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ABSTRACT

A class of dependencies - tLuple and equality generating dependencies -
is defined, and the "chase" process of [MMS] is generalized to deal
with these dependencies. For total dependencies the chase is an
exponential time decision procedure for the implication problem, and
in some restricted cases it caﬁ be modified to run in polynomial time.
For partial dependencies the chase is only a proof procedure, however,
we show several cases for which it is a decision procedure. It is
shown that equality is redundant for deciding implication of tuple
generating dependencies, and is "almost redundant" for deciding
implication of equality generating dependencies. By expressing
dependencies in the language of first order logic, we draw a

correspondence between the chase and refutation by resolution and

paramodulation.






1. INTRODUCTION

One of the important issues in the design of relational database
schemas is the specification of the constraints that the data must
satisfy to model correctly the part of the world under consideration.

These constraints determine which databases are considered meaningful.

of particular interest are the constraints called data
dependencies. The first dependencies to be studied were the
functional dependencies [Codd], which was followed by the gultivalued
dependencies {Fagi1,Zan]. Recently, a number of generalizations of
these dependencies have appeared: mutual dependencies [Nico1l, _join
dependencies [ABU,Riss]), transitive dependencies [Pall, general
dependencies [JP]},and gsubset dependencies [SW]. In this paper we
generalize all these dependencies, and define tuple generating
dependencies and equality generating dependencies. Intuitively, the
meaning of a dependency is that if some tuples, fulfilling certain
conditions, exist in the database, then either some other tuples must

also exist in the database, or some values in the given tuples must be

equal.

The decision problem for dependencies is to decide whether a given
set of dependencies logically implies another dependency. A decision

procedure(1) for the implication problem for functional and join

N We distinguish between a decision procedure, which always halts,
and a proof procedure, which may run forever if the answer to the
decision problem is negative.
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dependencies called the g¢hase was developed by [ABU,MMS]. This
procedure, generalized to tuple generating dependencies and equality
generating dependencies, is a proof procedure for the implication
problem. In several cases, however, the chase is also a decision
procedure, e.g., if all dependencies are total; in this case we also

show how the chase may lead to an efficient decision procedure.

The formalism we use is that of tableaux [ASU]. An alternative
formalism is that of first order logic with identity [Nico2]. By
describing the chase in the formalism of first order logic, we show
that it is in fact a refinement of a well-known proof procedure -

refutation by resolution and paramodulation [Ro,RW].

The outline of the paper is as follows. In Section 2 we define the
relational model, tableaux and dependencies. The implication problem
and the chase as a decision procedure for implication of total
dependencies is described in Section 3. We study the complexity of the
chase, and investigate the role of equality in the chase. It is shown
that the result of the chase has a closure property which enables us
to devise efficient tests for the implication of multivalued
dependencies. In Section 4 we define partial dependencies, for which
the chase is a proof procedure. We point several classes of partial
dependencies for which the chase is a decision procedure. In Section
5 we express dependencies in the language of first order logic, and
describe the correspondence between the chase and refutation by
resolution and paramodulation. We conclude the paper by pointing out

several possible generalization and their limitation in Section 6.
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It should be noted that the generalizations of dependencies to
tuple generating and equality generating dependencies was also done
independently by several researchers [Fag3,GJ,Pa2,YP,SUJ, though the
degree of generality differs from one to the other. The
generalization of the chase to tgd's was done also by [SU] and to a

certain extent by [Pa3].

2. BASIC DEFINITIONS

2.1 Attributes and Relations

Attributes are symbols taken from a given finite set U={A1,...,An}
called the universe. All sets of attributes are subsets of U. We use
the letters A,B,C,... to denote single attributes; and X,Y,... to
denote sets of attributes. We do not distinguish between the
attribute A and the set {A}. The union of X and Y is denoted by XY,

and the complement of X in U is denoted by'f.

With each attribute A is associated an infinite set, called its

domain, denoted DOM(A), such that DOM(A) n DOM(B) = ¢ for A £ B. Let

Dom = DOM(A1) ¥...0 DOM(A,). For a set X, an X-value is a mapping
w: X -> Dom, such that w(A) 6 DOM(A) for all A 6 X. A typle is a U-
value. A prelation is a set (not necessarily finite) of tuples. We

use the letters t,u,w,... to denote tuples, and I,J,... to denote

relations.



For an tuple w and a set Y ¢ U, we denote the restriction of w to Y
by wlY]. With each attribute A we associate the set of all possible A-
values, VAL(A) = {w[A] | w is a tuple}. Let I be a relation. The set

of A-values in I is I[A] = {a | w ¢ I and w[A] = a}.
2.2 Tableaux

A yaluation is a mapping h: Dom -> Dom, such that a ¢ DOM(A) implies

h(a) € DOM(A) for all a 6 Dom. h can be extended to tuples and

relations as follows. Let w be an tuple, then h(w) = h°w ( ° denotes

composition). Let I be a relation, then h(I) {h(w) | w6 I}.

Usually, we are interested only with a small subset of Dom, e.g., the

set of values in a relation I. We let h be undefined for other values,

and say that h is a valuation on I.

Let I be a relation, and let h be a valuation on I. An extensiopn of
h to another relation I%,is a valuation h' on I‘, which agree with h

on I. If, for all A ¢ U and for all a ¢ I[A], we have h(a) = a, then h

is the jidentity on I.

A tableay [ASU] is a pair T = <w,I>, where w is an tuple and I is a

finite relation, such that w[A] ¢ I[A] for all A G U.

T defines an operation on relations as follows.
T(J) = {h(w) | h is a valuation s.t. h(I) ¢ J}. Observe that
I¢ T(1).
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2.3 Dependencies

For any given application, only a subset of all possible relations is
of interest. This subset is defined by constraints which are to be
satisfied by the relations of interest. A class of constraints that

was extensively studied is the class of dependencies.

As an example consider functional dependencies (abbr. fd) [Codd],
and multivalued dependencies (abbr. mvd) [Fagl,Zan]. An fd is a
statement X->Y. It is satisfied by a relation I if for all tuples
t1,t2 ¢ I, we have that if t4{X] = t,[X] then t4[Y] = £,[Y]. An mvd
is a statement X->->Y, It is satisfied by a relation I if for all

t1,t2 ¢ I, we have that if t1[x] = tz[x] then there exists a tuple

t G I such that t[XY] = t,[XY] and t[XZ] = t,[X2], where Z = XY.

Generalizing fd's, an equality generating dependency (abbr. egd)
says that if some tuples, fulfilling certain conditions, exist in the

database, then some values in the database must be equal. Formally, an

egd is a pair <(a1,a2),1>, where a; and a, are A-values for some

attribute A, and I is a relation, such that a;,a, € I[A]). A relation J

satisfies <(a1,a2),1> if for any valuation h, such that h(I) ¢ J, we

have h(a1) = h(a2).

Generalizing mvd's, a total tuple generating dependency (@) (abbr.

ttgd) says that if some tuples, fulfilling certain conditions, exist

(2) The reason for this terminology will be clarified in Section 4.
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in the database, then another tuple must also exist in the database.
Formally, a ttgd is a tableau T = <w,I>. A relation J satisfies T if
for any valuation h, such that h(I) ¢ J, we have that w € J. That is,
J satisfies T if T(J) = J. Observe that we use T both as an operator
on relation and as a dependency. The meaning should be clear fron the

context.

3. A DECISION PROCEDURE FOR TOTAL DEPENDENCIES

3.1 Ihe Implication Problem

For a set of dependencies D we denote by SAT(D) the set of relations
that satisfy all dependencies in D. D Amplies a dependency d, denoted
D i= d, if SAT(D) ¢ SAT(d). That is, if d is satisfied by every
relation which satisfies all dependencies in D. The Admplication
broblem is to decide for a given set of dependencies D and a
dependency d whether D != d. Algorithms which decide implication for

some families of dependencies were invesigated by

(BB,Beer,MMS,MSY,Va1].

In the sequel D denotes a set of dependencies, and d denotes a

dependency.

3.2 Ihe Chase

Let D be a set of ttgd's, and let T=<w,I> be a ttgd. To decide whether
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D i= d we add to I all tuples as necessitated by the dependencies in
D, and then look for w. Such a process is called a c¢hase, since
inconsistencies in I are "chased out". The chase is performed by
applying the following T-rules to I, until no change is effected.

I-rule: For some T 6 D, add T(I) to I.

Since we do not require any specific order of T-rules applications,
many chases are possible.
Lemma 1. All chases of 1 terminate and yield a unique result, denoted

chase (I), such that chasep(1I) 6 SAT(D). <>

The chase can be employed as a decision procedure,

Iheorem 1. D i= <w,I> iff w € chasep(I). <

Intuitively, "chasing" with egd's consist of identifying values.
If D contains also egd's then the chase is performed by applying E-
rules and T-rules, until no more change is effected.

E-rule: For some egd <(a;,a;),J> € D and a valuation h such that

H(J) ¢ I, identify h(a,) and h(a,) in I.

We assume that for all attributes A ¢ U, VAL(A) is totally ordered,
and whenever two values are identified, the greater is identified with
the smaller. Given <w,I>, we take w[A] to be the smallest value in
VAL(A), for all A ¢ U. Given <(a1,a2),1>, we take aq,a, as the
smallest values in VAL(A) and a; ¢ a,. Thus, the values in w or aj,a

do not change in the computation of chaseD(I)_ It follows that Lemma

1 and Theorem 1 still hold.



To decide implication of egd's we use the following theorem.

Iheorem 2. D i= <(a,,a,),I> iff a, & chasep(I). <>

A dependency is tpivial if |=d, i.e., d is satisfied by every
relation. Obviously a trivial dependency is a meaningless constraint.
Lemma 2. A dependency d is trivial iff

a) d is <w,I> and w 6 I, or

b) d is <(a,,a,;),I> and a=zay. <

3.3 Complexity Analysis

We study here the complexity of deciding implication for ttgd's. The
analysis for ttgd's and egd's is similiar. Let d be <w,I>, where
1I{ = m. Thus, ichaseD(I): S.mn. Let the number of attribute values

k

in D be k, then there are m"™ possible valuations. Let the number of

tuples in D be 1, then checking each valuation takes O(n1°m") time.
Theorem 3. Deciding whether D {= d can be done in 0(s‘'m?™*X) time,

where s is the number of symbols in D and d. <>

3.4 The Role of Egd's

Given D and d, we can decide whether D |z d "almost" without

considering egd's.

Consider first the case that d is a ttgd. Let e be an egd in D,
e = <(a;,a,),I>. Let wy be a tuple such that w[A] = a,, and for all

attributes B # A, W1[B] ¢ I(B]. Let W, be a tuple such that
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WZ[Z] = w1fK] and wW,[A] = a,. We associate with e two tgd's. e is
<w1,IV twy}>, and e, is <w,,I U {wi}>. Let D' be the result of
relacing each egd e ¢ D by e, and e,

Lemma 3. e iz e, and e i= e,.

Theorem 4. Let d be a ttgd, D |= d iff D* |= d. <

Consider now the case that d is an egd, then D must contain some
egd's, otherwise:
Lemma 4. Let D be a set of ttgd's, and let d be an egd, then D |= d

iff d is trivial. <

Though if d is a non-trivial egd then egd's in D are necessary,
their role can be minimized.
dneorem 5. D i= <(a,,a,),I> iff for some egd <(aj,a),d> €D and a

valuation h, h(J) g,chasec:(l), h(ai) = a; and h(aj) = a5, <O

3.5 Iuple Closure

Let D1 and D, be sets of dependencies, and let d be a dependency.
Obviously, if D1 I= D,, then D4 i= d iff Dy U D, = d.

Lemma 5. D, i= D, implies chasey (I) = chase (I). ©
1

1 U Dy
Let I be a relation. For all w € chaseD(I), we have D |= <w,I>.
Thus, the tuples of the chase represent ttgd's implied by D.
Combining this with Lemma 5 we get the tuple closure property.
dheorem ©. For all w6 chasey(I), we have D |= w,I> and

<W,I>(chaseD(I)) = chasep(I). <



Using the closure property, we can design in some cases a plynomial
time decision procedure. Consider the case that I = {wl,wz}, and let
X={a| w.[A] = wy[Al}. Obviously, for all w ¢ chasep(I), we have

wiX] = w1[X] = wy[X]. We can characterize each tuple w € chasep(I) by
the set FIRST(w) = {A 6 X | w[A] = w [A]}, since w[X-FIRST(w)] = w,[X-

FIRST(w)]. By definition, FIRST(W1) = X and FIRST(WZ) = b,

Applying Theorem 6 we get a Boolean closure property.

Lemma 6. Let I = {w1,w2}. For all w ,w" 6 chasep(I), there exist

tuples t,,...,t, € chasep(I), such that:

a) FIRST(t1) = FIRST(w') U FIRST(w'').

b) FIRST(tZ) = FIRST(w') a FIRST(w ‘).

c) FIRST(t3) = FIRST(w') - FIRST(w ).

d) FIRST(tu) = FIRST(w' ) - FIRST(w').

Theorem 7. Let I = {w,,u,}. There exist a partition of X to disjoint
nonempty sets w1,...,wm, 1 £ m, such that w € chasep(I) iff for all i,

1£1i<m, either Wi_g FIRST(w) or W, n FIRST(w) = 6. <

To decide if D |= <w,I>, one has to construct W1,,.,,wm, and check
for the condition of the theorem. This can be done in polynomial
time. In fact, if |I{ = 2 then <w,I> corresponds to the multivalued
dependency X->->FIRST(w), and Theorem 7 is the key to the efficient
algorithms for inferences of multivalued dependencies of

[Beer,BV4 ,MSY,Vat].
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4. A PROOF PROCEDURE FOR DEPENDENCIES

4.1 Iuple Generating Dependencies

Generalizing ttgd's, a tuple generating dependency (abbr. tgd) says
that if some tuples, fulfilling certain conditions, exist in the
database, then some other tuples (possibly with some unknown values),
fulfilling certain conditions, must also exists in the database.
Formally, a tgd is a pair of relations <I',I>. It is satisfied by a
relation J if for any valuation h, such that h(I) ¢ J, there is an

extension h' of h to I' so that h'(I') ¢ J.

1f for all attributes A we have I'[A] ¢ I[A], then <I',I> is total,
and is partigl otherwise. Viewing a ttgd <w,I> as a tgd <{w},I>, we
see that a ttgd is a specific case of a tgd. By the following lemma
there is no loss of generality in assuming that every total tgd is of
the form <w,I>.
Lemma 7. Let <1',I> be a total tgd, then
I°,I> i= =} {<w,I> | w6 I'}.
Corolarry. Let <I',I> be a total tgd, we can effectively construct a
ttgd <w,J>, such that <I',I> = =| <w,d>. O

This justifies our definition of ttgd in Section 3.

The following condition for triviality generalizes Lemma 2(a).

Lemma 8. A tgd <I',I> is trivial iff there exist a valuation h, which

is the identity on I, such that h(I') ¢ I. <
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The chase enable us to decide implication of tgd's by ttgd's and
egd's.
Theorem 8. Let D be a set of ttgd's and egd's, then D |= <1',I> iff
<I‘,chaseD!(I)> is trivial.
Corolarrv. D |= <I',I> iff there exist ttgd's <w1,I>,...,<wk,I>,
k > 0, such that D |= {<wi,I> i 1<1i<k}, and for some valuation h

which is the identity on I, h(I") Q.{w1,...,wk}. <O
4.2 Non-terminating Chase

Trying to generalize our T-rule to tgd's we encounter difficulties,
because the new tuples, whose existence in the database is implied by
the existence of some other tuples, are only partly known. The
solution is to replace each unknown value by a new distinet value.
let <I',I> be a tgd and h a valuation. A distinct extension of h to I®
is an extension h' of h to 1', where for all attributes A, if
a 6 I'[A] - I[A] than h'(a) ia a new distinct value. Our generalized
chase rule is now:
I-rule: For some <J',J> 6 D and a valuation h such that h(J) ¢ I, but
for no extension h of h we have h'(J') ¢ I, add h*(J") to I

for some distinct extension h® of h to J°.

Since this rule introduces new values, termination of the chase is
not assured any more. If D is a set of tgd's, then we take chaseD(I)
to be any (possibly infinite) relation resulting from the chase, and
we have chaseD(I) (o] SAT(D)(3)-

Iheorem 9.
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a) D |= <I°,I> iff <I%,chase #(I)> is trivial.
b) D i= <(a,;,a,),I> iff for some egd <(ajy,ay),d> 6 D and a valuation

h, h(J) ¢ chasep#*(I), h(a;) = aq and h(aj) = ay. <

Obviously the condition of Theorem 9 are not practical if
chasep#(I) is infinite. In practice, we execute repeatedly, until a
positive answer is obtained, the following step:

apply T-rules a finite number of times, and test for the conditions
of the theorem.

If D i= d, then we are bound to get a positive answer. But if D |# d,
then we may chase forever. Thus, in general the chase constitutes a
proof procedure and not a decision procedure. Obviously, the set

{<D,d> { D {= d} is recursively enumerable. It is an open problem

whether it is recursive or not.
4.3 Solvable cases

Though the recursive solvability of the implication problem in general

is still open, we can show that it is solvable for several cases, the
simplest of which is of course the case where D consists of ttgd's and

egd's.

In some cases solvability follows from the fact that the answer to
the implication problem is trivially negative.

Lemma 9. In the following cases D |= d iff d is trivial:

(3) That is, we take the (possibly infinite) union of all intermediate
relation obtained during the chase.
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a) D is a set of tgd's and d is an egd.
b) D is a set of partial tgd's and d is a ttgd. <>
That is, an egd can not be equivalent to a tgd, and a partial tgd can

not be equivalent to a ttgd.

Though in general the chase does not terminate, in some cases does
terminate. An attribute A is partial in a tgd <I',I> if I'[A] £ I[A].
It is partial in a set D of dependencies if it is partial in some tgd
in D.

Theorem 10. Let D be a set of dependencies such that at most one
attribute A is partial in D, then the chase terminates.<>

This case includes of course the case that all tgd's in D are total.

In some cases we can force termination of the chase by applying the
rules in a specific order. We assume that all tgd's are of the form
<{w},I>. For each tgd d = <{w},I> we define an attribute set
TOTAL(d) = {A | w[A] ¢ I[A]}. Let d be a tgd <{w},I>, X = TOTAL(d),
and let Y be an attribute set Y ¢ X. Define Wy as a tuple such that
WylY] = w(Y], and all other values of Wy are new values; and define w}
as a tuple such that wi[x] = w[X], and w&[ij = wai]. We associate
with d a ttgd dy = <wy,I U (wyb>.

Iheorem 11. Let D be a set of tgd's of the form <{w},I>, and let Y be
an attribute set, such that for all d € D, we have Y ¢ TOTAL(d) and
D i= dy, then there is a chase that terminates. <

It seems that this theorem is useless because its condition D |= dY
may itself be recursively unsolvable. However, in some practical cases

it can be decided easily, enabling us employ the chases as a decision
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procedure.

We have observed that the set {<D,d> | D |= d} is recursively
enumerable. Thus, to show that it is recursive, it suffices to show
that its complement {<D,d> | D {# d} is also recursively enumerable.
An attribute A is pop-repeating in a relation I if |I[A)! = !I!. For a
set of tgd's D and a tgd <I',I> we define the following property:

(*) for all attributes A, if A is partial in D then A is non-

repeating in I°, and for all <J',J> € D, A is non-repeating in J.

Iheorem 12. The set {<D,d> | Di# d'and <D,d> satisfies (%)} is
recursively enumerable. <>

Theorem 12 can be slightly modified to include egd's as well.

A tgd <{w},{w;,w,}> is called a subset dependency (abbr. sd) [SW].

Let Z be an attribute set. A Z-sd is an sd <{w},I>, such that for some
W 6 I, we have Z = {A | w[A]= =w'[A]}.
Iheorem 13. [SW] For the class of Z-sd's, the set {<D,d> | D |£ d} is

recursively enumerable, <>

5. CHASE AND REFUTATION

The chase as described in the preceeding sections is a combinatorial
search for a counterexample to the implication D |= d. However by
describing the chase in the formalism of first order logic we show
that it is in fact a refinement of a well-known theoren proving

procedure - resolution with paramodulation [Ro,RW]. It is interesting
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to note that the use of resolution with paramodulation for deciding

implication of dependencies has already been advocated by [Nico2].

For simplicity we deal only with ttgd's and egd's.

6.1 FEirst Order Dependencies

Let us fix some specific order A4,ev,A, for the attributes of U. We
can take a tuple on U to be an n-tuple <a1,...,an> such that

ay Y DOM(Ai), and a relation on U is a subset of the Cartesian product

DOM(A)X...XDOM(A,).

The language we are going to use is that of first order logic with
equality with no function symbols and with one n-ary predicate sfmbol,
say R. Indexed y's are used as universally quantified variable
symbols, and indexed x's are used as existentially quantified variable
synbols. 1Indexed v's are syntactic variables ranging over variable
synbols. An atomic formula R(v1,...,vn) is a predicate formula, and an

atomic formula vy = vJ is an equality formula.

To express a dependency d = <*,I> (* is either a tuple or a pair of
values) as a first order dependency observe that:
a) A relation J satisfies d if for any valuation h on I a certain
implication is satisfied, where I serves as the antecedent, and %

Serves as the consequent. Thus, all values are essentially universally

quantified variables.

b) All values in * occur in I.
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Thus, d can be expressed by the sentence Vy1,,,Vyk(A1/\,,,/\Ap->B),
where

a) k,p > 1.

b) The A's are predicate formulas, and the set of variables oceuring
in them is exactly {y1,,..,yk}.

c) B is either a predicate formula or an equality formula.

d) A variable does not occur in two different argumet position of R,
and only variables which occur in the same argument position occur as
arguments of equalities.

Sentences of this kind are a special case of strict universal Horn

sentences, F

6.2 Refutation by Resolution and Paramodulation

We assume familiarity with theorem proving terminology as described in

(cLi.

To prove D {= d, we refute D U {~d}, i.e., we show that D U {~d} is
unsatisfiable. Let d be the sentence VY1.N-Vyk(A1/\.--/\Ap->B), then
“d is the sentence 3x1... Bxk(A1/\.../\Ap/\“B), where the yy's are
replaced by X;'s. To refute D V {~d} we must transform it to a
clausal form. The clause corresponding to a dependency

VYoo Vyu(Cy/A\. . /\C-3D) is "C4\/...\/"C,\/D. To transform ~d to a

clausal form we first Skolemize it and replace each universally

quantified variable X; by an individual constant aj. Thus, ~d is

transformed to a set of ground unit clauses {A1v-"'Apv~B}° Now we

have to refute a set of clauses S = {d1,...,dl,A1,...,Ap,“B}, where
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the clauses d, ... ,d; corresponds to the dependencies in D. S is
called a dependency clause set. To refute S we generate additional
clauses by resolution and paramodulation until the empty clause [] is

generated. If [] is not generated then S is satisfiable.

A positive unit hyperresolution is a hyperresolution in which the
electrons and the resolvent are positive literals. A strict upnit
paramodulation is a paramodulation in which both parent clauses are
unit clauses.

Lemma 10. Let S be an unsatisfiable dependency clause set, then S can

be refuted by positive wunit hyperresolution and strict unit

paramodulation.

Proof. The claim follows from a similiar result of [HW] for Horn

sets.

6.3 Chase vs Refutation

We describe now the correspondence between the chase as a decision
procedure for D {= d (by Theorems 4 and 5) and the refutation of S
(which is the dependency clause set for D Y {~d}) by positive unit
hyperresolution and strict unit paramodulation (by Lemma 10). In fact
the chase can be adapted to be a decision procedure for the solvable

class of Bernays-Schonfinkel sentences, filling a gap in [Jo].

1

Let d be <*,I>. The tuples of I corresponds to the positive unit
clauses of S, and * corresponds to the negative clause of S (either a

predicate literal or an equality literal). The chase is performed by
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adding tuples to I either by a T-rule for a ttgd in D, or by a T-rule
for an egd in D. (By "a T-rule for an egd" we mean a T-rule for the
two ttgd's which replace the egd in D*, as described in Subsection
3.4). The chase terminates when the condition for * (Theorem 4 and 5)
is satisfied, or when no more change can be effected., In the first
case D |= d, and in the last case D |# d.

Claim 1. A T-rule application for a ttgd corresponds to a positive
unit hyperresolution.

Indeed, let d° = <u,J> be a ttgd in D. To apply a T-rule for d°, we
find a valuation h on J such that h(J) ¢ I, and add h(u) to I. The
clause corresponding to d° is ~C1\/...\/"Cr,\/D, where the C's and D
are predicate formulas. To apply positive unit hyperresolution, we
find positive unit clauses Ai1""’Aip (corresponding to tuples of I),
and a most general unifier ¢ such that CJG'= Ai;r , 1£3&r, to
get the resolvent DC . Thus, the valuation h corresponds to the most
general unifier € , and the added tuple h(u) ’eorresponds to the
resolvent D .,

Llaim 2. A T-rule application for an egd corresponds to a positive
unit hyperresolution followed by a sequence of striect unit
paramodulation.

Indeed, let e = <(ai,aj),J> be an egd in D. To apply a T-rule for e,
we replace e by two ttgd's e, and e, (see Subsection 3.4), and apply a
T-rule for €4 and e,. That is, we find a valuation h on J such that
h(J) ¢ I, and for any tuple t 6 I, with t[A] = h(ai), we add to I
another tuple t° such that t‘[A] = h(aj) and t'[al=t[A], and for any
tuple t € I, with t[a] = h(aj), we add to I another tuple t', such

that t'[A] = h(a;) and t'[a] = t[X]. The clause corresponding to e is
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"C4\/...\/7CL\/D, where the C's are predicate formulas and D is an
equality formula vy, = Yj+ By positive unit hyperresolution we
generate a resolvent y, (= YJC , for some most general unifier €, and
then by strict unit paramodulation we generate modulants by
interchanging yi( and Yj €, vhere ever they occur in the positive
unit clauses of S. This corresponds to the addition of tuples to I be

interchanging h(ai) and h(aj).

Consider the case that d is <w,I>, If D |= d, then eventually the

chase will add the tuple w to I. Correspondingly, the clause B will be

generated, and B and "B resolve to [].

Consider the case that d is <(a1,a2),1>. If D |z d, then
eventually, for some egd <(ai,aJ),J> in D and a valuation h on J such
that h(J) ¢ I, we have h(ai) = a, and h(aj) = a,. Correspondingly, by
hyeprresolution we generate a positive literal a4 = a,, which is

complementary to ~a1 = ay, and the two resolve to [].

In general, a tgd is expressed as a strict universal-existential
Horn sentence. Thus, Skolemization introduces function symbols. The
new values generated by the chase corresponds to higher order ternms

generated by resolution.

6. CONCLUDING REMARKS

The framework established in the preceeding sections enables us to
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study several possible directions.

6.1 Non-disjoint Domains

In Section 2 we required that DOM(A) n DOM(B) = ¢ if A # B. 1In
practice, it may be that A # B but DOM(A) = DOM(B), e.g., consider the
attributes EMPLOYEE# and MANAGER#. It turns out that almost all our
results (except for solvability results) carry over to the
unrestricted case with minor modification. However, note that in
[BV2] it is proven that the implication problem for tgd's, with

U = {A,B} and DOM(A) = DOM(B) is unsolvable.

6.2 Several Relations

Most of the research in dependency theory is done under the assumption
that the database consists of a single relatidn - the universal
relation assumption [BBG]. Recently, this assumtion has been assailed
as highly impractical [HLY,Ke]l. By adjoining to each tuple a relation
name, our dependencies can be both interrelational and
intrarelational. However, even for a universe U = {A,B} with disjoint
domains, the existence of two relations on U yields unsolvability of

the implication problem [BvV2].

6.3 Constants

The values in our formalism are uninterpreted in the sense that they

serve as variables. Thus, while we can express the constraint "a
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borrower can borrow at most one book" by the functional dependency
BORROWER#->BOOK#, we can not express the constraint "borrower #12345
can borrow at most one book". To this end, we associate with each
attribute A a set of constants CON(A) ¢ DOM(A). For any valuation h
and a constant a ¢ DOM(A), we require h(a) = a. While dependencies
without constants have the property that for any relation 1 and a set
of dependencies D, 1 can be "chased" by D so that chaseD(I) € SAT(D),
this is not the case for dependencies with constants, since it may
happen that an application of an E-rule requires the identification of
two constants. Also note that the introduction of constants entails

the unsolvability of the implication problem [BVZ2].

6.4 Bounded Domains

In practice some domains may be bounded, not only practically but also
conceptually, e.g., {DOM(SEX)! = 2. When dealing with egd's and ttgd's
this poses no problem. However, our T-rule of Section 4 presupposes
that in each domain there is an infinite supply of values. To account
for the boundedness of a domain we should be careful not to introduce
more values than available. (Clearly, if all domains are bounded then

the implication problem is solvable).

Most of the formalisms for dependencies do not refer directly to
the domains. If some domain is bounded, then it is preferable to use
our formalism, which refers directly to the available values.
Implication of Jjoin dependencies with bounded domains is treated in

(Fag2].
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6.5 Disjunctive Dependencies

Recently, it has been suggested that dependencies with disjunctive
conclusion may be of interest [AD,SPDF]. For example, a disgjunctive
functional dependency is a statement X->Y+Z, It is. satisfied by a
relation I, if for all tuple't1,t2 ¢ I, if t,[X] = t,[X], then either
t1[Y] = t,[Y] or t4{Z] = t,[Z]. Our formalism can be generalized to
include disjunctive dependencies. For example, a disjunctive tgd is a
pair <I"I>dis‘ It is satisfied by a relation J if for any valuation
h, such that n(I) ¢ J, there is an extension h® of h to I' so that for
some tuple w € I° we have h'(w) C J. We can also generalize the chase
to disjunctive dependencies by treating it as a tree search rather

than as a straight line search.

6.6 Finite Implication

Since a database is inherently finite, there is a strong justifieation
to define a relation as a finite set of tuples. We say the a set of

dependencies D fipitely implies a dependency d, denoted D :? d, if d

is satisfied by every finite relation which satisfies all dependencies
in D. The finite implication problem is to decide, for a given D and
d, whether D {5 d. The solvability of this problem is also an open
qgestion. It is even more intracteble than the implication problem,
since the is not even e proof procedure for finite implication. In
fact, existence of a proof procedure for the finite implication

problem entails its solvability (BVZ2].

-23-



b.7 Eormal Systems

A lot of effort has been devoted to the developement of formal systems
for dependencies [AD,Arm,BFH,Bisk1,Bisk2,BV,Mend,Pa1,Pa2,Sc,Va2,Va3].
Formal systems enjoy several advantages over the -chase. A formal
system allows us to infer new dependencies from given dependencies;
wheras the chase only allows us to check if a dependencies is implied
by given dependencies, but it does not tells us how to generate new
dependencies. It turns out that the chase is very useful in developing
sound and comlete formal systems. In [BV3] we develope several formal

systems for tgd's and egd's.
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