Volume 12, number §

INFORMATION PROCESSING LETTERS

13 October 1981

THE DECISION PROBLEM FOR DATABASE DEPENDENCIES

M.Y. VARDI *

Department of Applied Mathematics, The Weizmann Institute of Science, Rehovot, Israel

Received 13 August 1980; revised version received 31 March 1981

Database, dependency, decision problem, recursive, rec' sively enumerable

1. Introduction

In the last decade a great deal of interest has been
aroused in sentences of first order logic which are ade-
quate as database constraints — the so called data
dependencies. Since the introduction of functional
dependencies by Codd [5], several additional classes
of dependencies have been investigated, e.g., multi-
valued dependencies [8,17], join dependencies [1,13],
etc. These classes are all syntactically specified. Re-
cently, there has been an effort to characterize these
sentences model-theoretically [4,9]. Chandra et al. [4]
define a dependency as a sentence that holds in the
trivial structure and is domain independent, i.e., the
truth or falsity of such a sentence in some structure is
independent of the domain, and depends only on the
relations of the structure. The decision problem for
dependencies is to decide whether a given sentence is
a dependency. We show that this problem is recur-
sively unsolvable. In fact, the set of dependencies is
not recursively enumerable. This is closely related to
the recursive unsolvability of the decision problem
for definite formulas of Di Paola [7].

2. Dependencies

The language L that we use is the language of first
order logic with equality with predicate symbols R,

* Current address: Department of Computer Science, The
Hebrew University of Jerusalem, Jerusalem, Isracl.

0020-0190/81/0000—-0000/$02.50 © 1981 North-Holland

R3, ... — the arity of R; is i, however, each sentence s
cortains at most one predicate symbol *. Thus, s(R;)
denotes the sentence s with the predicate symbols R,;.
A structure for L, M = (D, R;, R,), is finite if
D is finite. Unless explicitly stated otherwise, the struc-
tures dealt with are assumed to be finite. When con-
cerned with a sentence s(R;) we denote a structure by
(D, R;). A structure (D, R;) is empty if R; = ¢, is
trivial if |DI= |Ry| = 1, and is simple if for some
a€D,R; = {(g, ..., @)}. Note that a trivial structure is
simple.
A sentence s(R;) is domain independent if for
every two structures M, =(D,, R;) and M, =(D,,R;)
(i.e., different domains but the same relation), we
have M, Fsiff M; s, ie., s holds in M, iff it holds in
M;. (A domain independent sentence is called definire
in (7], permissible in (6], range restricted in [12], and
safe in [11]). A sentence s is a dependency if it is do-
main independent and holds in the trivial structure,

3. Some lemmas

Let R; be an i-ary relation, i > 1. We define the
projection of R;, denoted p(R;), as the i-1-ary rela-
tion:

P(R) = {(ay, ..., q;) for some ay,(a,...,apER;}.
! The assumption that the database consists of a single rela-
tion is called the ‘universal relation assumption’, Our

results clearly hold for sentences with several predicate
symbols.

Volume 12, number §

Let s(R;) be a sentence. By replacing each occurrence
of an atomic formula R;(v,, ..., v;) in s by 3xR;4,(v,,
.y Uj, X), where x is a new variable, we get a new sen-
tence s'(Ry4).

Lemma 1. (2) If (D, R;4;) Es" then (D, p(Rj4+1)) E s.
(b) If <D, R;) k s then (D, R, X D) k= 5'2,

Proof. For a formula f(R;), let f'(R;4() be the result
of applying the above transformation to f. For a for-
mula f(R;) with free variables x,, ..., xx and a struc-
ture M = (D, R;), we define T(f, M) as the set of mem-
bers of D¥ for which fholds in M, i.e.,

T, M) = {{ay, ..., a) KM, ay, ., ai) Ef}.

If k = 0 then T(f, M) = true if M E £, and T(f, m) =
false otherwise. It can easily be shown, by a routine
induction on the structure of f, that:

(@) T(f', <D, Ry41)) = T(f; (D, p(Ry+)’).

(®) T(/, <D, Ry) = T(f',{D, R; X D).
The claim follows as a specific case.

Let s(R;) be a sentence, and let x be a variable not
occurring in 5. We replace each atomic formula
Ri(vy, ..., v;) by the conjunctionvy =x A =~ A ¥ =X,
and prefix the resulting formula with 3x to get a new
sentence s,

Lemma 2. (a) Let M = (D, R;) be a simple structure.
M E s implies (D) k= 5*. (b) If (D) k= 5* and ¢ €D then
(D, {a, ...,a)}) Es.

Proof. Analogous to the proof of Lemma 1.

Let s(R;) be a sentence, and let x be a variable not
occurring in 5. We replace each atomic formula
Ri(vy, ..., v;) by x # x and prefix the resulting formula
with 3x to get a new sentence s°.

Lemma 3. (D, ¢) Fs if and only if (D) ks°,
Proof. Analogous to the proof of Lemma 1.

Lemma 4. The set of sentences having a non-empty
model is not recursive.

2 denotes the Cartesian product.

252

INFORMATION PROCESSING LETTERS

13 October 1951

Proof. By Lemma 3, s has an empty model iff s* is
satisfiable. Since s* is an equality sentence we can
effectively test whether it is satisfiable [13]. Thus, the
set of sentences having an empty model is recursive.
If the set of sentences having a non-empty model were
recursive, then the set of satisfiable sentences would
also be recursive. But the last set is not recursive [15]
~ a contradiction. The claim follows.

4. The main result

Theorem 1. The set of domain independent sentencss
is not recursive.

Proof. We show that the decision problem for senten-
ces having a non-empty model is reducible to the deci-
sion problem for domain independent sentences. Let
s(R;) be a sentence. We construct another sentence
t(Ri+1): 8" A 325 - 33 Ve Ris (8, ooy Xiaq).
has a non-empty model iff ¢ is not domain indepen-
dent: suppose first that s has no non-empty model,
then t has no model, hence, it is domain independent.
Suppose now that s has a non-empty model M =

(D, R;), then by Lemma 1, s’ has a non-empty model
M, =(D, R4,), where Rj4; =R; X D. M, is also a
model of 7. Let a be any element not in D, and let

M; =(D U {a}, Rj4;). Since M, ¥ t, t is not domain
independent.

A sentence s(R;) is weakly domain independent if
for every two non-simple structures ¥, =(D,, R;)
and M, =(D,, R;), we have M, Esiff M, ks,

Lemma 5. The set of weakly domain independent sen-
tences is not recursive.

Proof. We show that the decision problem for domain
independent sentences is reducible to the decision
problem for weakly domain independent sentences.
Let s(R;) be a sentence, If there are two simple struc-
tures M, ={D,, R;) and M; =(D,, R;), such that

M, Fsbut M, ¥ s, then s is not domain independent.
If, on the other hand, we have that either for all simple
structures M, M F s, or for all simple structures M,

M ¥ s, then s is domain independent iff s is weakly
domain independent. Suffice it to show that we can
effectively decide whether there are two simple struc-

Volume 12, number §

tures Ml L (Dh R‘) and M; = (Da,, R,), such that

M; Fsbut M, K s. By Lemma 2 and the known
results concerning equality formulas [2,13], this is the
case iff there are two domains D and D’, such that

(D) Es* and (D') ¥ s* where IDI=p, ID'| =q,p,q<
k + 1, and k is the number of quantifiers in s. The
claim follows.

Theorem 2. The set 0. dependencies is not recursive.

Proof. We show that the decision problem for weakly
domain independent sentences is reducible to the
decision problem for dependencies. Let s(R;) be a
sentence. We construct another sentence £: s A
ax(Rl(x’ "'!x) Ay Vyi(Rl(yl ’ ---.J’i) X
»1="=y;)). Obviously, ¢ holds in all simple struc-
tures and especially in the trivial structure. Also, s is
weakly domain independent iff ¢ is domain indepen-
dent. Thus, s is weakly domain independent iff tisa
dependency.

Corollary 1. The set of dependencies is not recur-
sively enumerable,

Proof. Obviously, the set of sentences which does not
hold in the trivial structure is recursive. Also, the set
of sentences which are not domain independent is
recursively enumerable. Hence, the set of all sentences
which are not dependencies is recursively enumerable.
Since the set of dependencies is not recursive, it fol-
lows that it is not recursively enumerable.

Corollary 2. The set of dependencies s(R;) is not
recursively enumerable.

Proof. Since the set of satisfiable sentences s(R,) is
not recursive [15], the result of Lemma 4 holds for
the sentences s(R;), and the results of Theorem 1,
Lemma § and Theorem 2 hold for the sentences s(R,).

Let us now admuit also infinite structures. A sen-
tence s(R;) is strongly domain independent if for
every two structures (finite or infinite) M, = (D,, R}),
and M; =(D,, R, we have M, Esiff M, Es. A sen-
tence s is a strong dependency if it is strongly domain
independent and holds in the trivial structure.

Theorem 3. The set of strong dependencies s(R,) is
not recursive.

INFORMATION PROCESSING LETTERS

13 October 1981

Proof. Since the set of satisfiable sentences s(R,) is
not recursive [3], we can prove the claim by repeating
the chain of arguments leading to Theorem 2.

Theorem 4. The set of strong dependencies is recur-
sively enumerable.

Proof. Suffice it to show that the set of strongly do-
main independent sentences s(R;) is recursively enu-
merable, for all i > 1. We show that the decision prob-
lem for strongly domain independent sentences s(R;)
is reducible to the validity problem for first order
logic with equality which is recursively enumerable
[10]. Let f be a formula, and let P be a unary predi-
cate symbol. If we replace every subformula Vx(g) or
3x(g)in f, by the formula Vx(P(x) - g) or 3x(P(x) A
g) respectively, then the resulting formula f(P) is said
to be obtained by relativizing f to P [14]. Let s(R;) be
a sentence, let P and Q be two unary predicate sym-:
bols, and let s(R;, P) and s(R;, Q) be the result of rela-
tivizing s to P and Q respectively. We construct three
sentences:

ty: Vxy o V(R Gey, ooy X3) = P(X3) A - A P(Xy)),
t2: Vxl " in(Rl(xb seny X|)"’ Q(xl) A A Q(xl))’
tity Aty (s(Ry, P) @ 5(R;, Q)).

The reader can verify that s is strongly domain inde-
pendent iff ¢ is valid,

Remark. The solvability of the decision problem
for the monadic predicate calculus [2,11] entails the
solvability of the decision problem for (strong)
dependencies s(R,).

Acknowledgement

I wish to thank Ron Fagin for his helpful com-
ments.

References

[1] A.V. Aho, C. Beeri and J.D. Ullman, The theory of
joins in relational databases, ACM Trans. Database Sys-
tems 4 (3) (1979) 297-314.

[2] W. Ackermann, Solvable cases of the decision problem
(North-Holland, Amsterdam, 1954).

253

Volume 12, number 5 INFCRMATION PROCESSING LETTERS 13 October 1981

{3] A. Church, A note on Eintscheldungsproblen, J. Sym-
bolic Logic 1 (1936) 40-41.

[4] AX. Clandra, H.R. Lewis and J.A. Makowsky, Em-
bedded implicational dependencies and their inferenice
problem, Proc. XP1 Workshop on Relational Database
Theory, Stony Brook (1980).

[5) k.F. Codd, Further normalization of the data base rela-
tional model, in: R, Rustin, Ed., Data Base Systems
(Prentice-Hall, Englewood Cliffs, NJ, 1972) 33-64.

[6] E.C. Cooper, On the expressive power of query langu-
ages for relational databases, Techn. Rep. TR-14-80,
Center for Research in Computing Technology, Harvard
University (1980).

{71 R. Di Paola, The recursive unsolvability of the decision
problem for the class of definite formulas, J. ACM 16
(2) (1969) 324-327.

[8] R. Fagin, Multivalued dependencies and a new normal
form for relational databases, ACM Trans. Database
Systems 2 (3) (1977) 262-~278.

{9] R. Fagin, Horn clauses and database dependencies, Proc.
12th Annual ACM Symp. Theory Comput. (1980)
123-134.

254

[10] K. Godel, Die Volistandigkeit der Axiome des Logischen
Funktionenkalkuls, Monatshefte Math. Phys. 37 (1930)
349-360.

[11] L. Lowenheim, Uber Moglichkeiten im Rehﬁvekalkul
Math. Ann. 76 (1915) 447-470.

[12] J.M. Nicolas, A property of logical formulas corre-
sponding to integrity constraints on database relations,
Proc. Workshop on Formal Bases for Data Bases,
Toulouse (1979).

[13] J. Rissanen, Theory of relations for databases — a tutorial
survey, Proc. 7th Symp. on Mathematical Foundations
of Computer Science, Poland, 1978, Lecture Notes in
Computer Sclence 64 (Springer-Verlag) 537-551.

[14] A. Tarski, A. Mostowski and R.M. Robinson, Undecid-
able theories (North-Holland, Amsterdam, 1953).

[15] B.A. Trachtenbrot, Impossibility of an algorithm for the
decision problem in finite classes, Dokl. Akad. Nauk
SSSR 70 (1950) 569-572; translated in: Amer. Math,
Soc. Trans. Series 2, 23 (1963) 1-5.

[16] C. Zaniolo, Analysis and design of relational schemata
for database systems, Techn. Rep. UCLA-ENG-7769,
Department of Computer Science, UCLA (1976).

