

Efficient LTL Compilation for SAT-based Model

Checking

Roy Armoni, Sergey Egorov, Ranan Fraer, Dmitry

Korchemny

Intel Corporation

Haifa, Israel; Moscow, Russia

{sergey.egorov,ranan.fraer,dmitry.korchemny}@intel.com

Moshe Y. Vardi

Rice University

Houston, TX

vardi@cs.rice.edul

Abstract— This work describes an algorithm of automata

construction for LTL safety properties, suitable for bounded

model checking. Existing automata construction methods are

tailored to BDD-based symbolic model checking. The novelty

of our approach is that we construct deterministic automata,

unlike the standard approach, which constructs non-

deterministic automata. We show that the proposed method

has significant advantages for bounded model checking over

traditional methods.

I. INTRODUCTION

Linear-temporal logics are widely used to describe
infinite behaviors of discrete systems. This goes back to
Pnueli's seminal paper [1], which introduced the linear time
logic LTL. A more recent linear-temporal logic, based on
LTL, is the industrial PSL 1.1 [2]. Verifying that a linear-
temporal property is satisfied by a finite transition system is
a core problem in model checking [3]. Standard automata-
theoretic model checking techniques [4] consider the formula
f obtained by negating the desired behavior and construct an
equivalent non-deterministic Büchi automaton Af. Then, they
compute the product of this automaton Af with the system M
and check the product for emptiness. The compilation of
temporal formulae into Büchi automata is, therefore, a key
algorithmic step in model checking, and its optimization is a
subject of much research.

There are two basic approaches to model checking. In
explicit model checking, the product of the automaton and
the system is constructed explicitly, and graph-search
techniques are used for the emptiness check [5]. In symbolic
model checking, the product is represented symbolically, and
symbolic techniques (BDD-based [6] or SAT-based [7]) are
used for the emptiness check.

In explicit model checking, optimizing the compilation
means minimizing the state space of the automaton Af, cf.
[8,9,10] (but see [11] for another optimization criterion). In
symbolic model checking, optimizing the compilation means
minimizing the size of the symbolic representation of Af, i.e.,
minimizing the number of symbolic variables, cf. [12,13].

It is generally assumed that such optimizations yield run-
time improvements for model checking, though this
assumption has not been validated experimentally. Recent
works have explored hybrid approaches, combining
symbolic representation of the transition system and explicit
representation of the automaton [14,15], again focusing on
state-space minimization.

It is known that for safety properties, i.e., properties
whose failure can be witnessed by a finite trace [16], the
complemented property can be compiled into a deterministic
automaton on finite words [17]. (It is also possible to
determinize Büchi automata, but this requires more general
acceptance conditions and is known to be quite difficult
[18].)

This approach, of constructing deterministic automata,
has been pursued in the context of dynamic validation, where
a testing environment generates finite traces of the system
under validation and checks them against a class of property
checkers; the work of [19] describes the compilation into
deterministic automata of a certain class of RCTL properties.
Deterministic compilation (for a fragment of LTL) is also
described in [20], where sequential ATPG is used for
bounded model checking. In both dynamic validation and
sequential ATPG, deterministic compilation is required by
the nature of the validation engine.

A similar trend has been observed in the EDA industry,
with the emergence of Assertion-Based Verification.
Assertion libraries such as 0-In® or OVL provide pre-
defined templates of temporal properties, together with their
implementation as RTL monitors. While enjoying the benefit
of a deterministic implementation, such assertion libraries
suffer from a limited temporal expressiveness.

Since deterministic compilation may cause an
exponential blow-up in the state space (or, equivalently, in
the number of symbolic variables), no attempt has been
made so far to evaluate deterministic compilation in the
context of model checking.

The work of M. Y. Vardi is supported in part by NSF grants CCR-
9988322, CCR-0124077, CCR-0311326, IIS-9908435, IIS-9978135, EIA-

0086264, and ANI-0216467, by BSF grant 9800096, by Texas ATP grant

003604-0058-2003, and by a grant from the Intel Corporation

In this work we explore deterministic compilation of
temporal properties for SAT-based model checking. SAT-
based model checking includes bounded model checking
(BMC), where one checks that the desired property holds for
all traces of a bounded length [7]. Unrolling is used to
generate a propositional formula that is checked for
satisfiability by a SAT-solver; satisfiability indicates that a
counterexample has been found. Thus, BMC can falsify a
property but not verify it. BMC can be augmented by
induction to verify properties [21], by using the SAT-solver
to prove an upper bound on counterexample length.

In our work, we used our own SAT-based model-
checker, which provides a falsification (BMC) check and a
verification (induction) check as described above. We
compared the performance of SAT-based falsification and
verification with respect to deterministic and non-
deterministic compilation of LTL safety properties. Our
experiments demonstrate the advantage of deterministic
compilation. BMC-based falsification performs better and
reaches larger bounds using deterministic compilation.
Similarly, induction-based verification, succeeds with lower
induction depths and faster run time, when using
deterministic compilation. The deterministic-compilation
approach is applicable also to industrial property
specification languages such as PSL 1.1 and SVA, but we
illustrate it with pure LTL.

The outline of the paper is as follows. In Section II we

provide preliminary background and describe how safety

LTL properties can be compiled into alternating automata,

then into non-deterministic automata and finally into

deterministic automata. Our implementation is detailed in

Section III. In Section IV we describe our experiments with

BMC-based falsification, while Section V summarizes our

results for induction-based verification. We conclude with a

discussion in Section VI.

II. BACKGROUND

A. Linear temporal logic

A Linear Temporal Logic (LTL) formula in positive
normal form is one of the following [1]:

• true, false

• p, or ¬p, where p is an atomic proposition in a set
AP..

• ψ1 ∧ ψ2, ψ1 ∨ ψ2, Xψ1, ψ1Uψ2, ψ1Rψ2, where ψ1

and ψ2 are LTL formulae.

Other temporal operators like F and G can be derived in

terms of the basic operators as follows:

• Fψ = true Uψ .
• Gψ = false R ψ .
The semantics of an LTL formula ψ is defined with

respect to a computation π = σ0, σ1, σ2, …, where for every j
≥ 0, σj ∈ 2

AP
 is the subset of atomic propositions that hold in

the j’th position of π. The suffix σj, σj+1, … is denoted by πj.

We write π |= ψ to indicate that an LTL formula ψ holds in
the computation π and define this inductively as follows:

• π |= true and π |≠ false

• π |= p if π0 (p)=1
• π |= ψ1 ∨ ψ2 iff π |= ψ1 or π |= ψ2

• π |= ψ1 ∧ ψ2 iff π |= ψ1 and π |= ψ2

• π |= Xψ1 iff π
1
 |= ψ1

• π |= ψ1Uψ2 iff there exists k ≥ 0 such that π
k
 |= ψ2

and πi |= ψ1 for all 0 ≤ i < k

• π |= ψ1Rψ2 iff for all k ≥ 0 if π
k
 |≠ ψ2, then there is 0

≤ i <k such that πi |= ψ1

B. Safety languages and formulae

Consider a language L ⊆ Σω of infinite words over the
alphabet Σ. A finite word x∈Σ* is a bad prefix for L iff for all
y∈Σω we have x⋅y ∉L. A language L is a safety language iff
every w∉L has a finite bad prefix [16]. For an LTL formula
ψ over a set AP of atomic propositions, let ||ψ || denote the
set of computations in (2AP) ω that satisfy ψ. ψ is a safety
formula iff ||ψ || is a safety language [17].

For an LTL formula ψ and a finite computation π = σ0,
σ1, σ2, …,σn with σi∈ 2

AP
, we say that π is informative for ψ

[16] iff there exists a mapping of the first n + 1 natural

numbers into the sets of subformulae of ¬ψ, i.e., L:{0, …,

n} → 2
cl(¬ψ)

 such that the following holds:

1) ¬ψ ∈ L(0)
2) L(n) is empty

3) For all 0 ≤ i ≤ n-1 and ϕ ∈ L(i), the following hold.

 - If ϕ is a propositional assertion, it is satisfied by σi
 - If ϕ =ϕ1∨ ϕ2 then ϕ1 ∈ L(i) or ϕ2 ∈ L(i)
 - If ϕ =ϕ1 ∧ ϕ2 then ϕ1 ∈ L(i) and ϕ2 ∈ L(i)

 - If ϕ =Xϕ1 thenϕ1 ∈ L(i+1)
 - If ϕ =ϕ1 U ϕ2 then ϕ2 ∈ L(i) or [ϕ1 ∈ L(i) and ϕ1 U ϕ2 ∈
L(i+1)]

 - If ϕ =ϕ1 R ϕ2 then ϕ2 ∈ L(i) and [ϕ1 ∈ L(i) or ϕ1 R ϕ2 ∈
L(i+1)]

We use the notion of informative prefix in order to
distinguish between three types of safety formulae. A safety

formula ψ is intentionally safe iff all the bad prefixes for ψ
are informative. E.g., the formula Gp is intentionally safe. A

safety formula ψ is accidentally safe iff not all the bad
prefixes for ψ are informative, but every computation that
violates ψ has an informative bad prefix. E.g., the formula
G(q ∨ XGp) ∧ G(r ∨ XG¬p) is accidentally safe. A safety
formula ψ is pathologically safe iff there is a computation
that violates ψ and has no informative bad prefix. E.g., the
formula [G(q ∨ FGp) ∧ G(r ∨ FG¬p)] ∨ Gq∨ Gr is
pathologically safe. All temporal formulae in positive normal
form constructed with the temporal connectives X and R are
either intentionally or accidentally safe [17]. Such formulae
are called syntactically safe.

C. Alternating automata

 For a given set X, let B+
(X) be the set of positive

Boolean formulae over X, including true and false. Y ⊆ X
satisfies a formula θ∈B+

(X) iff the truth assignment that

assigns true to the members of Y and assigns false to the

members of X\Y satisfies θ.

An alternating Büchi automaton on infinite words is A =

〈Σ, Q, δ, q0, F〉, where Σ is the input alphabet, Q is a finite set

of states, δ: Q×Σ → B+
(Q) is a transition function, q0∈ Q is

an initial state, and F⊆ Q is a set of accepting states. A run of
A on infinite word w = σ0, σ1, …is a (possibly infinite) tree

T with nodes labeled by states from Q (each node x is labeled
with exactly one state q(x)) such that the tree root is labeled

with the initial state q0 and for every node x∈T with
δ(q(x),σ\x\)=θ (|x| is a distance from node x to the tree root)
there is a (possibly empty) set S={q1,…qk} such that S

satisfies θ and each successor xi of x, 1 < i < k is labeled with
qi. The run is accepting if every infinite branch has infinitely

many nodes labeled by states in F. (Note that if θ is true
then x need not have successors.)

D. Automaton construction

An arbitrary LTL formula may be converted to a non-
deterministic Büchi automaton in two steps:

First, construct an alternating Büchi automaton A = 〈2AP,

cl(ψ), δ, q0, F〉 from the LTL formula ψ. The state set cl(ψ)
is the set of subformulae of ψ, so the number of states of A

is linear in the length of the formula ψ [25]. The start state q0
is the formula ψ. The accepting state set F consists of the
formulae of form ϕ1 R ϕ2. See [25] for a detailed definition
of δ.

Second, construct a non-deterministic Büchi automaton

from the alternating Büchi automaton A. This step can incur

an exponential blowup in the number of states of the non-
deterministic automaton compared to the number of states of

A [25]. The language accepted by the automaton is Lω(A).

E. LTL model checking

A finite state program (or system) over AP is a structure
of the form M = (AP, W, R, W0, L), where W is a finite set of

states, R ∈ W2
 is a total transition relation, W0 is a set of

initial states and L: W→2
AP
 maps each state to the set of

atomic propositions that hold in it. The model checking

problem for LTL is to determine given an LTL formula ψ
and a finite state program M whether all the computations of

M satisfy ψ.

The finite state program M may be viewed as a Büchi

automaton AM = 〈2
AP
, W, ρ, W0, W〉, where w’∈ ρ(w, a) iff

(w, w’) ∈ R and a∈L(w). Note that all infinite runs of the
automaton are accepting. Hence, for a finite-state program

M and an LTL formula ψ the model checking problem is to

verify that Lω(AM) ⊆ Lω(Aψ). (Here Lω(A) refers to the

language of infinite words defined by A.) Equivalently, it is

necessary to check that Lω(AM) ∩ Lω(A¬ψ) is empty [4].

F. Automaton construction for safety properties

For syntactically safe LTL properties the process of
automaton construction may be simplified. Given a safety

property ψ, let pref(ψ) denote the set of all bad prefixes for
ψ. An automaton on finite words is said to be tight for ψ if it
recognizes pref(ψ). An automaton on finite words is said to
be fine for ψ if it accepts at least one bad prefix for every
computation that does not satisfy ψ.

For the model checking of a safety property ψ that is not
pathologically safe, instead of an alternating Büchi

automaton A¬ψ, it is enough to construct an alternating

automaton on finite words A¬ψ
fin
 = 〈2AP, 2cl(ψ), δ, q0, ∅〉, by

redefining the set of accepting states to be the empty set.
(This has the effect of ruling out infinite branches in the run

tree.) As shown in [17], A¬ψ
fin
 accepts exactly the finite

computations that are informative for ψ. Therefore, A¬ψ
fin
 is

tight for intentionally safe properties and fine for
accidentally safe properties. Since syntactically safe

properties are either intentionally or accidentally safe, A¬ψ
fin

is fine for syntactically safe properties.

As noted, by taking the set of accepting states to be
empty, we essentially prohibit infinite branches of the run
tree. Therefore, by constructing an automaton over finite
words for the complemented property we have converted the
model-checking problem to the verification of an invariance
property over the product system. Specifically, if we

translate A¬ψ
fin
 to a non-deterministic automaton An with a

set F of accepting states, then the property ψ is satisfied by
the system M iff the state set W× F is not reachable in the
product (i.e., synchronous composition) M || An.

The same reduction of model-checking to reachability

applies when we determinize the automaton An. That is, we

compose the deterministic automaton Ad with M and assert

that the accepting state of the automaton is not reachable. In
either case, let fail be a predicate describing the accepting
state of the property automaton, then model checking the

original property is equivalent to checking that AG ¬fail
holds in the composite system (A means that the formula G

¬fail holds on all feasible paths in the system). In our
subsequent discussion of bounded model checking (Section
 IV) and induction (Section V), this reduction to invariance
checking is our starting point.

III. IMPLEMENTATION

A. Outline

As described in Section II.E, to construct an automaton
for syntactically safe properties, there is no need to build the
alternating Büchi automaton, but rather it is enough to

construct an alternating automaton on finite words A¬ψ
fin
.

We then convert it into a non-deterministic automaton on

finite words An using a subset construction algorithm as

described in [22]. A subsequent application of the subset
construction algorithm to the non-deterministic automaton

produces a deterministic automaton Ad
corresponding to the

property [23].

Since the subset construction has an exponential worst-
case complexity, the two-step algorithm is doubly
exponential in the worst case. It is also known that the
doubly-exponential blow up is unavoidable when
transforming an alternating automaton into a deterministic
one [22]. We avoid such a blow-up by using two types of
subset construction.

A subset construction may be either explicit or implicit.
In an explicit construction we construct explicitly all the
reachable sets. In an implicit construction each automaton
state becomes a variable in the symbolic representation of
the new automaton. We do the first subset construction (from
alternating to non-deterministic automata) explicitly, and
then do the second (from non-deterministic to deterministic
automata) implicitly. The explicit states built in the first
construction become variables in the second construction.
Since the implicit construction is linear, the blow-up of our
two-step construction is at most exponential. In practice, we
rarely see such a blow-up.

B. Building the non-deterministic automaton

Let A¬ψ
fin
 = 〈2AP, Q, δ, q0, ∅〉 be the alternating

automaton constructed for the syntactically safe formula ψ.
The following is an equivalent non-deterministic automaton

on finite words An = 〈2
AP
, 2

Q
, δn, {q0}, {∅}〉 , where

)},(satisfies |{),(asTTaS
Ss

n δδ ∧
∈

=

Our on-the-fly implementation generates the states of An

on demand to avoid including all subsets of Q.

1. Initially, only the set Q0 = {q0} is generated.

2. Suppose now that a set S has been generated. We take the

conjunction)},({),(asaS
Ss

n δδ ∧
∈

= and convert it

into a disjunctive normal form (various optimizations from

digital design can be used in this step). Every disjunct t1 ∧...
∧ tk then yields the set { t1,...,tk }.

C. Building the deterministic automaton

Let An = 〈2
AP
, Q, δ, Q0, F〉, where δ: Q × 2

AP
 → 2

Q
.

The implicit translation turns every state in Q into a Boolean

state variable. The initial assertion is
q

Qq
∨
∈ 0

.

Each transition δn(q, a) = P now yields a transition

constraint 'paq
Pp
∨
∈

→∧ (where a primed variable refers

to the value of a state variable in the next cycle).

D. Example

Consider the following example (upon the property
complementation): (Xa)U(Xb). A corresponding alternating
automaton is shown in Figure 1. The non-deterministic
automaton built as a result of the first subset construction is
shown in Figure 2. The resulting deterministic automaton is
described symbolically by the following system of equations:

init(s0) = true

init(s1) = false

init(s02) = false

init(fail) = false

next(s0) = false

next(s1) = s0 ∨ (s02 ∧a)
next(s02) = s0∨ (s02 ∧a)
next(fail) = s1 ∧ b.

Thus, the safety property model-checking reduces to AG

¬fail, where fail is a symbolic representation of the
accepting state. s1 ∧ b.

Figure 2. Non-deterministic automaton

true

a

s0

s1

fail

s02

b

a

true

∧∧∧∧

∨∨∨∨
true

a

true s0

s1

true

b

s2

true

Figure 1. Alternating automaton

IV. BOUNDED MODEL CHECKING

Model checking verifies the correctness of a finite-state
system with respect to a desired behavior, specified as a
temporal logic formula [3]. Model checking has two major
advantages, namely, it is fully automatic, and in the case of
failure it produces a counterexample (an erroneous execution
of the system).

The introduction of symbolic model checkers based on
BDDs [6] increased their capacity to a point where formal
verification became a viable approach in the hardware
industry. But in spite of this increased capacity, it soon
became apparent that state explosion was still a problem. A
major breakthrough has been the introduction of bounded
model checking (BMC) [7]. BMC is based on the
representation of computation paths falsifying the
specification in the form of a Boolean satisfiability problem,
as explained below.

As was shown in Section II.E, checking that a non-

pathological safety formula ψ satisfies a finite state program
can be reduced to the checking of the invariance property
AG p over the synchronous composition of the system with
the property automaton. Here p is ¬fail, where fail represents
the accepting state of the property automaton (deterministic
or non-deterministic). We now refer to the composite system
as M.

For a given bound k, BMC checks that p holds on all the
paths of M of length k or less. Formally, we check the
satisfiability of the following formula:

W0(x0) ∧ path(x0,…,xk) ∧ (¬p(x0)∨ … ∨ ¬p(xk)) (1)

where path(x0,…,xk) describes a path of length k:

path(x0,…,xk) := R(x0,x1) ∧ … ∧ R(xk-1,xk)

The formula (1) above is sent to a SAT solver. If it is
found to be satisfiable, then the satisfying assignment is a
trace of M violating p in less than k steps. Otherwise, we
need to increase the bound k and repeat the same process.

The use of bounded model checking has increased the
size of models handled by model checkers; however, this has
come at a price. We no longer get a fully certified answer to
the verification problem but rather assurance that there are
no counterexamples of a given length. This observation
makes bounded model checking especially adequate for bug
hunting (falsification).

Figure 3 compares the running time of our BMC tool
with non-deterministic and deterministic compilation on an
Intel design block with about 1400 latches for 18 checkers.
Each checker consists of automata for a cluster of several
actual design properties related to a particular aspect of the
design. The temporal properties tend to be rather simple,
consisting of a small number of temporal connectives. (We
have excluded from our comparison combinational
invariance properties, as deterministic compilation has no
impact on such properties.) The left bar in each pair of bars
shows the BMC run-time for the deterministic compilation,

while the right bar shows the BMC run-time for the non-
deterministic compilation. The deterministic compilation
yields a systematic performance improvement that can reach
an order of magnitude in several cases. (The improvement
due to the deterministic compilation also holds when we
consider checkers that consist of a single temporal property,
though this is not reflected in the figure.)

0

100

200

300

400

500

600

700

800

900

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Checkers
T
im
e
 (
s
e
c
.)

Deterministic compilation Non-deterministic compilation
Figure 3. BMC performance for deterministic vs. non-

deterministic compilation

We now offer an intuitive explanation for the advantage
of deterministic over non-deterministic compilation for
bounded model checking. The SAT solver searches for a
satisfying assignment in the formula (1). Essentially, it
searches for paths in the composite model M, which is the
product of the system under verification and the property
automaton. When the automaton is non-deterministic, the
SAT solver has to find paths in both the system and the
property automaton. In contrast, when the automaton is
deterministic, the SAT solver has to find a path only in the
system. In fact, given an assignment to system variables that
corresponds to a path in the system, Boolean constraint
propagation, a task that modern SAT solvers excel at, would
drive an assignment to the automaton variables when the
automaton is deterministic. Thus, deterministic compilation,
even though it increases the size of the generated formulae,
actually decreases the size of the search space for the SAT
solver. (An additional factor may be the fact that our
checkers comprise of several properties. This requires a
discrimination mechanism that indicates which property
failed when a checker fails. The discrimination mechanism is
lighter for deterministic automata.)

We believe that this explains the improved BMC
performance in the case of deterministic compilation, but we
have yet to validate this hypothesis by profiling the
execution of the SAT solver during the BMC runs.

V. INDUCTION

SAT-based induction [21] complements BMC in that it
can provide a full proof that the property holds (as opposed
to the weaker guarantee that the property is not violated up to
some finite bound). Using the same notation as in Section IV

 IVthe induction approach is based on two SAT checks. The
first check, the induction base, verifies that the property P
holds on all paths of length k. This is exactly the same BMC
check as in the previous section:

W0(x0) ∧ path(x0,…,xk) ∧ (¬p(x0)∨ … ∨ ¬p(xk)) (1)

The second check, also called the induction step, verifies
that for an arbitrary loop-free path of length k+1, if P holds
in the first k states, then it holds in the last state too. In other
words, it is enough to check that the following formula is
unsatisfiable:

path(x0,…,xk) ∧ loopfree(x0,…,xk) ∧

 p(x0) ∧ … ∧ p(xk) ∧ ¬p(xk+1) (2)

where the loopfree constraint guarantees that all the states in
the path are disjoint:

loopfree (x0,…,xk) := ∧0≤i<j≤k xi ≠ xj

An additional benefit of induction is that the induction
step usually succeeds at very low bounds (20 or less),
speeding up the whole verification process, because it is
sufficient to apply the BMC check (the induction base) only
up to the bound where the induction step succeeds.

Figure 4 shows the advantage of using deterministic
property compilation for induction-based verification. (We
use here the same design block and checkers as in Section
III.) These results compare the number of properties that are
successfully proved by induction in two modes of the
compiler: the non-deterministic mode, where the resulting
automaton is non-deterministic and the deterministic mode
where the resulting automaton is determinized. As is seen
here, induction is unlikely to succeed with non-deterministic
compilation.

The left bar in each pair of bars represent the number of
properties successfully proved by induction when the
automata are deterministic, while the right bar represents the
number of properties proved by induction when the automata
are non-deterministic. Here success is defined with respect to
a timeout bound of one hour. Note that each checker contains
multiple properties.

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Checkers

P
ro
p
e
rt
ie
s
 p
a
s
s
e
d
 b
y
 i
n
d
u
c
ti
o
n

Deterministic compilation Non-deterministic compilation

Figure 4. Properties passed by induction

To explain this phenomenon, let M be a finite state

program, let An denote a non-deterministic finite automaton

that accepts all the counterexamples of a safety property f,

and let Fn denote the accepting condition of An, which is

basically a disjunction of entering one of the accepting states

of An. Let Ad denote the deterministic finite automaton that

comes out of a subset construction applied to An and let Fd

denote the accepting condition of Ad . Let us consider the

bound k in which the property AG ¬Fn is proved by
induction in the synchronous composition model Dn = M ||

An. We compare it with the bound l in which the property

AG ¬Fd is proved by induction in the synchronous

composition model Dd = M || Ad. The phenomenon we

observe is that in many cases l is strictly smaller than k,
which is explained in the rest of this section.

A. Example: f = Gp

Consider the following non-deterministic An automaton

that is built for f:
1

Here Fn is B and our property is AG ¬B. The induction step
tries to prove that a sequence of k phases of ¬B followed by
B is not satisfiable by a loop-free path in the model Dn = M ||

An. Suppose now that p holds in Dn non-trivially. Note,

however, that the induction hypothesis ¬B does not impose
any restriction on the state of the finite state program
uninit(M) (uninit(M) refers to the system M with all states as
possible initial states); it is only the loop-free part that will
make the sequence (¬B,…,¬B, B) unsatisfiable in uninit(Dn)
when k reaches the diameter of M. Let us now apply a

subset construction to An and build the automaton Ad that

looks as follows:

For this automaton, Fd is AB and the property is AG ¬AB.
Note that in this case, the induction hypothesis ¬AB actually
restricts the states of the finite state program uninit(M) to
those that satisfy the condition p. Hence, we are basically
trying to prove that (p,…,p, ¬p) is not satisfiable in
uninit(Dd) by a loop-free path of length l. Since here p does
impose a non-trivial restriction on the behavior of the finite
state program uninit(M) on top of the loop-free restriction,
the induction step has a potential to succeed for l that is

1 An optimizing compiler would keep AG p as is rather than

building an automaton. Nevertheless, for the sake of simplicity, we start

with this non-optimized example instead of choosing a more complicated

property for which the automaton is not optimized out.

much smaller than the diameter of uninit(M). See [26] for a
related discussion.

B. Example: Counter

In this example we build a small model and try to prove a
non-trivial property of that model. Consider the following
code:

var y;

init(y) = 1;

next(y) = y;

var nd;

var[3] count;

init(count) = nd;

next(count) =

if y then count + nd + 1

 else count;

c0 := (count = 0);

A0 := c0 & next next (c0 | next c0);

assert p := always !A0;

In this model we have a counter that is non-
deterministically initialized to either 0 or 1 (by the nd bit).
Then, depending on whether y is constantly 0 or constantly
1, the counter either stays constant or increased at every
stage by 1 or 2 non–deterministically. Since y is initialized
to 1, the counter has no choice but increment at every stage.
A0 is defined as two cycles at distance 2 or 3 in which the
counter is 0, and the property p asserts that no such two
cycles exist. Obviously, p holds in this model non-trivially,
since removing the initialization of y to 1 makes p fail.

Since the formula A0 contains a non-deterministic choice
of either distance 1 or 2, the compiler builds a non-
deterministic automaton to check p. A proof by induction
that this automaton never accepts succeeds only at bound 6.
However, when compiling the same property into a
deterministic automaton, the induction succeeds at bound 5.

VI. CONCLUSION AND FUTURE WORK

The results described in this paper show that there is a
significant gain to be had from using deterministic
compilation for SAT model checking, which has become the
mainstream verification engines in the last few years.

The next stage is to better understand BMC behavior on
deterministic property automata versus non-deterministic
property automata by instrumenting the SAT engine. We
plan to investigate how the quality of the deterministic
automaton built for the property affects model-checking
performance. Possible directions are automaton
optimizations. The most promising seems to be the
optimization of the alternating automaton on finite words

[24], since even small optimization of an alternating
automaton leads to much smaller automata as a result of the
subsequent subset constructions. Another possibility is the
minimization of the non-deterministic automaton [23] before
applying the implicit determinization to it. In particular, we
need to find out if the advantage of deterministic compilation
holds also for large properties, where the generated automata
are also large. Together with [27], our work draws attention
to the impact of compilation on SAT-based model checking
for LTL properties. Such attention should also be extended to
industrial property-specification languages such as PSL and
SVA.

ACKNOWLEDGMENT

The authors are grateful to Limor Fix, Tamir Heyman,
Paul Inbar, Yossi Levy, Dana Lichten, and Yakir Vizel for
their help with this work.

REFERENCES

[1] A. Pnueli, The temporal logic of programs, Proc. 18th IEEE Symp.
on Foundation of Computer Science", pp. 46-57, 1977

[2] Accellera, Property Specification Language Reference Manual,
Version 1.1, June 2004

[3] E.M. Clarke, O. Grumberg and D. Peled, Model Checking, MIT
Press, 1999

[4] M.Y. Vardi, P. Wolper, An Automata-Theoretic Approach to
Automatic Program Verification, Proc. Symp. on Logic in Computer
Science, pp. 332-344, June, 1986

[5] C. Courcoubetis, M.Y. Vardi, P. Wolper, M. Yannakakis, Memory
Efficient Algorithms for the Verification of Temporal Properties,
Formal Methods in System Design, pp. 275—288, vol. 1, 1992

[6] R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, L.J. Hwang,
Symbolic model checking: 1020 states and beyond, Information and
Computation, pp. 142—170, vol. 98-2, 1992

[7] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, Y. Zhu. Symbolic
Model Checking Using SAT Procedures instead of BDDs, Proc. 36th
Conference on Design Automation, pp. 317--320, 1999

[8] R. Gerth, D. Peled, M.Y. Vardi, P. Wolper, Simple on-the-fly
automatic verification of linear temporal logic, Proc. Protocol
Specification, Testing, and Verification, pp. 3-18, 1995

[9] N. Daniele, F. Guinchiglia, M.Y. Vardi, Improved automata
generation for linear temporal logic, Proc. Computer Aided
Verification, pp. 249--260, 1999

[10] F. Somenzi, R Bloem, Efficient Büchi automata from LTL formulae,
Proc. Computer Aided Verification, pp. 248-263, 2000

[11] R. Sebastiani, S. Tonetta, ``More Deterministic'' vs. ``Smaller" Büchi
Automata for Efficient LTL Model Checking, Proc. Correct Hardware
Design and Verification Methods, pp. 126--140, 2003

[12] E.M. Clarke, O. Grumberg, K. Hamaguchi, Another look at LTL
Model Checking, Proc. Computer Aided Verification, pp. 415-27,
1994

[13] E. Clarke, D. Kroening, J. Ouaknine, O. Strichman, Computational
Challenges in Bounded Model Checking, J. Software Tools and
Technology Transfer, Feb., 2005

[14] R. Sebastiani, E. Singerman, S. Tonetta, M.Y. Vardi, GSTE Is
Partitioned Model Checking. Proc. Computer Aided Verification, pp.
229-241, 2004

[15] R. Sebastiani, S. Tonetta, M.Y. Vardi, Symbolic systems, explicit
properties: on hybrid approaches for LTL symbolic model checking ,
Proc. Computer Aided Verification, pp. 350—363, 2005

[16] B. Alpern, F.B. Schneider, Recognizing safety and liveness,
Distributed computing, vol. 2, pp. 117-126, 1987

[17] O. Kupferman, M.Y. Vardi, Model checking of safety properties,
Formal methods in System Design, vol. 19-3, pp. 291-314, Nov. 2001

[18] S. Safra, On the Complexity of ω-Automata, Proc. 29th Symp. on
Foundations of Computer Science, pp. 319-327, 1988

[19] Y. Abarbanel, I. Beer, L. Gluhovsky, S. Keidar, Y. Wolfstal, FoCs -
automatic generation of simulation checkers from formal
specifications, Proc. Computer Aided Verification, pp. 538-542, 2000

[20] J.A. Abraham, V.M. Vedula, D.G. Saab, Verifying Properties Using
Sequential ATPG, Proc. Int’l Test Conference, pp. 194-202, 2002

[21] M. Sheeran, S. Singh, G. Stålmarck, Checking Safety Properties
Using Induction and a SAT-Solver, Proc. Formal Methods in
Computer-Aided Design, pp. 108—125, 2000

[22] A.K. Chandra, D.C. Kozen, L.J. Stockmeyer, Alternation, J. ACM,
vol. 28(1), pp. 114-133, Jan, 1981

[23] J.E. Hopcroft, J.D. Ullman, Introduction to Automata Theory,
Languages, and Computation, Addison-Wesley, 1979

[24] C. Fritz, T. Wilke, State space reductions for alternating Büchi
automata: Quotienting by simulation equivalences, Proc. FSTTCS,
pp. 157-169, 2002

[25] M.Y. Vardi, An automata-theoretic approach to linear temporal
logic, In “Logic for Concurrency: Structure vs. Automata” (F. Moller
and G. Birtwistle, eds.), pp. 157-169, 2002

[26] R. Armoni, L. Fix, R. Fraer, S. Huddleston, N. Piterman, M.Y. Vardi,
SAT-based Induction for Temporal Safety Properties. Electr. Notes
Theor. Comput. Sci. 119(2), pp. 3-16, 2005

[27] M. Awedh and F. Somenzi, Termination Criteria for Bounded Model
Checking: Extensions and Comparison, 3rd International Workshop
on Bounded Model Checking (BMC'05)

