Dep) is decribed in [BV,MMS,SU]. In some more restricted
cases there is an efficient decision procedure [BB,Beer,MSY,Val,
but this is not the case in general. We provide now some upper and

(N

lower time bounds.

(0 The complexity of the gatisfiabilitv problem for the
Schonfinkel-Bernays class is investigated in [Le,Pl].
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The following upper bound follows from the complexity analysis
of the above mentioned decision procedure [BV].
Theorem 3. Let D be a set of td's and let d be a dependency d,
where the arity of the dependencies is n, d has p universal
quantifiers and e existential quantifiers, D has u wuniversal
quantifiers, and the number of symbols in D and d is s; then the

. 2n+u+e

implication probelm for D and d can be solved in O(s’p ) time.

<O

The following theorems implies that, except for some restricted
cases, there is probably no efficient decision procedure for the
implication problem for this solvable case.
Theorem 4. The triviality problem for tgd's is NP-complete, even in
the following restricted cases:

a) msd's.,

b) binary dependencies.
Proof. In NP: Nondeterministically choose a substitution sequence
and check for the condition of the Theorem 2.
Hard for NP: We show two reductions:

a) msd's: reduction from TABLEAUX CONTAINMENT [ASU].

b) binary dependencies: reduction from CLIQUE [Kal. <>

Theorem 5. Let d and d° be total mod's. The implication problem of
type (d° ; d) is:
a) NP-complete, if d and d° are:

1) many sorted egd's, or

2) binary egd's.
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b) NP-hard, if d and 4" are:
1) many sorted tgd's, or
2) binary tgd's.
Proof. We use the following NP-complete problems for reduction:
a) 1) 3-SATISFIABILITY [Cook],
2) CLIQUE [Ka],
b) 1) EXACT COVER BY 3-SETS [Ka],

2) CLIQUE [Kal. <

Consider now a binary many-sorted mod d. Clearly, if d is a pd
then it is trivial.
Theorem 6. The implication problem problem of type (binary many
sorted mod's ; binary msd's), is equivalent to the finite

implication problem and is solvable. <

In some cases solvability follows from the fact that the answer
to the decision problem is trivially negative.

Lemma 3. In the following cases we have D |# d (for a nontrivial

d):
a) D is a set of tgd's and d is a egd (also D {§ d).
b) D is a set of pd's and d is a td.

c¢) D = {d'}, where d' is a partial many sorted mod, and d is a

td(also D I§ d). <

Our 1last solvability result in this section relies on the
observation that any decision problem with a finite number of

instances is solvable. That is, there exists an algorithm which
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gives the right answer to any instance of the problem. this does
not mean that the algorithm can be constructively specified.
Theorem 7. Let C be a class of n-ary dependencies, such that for
0’9 every dependency in C is equivalent to a dependency
\d Eﬂ(A1/\"'/\Ap'>B1/\"'/\Bq)’ where p s_po and q S_qo, then the
implication and the finite implication problems of type (C ; C) are
solvable. <

Corolarry. For a fixed collection of attributes, the implication
and the finite implication problems for embedded dependencies of
the following types are solvable: functional, multivalued, join,

full join [Sc], simple tableaux [BV]. <>

We conclude this section by showing how, in some cases, we can
eliminate egd's from consideration. Let d be the egd
be1 ces Vyk(A1/\ .. ./\Ap—>yg=yh) . Let A denote the predicated
formula R(Yk+1""’yk+n)’ and denote by A(m/yi), for 1 { m £ n, the
result of substituting yi for Yierm in A. We associate with d the
following set of tgd's: D is

1
{Vy1...Vyk+n(A1/\.../\Ap/\A(m/yg)->A(m/yh)) i 1<{m<n}, D, is
defined similiarly, with g and h interchanged, and d4' is taken to
be the union of D1 and D2. We denote by D' the result of replacing
each egd d in the set D by d°'.
Lemma 4. Let D be a set of dependencies and d a tgd, then D |= d

iff D' = d and D i? d iff D' i% d. <

5. UNSOLVABILITY RESULTS
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The main result of this section is:

Theorem 8. The implication and the finite implication problems are
unsolvable. <>

Unsolvability is shown by encoding appropriate unsolvable problems

of eguational logic in terms of dependencies.

Let Lid be the language of first order logic with identity, with
finitely many function symbols and no individual constants or
predicate symbols. An equation is a sentence v y1. .o Vyk(s=t) ’

where s and t are terms of Lid' A conditional equation is a

sentence 'Vy1...Vyk(s1 =ty /N e Nsp o=ty 2> 8 s t)
where 31,t1,...,sm,tm are terms of Lid' Equational 1logic is a
fragment of first order logic, in which equations and conditional
equations are the only admitted sentences. Equational logic was

originated by [Birk] and has experienced vigorous grouth in the

last few years. [Tar] is a survey of this subject area.

Let L2 be Lid with one binary function symbol g. The depth |ti
of a term t of Ll'is the maximum depth of nesting in the term, and
is defined by:

ivi = 0, and
lg(ty,t,)1 = max(it,i,it,)1) + 1.
An equation Vy1...Vyk(s = t) is simple if is! > 1 and It} = 0. A

conditional equation is simple if it is of the form

Vyge.- Vyk(e(1) /\N.../\ e(m-1) => e(m)), where e(i) is
1.2, _ .3
g(vi,vi) = V3.

Lemma 5. The following holds for L2:
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a) For every simple equation we can effectively construct an
equivalent simple conditional equation.

b) for every conditional equation we can effectively construct an
equivalent simple conditional equation. <>

A structure U=<A,f1,f2,...> for Lid is finite if A is finite,
and is trivial if {A|=1. Clearly, every (conditional) equation has
a trivial model. Non-trivial consistency is, however, unsolvable.
Theorem 9. [McKe] The following two problems are unsolvable for L2:

a) to decide if an equation has a non-trivial model.

b) to decide if an equation has a non-trivial finite model. <>
Corolarry. The above problems are unsolvable even for simple
equations.

Proof. Let Vy1...Vyk(s = t) be the given equation. Without loss
of generality assume that |s| > it|. If the equation is not simple
then either isi < 1 or it}{ > 1. In each of the possible cases
either the equation has a non-trivial finite moedl, or it has no
non-trivial model. <>

Lorolarry. The above probelms are unsolvable even for simple

conditional equations.

Proof. By Lemma 5. <

Equations can be coded by dependencies by replacing function
symbols by their representing predicates. Let U = <A,g> be a
structure for L2, i.e., U is a groupoid. The representing relation
for U is a ternary relation

G = { <x,y,z,> | z=g(x,y) }.
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G satisfies the following condition:
(*) For all x,y, each belonging to some triple in G, there exists
a unique z such that <x,y,z> 6 G.
Conversely, any non-empty ternaty relation G on a set B satisfying (%)
defines a groupoid U = <A,g>, where A = {x | <x,y,2> 6 G} ¢ B, and

g(x,y)=2z, where z is the unique element such that <x,y,z> € G.

Condition (*) is expressed by the following dependencies (universal
quantifiers are omitted):
G1: 3x(G(y1,yz,y3)—>G(y2,y3,x))
G2: 3x(G(y1,y2,y3)/\G(y4,y5,y6)->G(y5,y1,x))

G3: G(Y1.Y2,Y3)/\G(Y1,YZ,YM)->Y3=Y4

Let Eq: Vy&... Vyk(e(T) /\ ... /\ e(m-1) => e(m)) be a simple
conditional equation. To express it in terms of the representing
relation we we replace the identity formula e(i) by the predicated
formula E(i): G(vl,vi,vg) to get the representing dependency
qu: E(1) /\ ... /\ E(m=1) => E(m).

Lemma 6. Let U = <A,g> be a non-trivial (finite) groupoid satisfying a
simple conditional equation Eq, then its representing relation G
satisfies {G1,G2,G3,qu}. Conversely, if G is a non-trivial (finite)

ternary relation satisfying {G1,G2,G3,qu}, then it defines a non-

trivial (finite) groupoid satisfying Eq. <>

As an immediate consequence we get:
Theorem 10 . The following two problems are unsolvable even for

ternary mod's:
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a) to decide if a set of dependencies D has a non-trivial model.
b) to decide if a set of dependencies D has a non-trivial finite

model. <>

This result will serve as a spring board for proving the
unsolvability of the implication and the finite implication problems.
However, it does have a significance by itself, since if a database is
described by a set of dependencies which have no (finite) non-trivial

model, then this set is probably semantically meaningless.

Let Ga be {G1,G2,G3}, and let Gb be Ga' (i.e., Gb is the result of
replacing G3 by tgd's as described in Section 4). We define two
dependencies:

T1: G(y1,y2,y3) =>¥q = Vo

T2: G(y1,y2,y3) IN GLY 13¥yya¥g) => G(¥,¥,5,9y)) .
Theorem 11. The following sets of ternary tuple generating mod's are
not recursive:

a) {d | Ga U {d} i= Tt},

b) {d | Ga U {d} :? T1},

e) {d | Gb U {d} i= T2},

d) {d | Gb U {d} iz T2}.
Proof. Observe that a groupoid is ¢trivial iff it satisfies the
equation Vx Vy(x = y) iff it satisfies the equation
VxVy Vz(g(x,y) = z). Since T1 and T2 represent these equations, the

claim follows by Theorem 10 and Lemma 4.

The meaning of the above theorem is that the set of dependencies
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implying a specific dependency is not recursive. We are going now to
construct a set of dependencies Ge, such that the set of depndencies

implied by Ge¢ is not recursive.

A group is a groupoid satisfying the following axioms [TMR]:
H1: g(x,g(y,z)) = glg(x,y),2z),

H2: 3 z(x = g(y,z)),

H3: Jz(x = g(z,y)).

These axioms are expresed by the following dependencies:

G4: G(yz,y3,yu) /\ G(y1,y4,&5) /N G(y,¥,5,¥g) => G(y6,y3,y5)),

G5: 3x(G(y,,¥,,¥3) => Gly,,x,¥,)),

G6: 3x(G(y,¥,,¥3) -> G(x,y,,¥,)).

The following theorem is the well-known unsolvability result for the
word problem for groups (e.g. [Bol1]) in the formulation of [McKi].
Theorem 12. The set of conditional equations which holds in all
groups is not recursive. <>

Let Gec be {G1,...,G6}. Using Lemma 5 we get:

Theorem 13. The following set of ternary tuple generating mod's is

not recursive: {d | Ge {= d}. <>

Remark. In a similiar manner we could reduce other group-theoretical
decision problems, e.g., the triviality or the commutativity problem
for finitely presented groups [Ral, to the implication problem for

dependencies.

6. MORE UNSOLVABILITY RESULTS
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In the last section we showed that the implication and the finite
implication problems are unsolvable. In this section we show that we
can restrict the type of this problems while retaining their

unsolvability.

We define several types:
Type 1: (Dep ; egd's),
Type 2: (tgd's ; tgd's),
Type 3: (mod's ; egd's),

Type 4: (tuple generating mod's ; total tuple generating mod's).

From Theorem 11 we get:

Theorem 14. The (finite) implication problem of types 3 and 4 for

L(3) is unsolvable. <

Any ternary relation G can be represented by a unary relation G1

and a binary relation G2 such that <x,y,2z> 6 G iff {x,y,z} g_G1 and

for some u,v,w we have {<u,x>,<v,y>,<w,z>,<u,v>,<v,w>} ¢ G2. Thus, we
get:
Iheorem 15. The (finite) implication problem of types 1 and 2 for

L(1,2) is unsolvable. <>

Let L1 1 be Lid with two unary function symbols f and h.
1
Lemma 7. [Mal] The following problem is unsolvable:

let Eq1,...,Eqn be equations of L decide whether

1,1

} 1=z Eq.. &

{Eq1,...,Eqn_1 n

A unary function can be represented by ~a binary relation. By
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expressing equations as dependencies we get:
Theorem 16. The implication problem of types 3 and 4 for L(2,2) is

unsolvable. <>

To extend our unsolvability results to msd's we look for a
representation scheme of a ternary relation such that the dependencies
of L(3) can be expressed by msd's. Unsolvability then follows from
Theorem 14. We can do that either by using more than one relation or
by using individual constants. Since we want our dependencies to be
many sorted, a constant may appear only in one argument position. We
denote by L(n:j1,...,jn) a language with an n-ary predicate symbol
with ji constants which may appear in its i-th argument position,
1£1 «n. E.g., L(3:3,0,0) denotes a language with a ternary
predicate symbol and three constants which may appear in its first

argument position.

Let Type i’ be Type i, i=1,...,4, as defined above with the
additional requirement that all dependencies be many sorted.
Theorem 17. The (finite) implication problem of types 1' and 2 for
L(3,3) is unsolvable. <>
Proof. We represent the ternary relation G by two ternary relations
G1 and G2 in the following way. Each element a is replaced by three
elemnents a2, and a3. Now <a,b,c> €6 G iff <a1,b2,c3> 6 G1 and
{a1,a2,a3>,<b1,b2,b3>,<cﬁ,c2,c3>} g_GZ. <O
Corolarry. The (finite) implication problem of types 1° and 3° for
L(4:2,0,0,0) is unsolvable. <>

Proof. We combine G1 and G2 to one relation using constants to "mark"
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the tuples. <>

By different representation schemes we get:

Theorem 18. The (finite) implication problem of types 1° and 2° for
the following languages is unsolvable:

a) L(3:3,0,0),

b) L(3:1,1,0),

c) L(2:3,3)

d) L(3,1,1),

e) L(2,1,1,1,1,4),

f) L(2,2,1). <&

By Lemma 2, the implication problem is recursively enumerable. The
following theorem asserts that the implication problem has an
arbitrary degree of unsolvability.

Theorem 19. For any recursively enumerable degree of unsolvability
I\, there exist a recursive class of ternary mod's C, such that the
implication problem of type (Ge ; C) is of degree 2> /\.

Proof. The claim follows from a similiar result for the word problem

for groups [Bo2]. <

The meta implication problem is to decide for given recursive
classes of dependencies C1 and 02 whether the set {d | d ¢ C2 and
C1 i= d} is recursive.

Theorem 20. The meta implication problem is unsolvable,
Proof. The claim follows from the unsolvability of the meta word

problem for groups [Ral. <
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7. IMPLICATION VS. FINITE IMPLICATION

Combining the unsolvability results of Section 5 with Lemma 2 we get:
Theorem 21. The following sets are not recursively enumerable:

a) {<D,d> { D iz d}

L N 1]

b) {<D,d> I D {#d}. O

Note that we can sharpen this theorem by using the results of Section
6. From part (a) of the theorem it follows that there is no proof
procedure for finite implication of dependencies, and obviously no
sound and complete formal system for finite implication can be found.

In contrast, a proof procedure and and a formal system for implication

does exist [BV,SU].

By the corolarry of Lemma 2, {= and l? are not equivalent for
dependencies. That is, there exist a set of dependencies D and a
dependency d such that D I? d but D |# d. We demonstrate it for the

dependencies of L(3) and L(2,2).

For the first example we use a result from group theory. Relevant
definitions can be found in any standard textbook, e.g., [Rotl.
Lemma 8. [Hig] Let G be a group generated by a,b,c,d and the defining

2

relations: {ba:ab2, cb:bcz, de=ecd ™, ad:da2}, then G is infinite, and

it has no finite homomorphic image, except for the trivial one. <>

Let H be the sentence
. Y ol pal _2 2 .2
H: (Va)(¥b)(Ve)(Vd)(ba=ab“/\eb=bc“/\dc=cd“/\ad=da“->a“=a). By Lemma
8, H holds in all finite groups, but there is an infinite group in

which it does not hold. That is (recall the group axioms from Section
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5),

{H1,H2,H3} :§ H but {H1,H2,H3} |# H.

Translation to ternary mod's is left to the reader.

For the second example we use the following lemma.

Lemma 9. [Bul A structure U = <A,f,h> for L1 1 which is a model of the
?

equations:

E1l:

E2:

£(h(£(h%(x))))=x

£(n(£2(h%(x))))=f(n(£2(he(y)))),

is either infinite or trivial. <&

That is, {E1,E2} {§ Yx Yy(x=y) but {E1,E2} i#V¥xVy(x=y). Translation

to mod's of L(2,2) is left to the reader.

We show now that (= and If are not equivalent even for binary

depndencies, though the solvability issue for this class is open. We

Use

Y
¥

d

d1, d2,d3, d4 and d5:
17 3 x(R(y,,y,)->R(y,,x)),

Ry ,¥,)/\R(Y,,¥3)->R(¥4,¥3)
: R(Y15¥4)/\R(Y,,¥3)->R(¥3,¥,) s
3 x(R(y1,y2)->R(x,x))

: R(Y1:Y2)‘>R(y2’Y1)-

Lemma 10.

a) {d;,d5} i dy but {dq,d,} i# dy,

b) {d1,d2,d3} |5 dg but {d1,d2,d3} 1€ d

5 <o

Similiar to the meta implication problem is the _implication

equivalence problem: to decide for given recursive classes of
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dependencies C, and C, whether for all d € C,, Cq ip d iff Cq i=d.
Theorem 22. The implication equivalence problem is unsolvable.

Proof. The claim follows from the unsolvability of the residual

finiteness problem for groups [Ra]. <>

8. A REDUCTION CLASS

In this section we show that the class of tuple generating cod's and
ood's is a reduction class for implication and finite implication in
the following sense.

Theorem 23. Let D be a set of dependencies and d a dependency. We can
effectively construct a set D' consisting of tuple generating ood's
and one tuple generating cod, and a tuple generating ood d', such that
D {=d iff D' |= d' and D l§ d iff D! if da'. <

The reduction proceeds in three steps. First, identity is replaced by
a new binary predicate symbol; secondly, the two predicate symbols are
replaced by a single predicate symbol; and finally, we reduce the

problem to that specified in the theorem.

7.1 Elimination of Identity

Let D and d be given. If d is a tgd, we can apply Lemma 5 to eliminate
identity. If d is an egd we use a variant of the standard technique
for elimination of identity [DG], and replace each identity formula
V:'L:Vj in D and d by I(vi,vj), where 1 is a new binary predicate
symbol. "We want I to be an equivalence relation and have the
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substitutivity property. To this end we add to D the following
dependencies:

I1: { R(y1,---,yn)—>1(yi,yi) l 1£i<n}

I3: I(y1,y2)/\I(y2,y3)—>I(y1,y3)
)o

I4: R(y1,...,yn)/\I(y1,yn+1)/\.../\1(yn,y )=>R(y

n+n n+17°"*"Ynen

7.2 Back to One Predicate Symbol

We can replace R and I by a single n+2-ary predicate symbol P, with
the intention that P(a,,...,a,a 4,3, ) iff R(a;,...,a ) and
I(an+1,an+2). To this end we add the following dependency to D:

SAATRRER VCYIAVAC AVCTERERE PWIDio2at SITTEIE AYD PANE TS PRWRE

Appropriate changes must be done to all other dependencies in D and d.
7.3 Reduging to Qod's and One Cod.

Let r = max { max(p,q) | V*a*(A1/\.../\Ap->B1/\.../\Bq) ¢ DU {d} }.
The basic idea is to replace r tuple in P by one tuple in Q=Pr. We
show an example for r=2. First we add the following dependencies to D
(let m=n+2):

1) Q(y1,...,y2m)/\Q(y2m+1,...,yum)->Q(y1,...,ym,y3m+1,...,y4m)

2) Q(y1,...,y2m)->Q(ym+1,...,yzm,y1,...,ym).
This dependencies ensure that Q=P2 for some P. Now wWe replace a
dependency

*_%

V3 P(V1,...,vm)/\P(vm+1,...,v2m)—>P(v2m+1,...,v3m) by

% #*
V 3 Q(v1 [ ,Vm,Vm+1 geee ,V2m)—>Q(V1 geee ,Vm,V2m+1 goeee 1V3m) .

24



7.4 Solvabilitv and Unsolvability

The results of Section 5 combined with Theorem 23 yields:

Theorem 24. The implication and the finite implication problems of
type (tuple generating ood's + one tuple generating cod ; tuple

generating ood's) are unsolvable.

The unsolvability stems from mixing ood's and cod's since each
class by itself is solvable. In fact, even broader classes are
solvable.

Theorem 25. The implication and the finite implication problems of the
following types are equivalent and solvable:
a) (ed's ; mod's),

b) (omd's ; mod's). <>

9. CONCLUDING REMARKS

In the preceeding sections we have demonstrated the unsolvability of
the implication and the finite implication problems for dependencies,
pointed out some solvable classes, and provided some complexity

bounds. Several questions, however, remain open.

By theorem 14, the implication problem for mod's of L(2,2) is
unsolvable. The solvability of the finite implication problem for this
class is open. Observe that unlike part (a) of Theorem 7, part (b)

does not hold for L, ., and the set of equations in L, , which have a
1 b
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non-trivial finite model is recursive [Bul.

The solvability of our decision problems for the class of binary
dependencies is also open. Since the theory of one function is
decidable [Ehr], we can not hope to settle this question by the
technique of this paper. Observe that by Lemma 10, |{= and l§ are not

equivalent for binary dependencies.

Our unsolvability proof in Section 5 wuses two existential
quantifiers (one in G1 and the other in G2). Can we extend this result
to the case that D contains a single existential quantifier? or is
this restricted class solvable? Observe that |= and !§ are obviously
not equivalent even in our restricted case, as is evident from Lemma
10. For msd's, however, this restriction yields solvability.

Iheorem 26. Let D be a set of msd's such that for some j, 1 £ j <n,
all existentially quantified variables occur as the j-th argument of

predicated formulas, and let d be any msd, then D {= d iff D i§ d.

Some restricted classes of msd's of L(n) are known to be solvable
[BV,SW], however, the solvability of the whole class is still open,

and is not amenable to the technique of this paper.

Finally, note that for all known solvable classes of dependencies

i= is equivalent to 3?. It would be interesting to find a solvable

class for which it is not the case
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RELATED WORK

The unsolvability of the implication and the finite implication
problems for dependencies has been proven independently by [CLM]1, by
using 6-ary dependencies to encode the halting problem for two-counter
machines. They have also shown that the implication problem for td's

is logspace complete in EXPSPACE.
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