

Efficient LTL Compilation for SAT-based Model 


Checking 
 


Roy Armoni, Sergey Egorov, Ranan Fraer, Dmitry 


Korchemny 


Intel Corporation 


Haifa, Israel; Moscow, Russia 


{sergey.egorov,ranan.fraer,dmitry.korchemny}@intel.com 


 


Moshe Y. Vardi 


Rice University 


Houston, TX 


vardi@cs.rice.edul 


 


 


Abstract— This work describes an algorithm of automata 


construction for LTL safety properties, suitable for bounded 


model checking. Existing automata construction methods are 


tailored to BDD-based symbolic model checking. The novelty 


of our approach is that we construct deterministic automata, 


unlike the standard approach, which constructs non-


deterministic automata. We show that the proposed method 


has significant advantages for bounded model checking over 


traditional methods. 


I. INTRODUCTION 


Linear-temporal logics are widely used to describe 
infinite behaviors of discrete systems. This goes back to 
Pnueli's seminal paper [1], which introduced the linear time 
logic LTL. A more recent linear-temporal logic, based on 
LTL,  is the industrial PSL 1.1 [2]. Verifying that a linear-
temporal property is satisfied by a finite transition system is 
a core problem in model checking [3]. Standard automata-
theoretic model checking techniques [4] consider the formula 
f obtained by negating the desired behavior and construct an 
equivalent non-deterministic Büchi automaton Af. Then, they 
compute the product of this automaton Af with the system M 
and check the product for emptiness. The compilation of 
temporal formulae into Büchi automata is, therefore, a key 
algorithmic step in model checking, and its optimization is a 
subject of much research. 


There are two basic approaches to model checking. In 
explicit model checking, the product of the automaton and 
the system is constructed explicitly, and graph-search 
techniques are used for the emptiness check [5]. In symbolic 
model checking, the product is represented symbolically, and 
symbolic techniques (BDD-based [6] or SAT-based [7]) are 
used for the emptiness check. 


In explicit model checking, optimizing the compilation 
means minimizing the state space of the automaton Af, cf. 
[8,9,10] (but see [11] for another optimization criterion).  In 
symbolic model checking, optimizing the compilation means 
minimizing the size of the symbolic representation of Af, i.e., 
minimizing the number of symbolic variables, cf. [12,13].  


It is generally assumed that such optimizations yield run-
time improvements for model checking, though this 
assumption has not been validated experimentally. Recent 
works have explored hybrid approaches, combining 
symbolic representation of the transition system and explicit 
representation of the automaton [14,15], again focusing on 
state-space minimization. 


It is known that for safety properties, i.e., properties 
whose failure can be witnessed by a finite trace [16], the 
complemented property can be compiled into a deterministic 
automaton on finite words [17]. (It is also possible to 
determinize Büchi automata, but this requires more general 
acceptance conditions and is known to be quite difficult 
[18].)  


This approach, of constructing deterministic automata, 
has been pursued in the context of dynamic validation, where 
a testing environment generates finite traces of the system 
under validation and checks them against a class of property 
checkers; the work of [19] describes the compilation into 
deterministic automata of a certain class of RCTL properties. 
Deterministic compilation (for a fragment of LTL) is also 
described in [20], where sequential ATPG is used for 
bounded model checking. In both dynamic validation and 
sequential ATPG, deterministic compilation is required by 
the nature of the validation engine.  


A similar trend has been observed in the EDA industry, 
with the emergence of Assertion-Based Verification. 
Assertion libraries such as 0-In® or OVL provide pre-
defined templates of temporal properties, together with their 
implementation as RTL monitors. While enjoying the benefit 
of a deterministic implementation, such assertion libraries 
suffer from a limited temporal expressiveness. 


Since deterministic compilation may cause an 
exponential blow-up in the state space (or, equivalently, in 
the number of symbolic variables), no attempt has been 
made so far to evaluate deterministic compilation in the 
context of model checking. 
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In this work we explore deterministic compilation of 
temporal properties for SAT-based model checking. SAT-
based model checking includes bounded model checking 
(BMC), where one checks that the desired property holds for 
all traces of a bounded length [7]. Unrolling is used to 
generate a propositional formula that is checked for 
satisfiability by a SAT-solver; satisfiability indicates that a 
counterexample has been found. Thus, BMC can falsify a 
property but not verify it. BMC can be augmented by 
induction to verify properties [21], by using the SAT-solver 
to prove an upper bound on counterexample length.  


In our work, we used our own SAT-based model-
checker, which provides a falsification (BMC) check and a 
verification (induction) check as described above. We 
compared the performance of SAT-based falsification and 
verification with respect to deterministic and non-
deterministic compilation of LTL safety properties. Our 
experiments demonstrate the advantage of deterministic 
compilation. BMC-based falsification performs better and 
reaches larger bounds using deterministic compilation. 
Similarly, induction-based verification, succeeds with lower 
induction depths and faster run time, when using 
deterministic compilation. The deterministic-compilation 
approach is applicable also to industrial property 
specification languages such as PSL 1.1 and SVA, but we 
illustrate it with pure LTL. 


The outline of the paper is as follows. In Section  II we 


provide preliminary background and describe how safety 


LTL properties can be compiled into alternating automata, 


then into non-deterministic automata and finally into 


deterministic automata. Our implementation is detailed in 


Section  III. In Section  IV we describe our experiments with 


BMC-based falsification, while Section  V summarizes our 


results for induction-based verification. We conclude with a 


discussion in Section  VI. 


II. BACKGROUND 


A.  Linear temporal logic 


A Linear Temporal Logic (LTL) formula in positive 
normal form is one of the following [1]: 


• true, false 


• p, or ¬p, where p is an atomic proposition in a set 
AP.. 


• ψ1 ∧ ψ2,  ψ1 ∨ ψ2, Xψ1, ψ1Uψ2, ψ1Rψ2, where ψ1 


and ψ2 are LTL formulae. 


Other temporal operators like F and G can be derived in 


terms of the basic operators as follows:  


• Fψ  =   true Uψ . 
• Gψ  =   false R ψ . 
The semantics of an LTL formula ψ is defined with 


respect to a computation π = σ0, σ1, σ2, …, where for every j 
≥ 0, σj ∈ 2


AP
 is the subset of atomic propositions that hold in 


the j’th position of π. The suffix σj, σj+1, … is denoted by πj. 


We write π |= ψ to indicate that an LTL formula ψ holds in 
the computation π and define this  inductively as follows: 


• π |= true and π |≠ false 


• π |= p if  π0 (p)=1 
• π |= ψ1 ∨ ψ2 iff π |= ψ1 or π |= ψ2 


• π |= ψ1 ∧ ψ2 iff π |= ψ1 and π |= ψ2 


• π |= Xψ1 iff π
1
 |= ψ1 


• π |= ψ1Uψ2 iff there exists k ≥ 0 such that π
k
 |= ψ2 


and πi |= ψ1 for all 0 ≤ i < k 


• π |= ψ1Rψ2 iff for all k ≥ 0 if π
k
 |≠ ψ2, then there is 0 


≤ i <k such that πi |= ψ1 


B. Safety languages and formulae 


Consider a language L ⊆ Σω of infinite words over the 
alphabet Σ. A finite word x∈Σ* is a bad prefix for L iff for all 
y∈Σω we have x⋅y ∉L. A language L is a safety language iff 
every w∉L has a finite bad prefix [16]. For an LTL formula 
ψ over a set AP of atomic propositions, let ||ψ || denote the 
set of computations in (2AP) ω that satisfy ψ. ψ  is a safety 
formula iff ||ψ || is a safety language [17]. 


For an LTL formula ψ and a finite computation π = σ0, 
σ1, σ2, …,σn with σi∈ 2


AP
, we say that π is  informative for ψ 


[16] iff there exists a mapping of the first n + 1 natural 


numbers into the sets of subformulae of ¬ψ, i.e.,  L:{0, …, 


n} → 2
cl(¬ψ)


 such that the following holds: 


1) ¬ψ ∈ L(0) 
2) L(n) is empty 


3) For all 0 ≤ i ≤ n-1 and ϕ ∈ L(i), the following hold. 


  - If ϕ  is a propositional assertion, it is satisfied by σi  
  - If ϕ =ϕ1∨  ϕ2 then ϕ1 ∈ L(i) or ϕ2 ∈ L(i) 
  - If ϕ =ϕ1 ∧ ϕ2 then ϕ1 ∈ L(i) and ϕ2 ∈ L(i) 


  - If ϕ =Xϕ1 thenϕ1 ∈ L(i+1) 
  - If ϕ =ϕ1 U ϕ2 then ϕ2 ∈ L(i) or [ϕ1 ∈ L(i) and ϕ1 U ϕ2 ∈ 
L(i+1)] 


  - If ϕ =ϕ1 R ϕ2 then ϕ2 ∈ L(i) and [ϕ1 ∈ L(i) or ϕ1 R ϕ2 ∈ 
L(i+1)] 


We use the notion of informative prefix in order to 
distinguish between three types of safety formulae. A safety 


formula ψ is intentionally safe iff all the bad prefixes for ψ  
are informative. E.g., the formula Gp is intentionally safe. A 


safety formula ψ is accidentally safe iff not all the bad 
prefixes for ψ  are informative, but every computation that 
violates ψ  has an informative bad prefix. E.g., the formula 
G(q ∨ XGp) ∧  G(r ∨ XG¬p)  is accidentally safe. A safety 
formula ψ is pathologically safe iff there is a computation 
that violates ψ  and has no informative bad prefix. E.g., the 
formula [G(q ∨ FGp) ∧  G(r ∨ FG¬p)] ∨ Gq∨ Gr is 
pathologically safe. All temporal formulae in positive normal 
form constructed with the temporal connectives X and R are 
either intentionally or accidentally safe [17]. Such formulae 
are called syntactically safe. 







C. Alternating automata 


 For a given set X, let B+
(X) be the set of positive 


Boolean formulae over X, including true and false. Y ⊆ X 
satisfies a formula θ∈B+


(X) iff the truth assignment that 


assigns true to the members of Y and assigns false to the 


members of X\Y satisfies θ. 


An alternating Büchi automaton on infinite words is A = 


〈Σ, Q, δ, q0, F〉, where Σ is the input alphabet, Q is a finite set 


of states, δ: Q×Σ → B+
(Q) is a transition function, q0∈ Q is 


an initial state, and F⊆ Q is a set of accepting states. A run of 
A on infinite word w = σ0, σ1, …is a (possibly infinite) tree 


T with nodes labeled by states from Q (each node x is labeled 
with exactly one state q(x)) such that the tree root is labeled 


with the initial state q0 and for every node x∈T with 
δ(q(x),σ\x\)=θ (|x| is a distance from node x to the tree root) 
there is a (possibly empty) set S={q1,…qk} such that S 


satisfies θ and each successor xi of x, 1 < i < k is labeled with 
qi. The run is accepting if every infinite branch has infinitely 


many nodes labeled by states in F. (Note that if θ  is true 
then x need not have successors.) 


D. Automaton construction 


An arbitrary LTL formula may be converted to a non-
deterministic Büchi automaton in two steps: 


First, construct an alternating Büchi automaton A = 〈2AP, 


cl(ψ), δ, q0, F〉 from the LTL formula ψ. The state set cl(ψ) 
is the set of subformulae of ψ, so the number of states of A 


is linear in the length of the formula ψ [25]. The start state q0   
is the formula ψ. The accepting state set F consists of  the 
formulae of form ϕ1 R ϕ2. See [25] for a detailed definition 
of  δ. 


Second, construct a non-deterministic Büchi automaton 


from the alternating Büchi automaton A. This step can incur 


an exponential blowup in the number of states of the non-
deterministic automaton compared to the number of states of 


A [25]. The language accepted by the automaton is Lω(A). 


E. LTL model checking 


A finite state program (or system) over AP is a structure 
of the form M = (AP, W, R, W0, L), where W is a finite set of 


states, R ∈ W2
 is a total transition relation, W0 is a set of 


initial states and L: W→2
AP
 maps each state to the set of 


atomic propositions that hold in it. The model checking 


problem for LTL is to determine given an LTL formula ψ 
and a finite state program M whether all the computations of 


M satisfy ψ. 


The finite state program M may be viewed as a Büchi 


automaton AM = 〈2
AP
, W, ρ, W0, W〉, where w’∈ ρ(w, a) iff 


(w, w’) ∈ R and a∈L(w). Note that all infinite runs of the 
automaton are accepting. Hence, for a finite-state program 


M and an LTL formula ψ the model checking problem is to 


verify that Lω(AM) ⊆ Lω(Aψ). (Here Lω(A) refers to the  


language of infinite words defined by A.) Equivalently, it is 


necessary to check that Lω(AM) ∩ Lω(A¬ψ) is empty [4]. 


F. Automaton construction for safety properties 


For syntactically safe LTL properties the process of 
automaton construction may be simplified. Given a safety 


property ψ, let pref(ψ) denote the set of all bad prefixes for 
ψ. An automaton on finite words is said to be tight for ψ if it 
recognizes pref(ψ). An automaton on finite words is said to 
be fine for ψ if it accepts at least one bad prefix for every 
computation that does not satisfy ψ. 


For the model checking of a safety property ψ that is not 
pathologically safe, instead of an alternating Büchi 


automaton A¬ψ, it is enough to construct an alternating 


automaton on finite words A¬ψ
fin
 = 〈2AP, 2cl(ψ), δ, q0, ∅〉, by 


redefining the set of accepting states to be the empty set. 
(This has the effect of ruling out infinite branches in the run 


tree.) As shown in [17], A¬ψ
fin
 accepts exactly the finite 


computations that are informative for ψ. Therefore, A¬ψ
fin
 is 


tight for intentionally safe properties and fine for 
accidentally safe properties. Since syntactically safe 


properties are either intentionally or accidentally safe, A¬ψ
fin
 


is fine for syntactically safe properties. 


As noted, by taking the set of accepting states to be 
empty, we essentially prohibit infinite branches of the run 
tree. Therefore, by constructing an automaton over finite 
words for the complemented property we have converted the 
model-checking problem to the verification of an invariance 
property over the product system. Specifically, if we 


translate A¬ψ
fin
 to a non-deterministic automaton An with a 


set F of accepting states, then the property ψ is satisfied by 
the system M iff the state set W× F is not reachable in the 
product (i.e., synchronous composition) M || An. 


The same reduction of model-checking to reachability 


applies when we determinize the automaton An. That is, we 


compose the deterministic automaton Ad with M and assert 


that the accepting state of the automaton is not reachable. In 
either case, let fail be a predicate describing the accepting 
state of the property automaton, then model checking the 


original property is equivalent to checking that AG ¬fail 
holds in the composite system (A means that the formula G 


¬fail holds on all feasible paths in the system). In our 
subsequent discussion of bounded model checking (Section 
 IV) and induction (Section  V), this reduction to invariance 
checking is our starting point. 


III. IMPLEMENTATION 


A. Outline 


As described in Section  II.E, to construct an automaton 
for syntactically safe properties, there is no need to build the 
alternating Büchi automaton, but rather it is enough to 


construct an alternating automaton on finite words  A¬ψ
fin
. 


We then convert it into a non-deterministic automaton on 







finite words An using a subset construction algorithm as 


described in [22]. A subsequent application of the subset 
construction algorithm to the non-deterministic automaton 


produces a deterministic automaton Ad 
corresponding to the 


property [23]. 


Since the subset construction has an exponential worst-
case complexity, the two-step algorithm is doubly 
exponential in the worst case. It is also known that the 
doubly-exponential blow up is unavoidable when 
transforming an alternating automaton into a deterministic 
one [22]. We avoid such a blow-up by using two types of 
subset construction. 


A subset construction may be either explicit or implicit. 
In an explicit construction we construct explicitly all the 
reachable sets. In an implicit  construction each automaton 
state becomes a variable in the symbolic representation of 
the new automaton. We do the first subset construction (from 
alternating to non-deterministic automata) explicitly,  and 
then do the second (from non-deterministic to deterministic 
automata) implicitly. The explicit states built in the first 
construction become variables in the second construction. 
Since the implicit construction is linear, the blow-up of our 
two-step construction is at most exponential. In practice, we 
rarely see such a blow-up. 


B. Building the non-deterministic automaton 


Let  A¬ψ
fin
 = 〈2AP, Q, δ, q0, ∅〉 be the alternating 


automaton constructed for the syntactically safe formula ψ. 
The following is an equivalent non-deterministic automaton 


on finite words An = 〈2
AP
, 2


Q
, δn, {q0}, {∅}〉 , where  


)},( satisfies |{),( asTTaS
Ss


n δδ ∧
∈


=  


Our on-the-fly implementation generates the states of An 


on demand to avoid including all subsets of Q.  


1. Initially, only the set Q0 = {q0}  is generated. 


2. Suppose now that a set S has been generated. We take the 


conjunction )},({),( asaS
Ss


n δδ ∧
∈


=  and convert it 


into a disjunctive normal form (various optimizations from 


digital design can be used in this step). Every disjunct t1 ∧... 
∧ tk then yields the set { t1,...,tk }. 


C. Building the deterministic automaton 


Let An = 〈2
AP
, Q, δ, Q0, F〉, where δ: Q × 2


AP
 → 2


Q
. 


The implicit translation turns every state in Q into a Boolean 


state variable. The initial assertion is 
q


Qq
∨
∈ 0


. 


Each transition δn(q, a) = P now yields a transition 


constraint 'paq
Pp
∨
∈


→∧  (where a primed variable refers 


to the value of a state variable in the next cycle). 


D. Example 


Consider the following example (upon the property 
complementation): (Xa)U(Xb). A corresponding alternating 
automaton is shown in Figure 1. The non-deterministic 
automaton built as a result of the first subset construction is 
shown in Figure 2. The resulting deterministic automaton is 
described symbolically by the following system of equations: 


init(s0) = true 


init(s1) = false 


init(s02) = false 


init(fail) = false 


next(s0) = false 


next(s1) = s0 ∨ (s02 ∧a) 
next(s02) = s0∨ (s02 ∧a) 
next(fail) = s1 ∧ b. 


Thus, the safety property model-checking reduces to AG 


¬fail, where fail is a symbolic representation of the 
accepting state. s1 ∧ b. 


 


 
Figure 2. Non-deterministic automaton 
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Figure 1. Alternating automaton 







IV. BOUNDED MODEL CHECKING 


Model checking verifies the correctness of a finite-state 
system with respect to a desired behavior, specified as a 
temporal logic formula [3]. Model checking has two major 
advantages, namely, it is fully automatic, and in the case of 
failure it produces a counterexample (an erroneous execution 
of the system).  


The introduction of symbolic model checkers based on 
BDDs [6] increased their capacity to a point where formal 
verification became a viable approach in the hardware 
industry. But in spite of this increased capacity, it soon 
became apparent that state explosion was still a problem. A 
major breakthrough has been the introduction of bounded 
model checking (BMC) [7]. BMC is based on the 
representation of computation paths falsifying the 
specification in the form of a Boolean satisfiability problem, 
as explained below. 


As was shown in Section  II.E, checking that a non-


pathological safety formula ψ satisfies a finite state program 
can be reduced to the checking of the invariance property 
AG p over the synchronous composition of the system with 
the property automaton. Here p is ¬fail, where fail represents 
the accepting state of the property automaton (deterministic 
or non-deterministic). We now refer to the composite system 
as M. 


For a given bound k, BMC checks that p holds on all the 
paths of M of length k or less. Formally, we check the 
satisfiability of the following formula: 


W0(x0) ∧  path(x0,…,xk) ∧  (¬p(x0)∨ … ∨ ¬p(xk)) (1) 


where path(x0,…,xk) describes a path of length k: 


path(x0,…,xk) := R(x0,x1) ∧ … ∧ R(xk-1,xk)  


The formula (1) above is sent to a SAT solver. If it is 
found to be satisfiable, then the satisfying assignment is a 
trace of M violating p in less than k steps. Otherwise, we 
need to increase the bound k and repeat the same process. 


The use of bounded model checking has increased the 
size of models handled by model checkers; however, this has 
come at a price. We no longer get a fully certified answer to 
the verification problem but rather assurance that there are 
no counterexamples of a given length. This observation 
makes bounded model checking especially adequate for bug 
hunting (falsification). 


Figure 3 compares the running time of our BMC tool 
with non-deterministic and deterministic compilation on an 
Intel design block with about 1400 latches for 18 checkers. 
Each checker consists of automata for a cluster of several 
actual design properties related to a particular aspect of the 
design. The temporal properties tend to be rather simple, 
consisting of a small number of temporal connectives. (We 
have excluded from our comparison combinational 
invariance properties, as deterministic compilation has no 
impact on such properties.) The left bar in each pair of bars 
shows the BMC run-time for the deterministic compilation, 


while the right bar shows the BMC run-time for the non-
deterministic compilation. The deterministic compilation 
yields a systematic performance improvement that can reach 
an order of magnitude in several cases. (The improvement 
due to the deterministic compilation also holds when we 
consider checkers that consist of a single temporal property, 
though this is not reflected in the figure.) 
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We now offer an intuitive explanation for the advantage 
of deterministic over non-deterministic compilation for 
bounded model checking. The SAT solver searches for a 
satisfying assignment in the formula (1). Essentially, it 
searches for paths in the composite model M, which is the 
product of the system under verification and the property 
automaton. When the automaton is non-deterministic, the 
SAT solver has to find paths in both the system and the 
property automaton. In contrast, when the automaton is 
deterministic, the SAT solver has to find a path only in the 
system. In fact, given an assignment to system variables that 
corresponds to a path in the system, Boolean constraint 
propagation, a task that modern SAT solvers excel at, would 
drive an assignment to the automaton variables when the 
automaton is deterministic. Thus, deterministic compilation, 
even though it increases the size of the generated formulae, 
actually decreases the size of the search space for the SAT 
solver. (An additional factor may be the fact that our 
checkers comprise of several properties. This requires a 
discrimination mechanism that indicates which property 
failed when a checker fails. The discrimination mechanism is 
lighter for deterministic automata.) 


We believe that this explains the improved BMC 
performance in the case of deterministic compilation, but we 
have yet to validate this hypothesis by profiling the 
execution of the SAT solver during the BMC runs. 


V. INDUCTION 


SAT-based induction [21] complements BMC in that it 
can provide a full proof that the property holds (as opposed 
to the weaker guarantee that the property is not violated up to 
some finite bound). Using the same notation as in Section  IV 







 IVthe induction approach is based on two SAT checks. The 
first check, the induction base, verifies that the property P 
holds on all paths of length k. This is exactly the same BMC 
check as in the previous section: 


W0(x0) ∧  path(x0,…,xk) ∧  (¬p(x0)∨ … ∨ ¬p(xk)) (1) 


The second check, also called the induction step, verifies 
that for an arbitrary loop-free path of length k+1, if P holds 
in the first k states, then it holds in the last state too. In other 
words, it is enough to check that the following formula is 
unsatisfiable: 


path(x0,…,xk) ∧ loopfree(x0,…,xk) ∧  


 p(x0) ∧ … ∧ p(xk) ∧ ¬p(xk+1)               (2) 


where the loopfree constraint guarantees that all the states in 
the path are disjoint: 


loopfree (x0,…,xk) := ∧0≤i<j≤k xi ≠ xj  


An additional benefit of induction is that the induction 
step usually succeeds at very low bounds (20 or less), 
speeding up the whole verification process, because it is 
sufficient to apply the BMC check (the induction base) only 
up to the bound where the induction step succeeds. 


Figure 4 shows the advantage of using deterministic 
property compilation for induction-based verification. (We 
use here the same design block and checkers as in Section 
III.) These results compare the number of properties that are 
successfully proved by induction in  two modes of the 
compiler: the non-deterministic mode, where the resulting 
automaton is non-deterministic and the deterministic mode 
where the resulting automaton is determinized. As is seen 
here, induction is unlikely to succeed with non-deterministic 
compilation. 


The left bar in each pair of bars represent the number of 
properties successfully proved by induction when the 
automata are deterministic, while the right bar represents the 
number of properties proved by induction when the automata 
are non-deterministic. Here success is defined with respect to 
a timeout bound of one hour. Note that each checker contains 
multiple properties. 
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Figure 4. Properties passed by induction 


 


To explain this phenomenon, let M be a finite state 


program, let An denote a non-deterministic finite automaton 


that accepts all the counterexamples of a safety property f, 


and let Fn denote the accepting condition of An, which is 


basically a disjunction of entering one of the accepting states 


of An. Let Ad denote the deterministic finite automaton that 


comes out of a subset construction applied to An and let Fd 


denote the accepting condition of Ad . Let us consider the 


bound k in which the property AG ¬Fn is proved by 
induction in the synchronous composition model Dn = M || 


An.  We compare it with the bound l in which the property 


AG ¬Fd is proved by induction in the synchronous 


composition model Dd = M || Ad.  The phenomenon we 


observe is that in many cases l is strictly smaller than k, 
which is explained in the rest of this section. 


A. Example: f = Gp 


Consider the following non-deterministic An automaton 


that is built for f:
1
 


Here Fn is B and our property is AG ¬B.  The induction step 
tries to prove that a sequence of k phases of ¬B followed by 
B is not satisfiable by a loop-free path in the model Dn = M || 


An. Suppose now that p holds in Dn non-trivially. Note, 


however, that the induction hypothesis ¬B does not impose 
any restriction on the state of the finite state program 
uninit(M) (uninit(M) refers to the system M with all states as 
possible initial states); it is only the loop-free part that will 
make the sequence (¬B,…,¬B, B)  unsatisfiable in uninit(Dn) 
when k reaches the diameter of M.  Let us now apply a 


subset construction to An and build the automaton Ad that 


looks as follows: 


For this automaton, Fd is AB and the property is AG ¬AB.  
Note that in this case, the induction hypothesis ¬AB actually 
restricts the states of the finite state program uninit(M) to 
those that satisfy the condition p.  Hence, we are basically 
trying to prove that (p,…,p, ¬p) is not satisfiable in 
uninit(Dd)  by a loop-free path of length l.  Since here p does 
impose a non-trivial restriction on the behavior of the finite 
state program uninit(M) on top of the loop-free restriction, 
the induction step has a potential to succeed for l that is 


                                                           
1  An optimizing compiler would keep AG p as is rather than 


building an automaton.  Nevertheless, for the sake of simplicity, we start 


with this non-optimized example instead of choosing a more complicated 


property for which the automaton is not optimized out. 







much smaller than the diameter of uninit(M). See [26] for a 
related discussion. 


B. Example: Counter 


In this example we build a small model and try to prove a 
non-trivial property of that model. Consider the following 
code: 


var y; 


init(y) = 1; 


next(y) = y; 


var nd; 


var[3] count; 


init(count) = nd; 


next(count) = 


if y then count + nd + 1 


    else count; 


c0 := (count = 0); 


A0 := c0 & next next (c0 | next c0); 


assert p := always !A0; 


In this model we have a counter that is non-
deterministically initialized to either 0 or 1 (by the nd bit).  
Then, depending on whether y is constantly 0 or constantly 
1, the counter either stays constant or increased at every 
stage by 1 or 2 non–deterministically.  Since y is initialized 
to 1, the counter has no choice but increment at every stage. 
A0 is defined as two cycles at distance 2 or 3 in which the 
counter is 0, and the property p asserts that no such two 
cycles exist. Obviously, p holds in this model non-trivially, 
since removing the initialization of y to 1 makes p fail. 


Since the formula A0 contains a non-deterministic choice 
of either distance 1 or 2, the compiler builds a non-
deterministic automaton to check p. A proof by induction 
that this automaton never accepts succeeds only at bound 6. 
However, when compiling the same property into a 
deterministic automaton, the induction succeeds at bound 5. 


VI. CONCLUSION AND FUTURE WORK 


The results described in this paper show that there is a 
significant gain to be had from using deterministic 
compilation for SAT model checking, which has become the 
mainstream verification engines in the last few years. 


The next stage is to better understand BMC behavior on 
deterministic property automata versus non-deterministic 
property automata by instrumenting the SAT engine. We 
plan to investigate how the quality of the deterministic 
automaton built for the property affects model-checking 
performance. Possible directions are automaton 
optimizations. The most promising seems to be the 
optimization of the alternating automaton on finite words 


[24], since even small optimization of an alternating 
automaton leads to much smaller automata as a result of the 
subsequent subset constructions. Another possibility is the 
minimization of the non-deterministic automaton [23] before 
applying the implicit determinization to it. In particular, we 
need to find out if the advantage of deterministic compilation 
holds also for large properties, where the generated automata 
are also large. Together with [27], our work draws attention 
to the impact of compilation on SAT-based model checking 
for LTL properties. Such attention should also be extended to 
industrial property-specification languages such as PSL and 
SVA. 
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