Theoretical Computer Science 49 (1987) 217-237 217
North-Holland ’

THE COMPLEMENTATION PROBLEM FOR BUCHI
AUTOMATA WITH APPLICATIONS TO TEMPORAL LOGIC

A. PRASAD SISTLA
Computer Science Lab, GTE Laboratories Inc, Waltham, MA 02254, U.S.A.

Moshe Y. VARDI
Department K55/802, IBM Almaden Research Center, San José, CA 95120-6099, U.S.A.

Pierre WOLPER*
AT&T Bell Laboratories, Murray Hill, NJ 07974, U.S.A.

Abstract. The problem of complementing Biichi automata arises when developing decision pro-
cedures for temporal logics of programs. Unfortunately, previously known constructions for
complementing Biichi automata involve a doubly exponential blow-up in the size of the automaton.
We present a construction that involves only an exponential blow-up. We use this construction
to prove a polynomial space upper bound for the propositional temporal logic of regular events
and to prove a complexity hierarchy result for quantified propositional temporal logic.

1. Introduction

For many years, logics of programs were tools for reasoning about the input/output
behavior of programs. When dealing with concurrent or nonterminating process
(like operating systems) there is, however, a need to reason about infinite computa-
tion paths. These are the sequences of states that the computation goes through. In
the propositional case they can be viewed as infinite sequences of propositional
truth assignments. In [14], temporal logic was proposed to reason about such
sequences. Later it was incorporated into the process logics of [7, 12, 25].

Recent works [20, 28] established a close relationship between temporal logic and
the theory of w-regular languages. The w-regular languages are the analogue of the
regular languages, but defined on infinite words rather than finite words. The notion
of w-regularity is robust and has a well-developed theory [4, 5, 23]. There are several
characterizations of w-regular languages, one of which is by Biichi automata [2].
A Biichi automaton is a finite automaton operating on infinite words. An infinite
word is accepted by a Biichi automaton iff there is some run of the automaton on
that word in which some state from a designated set of states appears infinitely often.

In [20, 28] several temporal logics are shown to have exactly the expressive power
of Biichi automata; in other words, the class of sets of sequences described by those

* Present affiliation: Institut Montefiore, Université de Liége au Sart-Tilman, 4000 Li¢ge, Belgium.

0304-3975/87/83.50 © 1987, Elsevier Science Publishers B.V. (North-Holland)

218 A. Prasad Sistla et al.

logics coincides with the class of w-regular languages. One method to decide
satisfiability for these logics is to build a Biichi automaton that accepts exactly the
strings satisfying the formula. Since these logics are closed under negation, building
this automaton involves complementing Biichi automata. That is, given a Biichi
automaton A, one has to find a Biichi automaton A such that L,(A)=X*-L,(A),
where L,(A) denotes the language of infinite words accepted by A.

The complementation problem for Biichi automata was first studied by Buchi [2].
He showed that his automata are indeed closed under complementation. His proof,
however, was not explicitly constructive. Later on, several explicit constructions
were given [3, 4, 9, 19]. All these constructions, however, involve at least a doubly
exponential blow-up. That is, there is a constant ¢ > 1 such that if A has n states,
then A has at least ¢ states. This blow-up is very expensive computationally and
causes the decision procedures using the complementation of Buchi automata to
be highly inefficient. For example, the decision pracedure described in [28] for the
temporal logic ETL, runs in exponential space, while the known lower bound for
this logic is PSPACE.

In this paper we re-examine the complementation problem for Biichi automata.
We prove, using Biichi’s original ideas [2], that Biichi automata can be complemented
with only an exponential blow-up. We then use the construction to show that the
universality problem for Biichi automata, i.e., the problem whether, for a given
Biichi automaton A, we have L,(A)=X¢, is Pspace-complete. (The analogous
result for finite automata on finite words was proven by Meyer and Stockmeyer [11].)

These results turn out to be very useful in deciding satisfiability for various
temporal logics. We first reconsider ETL,, an extended temporal logic that directly
reasons about w-regular events [28]. As mentioned earlier, the best known decision
procedure for this logic runs in exponential space. Using our results about Buchi
automata, we improve the upper bound for ETL, to polynomial space, which matches
the lower bound. ‘

We then turn to QPTL, a quantified propositional temporal logic [20]. While this
logic has the same expressive power as ETL,, its complexity is nonelementary, since
S1S, the second-order theory of one successor, which is known to be nonelementary
[10], is easily reducible to QPTL. Using our result and Biichi automata we prove
that the class of satisfiable QPTL formulas in prenex normal form starting with an
existential quantifier and with k alternations of quantifiers is complete for
Nspaci(exp® n) (i.e., a stack of k exponentials). We believe that this result is of
general theoretical interest since QPTL is the first nonelementary logic we know of,
where each alternation of quantifiers increases the space complexity by exactly one
exponential.

2. Biichi automata and their complementation problem

A Biichi automaton is a nondeterministic finite automaton on infinite words.
Formally, it is a tuple A=(Z3, S, p, So, F), where 2 is an alphabet, S is a set of

Complementation of Biichi automata 219

states, p:Sx 32 ->2° is a nondeterministic transition function, S, S is a set of
starting states, and F< S is a set of designated states. A run of A over an infinite
word w=a,a,... is a sequence o, S, ..., where so€ Sy, and s; € p(s;_,, a;) for all
i=1. A run so,s,,... is accepting if there is some designated state that repeats
infinitely often, i.e., for some s € F there are infinitely many i’s such that s, = 5. The
infinite word w is accepted by A if there is an accepting run of A over w. The set
of infinite words accepted by A is denoted L, (A). (Note that A can also be viewed
as an automaton on finite words. The set of finite words accepted by A is denoted
L(A).)

We consider the problem of complementing Biichi automata. That is, given a
Biichi automaton A that accepts the language L,(A), we want to construct an
automaton A that accepts the language I, (A) = 3 — L,(A). This problem was first
studied by Biichi [2]. He showed that his automata are indeed closed under
complementation. His proof, however, was not explicitly constructive. Later on,
explicit versions of Biichi’s original proof were given [3, 19]. These explicit construc-
tions, however, involve a doubly exponential blow-up. That is, there is a constant
c>1 such that if A has n states, then A has ¢ states. Furthermore, this blow-up
occurs whenever the construction is invoked, regardless of A’s structure. Other
constructions for complementing Biichi automata were given by McNaughton [9]
and by Rabin [15] (see also [4]). McNaughton’s construction is also doubly
exponential, while Rabin’s construction is nonelementary.

Here we describe a construction, based on Biichi’s original proof, which, given
a Biichi automaton A with n states, yields a Biichi automaton with 0(16"2) states
that accepts the complement of L, (A).

2.1. A generalized subset construction

To complement a Biichi automaton A= (2, S, p, Sy, F), we first build a family
{Ai} of deterministic automata on finite words that captures the essential behavior
of the automaton. The behavior that we are trying to capture is as follows: given a
finite nonempty word x and two states u, ve S,

(1) is there a run of A on x starting with u and ending with v?

(2) is there a run of A on x starting with u, ending with v, and containing some
state in F?

To construct the automata {A,}, we use a construction that can be viewed as a
generalization of Rabin and Scott’s subset construction [17].

Let S ={s,,..., s,} be the set of states of A. Define $'=Sx{0, 1} and S* = (2°)".
S* has m states, denoted p,, ..., p,., where m =4, Intuitively, a state in S* is an
n-tuple of sets of states of S labeled by 0 or 1. We need an n-tuple of sets rather
than a single set, because we are trying to capture information about runs that can
start in any state of S. The label on the state (0 or 1) indicates whether the run
contains a state in F. The state set of the A;’s is § = S*U{p,}, i.e., we add to S* a
special starting state p,.

220 ’ A. Prasad Sistla et al.

The deterministic transition function g:§ x 3 - S* is defined as follows:
* <Sl, L] Sn>=ﬁ(p0a a) iﬁ Si ={<u’ O>: ueP(si, a)}U{(u, 1>: uep(sia a)) F};
. <Sla"',Sn>=p~(<Tl,"'sTn>’a) iﬁ

S; ={{u, 0): u€ p(v, a) for some (v, j)€ T;}
u{(u, 1):uep(v, a) for some (v, _l)e T}
v {(u,1):uep(v, a)n F for some (v, j)e T;}.

We now define /ii, 1<i=<m, as the deterministic automaton on finite wozds
(2, 5, 0, Po, {Pi}). Let X; be the set of finite words accepted by A, i.g_., X; = L(A)).
The following lemma follows immediately from the fact that the A;’s are deter-
ministic.

Lemma 2.1. X,,..., X,, is a partition of 3.
The next lemma describés how the A,’s capture the behavior of A.

Lemma 2.2. Let p;=(S,,...,S,) and x€ X*. Then x € X, iff, for all pairs of states Sjs
51 of A,
(1) there is a run uy,...,u, 1<k, of A over x such that uo=s; and w,=s; iff
(5,,0)€ S;
(2) thereisarunu,,...,u, 1<k, of A over x such that u,= S, =15, and u, € F
for some 1<h<k zﬁ”(s,, HeS,.

Corollary. Suppose that x; € X;, x; € X;, and xx; € X,.. Then XiX; < Xk.

In the next section we will show how the generalized subset construction can be
used to complement Biichi automata. We believe that this construction is of general
usefulness (cf. [24]).

2.2. The complementation construction

Consider now the languages Yj; = XiX;" where 1=<i, j<m. We say that Y} is
proper if X.X; < X; and X;X; < X;. We can prove the following results about these
languages.

Lemma 2.3. 3“ = J{Y}: Y} is proper}.

Proof. The proof is based on Ramsey’s Theorem and is a refinement of the proof
of [2, Lemma 2.1]. Let us consider a infinite word w = aoq, By Lemma 2.1, the
word w, in combination with the languages X, defined in the previous section,
defines a partition of N into m sets D,, ..., D,, such that i e D, iffay...a;_,eX;.
Clearly, there is some a such that D, is infinite. Ramsey’s Theorem tells us that,
given a partition of all unordered pairs of elements from some infinite set A into

Complementation‘ of Biichi automata 221

finitely many disjoint sets Cy, ..., C,, there exists an infinite subset of A and a set
C, such that {a, b}e C, for all pairs of distinct elements a, b€ A. By Lemma 2.1,
the word w, in combination with the languages X; defined in the previous section,
defines a partition of all pairs of elements in D, into m sets Ci, ..., C,, such that
{i,j}e Ciff a;... a;_, € Xi, where i <j. By Ramsey’s Theorem, there exist an infinite
subset {i, iz, ..., iz, - - .} of D, and a set Cg such. that {i, i} € Cg for all pairs iy, i,.
This implies that the word w can be partitioned into

W1=a0...a,‘l_1, W2=a,-l...a,-2_.1, W3=a,‘2...a,'3_1,...,

where w, € X,,, and w;e X for i>1. Thus, we Y;,,. Furthermore, we also have that
wyw,€ X, and wow;€ Xg. By the corollary to Lemma 2.2, it follows that Y,g is
proper. [

Lemma 2.4. For 1<i, j<m, either L,(A)nY;=0 or L,(A)nY;=Yj.

Proof. We will prove that if one word we Yj is in L, (A), then all words in Y, are
in L,(A). Indeed, a word we Y can be decomposed into w;wjwj ... where w; € X;
and, for all k>0, w,'.‘e X;. Consider a run of A on w and denote by s; the state
reached in that run at the end of w,, s; the state reached at the end of wwj, etc.
The run is accepting iff the path taken through the automaton between s,'-‘ and s}‘“
contains a state in F for infinitely many k. Now, any other word y€ Y; can be
decomposed similarly to w into y;y;y>.... By Lemma 2.2, there will also be a run
of A on y such that the state reached at the end of y; will be s;, the state reached
at the end of y;y; will be s}, etc. Moreover, there will be a path between sf and
s,'-‘+l containing a state of F and labeled by y,'-‘ iff there is such a path labeled by

x¥. Hence, if x is accepted by A, sois y. O
Lemma 2.5. L,(A)=\J{Y;:Y;nL,(A)=9 and Yj; is proper}.
Proof. Immediate from Lemma 2.3 and 2.4. 0[]

We now construct a Biichi automaton A that accepts L,(A).

Theorem 2.6. Let A= (3, S, p, So, F) be a Biichi automaton with |S|= n. Then we can
construct a Biichi automaton A with 0(16"2) states such that L(A)=1L,(A).

Proof. From the automata A, and A~j (each of size m+1= 4™ +1), it is easy to build
a Biichi automaton for Y, with 2m+1 states. Then, by Lemma 2.5, we only need
to take the union of the automata for the languages Y such that Y; " L,(A)=9
and Y}, is proper. Thus A will be a union of at most m” Biichi automata, each with
at most 2m + 1 states. The resulting automaton will thus have as many as m*(2m+
1)= 0(64"2) states. However, this construction is rather wasteful. Indeed, it contains
as many as m® copies of the automata /ii’s. A more careful construction uses only
m+1 copies of these automata. _ g

222 ’ A. Prasad Sistla et al.

The idea of the more economical construction is to use a single copy of the set
of states of the automata A, to recognize all the initial prefixes X; of the languages
Y,. Formally, we have the following. The automaton A is (3, S, p, { po}, F). The
state set S is SuU(Sx{1,..., m}). The designated state set F is {(po, i):1<i<m}.
It remains to define the transition function p. '

e For p;e S, if 5(pi, a)=p;, then 5(p;, a) ={p} v {(po, D: Yy L,(A)=P and Y is
proper}. : ‘

o For (pi, De(Sx{1,..., m}), if 5(p;, a)=p;, then 5({p;,), a) ={(p;, D} for I #],
and 5((p;, 1), a) ={(po, D), (p;, D} for I=}. |

We leave it to the reader to verify that L, (A)=1L_,(A), and that A has at most

0(16™) states. [

Note that the above proof is not fully constructive since we did not specify how
we can check for each Y; whether Y;n L,(A)=9 or not.

Lemma 2.7. Let p,=(S,,...,S,) and p;=(T,,..., T,).
(1) Y is proper iff the following holds:
* (s,,0)€ S, iff there is a state s, € S such that (s,,0)€ S, and (s,,0)€ T,;
* (s,, 1)€ S, iff there is a state s, € S such that (s;,0)€ S,, (s,, 0)€ T,, and either
(54, 1DE S, or (s,,1) € T,;
* (s,,0)e T, iff there is a state s, € S such that (s,,0)e T, and (s,,0)e T,; and
* (s,, 1)€ T, iff there is a state s, € S such that (s,, 0)e T,, (s,, 0)€ T,, and either
(s DET, or (s,,1)e T,. '
(2) Assume Y;; is proper. Then Y; < L,(A) iff there are states s,€ S, and s, € S such

that (s,,0)€ S, and (s, 1)e T,.

Proof. (1): By the corollary to Lemma 2.2, Yj; is proper iff there are words x; € X
and x; € X; such that x;x; € X; and x;x; € X;. The claim follows by the definition of
X; and Xj.

(2): It is easy to see that the condition is sufficient. We show that it is also
necessary. Let we Y; < L,(A). That is, w=w,w, ..., where w, € X, and w,€ X; for
I> 1. Consider an accepting run of A over w. Let s, be the initial state of the run.
Let ¢, be the state reached after the prefix w, ... w, of w. Since S is finite, there is
some s, € S such that s, = ¢, for infinitely many I’s. It is easy to see that s, and s,
satisfy the condition of the lemma. O '

2.3. Decision problems

Two problems that we want to solve for Biichi automata are the nonemptiness
and the nonuniversality problems; that is, given a Biichi automaton, determine
whether there is some word it accepts (the nonemptiness problem), and whether
there is some word it does not accept (the nonuniversality problem). The nonempti-
ness problem is studied in [27], where the following lemma and theorem are proved.

Complementatioh of Biichi automata 223

Lemma 2.8. A Biichi automaton accepts some word iff there is a designated state of
the automaton that is reachable from some initial state and is reachable from itself.

Theorem 2.9. The nonemptiness problem for Biichi automata is logspace complete for
NLOGSPACE.

We now turn to the nonuniversality problem for Biichi automata. Given a Biichi
automaton A, the obvious way to solve this problem is to construct the automaton
A and then use the algorithm for nonemptiness on A. This gives an algorithm that
uses exponential time and space as A is of size exponential in the size of A. However,
as the fact that the nonemptiness problem is in NLOGSPACE indicates, it is possible
to solve the nonemptiness of complement problems using only polynomial space.
The argument is that it is not necessary to first build the whole automaton A before
applying the algorithm for nonemptiness. In the rest of this paper, we will have to
deal several times with the same type of construction: given an instance of a problem,
construct a Biichi automaton that is exponentially big in the size of the problem,
then determine if the Biichi automaton accepts some word. Each time, we will be
able to show that the problem can be solved using only polynomial space. To avoid
repeating the same argument several times, we will use the following lemma proved
in [27].

Lemma 2.10. Given a problem P and a Biichi automaton A which can be constructed
from P, if
(1) the size of each state of A is polynomial in the size of P;
(2) it can be checked if a state is initial in space polynomial in the size of P; and
(3) it can be checked if a state is designated in space polynomial in the size of P; and
(4) each transition of A can be checked in space polynomial in the size of P (i.e.,
given states s and t of A and a letter a € 3, one can determine whether there is
a transition from s to t labeled by a in polynomial space),
then determining if A accepts some word can be done in space polynomial in the size
of P.

Theorem 2.11. The (non)-universality problem for Biichi automata is logspace complete
in PSPACE.

Proof. (Hard for Pspace): We prove this using a reduction from the corresponding
result for automata on finite words [11], that is, given an automaton A=
(2, 8, p, Sy, F) where X ={a,, ..., a,}, determine whether L(A) = 2* (without loss
of generality we can assume that A& L(A)). Define two new alphabets 3, =
{ai,...,a.} and 3,={a}...,a2}. Consider now the automaton A,=
(21, S, p1, So, F), where s'€ p(s, aj) iff s’e p(s, a;) for s€ S, and the automaton
A;=(2,, S, p2, So, F), where p, is defined analogously to p,. The automata A, and
A, thus recognize the image of L(A) over the alphabets X, and 2, respectively. We

224 ’ A. Prasad Sistla et al.

now define a language L/, of infinite words over the alphabet =, U 3, as follows:
L., = (L(A;) L(A)* U (L(A) L(A}))* U (L(A;) L(A2))* L(A,)*
U (L(A;)L(A3))*L(A2)*” U (L(A2) L(A)))*L(A,)*
U (L(A;) L(A,))*L(A)".

It is easy to construct a Biichi automaton A’ that recognizes L,, i.e., L,(A') = L,,.
The size of A’ will be linear in the size of A and it can be constructed using
logarithmic space. We now prove that A is universal (i.e., L(A)=3Z") iff A’ is
universal (i.e., L, =2“).

First, let us assume that A is universal and prove that A’ is universal. If A is
universal, then L(A,;) and L(A,) contain all nonempty words over X, and 2,
respectively. An infinite word over 2, U X, is either entirely over X,, or entirely over
3,, or consists of an alternation of finite words over X, and 2%,, or, finally, consists
of a finite alternation followed by an infinite word entirely over X, or Z,. The
language L., clearly takes all these cases into account and thus, if A is universal,
A’ will also be universal. ‘

To prove that if A’ is universal (over infinite words), then A is universal (over
finite words), we will take an arbitrary nonempty finite word w and show that, under
the assumption that A’ is universal, that word is in L(A). Given we X7, let us
consider the corresponding words w, and w, over 2, and 2, respectively. If A’ is
universal, then the infinite word (w,w,)“ is in L.,. Moreover, given the definition
of L., it must be in the set described by (L(A,)L(A,))“. Now, the only way this is
possible is if w, is in L(A,) and w, in L(A,). Hence, w has to be in L(A).

(In Pspace): The fact that the universality problem for Biichi automata is in
PspAcE follows from Theorem 2.6 and Lemmas 2.7 and 2.10. [1

We note that our technique yields a polynomial space upper bound for the
equivalence problem of Biuichi automata. The previously known algorithm for this
problem runs in exponential time and space [1].

3. Extended temporal logic

Temporal logic is a logic to reason about computations. It has been demonstrated
to be very useful in the verification of concurrent and/or nonterminating processes
[8, 13, 14]. Unfortunately, PTL, the standard propositional temporal logic (see
[6, 14]), cannot express all regular properties. For example, Wolper has shown that
PTL cannot express the property ‘the proposition p holds at least in every other
state of the computation’ [30]. To remedy this deficiency, Wolper introduced an
extension of temporal logic that incorporates nondeterministic finite automata as
connectives. Clearly, regular properties can be expressed in the extended logic.

v
i

Complementation of Biichi automata 225

In [27, 28] three different versions of Wolper’s extension were defined and studied
further. The difference between the three versions is the type of acceptance conditions
used for the finite automata defining the connectives. The three types of acceptance
are finite acceptance (some prefix is accepted by the standard notion of acceptance
for finite words), looping acceptance (the automaton has some infinite run over the
word) and repeating acceptance (the automaton has a Biichi acceptance condition).
These acceptance conditions give rise to three logics: ETL;, ETL,, and ETL,,
correspondingly.

These logics all have the same expressive power. Nevertheless, while there is a
linear translation from ETL; and ETL, to ETL,, the best known translation from
ETL, to ETL, or ETL, is doubly exponential [27]. This suggests that ETL, is more
succinct than ETL; and ETL,. Moreover, while the decision problems for ETL; and
ETL, are Pspace-complete, the decision procedure for ETL, presented in [28]
required exponential space. Nevertheless, using our new results in Biichi automata,
we will now show that the decision problem for ETL, is also in PSPACE, hence, it
is PspPace-complete. Note, however, that the decision procedures for ETL; and ETL,
require space O(n?), while the decision procedure for ETL, requires space O(n*).

3.1. Definition of the logic

Formulas of ETL, are built from a set of atomic propositions P by means of
* Boolean connectives, and
* automata connectives: every Biichi automaton A=(%, S, p, Sy, F), where X =

{a,,..., a;}, is considered as an l-ary temporal connective. That is, if f,,...,f;

are formulas, then so is A(f;,..., ;).

A structure for our logic in an infinite sequence of truth assignments, i.e., a
function 7 :N- 2 that assigns truth values to the atomic propositions in each state.
We use 7' to denote the ith ‘tail’ of =, i.e., w'(k)=m(k+i). We now define
satisfaction of formulas by induction (satisfaction of a formula f by a structure =
is denoted 7= f):

e 7=finfhiff wEf, and wEf;
o wE=f iff not wE= £
e 7= A(f,,...,fi) where A=(Z%, S, p, Sy, F), iff there exists an infinite word w =

a,a; ... over X, accepted by A, such that 7'k= fi, for all j=0. (Intuitively, the

transitions of A are labeled by the formulas f;, ..., f;,and A(f;, ..., ;) is satisfied

by m if there exists an accepting run of the automaton such that all the labels are
satisfied by the corresponding suffixes of .)

3.2. Decision procedure for ETL,

To give a PspACE decision procedure for ETL,, we first need to introduce the
notion of the closure of an ETL, formula f, denoted cl(f). It is defined as follows
(where we identify =g with g):

* fecf);

226) A. Prasad Sistla et al.

* fin Lec(f)=fi, frecl(f);

* hec(f)-> fiecl(f);

* fiec(f)>fiecl(f);

. A(f,,...,f,)ecl(f)}»ﬁ,...,ﬁecl(f).

When defining the length of a formula, we take the size of an automaton connective
A=(Z, S, p, S, F) to be equal to |S|+1 (the “+1” is for technical reasons). For an
ETL, formula f, the size of cl(f) can easily be.seen to be at most 2n where n is the
length of f ,

To establish a decision procedure for ETL,, we reduce the satisfiability problem
to the emptiness problem for Biichi automata over the alphabet 2’ To this end
we extend the sequence 7:N-2” to a sequence ¢ :N- 2 in a natural way: for
every i€N and every formula gecl(f), we have that ge (i) iff #' satisfies g.
Sequences that correspond to models satisfy some special properties.

A Hintikka sequence for an ETL, formula f is a sequence ¢ :N > 2°'Y) that satisfies
the following conditions:

(1) f€¢(0); and, for all elements ieN,

(2) gey(i)iff nge y(i);

(3) &1 g€ y(i)iff g€ ¢(i) and g€ ¥(i);

(4) if A(f1,...,) ey(i), where A=(Z, S, p, So, F), then there exists an infinite
word w=a;q; ... over X, accepted by A, such that f;, € ¢(i+k) for all k=0;

(5) if 7A(f;, ..., i) € Y(i), then there is no infinite word w=a,a; ... over 2,
accepted by A, such that f, € ¢(i+k) for all k=0.

Lemma 3.1. An ETL, formula f has a model iff it has a Hintikka sequence.

Proof. Given a model 7 for a formula £, its natural extention to N- 2" is a
Hintikka sequence. Given a Hintikka sequence ¢ for a formula f] its projection =
on P is a model for f (The projection ¢|p:N->2" of ¢ on P is defined by
Ylp(i)=y(i)n P) Indeed, it can be shown by a simple induction on the structure
of the formulas that, for each formula g y(i), the sequence #' satisfies g. Thus,
as condition (1) requires that f € (0), a Hintikka sequence defines a model for f O

The next step in obtaining a decision procedure for ETL, is to construct a Biichi
automaton that accepts exactly the Hintikka sequences for a formula. To do this,
we will actually build three automata. The local automaton A, will check Hintikka
conditions (1)-(3), the positive automaton Ap will check Hintikka condition (4) and
the negative automaton Ay will check Hintikka condition (5).

The local automaton
The local automaton is A= (290,290 p, ' N, 29, The state set and the
alphabet are thus the collection of all sets of formulas in cl(f).
For the transition relation, we have that s’ € p.(s, @) iff a=s and:
e gesifft hges,
* ging.€siff g es and g,ess.

Complementation of Biichi automata 227

The set of starting states N, consists of all sets s such that fes. Clearly, AL
accepts precisely the sequences that satisfy Hintikka conditions (1)-(3).

The positive automaton

The positive automaton is actually the result of taking the intersection of a
collection of automata, one for each formula of the form A(fy, ...,) incl(f). We
will now describe how to build each of these -automata. We need to construct an
automaton defined over 2" that will run A for each j such that A(f;, .- -, e ().
We will build this automaton from A in several steps.

Let A=(3, S, p, So, F), where 2 ={a,,..., a;}. First, we will transform A into
an automaton A° over 2¢'”. The states of A° are the same as those of A and we
have that s’ € p°(s, a) iff, for some g; € £, we have s'€ p(s, a;) and fi€ a

We now need to transform the automaton A° so that it checks the sequence each
time A(f;, ..., /f;) appears. To do this, we will use a construction similar to the ‘flag
construction’ described in [4, 16]. Let us designate the number of states of A°by k
(|S]=k). We add to S a state denoted by 0, which we call the dormant state, and
we extend the transition relation as follows: for all a € 29/ such that A(fy, .. -, fi) e
a, we have 0€ p°(0, a); and, for all a such that A(fi,...,fi)ea, wehave se p°(0, a)
for each s, s’ such that s'e S; and s€ p°(s’, a). Taking 0 to be the unique starting
state, we get a new automaton A'. Intuitively, A! stays in its dormant state until it
sees an element containing A(fi, ..., fi) and then starts running exactly as A°.

Now, this is not enough as we need to run A° each time the formula A(f, ..., /1)
appears. So, we need several copies of A'. Fortunately, we only need as many copies
as there are states in A' given that runs leading to the same state can be merged.
Thus, we take k+ 1 copies of A' and combine them to form the automaton A”. The
states of AZ? are k+1-tuples of states of A', the initial state is 0**'. Thus the
automaton A2 has (k+1)**! states. The transition relation p” is defined as follows:
(sl ..., 5ke)€P*((81,- -, Sks1), @) iff for each 1<j=<k+1 either
« siep'(s;, a) and, for every i <j, s;# sj, Of
e 5/=0 and there is an i <j such that siep'(s;, @).

The only thing we still need to do is giving acceptance conditions for the automaton
A2 Recall that the states of A2 are k+1 tuples of elements of Su{0}. Given a
computation of A?, its projections on the coordinates 1, ..., k represent computa-
tions of A! that check that condition (4) is satisfied for the occurrences of
A(fi,..., /). Consider now a computation that starts on coordinate j to check for
a specific occurrence of A(fi,.--, £1). Occasionally, this computation gets merged
with another one on some coordinate i, i <j, in which case coordinate j goes into
the state 0. Eventually, this computation reaches a coordinate jo, jo <J, that it never
leaves. If this computation does not accept, then the set of states occurring in it
infinitely often is disjoint from Fu{0} (F is the designated set of A). Thus, the
acceptance condition we need is that for each 1<j=< k+1 some state containing 0
or an element of F in its jth position appears infinitely often in the computation
of A2 Notice that this is not a Biichi acceptance condition. Indeed, we need to

228 A. Prasad Sistla et al.

check that the set of infinitely-often appearing states in the computation of A’
nontrivially intersects, not one set of states, but k+1 sets of states. Now we repeat
this construction for each formula of the form A(f,,...,f;) in cl(f), and take the
cross product of all these automata. The states of the product automaton are r-tuples
of states of the various automata A's, for some r=< n, where n is the length of f.
Thus, this automaton has O(n") states. This automaton, however, has r sets of
designated states. As was shown in [26], such an automaton can be converted into
a Biichi automaton whose size is r times the size of the original automaton. Thus
Ap has O(n"*") states.

The negative automaton

The most straightforward way to deal with this case is to build, for each formula
of the form —A(f;,...,f;), the complement of the automaton A and then apply
the flag construction as in the preceding case. This, however, would lead to a doubly
exponential blow-up and it is possible to be more efficient. We do that by first
building an automaton that tries to find an occurrence of -A(f;, ..., ;) for which
Hintikka condition (5) is not satisfied, and then taking the complement of this
automaton.

We start by constructing the automaton A° exactly as in the previous case. We
then build an automaton A'. The automaton A’ has the same states as the automaton
A° plus a dormant state 0. Its transition function is the one of A° extended as
follows: for all a € 2"’ we have 0 € p'(0, a); and, for all a such that "A(f,, ..., f,) €
a, we have se p'(0, @) for each s, s’ such that s'e S, and s € p°(s’, a). Acceptance
is defined exactly as for A. The automaton we have built stays in the dormant state
until it sees an element containing 7 A(f;, ..., f;) and then either stays in the dormant
state or starts running exactly as A°. The sequences it accepts are thus those in
which 1A(f,, ..., f,) appears at some point and that satisfy A(f,, ..., f;) from that
point. This is exactly the complement of the set of sequences we are checking for.
We now take A’ to be the union of automata A' over all formulas of the form
—A(fy, ..., f) in cl(f). A? has at most n states, where n is the length of £ Now
Ay is taken to be the complement of A?, using the construction we described in
Section 2. Ay has O(16™) states.

We now have the following proposition.

Proposition 3.2. Let fbe an ETL, formula. Then, one can construct a Biichi automaton
of size exponential in the length of f such that a sequence y:N-2%Y is accepted by
that automaton iff ¢ is a Hintikka sequence for f.

Proof. Let A be the automaton that corresponds to the intersection of the local,
positive, and negative automata for f. (By [4], if A, and A, are Biichi automata
with m and n states respectively, then one can construct a Biichi automaton B with
O(mn) states such that L,(B)=L,(A;)nL,(A;).) This automaton, over the

Complementation of Biichi automata 229

alphabet 2’| has O(c™) states for some constant ¢> 1 and it accepts precisely all
Hintikka sequences for £ O

Before showing that we can construct an automaton that accepts precisely the
sequences that satisfy f, we need some technical tools, which will also be useful in
the next section. Given two alphabets 3 and ', we call a mapping #:3>3'a
projection from X to X’. Given an infinite word w=a,a,... over X, m(w)=
m(a,)m(ay) ... is an infinite word over 3. Given a set Lc X”, then #(L)=
{m(w):we L}.

Lemma 3.3. Given a Biichi automaton A with n states and a projection 7w:3 > 3,
there is a Biichi automaton A’ with n states such that L,(A")=a(L,(A)).

Proof. Let A=(Z, S, p, S,, F). Define A’ to be (2,8, p', So, F), where p' is defined
by p'(s,a’)={t:te p(s, a) for some ae 3 such that w(a)=a'}. We leave it to the
reader to verify that L (A') = w(L,(A)). O

We call the automaton A’ in the above lemma the projection of A on X',
We are now ready to prove the desired result.

Theorem 3.4. Let f be an ETL, formula. Then, one can construct a Biichi automaton
of size exponential in the length of f such that a sequence y :N- 2P is accepted by that
automaton iff Y= f.

Proof. Let A be the automaton given by Proposition 3.2. Consider the projection
7:2% 5 2% defined by m(a) =an P. It follows from the proof of Lemma 3.1 that
w(L,(A)) is the set of sequences that satisfy f The projection of A on 27 is the
desired automaton. [

Theorem 3.5. The satisfiability problem Jor ETL, is logspace complete in PspacE.

Proof. The hardness result follows easily from the hardness results in [21]. To prove
that the problem is in PSPACE, it is sufficient to observe that the automata, A, , Ap,
and Ay satisfy the conditions of Lemma 2.10. Thus, the automaton corresponding
to their intersection also satisfies the conditions of Lemma 2.10 and the problem of
determining if this automaton accepts some word, which is equivalent by Proposition
3.1 to determining if the formula is satisfiable, is in Pspace. [

The above proof shows that the decision procedure for ETL, requires nondeter-
ministic space O(n’) and, consequently, deterministic space O(n*). In contrast, the

230 ’ A. Prasad Sistla et al.

decision procedures for ETL; and ETL, requires nondeterministic space O(n) and,
consequently, deterministic space O(n?) [27].

4. Quantified propositional temporal logic

In the previous section, we proved a result about one possible extension of
temporal logic. There are other ways to extend temporal logic, one of which is to
introduce quantification over propositions. This extension, quantified propositional
temporal logic (QPTL), was described in [20]. It turns out that it has exactly the
same expressive power as the extended temporal logic we studied in Section 3
[28,29]. Nevertheless, the decisions problems for these logics have drastically
different complexities.

Formulas of QPTL are built from a set of atomic proposmons P using
* Boolean connectives;

* the temporal operators X (next) and F (eventually). We will also use G as an
abbreviation for —1F—;
* quantification over propositions (i.e., if f(p) is a formula, then so is (3p)(f(p)));

we will also use V as an abbreviation for 3.

We will say that a QPTL formula is in normal form if it can be written as

(Q1p1Q2p2 - - . Qupi)(f),

where each Q; is either V or 3 and f is a quantifier-free formula. (Every QPTL
formula is equivalent to a formula in normal form.) If Q, is 3 and there are k—1
alternations of quantifiers, we say that the formula is in the set 2™ If Q, is V
and there are k—1 alternations of quantifiers, we say that the formula is in the set
Y™, For example, (3p)(Gp) is in Z¥™, and (Vp 3¢ 3r)(Gp > (Fq A Fr)) is in
e,

QPTL formulas are interpreted over infinite sequence of truth assignments, i.e.,
functions 7 :N- 2 that assign truth values to the atomic propositions in each state.
We use 7' to denote the ith ‘tail’ of m, i.e., w'(k) = w(k+i). We now inductively
define satisfaction of formulas:
¢ for an atomic proposition p, w&= p iff pe 7w (0);

e tEinfhiff wEf, and TEL;

o wE=f iff not wE=f;

e 7EXfiff #'Ef;

» 7= Ff iff there is an i=0 such that 7'=f;

e 7= (3p)(f) iff there is some =’ that agrees with 7 except for the proposition p
and such that 7'=f.

Before stating our complexity results on QPTL, we need one definition. Let us
define g.(k, n) as follows:

O m=n gk, =i
(i.e., g.(k, n) has a stack of k exponents). We use g(k, n) to denote g,(k, n).

Complementation of Biichi automata 231

Let Nspace(g(k, n)) denote the class of languages accepted by a nondeterministic
Turing machine in space O(g.(k, n)) for some ¢> 1. Note that, for k>0, the class
Nspacke(g(k, n)) is identical to its deterministic analogue Space(g(k, n)). We prove
the following theorem.

Theorem 4.1. The satisfiability problem for SZ*™", k = 1, is complete for Nspace(g(k —
1, n)).

We note that this result also holds for weak QPTL, in which all predicates are
finite, i.e., they are eventually false forever. A result closely related to ours was
proven by Robertson [18]. Robertson studied WS1S, the theory of natural numbers
with successor with quantification over finite sets, which is equivalent to weak QPTL.
He showed that Z)5'S is in Ntime(g(k+1,p(n))) and is logspace hard for
NT1iME(g(k, p(n))) (the “p(n)” denotes union over all polynomials p). By consider-
ing QPTL rather than S1S and by using our complementation result, we were able
to close the gap between the lower and upper bounds, and also deal with quan-
tification over infinite sets. We believe our result to be of general theoretical interest
since QPTL is the first nonelementary logic we know of where each alternation
increases the complexity by exactly one exponential.

4.1. Upper bounds

The proof of our upper bounds, will be based on the construction of a Biichi
automaton that accepts exactly the sequences satlsfymg a Z™ formula. More
precisely, we prove the following lemma.

Lemma 4.2. There is a constant ¢> 1 such that, given a S formula f of size n,
k=1, we can construct a Biichi automaton of size O(g.(k, n)) that accepts exactly the
sequences satisfying f.

Proof. The proof proceeds by induction.

(Base step, k=1): Let P’ be the set of all propositions in f, and let P" be the set
of free propositions in f. Note that P"< P’. We apply the exponential construction
described in [27, 28] to the quantifier-free part of f This construction yields an
automaton A over the alphabet 27 of size O(a") for some a > 1. Consider the
projection 7:27 27" defined by m(a)=an P". Clearly, m(L,(A)) is the set of
sequences that satisfy f. Thus, the projection of A on 27" is the desired automaton.

(Inductive step): We have to establish the result for formulas in 2™ knowing
the result for formulas in T °T". First, notice that a formula in ZR"™" can be written
as (3p,, ..., p)(—f;), where fl is a formula in L. Now, we inductively build
an automaton for f, and then we construct an automaton for f by complementing
that automaton and projecting it, as above, on a smaller alphabet to eliminate the
existentially quantified propositions. A simple analysis gives the desired bound on
the size of the automaton. [

232 ' A. Prasad Sistla et al.

We can now establish our upper bounds.
Theorem 4.3. Satisfiability for formulas of S, k=1, is in Nspace(g(k—1, n)).

Proof. Let us first consider the case k=1. This is equivalent to showing that
satisfiability for quantifier-free temporal logic formulas can be tested in nondeter-
ministic linear space. This was done in [21].

In the case k> 1, we have a formula f of the form (3p,,..., p)(0f,), where
fie ST, By Lemma 4.2, we know that we can construct an automaton for f; of
size O(gc(k— 1, n)). Now, to check if the formula f is satisfiable, it is sufficient to
check that there is some word not accepted by the automaton for f,. By Theorem
2.11, this can be done in space polynomial in the size of the automaton for f; and
hence in Nspace(g(k—1,n)). O

4.2. Lower bounds

We will now prove the lower bound for Z2°™. We use the method of [22]. The
first step is to construct ‘yardsticks’ of nonelementary length. To do this, we show
how to construct a formula ¢, ,(p, q), which asserts that p and q are true exactly
once and are separated by a distance greater than g.(k, n). Let us define h.(k, n)
as follows:

h.(0,n)=n, h(k+1,n)=h(k n)2"*m,

It is easy to see that h.(k, n) = g.(k, n). We now prove the following lemma.

Lemma 4.4. Given k=0 and n=1, one can construct in space O(log n) a formula
Ccin(P, q) € ZT™ of length O(k+ n) such that if wk= @, n(Dy q), then

(a) p and q are each true at exactly one point;, and

(b) if m'=p and 7w’ = q, then j =i+ h.(k, n).

Proof. We give the argument for ¢=2. The modification for arbitrary c¢>1 is
straightforward. We write ¢, ,, instead of ¢, .. The proof will proceed by induction.
We show how to construct ¢, , and then show how to construct ¢+, , when given

‘Plgn' ’
(Base step, k =0): First note that condition (a) of Lemma 4.4 can be stated by

Fp A G(p > XG—p) A Fg A G(q 2 XGg). (1)
We force p and g to be separated by a distance h(0, n) by the formula
G(p>X"g). (2)

We can take ¢, , to be the conjunction of (1) and (2). Notice that the length of ¢ ,
is O(n).

Complementation of Biichi automata 233

(Inductive step): We now show how to construct @i, given ¢, for k=0.
Intuitively, to define @i4,..(p, 9), we will encode a counter with h(k, n) bits by the
value of a proposition b over consecutive blocks of h(k, n) states. To describe the
counter, we will use a proposition r that is true at the points where p or g are true
and at intervals of h(k, n) (see Fig. 1).

We first need to state condition (a). This is done by (1) as in the previous case.
Next, we state the requirements on p, g, and r. -

G(pv q>r)AVst(@eals, 1)
5[G(s 2 F(r AFt)) AG((r A Ft A—Fs) ® 0XF(r A Ft))]). (3)

The last clause requires that r is true at points separated by h(k, n) by stating that,
between every pair of points s and ¢ at a distance of h(k, n), the proposition r is
true exactly once.

Using r, we will be able to state that on successive blocks of h(k, n) states between
p and g, the proposition b encodes a binary counter modulo h(k, n) that starts at
0 and finishes at 2" —1 (we consider the leftmost bit of a number to be its least
significant bit). We first need to state that the counter has value 0 immediately
following p, value 2#%“™ —1 immediately preceding g and is never 0 between these
points. We start by expressing that its value is 0 following p.

Vz,[Fz, A G(z, 2 XGz,) A G(p 2 (Fz, A XF(r A Fz,)))]12 G(z, > b).
(4)

The first part of this formula states that z, is true at exactly one point that is between
p and the second occurrence of r. We now express that all the bits of the counter
are 1 in the last interval preceding g.

G{[XF(r A q) A~ XF(r nXFq)] > b}. (5)
To state that the counter is never 0 in between p and g, we use
V2z,[Fz, A G(z,2 (r A XG™12,)) AG(p 2 XF(r A XFz,))]
> F[b A Fz, A1 XF(r A XFz,)]. (6)

The first part of this formula states that z, is true at exactly one point where r is
true but is not one of the first two such points. The second part states that b should
hold at some point not separated from z, by r.

Finally, we have to state that the value of each succeeding number is equal to
the value of the preceding number incremented by 1. This can be expressed by

l|l
0 1 0

r

! {1 | | | | I | | ,
01 011000110101 1 111
r r r

r

l I
0 0

~ O T

Fig. 1. h(k, m)=3.

234 A. Prasad Sistla et al.

giving the relation between the values of the bits in corresponding positions of
successive numbers. Such positions are those between points which are separated
by a distance h(k, n). Recall thatifa=a,_,,a,_,,...,a0and b=b,_,, b,_,, ..., by
are two n-bit counters, then b is the successor of @ (modulo 2") iff the following holds:

a;=b; iff 3r<i such that q,=0.
This can be expressed by the following formula:
Vst(@in(s, 1) > [(G(t > b)=G(s > b))
= G((r A Fs A XF(r A Fs)) 2 F(—b A XFs))]). (7)

The formula ¢, ., , will then be the conjuncﬁon of (1), (3)-(7). By coalescing the
quantifiers “Vst(¢, (s,)" and converting the formula to normal form, we get a
formula of the form:

(rb)(VYstz,2,)(f), (8)

where the only quantifiers appearing in f are those appearing in ¢, ,. Given that
these occurrences are all within the scope of exactly one negation, and that ¢, €
ZRTL we have that fe ITR"™. Hence, ¢, , € STT-. Moreover, .., , satisfies the
conditions of the lemma. Finally, it is easily seen that the length of ¢, , is O(k+n),
and it can be obtained in space O(log n).

To encode yardsticks of length h.(k, n) for ¢>2 we use c-ary counters instead
of binary counters. Instead of the proposition b that encodes a binary digit, we use
several propositions that together encode a c-ary digit. The details are straightforward
and left to the reader. O

We now prove our lower bounds, by encoding computations of Turing machines.

Theorem 4.5. Every language in Nspace(g(k—1, n)), k=1, is logspace reducible to
the satisfiability problem for ™.

Proof. We give the proof for k=2. The case k =1 directly follows from the results
in [21]. We show that, given a h.(k—1, n)-space bounded nondeterministic Turing
machine M (and hence, a g.(k—1, n)-space bounded Turing machine) and given
an input y of length n, we can construct, using space O(log n), a QPTL formula
that is satisfiable iff M accepts y. First, we give some definitions concerning Turing
machines. '

A nondeterministic Turing machine is a tuple M =(Q, I, §, q;, ga) Where Q is
the set of states, I is the alphabet, § : Q x I" -» 2 Q> *{leftright} j¢ the transition function,
q: is the initial state and g, is the accepting state. We consider h.(k—1, n)-space
bounded Turing machines, that is, machines that use at most h.(k —1, n) tape cells.
We assume that M is defined such that all these tape cells are to the immediate
right of the initial head position. An instantaneous description (ID) of M on input
y of length n is a word of length h.(k—1,n) in I'*(Qx I')T*. The ID wu(q, a)v

Complementation of Biichi automata 235

means that pav is written on the tape and that M is in state q scanning symbol a.
The initial ID on input y=y,...y, is

IDo(y)=(q1, y1)y2...yn# hc(k—l,n)—n’

where # denotes the blank-tape symbol. If & = a, ... a4 _(k—1,n) is an ID, then an ID
B =Bi...Bn (k-1 1s a successor of a if it is obtained from a by one transition of
M. Let A=T U (QxT). It is known [22] that there is a function R, : 4> 2%’ such
that B is a successor of a iff

(Bi=1, Bi, Biv1) € Ry(ai—y, a;, ayyy) : (*)

for all 1<i<h.(k—1,n). A computation of M on input y is a sequence of ID’s
IDo(y)ID; ... that starts with the initial ID and such that, for all i=1, ID; is a
successor of ID;_;. An accepting ID is one in which the state is the accepting state.
A computation is accepting if it contains an accepting ID.

We now construct a formula f that is satisfiable iff the computation of M on an
input y is accepting. To do this, we represent each ID by a block of h.(k—1, n)
consecutive states. In such a block of states, each individual state represents one
element of the ID. We use a set Py, of propositions containing an element p, for
each a € (Q xI')u I'. The unique member of Py, that is true in a given state represents
the symbol at that position in the ID. We will also use a proposition r that marks
the beginning of each successive ID. The situation is described in Fig. 2.

ID, ID, ID, ID,

Fig. 2.

The formula f first needs to state that the proposition r behaves as desired. This
is done with a statement similar to (3):

raVst(@.x—1.n(s, 1) 2[{G(s 2 F(raFt)) AG((r A Ft A—Fs)
> XF(r A Ft))]). 9)

Now, we need to state that

(a) the first ID is IDy(y);

(b) each ID is obtained by the previous one by a transition of M;

(c) an accepting ID eventually appears.

In these statements, we will use the notation S=a to denote the formula that
states that, among the propositions in P,,, only p, is true. S = a thus corresponds
to a conjunction of p, and the negation of the propositions representing other

236 ’ A. Prasad Sistla et al.

symbols. Statement (a) is expressed by
S=(q, y)AX(S=nAX(S=y,n - AX(S=ya) ")

AVZH{[X" ' FzAG(z2XG1z) AXG(roGz)]2G(z2(S=#))}.
(10)

To express (b), we state that every tuple of elements of successive ID’s separated
by a distance h.(k —1, n) satisfies the relation (*).
A Vst{@cx—1.n(5, 1) A G(s 2 X—1r) A G(s > XXr)

abce(QxINurl’ '
AG(s528S=a)AG(s2XS=b)AG(s 2 XXS=c)]
> V [G(to2S=d)AG(t>2XS=e)aG(t2>2XXS=f)]. (11)

(d,e.f)e Rp(a,b,c)

To state (c), it is enough to state that a final state eventually appears

V_F(S=(a,40)). (12)
The formula f is then the conjunction of (9)-(12). If we convert it to normal form,
we get a formula of the form

(3r)(Vsez)f’, (13)

where the only quantifiers appearing in f* are those appearing in ¢.x—; .. Given
that these occurrences are all within the scope of exactly one negation, and that
Per-1.n € 2", we have that e ITZ]". Hence fe IT*™. Moreover, by construc-
tion, f is satisfiable iff y is accepted by M and it can be obtained using space
O(logn). O

Acknowledgment

We would like to thank the referees for many helpful suggestions.

References

[1] H. Alaiwan, Equivalence of infinite behavior of finite automata, Theoret. Comput. Sci. 31 (1984)
297-306.

[2] J.R. Biichi, On a decision method in restricted second-order arithmetic, in: Proc. Internat. Congr.
Logic, Methodology and Philosophy of Science 1960 (Stanford University Press, 1962) 1-12.

{3] J.R. Biichi, The monadic theory of w,, in: Decidable Theories II, Lecture Notes in Mathematics
328 (Springer, Beriin, 1973) 1-127.

[4] Y. Choueka, Theories of automata on w-tapes: a simplified approach, J. Comput. System Sci. 8
(1974) 117-141.

[5] S. Eilenberg, Automata, Languages and Machines, Vol. A (Academic Press, New York, 1974).

[6] D. Gabbay, A. Pnueli, S. Shelah and J. Stavi, The temporal analysis of fairness, Proc. 7th ACM
Symp. on Principles of Programming Languages, Las Vegas (1980) 163-173.

Complementation of Biichi automata 237

[7] D. Harel, D. Kozen and R. Parikh, Process logic: expressiveness, decidability, completeness J.
Comput. System Sci. 25 (1982) 144-170.

(8] Z. Manna and A. Pnueli, Verification of concurrent programs: the temporal framework, in: R.S.
Boyer and J.S. Moore, eds., The Correctness Problem in Computer Science (Academic Press, New
York/London, 1981) 215-273.

[9] R. McNaughton, Testing and generating infinite sequences by a finite automaton, Inform. and
Control 9 (1966) 521-530.

[10] A.R. Meyer, Weak monadic second-order theory of successor is not elementary recursive, Proc.
Logic Colloquium, Lecture Notes in Mathematics 453 (Springer, Berlin, 1975) 132-154.

[11] A.R. Meyer and L.J. Stockmeyer, The equivalence problem for regular expressions with squaring
requires exponential time, Proc. 13th IEEE Symp. on Swnchmg and Automata Theory, Long Beach
(1972) 125-129.

[12] H. Nishimura, Descriptively complete process logic, Acta Inform. 14 (1980) 359-369.

[13] S. Owicki and L. Lamport, Proving liveness properties of concurrent programs, Trans. ACM 4
(1982) 455-495.

[14] A. Pnueli, The temporal logic of concurrent programs, Theoret. Comput. Sci. 13 (1981) 45-60.

[15] M.O. Rabin, Decidability of second-order theories and automata on infinite trees, Trans. AMS 141
(1969) 1-35.

[16] M.O. Rabin, Weakly definable relations and special automata, in: Y. Bar-Hlllel ed., Proc. Symp.
Mathematical Logic and Foundations of Set Theory (North-Holland, Amsterdam, 1970) 1-23.

[17] M.O. Rabin and D. Scott, Finite automata and their decision problems, IBM J. Res. & Dev. 3
(1959) 114-125.

[18] E.L. Robertson, Structure of complexity in the weak monadic second-order theory of the natural
numbers, Proc. 6th ACM Symp. on Theory of Computing, Seattle (1974) 161-171.

[19] D. Siefkes, Decidable Theories I—Biichi’s Monadic Second-Order Successor Arithmetics, Lecture
Notes in Mathematics 120 (Springer, Berlin, 1970).

[20] A.P. Sistla, Theoretical issues in the design and verification of distributed systems, Ph.D. Thesis,
Harvard University, 1983.

[21] A.P. Sistla and E.M. Clarke, The complexity of propositional linear time logics, J. ACM 32 (1985)
733-749.

[22] L.J. Stockmeyer, The complexity of decision problems in automata theory and logic, Ph.D. Disserta-
tion, Tech. Rept. MAC MIT TR-133, M.L.T., 1974.

[23] B.A. Trakhtenbrot and Y.M. Barzdin, Finite Automata Behavior and Synthesis (North-Holland,
Amsterdam, 1973).

[24] M.Y. Vardi and L. Stockmeyer, Improved upper and lower bounds for modal logics of programs,
Proc. 17th ACM Symp. on Theory of Computing, Providence (1985) 240-251.

[25] M.Y. Vardi and P. Wolper, Yet another process logic, in: Logics of Programs, Lecture Notes in
Computer Science 164 (Springer, Berlin, 1983) 501-512.

[26] M.Y. Vardi and P. Wolper, Automata-theoretic techniques for modal logics of programs, J. Comput.
System Sci. 32 (1986) 183-221.

[27] M.Y. Vardi and P. Wolper, Reasoning about infinite computation paths, to appear.

[28] P. Wolper, M.Y. Vardi and A.P. Sistla, Reasoning about infinite computation paths, Proc. 24th
IEEE Symp. on Foundations of Computer Science, Tucson (1983) 185-194.

[29] P. Wolper, Synthesis of communicating processes from temporal logic specifications, Ph.D. Thesis,
Stanford University, 1982. '

[30] P. Wolper, Temporal logic can be more expressive, Inform. and Control 56 (1983) 72-99.

