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Abstract. A class of dependencies, tuple and equality generating dependencies, is defined, and the chase
process is generalized to deal with these dependencies. For total dependencies the chase is an exponential
time decision procedure for the implication problem, and in some restricted cases.it can be modified to
run in polynomial time. For nontotal dependencies the chase is only a proof procedure. However,
several cases for which it is a decision procedure are shown. It is also shown that equality is redundant
for deciding implication of tuple-generating dependencies, and is “almost redundant” for deciding
implication of equality-generating dependencies.
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1. Introduction

One of the important issues in the design of relational database schemas is the
specification of the constraints that the data must satisfy to model correctly the
part of the world under consideration. These constraints determine which databases
are considered meaningful.

Of particular interest are the constraints called data dependencies or dependencies
. for short. The study of dependencies began with the Junctional dependencies in

'3 [21]. After the introduction of multivalued dependencies in [23] and [55], the field
became chaotic for a few years in which researchers introduced many new classes
of dependencies, for example, mutual dependencies [36], join dependencies 2, 42],
transitive dependencies [38], general dependencies [41], and subset dependencies
[46].

All these dependencies, however, have a similar semantics. Intuitively, the
meaning of a dependency is that if some tuples, fulfilling certain equalities, exist
in the database, then either some other tuples must also exist in the database, or
some values in the given tuples must be equal. In this paper we introduce the class
of tuple- and equality-generating dependencies, which seems to capture this intuitive
semantics. We believe that this class includes most cases of interest. Our attempt
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here is at unification rather than generalization. It enables us to deal with two
kinds of dependencies, rather than a large number of different classes of depend-
encies.

Most of the papers in dependency theory deal exclusively with various aspects
of the implication problem, that is, the problem of deciding whether a given set of
dependencies logically implies another dependency. The reason for the prominence
of this problem is that an algorithm for deciding implication of dependencies
enables us to decide whether two given sets of dependencies are equivalent or
whether a given set of dependencies is redundant. A solution for the last two
problems seems a significant step toward automated database schema design [10,
11, 16, 32, 51], which some researchers see as the ultimate goal for research in
dependency theory [8].

A decision procedure' for the implication problem for functional and join
dependencies called the chase was developed in [2] and [33]. This procedure is
generalized in this paper to tuple-generating dependencies and equality-generating
dependencies, and is shown to be a proof procedure for the implication problem
for these dependencies.? In several cases, however, the chase is also a decision
procedure, for example, if all dependencies are total. In some cases we also show
how the chase may lead to an efficient decision procedure.

Tuple- and equality-generating dependencies can be expressed as first-order
sentences [25, 37, 49]. Thus, it might be argued, there is no need to develop a
proof procedure for dependencies, since any proof procedure for first-order logic
will do. However, dependencies are just a fragment of first-order logic, a fragment
that seems to be suitable for expressing integrity constraints of databases, and we
would like to have a proof procedure that is specialized to this fragment. Our
specialized proof procedure, the chase, turns out to be quite useful. For example,
in this paper we use it to prove many decidability results, and in another paper
[15] we use it to devise a formal system for dependencies.

The outline of the paper is as follows. In Section 2 we define the relational
model, tableaux, total tuple-generating dependencies, and equality-generating de-
pendencies. The implication problem and the chase as a decision procedure for
implication of these dependencies are described in Section 3. We study the
complexity of the chase and investigate the role of equality in the chase. It is shown
that the result of the chase has a closure property that enables us to devise efficient
tests for the implication of multivalued dependencies. In Section 4 we define
general tuple-generating dependencies, for which the chase is a proof procedure.
We point out several classes of dependencies for which the chase is a decision
procedure. In Section 5, we conclude the paper by pointing out several possible
generalizations.

2. Basic Definitions

2.1. ATTRIBUTES AND RELATIONS. Attributes are symbols taken from a given
finite set U = {A,, . .., A} called the universe. All sets of attributes are subsets of
U. We use the letters A, B, C, ... to denote single attributes, and X, Y, ... to
denote sets of attributes. We do not distinguish between the attribute 4 and the set
{A}. The union of X and Y is denoted by X7, and the complement of X in U is
denoted by X.

! We distinguish between a decision procedure, which always halts, and a proof procedure, which may
run forever if the answer to the decision problem is negative.
2 Similar generalizations were studied in [28], [40], [43], and [54].
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With each attribute A4 is associated an infinite set, called its domain, denoted
DOM(A), such that DOM(4) N DOM(B) = @ for A # B. Let Dom = U,ey
DOM(A). For an attribute set X, an X-value is a mapping w: X — Dom, such that
w(4) € DOM(A) for all 4 € X. A tuple is a U-value. A relation is a set (not
necessarily finite) of tuples. We use the letters ¢, u, w, ... to denote tuples, and
I J, ... to denote relations.

For a tuple w and a set Y C U, we denote the restriction of w to Y by w[Y]. For
an attribute 4, we do not distinguish between w|4] (which is an A-value) and w(A4)
(which is an element of DOM(4)). Let I be a relation. The set of X-values in / is
IIX] = {w[X] | w € I}. The set of values in I is VAL(I) = U eu I[4]. For a tuple w,
VAL(w) stands for VAL({w}).

2.2. TABLEAUX. A valuation is a mapping A Dom — Dom, such that
a € DOM(A) implies A(a) € DOM(A) for all @ € Dom. The valuation 4 can
be extended to tuples and relations as follows. Let w be a tuple. Then A(w) =h o w
(° denotes functional composition). Let I be a relation. Then A(I) = {A(w) |
w € I}. Usually, we are interested only in a small subset of Dom, for example,
VAL(J). We let & be undefined for other values, and say that 4 is a valuation on I.

Let I be a relation, and let /# be a valuation on I. An extension of h to another
relation I’ is a valuation 4’ on I’, which agrees with 2 on VAL(J). If & is the
identity valuation on VAL(J), then we say that 4 is the identity on .

A tableau [3] is a pair T = (w, I), where w is a tuple and 7 is a finite relation,
such that VAL(w) € VAL(J). With each tableau T = (w,]), we associate
an operation on relations as follows: 7(J) = {h(w) | h is a valuation such that
h(I) C J}. Namely, T(J) is the set of images of w under all valuations that map
every tuple of I to some tuple of J. Observe that I C T(I), and that I C J implies
(I € T(J) (monotonicity).

LemMma 1[15). Let (u,I) and (v, J) be tableaux. We can effectively construct
a tableau (w, K) such that, for any relation L, (u, I}({v, J)(L)) = (w, K)}(L).

COROLLARY. Let {u, I), ..., {us I,) be tableaux. We can effectively construct
a tableau (v,J) such that, for any relation K, (uy, I)(- - -({tn, I,)(K))---) =
(v, HIK).

2.3. DEePENDENCIES. For any given application, only a subset of all possible
relations is of interest. This subset is defined by constraints that are to be satisfied
by the relations of interest. A class of constraints that has been extensively studied
is the class of dependencies.

As an example, consider functional dependencies [21], and multivalued depend-
encies [23, 55]. A functional dependency (FD) is a statement X — Y. It is satisfied
by a relation 7 if for all tuples ¢, t; € I, we have that if 1,[X] = [X], then #,[Y] =
1[Y]. A multivalued dependency (MVD) is a statement X ——s Y. It is satisfied by
a relation [ if for all #;, ¢, € I, we have that if #,[X] = £[X], then there exists a tuple
t € I such that ([ XY] = t,[XY] and {[XZ] = t,[XZ], where Z = XY.

Equality-generating dependencies generalize FDs. An equality-generating de-
pendency (EGD) says that if some tuples, fulfilling certain equalities, exist in the
database, then some values in these tuples must be equal. Formally, an EGD is a
pair {(a,, &), I}, where a, and a, are A-values for some attribute 4, and 7 is a finite
relation, such that a;, a, € I[4]. We also call this EGD an 4-EGD. A relation J
satisfies {((ai, az), I) if, for any valuation A such that A(I) C J, we have h(a;) =
h(a,). Note that, if a, = a,, then ((a,, a2), I} is trivially satisfied by every relation.
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Total tuple-generating dependencies® generalize MVDs. A total tuple generating

pendency (TTGD) says that if some tuples, fulfilling certain equalities, exist in
the database, then another tuple, whose values are taken from these tuples, must
also exist in the database. Formally, a TTGD is represented by a tableau 7 =
(w, I). A relation J satisfies T if, for any valuation 4 such that /(1) C J, we have
that (w) € J. That is, J satisfies Tif (J) =

Example 1. Let U = {4, B, C, D}, DOM(4) = {a0, al, ...}, DOM(B) =
{60, b1, .. .}, etc. Let T and J be the relations:

A B C D
I a0 b0 ¢t 4o
a0 bl c0 41

Let u be the tuple:

A B C D
a0 b0 0 40

Let d, be the TTGD (u, I). Then d, is equivalent to the MVD 4 —— C. Let 4, be
the EGD ((a0, al), J). Then d, is equivalent to the FD BC — A O

3. A Decision Procedure Jor Implication of Total Dependencies

3.1. THE IMPLICATION PROBLEM. For a set of dependencies D we denote by
SAT(D) the set of relations that satisfy all dependencies in D. D implies a
dependency d, denoted D = d, if SAT(D) C SAT(d). Thatis, D= dif d is satisfied
by every relation that satisfies all dependencies in D. If D, and D, are sets of
dependencies such that D, E D, and D, &= D, then D, and D, are equivalent,
denoted D, k= = D,. The implication problem is to test, for a given set of depend-
encies D and a dependency d, whether D = d. Algorithms that decide implica-

tion for some families of dependencies were investigated in (6], [7], [33], [34),
and [52].

LEMMA 2% Let D be g finite set of TTGDs. We can construct a TTGD d such
that D= = 4.

PROOF. Let D = {(u, 1), . .. > {Un, I)}. For any relation K, let TY(K) denote
(W, L)(- -+ ((tn, IY(K)) - - -)- By Lemma 1 we can construct a tableau (v, J) such
that, forall X, T YK) = (v, JNK). We claim that D = v, Jyand (v, Y ED.IfK e
SAT(D), then we can show that TK) = K, for n > J = 1, by backward induction

* The reason for this terminology will be clarified in Section 4.
* This result was independently proved in [26].
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on j. It follows that (v, J}K) = Kand K SAT((v, /). If K € SAT((v, J)), then
TAK), =K, for | < J < n, because if K C TYK), for some 1 < j < n, then K C
T'(K) = (v,J) (by the monotonicity property).’ Therefore, (u;, [)(K) = K, for
l=j=nand KESAT(D). O

3.2. THE CHASE. Intuitively, to test whether D = (w, I) (or ((a1, @), I}), we
“chase” I by D into SAT(D) and then check if w isin I (or if g, and a, are identical
in I). A chase of I by D is a maximal sequence of distinct relations I, I, . . . such
that / = I and I,,, is obtained from I, by an application of a chase rule. To each
dependency in D there corresponds a chase rule; TT-rules correspond to TTGDs
and E-rules correspond to EGDs,

TT-rule (for a TTIGD (w, J) in D). Ly is (w, J)(I,).

E-rule (for an EGD ((a,, a,), J) in D). Initially I,,, is I,. Now for some valuation
h on J such that h(J) C I,, identify A(a;) and h(a,) in I,.,.

We use “apply a dependency” instead of “apply a chase rule for a dependency.”

To make the E-rule unambiguous, we assume that DOM(4) is totaly ordered for
all attributes 4 in U, and, whenever two values are identified, the greater is identified
with the smaller. Given (w, I), we take w(4) as the smallest value in DOM(4).
(We can always rename the values in w and I so that this is true.) Similarly, given
((a1, a), I), we take a, and a, as the smallest values in DOM(4) and a < a,.
Thus, the values in w or g, do not change in the chase and g, can be identified
only with q,.

To trace the tuples of 7 in the chase, we adjoin to each tuple an ordinal number;
thatis I = {w,, ..., w,}. The ordinal numbers do not change during the compu-
tation of the chase, though the values in the tuples may change by the E-rules.
Thus, I, consists of the tuples wi, ..., wh (not necessarily distinct), which corre-
spond to the tuples w;, ..., w,, of I, plus other tuples, which were added ty TT-
rules.

LemMMA 3. Let I be a finite relation, let J be a relation in SA T(D), let h be a
valuation on I such that h(I) C J, and let I, be a relation in a chase of I by D. Then

(1) 1) CJ,
@) h(w)) = h(w}), 1 <j=<m.

PROOF. ' The proof is by induction on 2.

Basis (n=0). Trivial.
Induction.  Suppose that #(I,_,) C J and h(w;) = h(wr™"), 1<sj<m.

If 1, is obtained by a TT-rule, then w;™! = w. Hence h(w;™") = h(wr) = h(w;),
l =j < m. Let now ¢ be in I,; that is, for some TTGD (u, K) € D there is a
valuation g on X such that &(K) € I, and g(u) = ¢. But then 4 o g(K) C J, and
since J C SAT(D) it must be the case that h)=hogu)eJ.

If I, is obtained by an E-rule, then either wi™h = w” and hw)) = h(wr) =
h(w;), or some value in wi~! is changed by the E-rule. That is, there is an EGD
((a1, @2), K ) € D and a valuation g on K such that g(K) C I,_, and wi-l[A4] =
&(ay) is identified with v[4] = 8(ap) for some v € I,_,. But then 4 o g(K) € J, and,
since J € SAT(D), it must be the case that

WD = h © g(ar) = h © g(as) = h(YA]) = h(w]LA)).
Hence A(w]) = h(w?') = h(w)). O

* We use C to denote set containment and C to denote proper containment.
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Since we do not require any specific order for the application of the rules in the
chase, many chases are possible.

LEMMA 4. Let I be a finite relation. Then all chases of I by D are finite and
have the same last relation, which is in SA T(D).

Proor. There is a finite number of relations composed of values from 1. Since
an E-rule application eliminates values, and a TT-rule application adds new tuples
composed of values that already exist in the relation, all relations in the computa-
tion sequence are distinct and are contained in the relation consisting of all tuples
with values from I. Hence, all chases are finite. Let J be the result of a chase; that
is, J is the last relation in a chase. If J & SAT(D), then either there is a TTGD
(u, M) € Dand a valuation 4 on M such that h(M) C J but h(u) & J, or there is
an EGD {((a1, a2), M) € D and a valuation 2 on M such that A(M) C J but
h(a;) # h(az). In the first case a TT-rule can be applied, and in the last case an E-
rule can be applied—contradicting the assumption that J is the result of a chase.

Uniqueness of the last relation can be proved by the argument of [33, Lemma
5] with minor modifications using Lemma 3, or by the argument of [27]. We give
here a different proof for the case that D is a set of TTGDs. Suppose that two
chases yield two different results J, K € SAT(D). Then L =J N K € SAT(D),
because for all TTGDs (u, M) € D and valuations 4 on M, if (M) C L, then
M) C J and h(M) C K, and since J, K € SAT(D), u) € JN K = L. Also
I C L, because I C J and I C K. Suppose that J # K. Then either LC Jor LC K.
Assume that LC J. LetIo, ..., In= J be a chase of I by D, and let I, be the first
relation in the sequence such that L C Ii. There is a tuple ¢ such that t € I — L
and ¢ @ L. That is, for some TTGD (u, M) € D and a valuation h on M, we
have (M) C I, € Lbut h(u) =t & L-contradicting the claim that L € SAT(D). a

Let chasep(I) denote the unique last relation of all chases of I by D.
We can use the chase as a decision procedure.

Tueorem 1. Let D be a set of TTGDs and EGDs. Then

(1) DE (w, I) if and only if w € chasep(I);
(2) DE (a1, @), I) if and only if a; & VAL(chasep(I)) or az = ai.

PrOOF. chasep(]) is the last relation I, in some chase of I by D.

(If). Let J € SAT(D) be a relation, and let /4 be a valuation on / such that
h(I) C J. By Lemma 3, W) S J.

(1) Since w € I,, h(w) € J, 50 J € SAT(w, I)).

(2) Let a; = wi{4] and a; = wj[4], for some tuples w;, w; € I. To prove that J €
SAT((a1, @2), I), we have to show that u[4] = v[4], where u, vE J, u = h(wy)
and v = h(w;). If a, = a,, then we are done, so assume that a; # 4. Now, a
and a, are the smallest values in DOM(4 ), S0 @2 can not be identified with any
element except for a;. Since a; & VAI(],), it must be the case that a, was
identified with ay; that is, wi[4] = w}[4] = a.. But, by Lemma 3, h(w}) = u
and h(w?) = v, so u[d] = v[A].

(Only if). Clearly, w;[B] = w;[B] implies w;[B] = w;[B], for all tuples w;, w; €

I and for all attributes B € U. Thus, we can define a valuation /4 on I such that

hw)y=w}, 1 sism

(1) Suppose that w & I, h is the identity on w. Thus h(w) €& I, and I, € SAT(D)
— SAT((w, I))—contradiction.
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(2) Suppose that a; # a, and a; € VAL(I,). Thus, h(a)) = a # a; = h(a;) and
I, € SAT(D) — SAT({(ai, a2), I))—contradiction. [

Example 1 (continued). Let d be the TTGD (u, K):

A B C D
w a0 b0 _c0 _do
a0 b0 cl dl
K a0 bl 0 a2
al b0 0 do

Let E be {d,, d;}. We use the chase to show that E = d. We start by applying d; to
K, getting K;:

new tuple:
new tuple:

S2R88K

Now we apply d to K, getting K>:

B C D
b0 1 di
bl 0 a2
b0 ¢c0 40
b0 c0 di
bl ¢l d2

new tuple:

238383k

The new tuple is exactly u. Thus u € chaseg(K) and EF (u, K). O

A dependency d is trivial if @ & d; that is, d is satisfied by every relation.
Obviously a trivial dependency is a meaningless constraint.

LEMMA 5. A dependency d is trivial if and only if

(1) disaTTGD (w,I) and w€ I, or
(2) dis an EGD {(a\, a2), I) and a, = a,.

ProOF. The claim follows by Theorem 1 from the fact that chasex(I) = 1. U

3.3. COMPLEXITY ANALYSIS. Let d be (=, I) (» is either a tuple or a pair of
values), where | I| = mand |U| =n. Let I, I, . . ., I, be a chase of I by D. There
are at most m" tuples w such that VAL(w) C VAL(I). Thus, |[;| <=m"for 1 =j =<
p. To compute I, from I;, we have to find either a TTGD (u, J) € D and a
valuation 4 on J such that a(J) C I; but h(u) & I;, or an EGD ((a, a2), J) € D and
a valuation 4 on J such that h(J) C I; but h(a;) # h(az). Let s be the number of
symbols in D. For each valuation A, checking the above takes time O(sm”). There
are at most m* possible valuations on D. Thus comuting I;.; from I; takes time
O(sm™*). Since a TT-rule adds at least one tuple and an E-rule eliminates at least
one value, p < m" + mn = m". It follows that the computation of chasep(/) takes
time O(sm?"**). Checking for the conditions of Theorem 1 may take additional
time O(m"). Thus we have proved:
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THEOREM 2. Testing whether D implies d can be done in time O(sm***), where
s is the number of symbols in D, m the number of tuples in d, and n the number of
attributes.

Example 2. Let U= {4, B,C, Dy, ..., Dy}. For domains we take DOM(a) =
{a} x NS for all attributes a € U. For example, (4, 1) € DOM(A4) and (D), 2) €
DOM(D,). For clarity we usually omit the first element of the pair.

Let E={d——>BC,A——> Dy, ... ,A—— D,}, and let d be A —>— B. Observe
that the MVD X —— Y is equivalent to the TTGD (u, {v, w}), where X = {E |
V[E] = wlE]} and XY = {E | u[E] = v[E]}. In particular, A —— B is equivalent to
the TTGD (¢, I), I = {r, 5}, where f[A] = 4] = s[4] = 1, B) =Bl =1, s[B] =
2,{[C1=5[C}=2,rC)=1,ADi] =1, (D] = s[Di] = 2, for 1 < i < n. The reader
can verify that J = chaseg(I) is exactly

{u|u[d] = 1, u[B} = u[Cl =io, u[Dj] = i L =j=n,
where (i, ..., in} € {1, 2}}

Thus, | J| =2"". Butt & J, so E t d. That is, the chase adds an exponential
number of tuples before giving the negative answer E 7 d. U

Theorem 2 gives an exponential time upper bound for the implication problem
for TTDs and EGDs. An exponential time lower bound is proven in [19], and NP-
hardness results for some special cases are proven in [12] and [34]. In Section 3.5
we indicate how testing implication of MVDs can be done in polynomial time.

34. Tue RoLE oF EGDs. Equality is not an essential part of first-order logic.
That is, the equality predicate can be represented by any binary predicate symbol
by adding the necessary equality axioms. In [13] we show how this can be done for
dependencies expressed in the language of first-order logic. Since we assumed that
distinct attributes have disjoint domains, we can not employ this technique in our
formalism. Nevertheless, the role of EGDs can be “minimized.” We show here that
every EGD is equivalent to a conjunction of a TTGD and an FD, and that the
implication problem for TTGDs and EGDs is reducible to the implication problem
for TTGDs.

~ Let ebe an 4-EGD, e = ((a1, a2), I). Let w be a tuple such that wi{4] = @, and
for all attributes B € A, wi[B] & I[B]. Let w; be a tuple such that w,{4] = wy[4]
and wy[4] = a,. We associate with e two TTGDs. e is (wy, U {wy}), and e, is
(wy, T U {wy}). Intuitively, e, states that, given I, wherever a, appears, a; also
appears. More precisely, if a relation contains h(J), then for each tuple in it that
contains (a,), there exists a tuple identical to it except that h(a,) is replaced by
h(a,). Similarly, e, states that wherever a, appears, a, also appears.

Example 3. Let e be ((a0, al), J), where J is the relation:

A B C E
a0 b0 c0 d0
al b0 0 dl

e is equivalent to the FD BC — 4. w; and w; are the tuples:

A B C D
ws. a0 bl cl a2
wy al bl ¢l d2

$ N is the set of natural numbers.
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e, is the TTGD (wy, JU {wy}):

B C
cl
b0 0
b0 0
bl cl

D~
=

Q

SESREISS

Q

e, is the TTGD (w, JU {w\}):

A B C
al bl cl
a0 b0 0
al b0 0
a0 bl cl

NSRS

LemMMA 6. Letebea nontrivial A-EGD. Then el=={4 — A, e} and e ==
{A i A’ e2}‘

PROOF. We prove the claim for e,. The proof for e; is analogous.

Let J € SAT(e), and let u and v be tuples in J such that u[4] = v[4]. Define a
valuation % on I as follows: Let ¢ € I. If {A] = a;, then h(f) = u; else h(f) = v. It is
easy to see that A is well defined, h(a;) = u[4], and h(a) = v[A]. Since I satisfies e,
we must have that u[4] = v[4)]. Therefore, I satisfies 4 — A. We have shown that
e=A— A

To show that e = e, we prove that w, € chase(I U {w»}). Let h be the identity
valuation on I. Clearly, #(J) C I U {w,}. Applying e to I U {w,}, we identify
h(a;) = a, with h(a,) = a, and get w,.

To show that {4 — 4, e} E e, we prove that a; & VAL(chasei.4.(1)). To
compute chasegz_,4.e, (1), we apply first e, = (wy, TU {w2}) toget ;. Letu € I'be a
tuple such that u[4] = a,, then u € I, and there is also a new tuple v € I,, where
v[A] = a; and v[4] = u[A]. Applying 4 — A4 to I, we identify a, with ai, so a, &
VAL(chasejz_4(1)). O

Since a trivial EGD is clearly equivalent to some trivial TTGD and also to some
trivial FD, Lemma 7 entails that every EGD is equivalent to a conjunction of a
TTGD and an FD.

Let us consider first implication of TTGDs. Let D* be the result of replacing
each EGD e in D by the associated TTGDs ¢; and e;.

THEOREM 3. Let d be a TTGD. Then D &=d if and only if D* = d.

PROOF

(If). By Lemma 6, D = D*. The claim follows.
(Onlyif). Letdbe (u,J). D= d only if u € chasep(J). We show that chasep(J)
C chasep(J); hence u € chasep(J) and D* = d.

Let Jo, ..., J, be a chase of I by D. We describe a chase of I by D*:
Joy oy Jhs o, Iy such that J; € J/, for 1 < i < n. J§ is Jo, and clearly Jo € Js.
Assume that J; C J!. If Ji; is obtained by applying a TTGD to J;, then Jiy, is
obtained by applying the same TTGD to J;. Obviously, in this case Jis1 © Ji1. If
Ji+1 is obtained by applying an EGD e to J;, then J/4, is obtained by applying e, or
e, to JI. Let e be ((a1, @), I). Then ey is (w1, I U {wy}) and e, is (wz, T U {wy}).
Let ¢ € Ji, — Ji. Then ¢ was obtained by identifying v[4] with w[4], for some




A Proof Procedure for Data Dependencies 727
tuples v, w € J;, where v[4] = h(a;) and w[Ad] = h(ay) for some valuation h on |
such that A(J) C Ji. (The other case, v[a] = h(a>) and wid] = ha), 18 symmetrical.)
Recall that wi[A] = a; and all other values in w; are new distinct values. Thus, &
can be extended to w; so that h(w,) = v. But then we have h(I U {wi}) € Ji & Ji
and h(w,) = 1, so by applying e to J! we get t € Jix,. 1t follows that Jix1 € Jis1 and,
in particula#, J, € J5. Now J'e1, - .., Jm are obtained by application of TTGDs in
D*; thus J, € Ji{ forn < i < m. Hence, chasep(J) C chasep(J). O

Consider now implication of EGDs.

LEmMa 7. Let D be a set of TTGDs, an
only if e is trivial.

d let e be an EGD. Then D= e if and

PROOF

df). If eis trivial, then @ k= e and obviously D F e.

(Only if). Suppose that e is a nontrivial EGD ((ai, @), I); thatis, a1 # G But,
obviously, a: € VAL(chasep(I)), so D e 0O

THEOREM 4. Letebea nontrivial A-EGD {(a1, @2), I). Then D &= e if and only
if for some nontrivial A-EGD {(ai, @), J) € D and a valuation h, we have that
WJ) C chasep(I), ha;) = a, and h(a)) = a2

PROOF
(If). Since DF D*, DEeif DUD*Fe. Thus, it suffices to show that a, ¢
VAL(chasepu p«(I)). TO compute chasepu p(I), we apply first TTGDs in D* until

no more change is effected, that is, until we get chasep«(I) in the chase. By

assumption, there is an EGD ((a;, @), J) €D and a valuation h on J such that
h(J) C chasep<(]), h(a;) = a1, and ha)) = aa. Applying (@ &), J) to chasep«(]),
we identify a, with a,, s0 @ ¢ VAL(chasepup({ ).

(Only if). Letl, ..., I, be a chase of I by D. By assumption, for some 0=
k < n, an EGD {(a: @), Jy € D, and 2 valuation 4 on J, we have WJ) € I
ha) = a,, and h(aj) = a. Construct a chase of I by D*: 1o, ..., I, ..., m as
described in the proof of Theorem 3. We know that [, C Ik & 1 1 - thus, A(J) C
chasep«(I), h(a)) = ai, and h(a;) = a». Since a1 # az, also a; # aj; so {(as @), Jy is

nontrivial. O
COROLLARY. Ifeisa nontrivial A-EGD, then D= e if and only
there is a nontrivial A-EGD in D.

if D* = e, and

PROOF

(If). Assume that D*E e is
6, this nontrivial 4-EGD implies the FD 4 — 4. Again by

e

(Only if). Assume that DE e. By Lemma 6, DE ey, and by Theorem 3, D*E
e,. By the above theorem there is a nontrivial 4-EGD inD. O
Lemma 4 asserts that chasep(]) is invariant under
lication. The following lemma says that chasep(])

and there is a nontrivial A-EGD in D. By Lemma
Lemma 6, {4 — 4, &}

3.5. TupPLE CLOSURE.
changes in the order of rules app
is invariant also under certain changes in D.

Lemma 8. Let I be a finite relation. If D= d, then chasep(I) = chasepuia(1)-

PrOOF. By Lemma 4, to compute chasepua(/) we can apply the rules in any
order. Apply the rules for dependencies in D until no more change is effected, that
is, until we get the relation chasep(I) in the chase. But chasep(I) € SAT(D)
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SAT(D U {d}); hence, no more dependencies in D U {d} can be applied and
chasep(]) = chasepuiai(/). 0

Using the above invariance result, we derive the following closure property of
chasep(]).

THEOREM 5. Let I be a finite relation, and let w be a tuple such that VAL(w) C
VAL(I). The following statements are equivalent:

(1) DEMW, I),
(2) w € chasex(I), and
(3) (w, I(chasex(I)) = chasep(I).

PrROOF

(1 & 2) By Theorem 1.

(2 = 3) Suppose that w € chasep(/). By Theorem 1, D = (w, I). Hence, by
Lemma 8, chasepy (wy(I) = chasep (I). However, if chasep(I) C (w, I)(chasep(])),
then also chasep(l) C chasepy w,n)(I). It follows that (w, I)(chasep(])) = chasep(]).

(2 < 3) Suppose that (w, I)(chaser(I)) = chasep(l). We know (see the proof of
Theorem 1) that we can define a valuation 4 on 7 such that A(I) C chasep(]) and
h(w) = w. It follows that w = h(w) € chasep(). O

Theorem 5 has the following intuitive meaning. For a given relation I, the
TTGDs (w, I) that are implied by D are represented by the tuples that appear in
chasep(I). As shown above, this leads to regarding the chase as a decision procedure
for implication. In general, this procedure has the exponential time bound derived
in the preceding section. However, in some special cases, the set of tuples in the
chase can be described succinctly. For such cases, a more efficient procedure can
be found. Since our interest now is in the implication of TTGDs, we can assume
without loss of generality, by Theorem 3, that all the given dependencies are
TTGDs.

Let I = {w,, wy}, and let X = {4 | wi[4] = wy[A]}. Obviously, for all w € chasep(l),
we have w{X] = w[X] = wy[X]. We can characterize each tuple w € chasep(l)
by the set FIRST(W) = {4 € X| w[4] = wi[4]}, since w[X — FIRST(w)] =
wo[X — FIRST(w)]. By definition, FIRST(w;) = X and FIRST(w,) = @.

LEMMA 9. Let I = {w), wy}, and let D be a set of TTGDs. For all w', w" €
chasep(I), there exist tuples t\, t; € chasep(I), such that

(1) FIRST(t,) = FIRST(w') U FIRST(w"),
(2) FIRST(t;) = X — FIRST(w").

PROOF

(1) Let A be a valuation on I such that #(w;) = w’ and h(w,) = w”. By Theorem 3,
(w’, I(chasep(I)) = chasex(I), so h(w’) € chasep(]). But

FIRST(A(w")) = {4 € X | h(w')[4] = wi[4]}
= {4 € FIRST(W’) | h(w')[4] = wi[4]}
U {4 € X — FIRST(w’) | h(w")[A] = w[4]}
= {4 € FIRST(W') | w'[4] = wi[4]}
U {4 € X — FIRST(W') | w"[4] = w[4]}
= FIRST(w’) U (FIRST(w") — FIRST(w'))
= FIRST(w’) U FIRST(w").

So take ¢, to be A(w’).

i
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(2) Let h be a valuation on I such that A(w,) = w, and h(w2) = wy. By Theorem 5,
w)e chase(7). But

FIRST(h(W")) = {4 € X | h(w')[4] = wi[4]}
= {4 € FIRST(W') | h(w')[4] = wi[4]}
U {4 € X = FIRST(W') | h(w')[A] = wi[A]}
= {4 EFIRST(W) | wy[A] = wi[A]}
U {4 € X = FIRST(W') | w[A] = w;[4]}
=@ U (X - FIRST(w')) = X — FIRST(w").

So take #, to be A(w’). [

Note that (w, {w,, w,}) is equivalent to the MVD X ——s FIRST(w). Lemma 9
then is simply a restatement of the Boolean properties of the MVDs implied by D,
as given in [9].

The Boolean closure property can be used to test implications efficiently.

THEOREM 6. Let D be g set of TTGDs, let I = {w,, Wal, and let X = {4 |
wilA] = wy[A])}. There exists a partition of X into disjoint nonempty sets W, . . .,
W, 1 < m, such that for any tuple w, with VAL(w) C VAL(I), we have that w
chasep(1) if and only if Jor all i, 1 < i < m, either W: C FIRST(w) or W, N
FIRST(w) = @.

PROOF. By Lemma 9 the collection {FIRST(w) | w € chasep(7)} is a cover of
X that contains X and is closed under Boolean operations. The subcollection
of minimal nonempty sets is the desired partition of X as can be easily verified.
(This collection is the dependency basis of X with respect to D as defined in
[91and [23).) O -

To test if D = (w, I), one has to construct Wi, ..., Wn, and check for the
condition of the theorem. This can be done in polynomial time, Theorem 6 is the
key to the efficient algorithms for inferences of MVDs of [6], [34], [52), and [53].

4. A Proof Procedure for Dependencies

4.1. TUPLE-GENERATING DEPENDENCIES. As noted earlier, we cannot express
embedded multivalued dependencies (EMVDs) by TTGDs. An EMVD is a state-
ment X —— Y| Z. It is satisfied by a relation 7 if, for all L, 1 € I, we have that if
L[X] = t,[X], then there exists a tuple ¢ € I such that X Y] =4[XY] and 4XZ] =
LlXZ].

Tuple-generating dependencies (TGD) generalize TTGDs and EMVDs. A TGD
says that if some tuples, fulfilling certain conditions, exist in the database, then
some other tuples (possibly with some unknown values), fulfilling certain condi-
tions, must also exist in the database. Formally, a TGD is a pair of finite relations
(I, I). 1t is satisfied by a relation J if for any valuation 4, such that /(I) C J, there
is an extension A’ of Ato I’ so that h'(I')C J.

The class of TGDs and EGDs is equivalent to Fagin’s class of embedded
implicational dependencies [25], and is also shown in [54] to be equivalent to the
class of algebraic dependencies.

Example 4. Let I and L be the relations:

4 B C D 4 B C D
I a0 b0 c1 4 L: al b0 ¢cO0 40
ad bl c0 41 al bl ¢l di
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(L, I is a TGD. A relation J satisfies (L, I) if, for all ¢;, &, € J, we have that if
t[A] = t[A]; then there exist tuples s, s; € J such that s,[BD] = t,[BD], s:[C] =
t:;[C], s2[BD] = t,[BD}, and 5,[C] = u[Cl. O

If VAL(I’) € VAL(), then (I’, I) is total. If for all tuples w € I’ we have
VAL(w) & VAL(]), then (I', I) is partial. (Note that a TGD may be nontotal and
nonpartial.) Viewing a TTGD (w, I') as a TGD ({w}, I), we sce that a TTGD is a
special case of a TGD. By the following lemma there is no loss of generality in
assuming that every total TGD is of the form (w, I).

LEMMA 10. Let (I',I) be atotal TGD. Then (I', I) == {(w,I) | wE I'}.

PROOF. Let J be a relation, and 4 a valuation, on 7 (hence, also on I”) such that
WI) C J. X J € SAT(I', I)), then h(I’) C J. That is, h(w) € Jforallwe I'. It
follows that J € SAT({(w, I) | we I'}). If J € SAT({{w, I) | w € I}), then h(w) €
Jforallwe I’. That is, A(I’) C J. It follows that J € SAT((I’, I)). O

COROLLARY. Let (I’, I) be a total TGD. Then we can effectively construct a
TTGD (w, J), such that {I’, I} =3 (w, J).

PrOOF. The claim follows from the above lemma by Lemma 2. [
This justifies our definition of TTGD in Section 3.

The following condition for triviality generalizes Lemma 5(1).

LEMMA 11. A TGD (I’, I) is trivial if and only if there exist a valuation h,
which is the identity on I, such that h(I') C I.

PRrROOF

(If). Let J be a relation, and g a valuation on I such that g(I) C J. Consider
the valuation g ° h. Since /4 is the identity on 7, g o 4 is an extension of g to I’. But
hI"YCLsogoh(I'YCgl)CJ.

(Only if). Let h be the identity on I. Since I € SAT((I’, I})) and A(I) C 1, it
must be the case that 4 can be extended to I’ sothat A(/’)C 1. O

Theorem 3 can be generalized to deal with implications of TGDs by TGDs and
EGDs. Unlike the proof-theoretic proof of Theorem 3, the proof of the following
theorem is model theoretic.

THEOREM 7. Let D be a set of TGDs and EGDs, and let d be a TGD. D& d if
andonly if D*E d.

PRrROOF

(If). By Lemma 6, D = D*, The claim follows.
(Only if). Suppose that D* I~ d; then there is a relation J € SAT(D*) — SAT(d).
We construct a relation J’ € SAT(D) — SAT(d) to show that also D I~ d.

Let =, be an equivalence relation on Dom as follows: For each attribute 4 € U
and values a;, a; € DOM(A), a, =, a,, iff for all tuples « and v such that u[4] =
v[4], u[A] = a,, and v[{A4] = a,, we have that u € Jiff v € J. Intuitively, a, and a,
are equivalent if they look identical when seen from “within” J. We denote the
equivalence class of a by [a],, and we let a’ be a representative element of [a],
(a’ is independent of a). Let g be a valuation such that g(a) = a’, for all a € Dom.
Let J' = g(J). Observe that g is the identity on J’.
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Camm I. J'CJ

Letwe J. Choose an attribute A, and define a tuple v: v[4] = g(w[A]), V[4] =
w{A]. Since w[A] =, g(w[A4]) = v{4], v € J. By induction it follows that if we replace
any number of values in w by their images under g, the resulting tuple will be in
J. In particular, g(w) € J. It follows that J’ C J.

CLAIM 2. IfJ € SAT((K, I)), then J' € SAT({K, I}).

Suppose that J € SAT((K, I)). Let h be a valuation on I such that /(1) C J’. By
Claim 1, &(I) C J; hence, there is an extension A’ of A to K such that #’'(K) C J.
Since 4 and A’ agree on I, A(I) C J’, and g is the identity on J’, we have that 4 and
g © h’ agree on I. That is, g ° 4’ is an extension of 4 to K. But #’(K) € J, so
goW(K)CJ.

CLam 3. IfJ' € SAT(K, I)), then J € SAT((K, I).

Suppose that J' € SAT((K, I)). Let h be a valuation on I such that h(/) C J.
Now g o h(I) C g(J) = J', so there is an extension fof g © & to K such that f(K) €
J' C J. Let &’ be an extension of 4 to K such that, #’ agrees with fon VAL(K) —
VAL(I). We now show that 4’(K) C J. Let w € K. We know that f(w) € J. Choose
an attribute 4 and define a tuple v : v[4] = f(W)[4] and v[4] = K’ (W)[4]. If w[4] €
I[A), then f(W)[A] = g ° h(w)[4] and k' (W)[4] = h(w)[4]; so v[4] =, f(w)[4]. If
wlA4] € K[A] — I[A], then v[4] = f(w)[A). In either case v € J. As before, it follows
that #’'(w) € J.

CLAM 4. Let e be an EGD, and let e, and e, be the TTGDs associated with e.
IfJ € SAT (e, &3}), then J' € SAT{e).

Let e be (a1, a2), I), and suppose that J € SAT({e,, e2}). Let / be a valuation on
I such that A(I) C J’ C J. Let u and v be tuples such that u[4] = v[4], u[4] = hai),
and v[4] = h(a,). We can extend A to w; and w; so that h(w,) = u and h(w;) = v.
Since J € SAT({e,, e,)), it follows that u € J iff v € J. That is, A(a1) =; h(az) and
g(h(ay)) = g(h(ay)). But h(a,), h(az) € J'[A), so h(a)) = g(h(a1)) = g(h(az)) = h(a2).

CLAIM 5. J' € SAT(D) — SAT(d).

Since J € SAT(D*) — SAT(d), the claim follows by Claims 2—-4. [

We have seen that the chase can be used to test implication of TTGDs by
TTGDs and EGDs. It can also be used to decide implication of TGDs by TTGDs
and EGDs.

TueoreM 8. Let D be a set of TTGDs and EGDs. Then D= (I, I) if and only
if (I', chasep«(I)} is trivial.

PrOOF. By Theorem 7 we can assume that D = D* (i.e., D is a set of TTGDs).

(If). Let J € SAT(D), and let & be a valuation on I such that /(I) C J. By
Lemma 3, h(chasep(I)) C J. But (I’, chasep(I)) is trivial, so there is a valuation A’
on I’ U I, which is the identity on I such that h’(I’) C chase(I). Thus, k ° &’ is
an extension of A to I’, and h ° h’(I') € h (chasep(I)) C J.

(Only if). Since D k= (I, I and chasep(I) € SAT(D), it follows that chasep(/ )
€ SAT((I’, I)). Let h be the identity valuation on I. Now h(I) = I & chasep(]),
so there is an extension A’ of & to I’ such that A’(I’) C chasep(I). That is,
(I', chasep(I)) is trivial. O

COROLLARY. D E (I', I) if and only if there exist a total TGD (J, I) such that
D& (J, I), and for some valuation h which is the identity on I, hI'y=J.
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Proor. DE (I’, I) iff (I, chaseps(I)) is trivial iff there is a valuation A, which
is the identity on I, such that /(I") C chasep«(I) iff there are tuples wy, ..., Wx €
chaseps(I), k > 0, such that h(I') = {w,, .. ., wy) iff there are TTGDs (wy, ), .. .,
(wi, I) suchthat DE {(w, I} [ 1 =i = k} and h(I') = {w,, ..., wd iff DF {{w,
cowd, Dand (I ={wy, ..., wd. O

Note that since A(I’) = J, (J, I) =(I’, I). But h is the identity on I, so I’ is in
fact J with some values replaced by new values. We can view (I’, ) asa “weakened
version” of (J, I). Thus, the corollary above states that a TGD d is implied by a
set of total dependencies iff there is a total TGD d’ such that DEd,anddisa
«weakened version” of d’. This generalizes the projection completeness theorems
in [14] and [48].

Remark. Arguments similar to that of Section 3.3 show that deciding whether
D (', I can be done in time O(sm*™*s*°), where s, m, and n are as in Theorem
2, and e is the number of values that occur inl”butnotinl, O

42. A NONTERMINATING CHASE. The implication problem for TGDs is
known to be recursively unsolvable [13, 19, 49]; that is, the set {(D, dy| DEd}is
not recursive. However, since dependencies can be expressed as first-order sentences
for which the implication problem is partially solvable, the above set is recursively
enumerable. In this section we generalize the chase to TGDs. This generalized
chase constitutes a proof procedure for the implication problem

Trying to generalize our TT-rule to TGDs, we encounter difficulties, because the
new tuples, whose existence in the database is implied by the existence of some
other tuples, are only partly known. The solution is to replace each unknown value
by a new distinct value. Let (I, I) be a TGD and h a valuation on I. A distinct
extension of hto I’ is an extension 4’ of h to I’, where h’(a) is a new distinct value
for each a € VAL(I’) — VAL(I). There can be many distinct extensions of A to I’,
so we assume that there is some rule on how to select one of them when it is
needed.

(I', I) defines an operation on relations as follows:

(', (J) = U {f(I') | fis a distinct extension of a valuation A such that
h(I) C J but, for no extension g of hto I’, g(I') S J} U J.

Obviously (I’, I)(J) is defined up to renaming of the new values. Note that J C
r, n(J).
Our generalized chase rule is now:

T-rule (for a (J', Jy € D): Iy is (J', J)n).

Since this rule introduces new values, the chase may be infinite. We say that a
dependency is applicable in a chase if applying it produces a new relation. The goal
of the chase by D is to produce a relation in SAT(D). However, unlike the case
when D consists of TTGDs and EGDs where every chase by D produces a relation
in SAT(D), this is not so when D consists also of TGDs. Thus we require the
following;

(1) Whenever an EGD is applied, it should be applied as long as it is applicable.
(2) Every dependency that is applicable infinitely many times should be applied
infinitely many times.

We also assume that the domains are not only totally ordered, but also well
founded, so no value can change infinitely many times. LetI=1,, ..., I, ... be




A Proof Procedure for Data Dependencies

a chase of I by D. We define the result of this chase as

chase(I) = {w | there is some n such that for all m = n, w € I,,}.

Observe that, because the domains are well founded, chase(I) is nonempty.
Obviously, if all dependencies in D are TGDs then chase (I) = Ujso 1.

Lemma 3 still holds for the generalized chase, as the reader can easily verify.
Lemma 4 does not necessarily hold.

LEMMA 12. Let1 be a chase of I by D. Then chase(I) € SAT(D).

PROOF. Let (J', J) be a TGD in D, and 4 a valuation on J such that A(J) C
chase(I). But then, there are some 7 such that for all m = n, i(J) C I, and, by our
assumption on the order of rule application, there must be some m = 7 and an
extension 4’ of h to J' such that 4’(J’) C I,,. We claim now that there is a sequence
of valuations /y, hy, . . ., which are the identity on A(J), such that h; e b © ... o
ho © h’(J’) C Invi. The proof is by induction on i. For i = 0, Ay is just the identity
valuation. Suppose now that the claim holds for i. If I,.4;, is obtained from I,..;
by an application of a TGD, then Ius; C Ln+ir1, and Ay, is the identity valuation.
Otherwise, I.+:+, is obtained from I,.+; by identifying some value g, with another
value a,. If h; o - - © kg © h'(J) © Ln+iv1, then take ;4 to be the identity valuation;
otherwise, take 4;.1(az) = a; and A(a) = a for a # a,. Since no value can be changed
infinitely many times, there is some p = m such that for all i = p, A; is the identity
valuation. That is, for all i = p, h"(J’) C I,, where h” = h,© ... o hyo h’. So h” is
an extension of 4 to J’, and 4”(J’) C chase(I). Let ((a,, a2), J) be an EGD in D,
and let & be a valuation on J such that A(J) C chasep(/) but h(a,) # h(a,). But
then, there is some 7 such that for all m = n, A(J) C I,, and h(a,) # h(ax)—
contradicting our requirement for rules application. O

THEOREM 9. Let D be a set of dependencies. Then

(1) DE (I, I) if and only if for all chases 1 of I by D* there is a valuation h that
is the identity on I and W(I") C chase(l), if and only if there are a chase 1 of I
by D* and a valuation h that is the identity on I and W(I’) C chase(I).

(2) Let e be a nontrivial A-EGD ((a\, a), I). Then D [ e, if and only if for all
chases 1 of I by D we have a, & VAL(chase()), if and only if for some chase 1
of I by D we have a, & VAL(chase(1)), if and only if for all chase 1 of I by D*
there are a nontrivial A-EGD ((a;, a;), JY € D and a valuation h such that
h(J) € chase(l), h(a;) = a, and ha)) = a,, if and only if for some chase I of I
by D* there are a nontrivial A-EGD ((a;, a;), J) € D and a valuation h such
that W(J) C chase(l), Wa;) = a, and h(a;) = a,, if and only if D* = e, and there
is a nontrivial A-EGD in D.

PrOOF. The arguments are very similar to those in the proofs of Theorems 1,
4, and 8, and are left to the reader. O

Obviously, the conditions of the theorem are not effectively testable for infinite
chases. In practice, we can replace in the theorem “chase (I)” by “some I, in L.”
To test implication we compute the relations of the chase until the conditions of
the theorem are satisfied. If D I= d, then we are bound to get a positive answer. But
if D ¥ d, then we may chase forever.

4.3. SoLvABLE CASES. As noted before, the implication problem for TGDs is
recursively unsolvable. In this section we describe several solvability results.

In some cases solvability follows from the fact that the answer to the implication
problem is trivially negative.
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LEMMA 13. In the following cases D = d if and only if d is trivial:

(1) Dis aset of TGDs and d is an EGD.
(2) D is a set of partial TGDs and d is a TTGD.

PRrROOF

(1) The claim generalizes Lemma 7 and follows from Theorem 9.

(2) Let D be a set of partial TGDs and d be a TTGD (w, I). Suppose that d is not
trivial; that is, w & I. Then D = d iff for some chase I of I by D we have w €
chase(l). But for every TGD (J’, JyeDandatupleu€J’, there is an attribute
A such that wi4] & J[4]. Thus, for every valuation & on J, if A’ is a distinct
extension of A to J/, then h'(u) # w. It is clear that no application of a T-rule
can produce w, so w & chase(I) and D¥¥d. O

Though in general chases by TGDs are infinite, in some cases they are necessarily
finite. An attribute 4 is partial in a TGD (I', I) if I'[A] € ITA). It is partial in a set
D of dependencies if it is partial in some TGD in D. Let d be the TGD (J, I). We
define a binary relation =, on the tuples of J as follows:

(1) Usqg U

(2) If for some attribute 4, u[d] = v[A] & ITA], then u =, v.

(3) fu=gvandv=u4w, then u =4 w.

(4) u=4v only if it so follows from application of the above clauses.

Clearly, =, is an equivalence relation.

LEMMA 14. Let d = (J, I) be a TGD and J, . .., Ji be the partition of J to
equivalence classes as induced by =q, then (J,HEA{J, D 1=is=s k.

Proor. To see that the first direction of the claimed equivalence holds, note
that (J;, (J, I)(I)) is trivial, because JCJC W, D(I).So(J, )= (J;, I). We now
prove the other direction. Let D = {(Ji, Y11 =i = k] Let hbe the identity
valuation on /. We can construct a valuation A’ that is a distinct extension of 4 to
J and also a distinct extension to all of the J;’s because if u € J;and v € Jj, i # ),
then u[A] = v[A] entails u[4] € I[4]. Tt follows that there are a chase I of I by D
and a valuation g that is the identity on I and g(J ) C chase(I), so D= (J, I). |

TueoreM 10. Let D be a set of dependencies such that at most one attribute A
is partial in D, and let I be a finite relation. Then all chases of I by D are finite.

PrROOF. Let(J’,J) € D. By Lemma 14, we can assume without loss of generality
that | J'[4] | = 1. A T-rule fora TGD (J', J) € D produces tuples with new values
if A is partial in (J’, J), and for some relation I, in the chase, i(J) C I,, but for all
extension A’ of h to J’, h’(J') € I,. However, for all attributes B € 4, J'[B] &
J[BY; so h’ agrees with A on J ’[B]). It can not be the case that there is a relation
K C I, such that A()[A4] = K[4] and | K[4] | = 1, because then we can define
h'(J")[A] = K[A] and have A’'(J’) C I,. However, we have such K € In.1, because
in applying (J’, J) we add A’'(J’) to I, Clearly, this can happen only a finite
number of times, so only a finite number of new values can be added. It follows
that all chases are finite. [J

Our next result concerns template dependencies (TD). A TD is a TGD ([', I},
where | I’ | = 1. Note that a TD must be either total or partial. Template depend-
encies were introduced by Sadri and Uliman, who also developed the chase as a
proof procedure for functional and template dependencies [43, 44]. The implication
problem for TDs was shown to be recursively unsolvable in [29] and [50]. We now
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prove a solvability
chase by applying the rules in a specific order.

For each TD d = ({w}, I) we define an att
fl4}. Letdbea TGD (

such that wy[Y] = w{Y}, and all other values of wy

as a tuple such that wilX} = w{X], and wiX)
TTGD dy = (W,’,, IJ {Wy}).
Example 5. Letdbe the TD ({w, I}):

A B C D

results for TDs. The idea is that we can

735

force finiteness of the

ibute set TOTAL(d) = (A w4l €
wh, ), X = TOTAL(d), and Y € X. Define wy as a tuple

are new values; and define wy

= wy[X]. We associate with d a

E F

w a0 b0 c0 do

e0 f0

0 b0 c1 40
I a0 bl cO dl
al b0 c0 d2

el f1
e0 f2
2 f3

TOTAL(d) is {4, B, C, D, El.LetY=1{4, B, cl.
A B C D

Then dy is
E F

w. a0 b0 c0_do

e0 f4

a0 b0 cl d0
a0 bl cO di
al b0 c0 a2
a0 b0 c0 d3

I

el f1
e0 f2
e2 f3
e3 f4

THEOREM 11.
such that, for all TDs de D, wehave Y C TO
construct a set D' of dependencies such that D'

is a finite chase of I by D'.

Let D' = DU {dy| disaTD in
chase of I by D’. To this
applicable; that is,
Suppose that ¢ € In+1

PROOF. D).
that there is a finite
apply dy as long as it is
(wy, JU {WY})(In) = I
on J such that i(J) € In,
where h” is a distinct extension

not. Then for some u € I, tiY1
h(wy) = uand h(J U fw) € I It follows
an extension &’ of hto w
we have h'(w) € I,—contradiction. Now note
TGDs d € D, A1 &
rule applications introduce new values. Hence,

of h to w. We

COROLLARY.
such that for all partial
finite.

prooF. Letd = ({wh, I)
wy=wand dy = d. Otherwise, TOTAL() =
TGD. In both cases D F dy. It

The condition
corollary, howev
show another example in

Let D be a set of EGDs and TDs, and let Y be an
TAL(d) and D = dy.
= =i D and for any relation I there

for all extensions A’ of h

= y[Y]. Then h can
that h(w}) € In.
so that i’ (W)[X] = h(wh)X], where

Al forall4A € Y. It follows that only
this chase is finite. O

Let D be a set of EGDs and TDs,
TDsd€ D, Y = TOTAL(d). Then all chases

attribute set
Then we can

Clearly, D’ == D. We now show

end, before applying a TDd € D, we
if weapplyaTD d= (!
— I,; that is, there

w}, J) to I, then
is a valuation A
tow, h'(w)& I, and t = h'(w)
that {{Y] & I{Y]. Suppose
be extended to wy sO that
But then we can define
X = TOTAL(d), and
since Y € TOTAL(d) for all
a finite number of T-

claim

that

and let Y be an attribute set
by D are

beaTDin D. Ifdis total, then TOTAL(d) = U, so

Y, so wy = Wy and dy is a trivial

follows that all chases by D are finite. O

of Theorem 11 looks quite arbitrary and difficult to apply. The
er, 15 a straightforward application of Theorem 11, and we now
which the theorem can

be applied quite straightforwardly.
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Example 6. A first-order hierarchical decomposition (FOHD) [22] is a TTGD
(w, I) satisfying

(1) for some Y C U, w[Y] = u[Y]forallu€ I
(2) for all attributes 4 € Y, and distinct tuples u, v € I, u[A] # vi4].

Let (u, J) be an FOHD, I = {u, ..., w. Define Y = {4 | J{4] = ul4]}, and
X,={4e Y| uldl=uldl}, 1 =i= k. Note that Y, X, .. ., Xk is a partition of
U Let d = ({w}, I) be a TD such that TOTAL(d) is a union of Y and some of the
X;’s. That is:

(1) YC TOTAL(d);
(2) forall 1 i<k, either X; C TOTAL(d) or X; N TOTAL(d) = Q.

Let D = {(u, J), d}. We claim that D E dy. Assume, without loss of generality,
thatfor l < is=m, X; C TOTAL(d), and for m < i = k, X; N TOTAL(d) = 9,
where 0 < m < k. We show how to get wy in a chase of 1 U {wy} by D. Let h be a
distinct extension of the identity valuation on I to w; by applying d to Ko=1U
{wy} we get t = h(w) € K,, where {TOTAL(d)] = w[TOTAL(d)]. Since Y C
TOTAL(d), wy[Y] = {{Y]. We can now define a valuation g on J so that glu) =t
for | =i<m,and g(u)=wyform< i < k, and we have that g(u) = w¥. So by
applying (u, J) to K,, we get w}. 1t follows that if D is a set of dependencies such
that (u, J) € D, and all TGDs in D satisfy conditions (1) and (2), then Theorem
11 is applicable. This entails solvability for the problem of testing preservation of
dependencies under hierarchical decompositions [11, 32].

We have observed that the set {{D, dy |DEd}is recursively enumerable. Thus,
to show that it is recursive, it suffices to show that its complement D, d|
D ¥ d} is also recursively enumerable. Let I be a relation and w € I. The value
w[A] is nonrepeating in I, if for all other tuples u € I, u[A] # wl4]. An attribute A
is nonrepeating in 1, if for all tuples w € I, w[A] is nonrepeating in 1. For a set of
TGDs D and a TGD (I, I) we define the following property:

(+) For each attribute 4, if A is partial in D then:

(a) if w€ I’ and w[4] & 1[4}, then w{A]is nonrepeating in I’}
(b) if (J', J) € D, then A is nonrepeating in J.

TueoreM 12. The set {{D, d)| D t d and (D, d) satisfies (+)} is recursively
enumerable.

ProOF. It suffices it to show that if (D, d) satisfies () and D I d, then there is
a finite relation K € SAT(D) — SAT(d). Letd = (I, I}, and let I be a chase of /
by D. By Lemma 12, chase(l) € SAT(D) — SAT(d). For each attribute A4, leta’ €
DOM(A) be some fixed value such that a’ & I[4). Let hbe a valuation on chase(I)
defined as follows: For all attributes A and values a € chase(I)[4], ifa € I[A}, then
h(a) = a; otherwise h(a) = a’'. Clearly, h is the identity on I, K = h(chase(I)) is
finite, and 1 € K.

CrLamm 1. K& SAT(d).

Suppose that K € SAT(d). Let fand g be the identity valuation on I. Since
g(I) C K, there is an extension g’ of g to I’ such that g(I')S K We extend fto I’
in the following manner. Choose any tuple w € I’ and an attribute 4 € U. Since

7 The notation [22] for (u,J) isin fact Y »—> X, ..., X;.
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gweK= h(chase(I)), g'(w) = h(u) for some u € chase(l). If g’(w)[4] & I A4},
then also u[A] & 1A} and w{4] ¢ I[A). Since in this case A is partial in D, wi4] is
nonrepeating in /', and we can define f(W[A]) = ul4]. Finally, we get f(I') &
chase(I). By Theorem 9, D =, I y—contradiction.

CLamM 2. K € SAT(D).

Let (J',J) ED,and let g be a valuation on J such that g(J)C K. We define a
valuation fon J in the following manner. Choose any tuple w € J and an attribute
A4 € U. Since g(w) € K = h(chase(I)), g(w) = h(u) for some u € chase(l).
If g(w)[4] € I4], then fwd]) = gw)i4], and if gw)i4] & I14], then 4 is
partial in D and w{4] is nonrepeating in J: so we let f(W[4]) = u[A]. Thus, f(J) €
chase(I), and h ° f= g. But since chase(I) € SAT(D), there is an extension f” of f
to J’ such that f'(J") € chase(l). h o f’ is an extension of gtoJ and h o f'(J') c
h(chase()) = K. O

Theorem 12 can be slightly modified to include EGDs as well.

Example 7. A cross dependency 14, 40, 48] is a TD ({w}, I) such that all
attributes 4 € U are nonrepeating in I. (A cross dependency states that the relation
is a cross product of some of its projections.) It is easy to see that if D is a set of
cross dependencies and d is a cross dependency, then (D, d) satisfies (*). By
Theorem 12, the implication problem for cross dependencies is solvable. O

We refer the reader to [30] and [46] for some other solvability results for TGDs.

5. Concluding Remarks
The framework established in the preceding sections enables us to study several
possible extensions.

5.1. A MORE GENERAL DATABASE MopeL. The database model considered
here is quite restricted. First, we assumed that the database consists of a single
relation—the so-called universal relation assumption [8]. Also, we required that
distinct attributes have disjoint domains. Namely, we assumed that our relations
are typed or many-sorted. In practice, however, databases may consist of several
relations, and distinct attributes need not have disjoint domains, for example,
consider the attributes EMPLOYEE# and MANAGER#. Furthermore, on¢ may
wish to express constraints like “every manager is an employee.” These constraints,
called inclusion dependencies [24), are not expressible in our framework. It turns
out that our framework can be generalized to the unrestricted model, and many of
all our results carry over with minor modifications. We refer the reader to 1.

5.2. CONSTANTS. The values in our formalism are uninterpreted in the sense
that they serve as variables. Thus, although we can €xpress the constraint “a
borrower can borrow at most one book” by the functional dependency BOR-
ROWER# — BOOK#, we cannot express the constraint “borrower #12345 can
borrow at most one book”. To this end, we associate with each attribute A4 a set of
constants CON(4) € DOM(4). For any valuation / and a constant a € DOM(A4),
we require h(a) = a. Although dependencies without constants have the property
that, for any relation I and a set of dependencies D, I can be “chased” by D into
SAT(D), this is not the case for dependencies with constants, since it may happen
that an application of an E-rule requires the identification of two constants.
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5.3. BoOUNDED DOMAINS. In practice some domains may be bounded, not
only practically but also conceptually, for example, | DOM(SEX) | = 2. When
dealing with EGDs and TTGDs, this poses no problem. Our T-rule of Section 4
presupposes, however, that in each domain there is an infinite supply of values. To
account for the boundedness of a domain, we should be careful not to introduce
more values than available. (Clearly, if all domains are bounded, then the impli-
cation problem is solvable.) Implication of join dependencies with bounded do-
mains is treated in [24] and [31].

5.4. DISJUNCTIVE DEPENDENCIES. Recently, it has been suggested that de-
pendencies with disjunctive conclusion may be of interest [5, 45]. For example, a
disjunctive functional dependency is a statement X — Y + Z. 1t is satisfied by a
relation I, if for all tuples ¢, 2 € I, if u[X] = [X], then either #;[Y] = 5[Y] or
1[Z] = t[Z]. The domain boundedness constraint discussed above can also be
expressed as a disjunctive dependency. Our formalism can be generalized to include
disjunctive dependencies. For example, a disjunctive TTGD is a pair (I, I) of
finite relations I and I’ such that VAL(I') € VAL(/). It is satisfied by a relation J
if for any valuation A, such that A(I) € J, there is a tuple w € I’ such that h(w) €
J. We can also generalize the chase to disjunctive dependencies by treating it as a
tree search rather than as a straight-line search.

5.5. FINITE IMPLICATION. Since a database is inherently finite, there is a strong
justification to define a relation as a finite set of tuples. We say that a set of
dependencies D finitely implies a dependency d, denoted D ¢ d, if d is satisfied by
every finite relation that satisfies all dependencies in D. The finite implication
problem is to decide, for a given D and d, whether D ¢ d. Unfortunately, the finite
implication problem for TGDs is recursively unsolvable [13, 19, 49]. Furthermore,
it is not even partially solvable, which means that there can be no proof procedure
for finite implication. However, for all solvable cases dealt with in this paper, we
actually have shown that implication and finite implication coincide.

5.6. INFINITE SETS OF DEPENDENCIES. Throughout, we have assumed that D
is a finite set, an assumption that can be justified on practical grounds. It turns out
that there is a theoretical interest in characterizing implication by infinite sets of
dependencies, for example, in dealing with projection of TGD classes (see [25]).
Looking carefully at our definition of a nonterminating chase in Section 4.2, we
see that we have not used the finiteness of D. Thus, the chase is also a proof
procedure of implication from infinite sets of dependencies.

5.7. FORMAL SYSTEMS. A lot of effort has been devoted to the development of
formal systems for dependencies [4, 5,9, 17, 18, 35, 38-40, 47, 48]. Formal systems
enjoy several advantages over the chase. A formal system allows us to infer new
dependencies from given dependencies, whereas the chase only allows us to check
if a dependency is implied by given dependencies, but it does not tell us how to
generate new dependencies. It turns out that the chase is very useful in developing
sound and complete formal systems. In [15] we develop several formal systems for
TGDs and EGDs.

5.8. DEPENDENCIES AS FIRST-ORDER SENTENCES. We have already noted that
dependencies can be expressed as first-order sentences. Thus, one may wonder
about the relationship between our proof procedure, the chase, and known proof
procedures for first-order logic. It turns out that there is indeed a very strong
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connection between our procedure and the procedure of resolution and para-
modulation [20]. This connection will be described in a future paper.
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