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Our first objection to this proposal is that weak satisfaction now becomes different
from standard satisfaction for single-relation databases. For ai"ﬁﬁlf“ if all the
dependencies are total tuple-gene raizgz@d endencies (such as multivalued and join
dependencies), then any database state satisfies aﬁy set of devené@uczes In partic-
ular, every single relation can be Eﬁ&dﬁ into a weak instance for ifself by adding a
finite number of tuples to it [6, 19].

A second, related, Gb;emtz(m is that this proposal does not scern o capture the
intuifive semantics of tuple-generating i sendencies in multirelation daiabases
either. Consider, for example, the fﬁiisvﬁﬁg_, da%a%as&

Example |

i, Hy
Student  Course Course  Room  Hour
Jack 5178 CRI78 B21S5 0 MG
8T8 H213 Wi

Studeni Roowm  Howr
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and dependencies {SH —» &, RH - O, O 5 "%ﬁg

The multivalued dependency C - 5| BH is intended 1o express the fact that
2 student is associated with every {1, /1) pair such %z\ SOmE COuTse that the student
takes meets at roorn r ai time & This coustraint is intuitively violated in the
example, since Jack is not associated with room ‘%?%2 on Wednesdays at 10,
although he is taking C5378.

An alternative approach to defining satisfaction is throngh the notion of complere
siaies. introduced for a different purpose in {221, We say that a state is complete if
it coniains each tuple that ag}pﬁam in the projections of every weak instance for the
state. The staie in Bxample | is not complete, because every wealk instance for it
contains the subtuple (Jack, BZ213, W10), which does not appear in #;. When
only tuple-generating dependencies are given, completeness coincides with the
standard notion of satisfaction on single-relation databases.
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An objection to the completeness criterion is that it seems unnatural for equality-
generating dependencies such as functional dependencies. Consider the following
example:

Example 2

,éj%; ﬁg
Studemnt Course Course Room Howr
Jack 5378 CS378 B215  MID
sy

Student Roow  Hour

Jokin #3720 Hid

with the only dependency O — BH,

This s not a complete state, since the subtuple (Jack, B215, 310 will be forced
by € —» RH to appear in every weak instance, but it does not appear in Rs.
However, it is hard to argue that this state violares the € - R dependency, which
simply requires that each course be associated with 2 unique E{}Si”ﬁ and time,

In sum, we have described two notions of dependency satisfaction, consistency
and compleieness. Consistency is the natural generalization of weak satisfaction
and seems appropriate when only equality-generating dependencies are given, but
disagrees with the standard notion in the presence of tuple-generating dependencies.
Completeness is based on the intultive semantics of tuple-generating dependencies
but appears unnatural for equality-generaiing dependencies. It is our thesis that
neither approach is the correcs one, but rather than they correspond to different
policies on constraint enforcement, and each one is appropriate in different
circumsiances.

After introducing definitions and noiation in Section 2, Section 3 presents the
notions of consisiency and compleieness. We show how to construct for a database
state p two sets of frst-order sentences, €, and K, such thai s is consistent with
the given dependencies if and only if €, is finitely satisfiable and p is compleie
with respect to the given dependencies if and only if &, is finitely satisfiable. In
Section 4, we characterize consisiency and completeness in terms of the chase of
the associated tableaux [22]. When all dependencies are total, our resulis provide
a decision procedure {or festing consi tency and completeness of a state. However,
we show that testing whether a state is in nt with a typed equality-generating
dependency and testing whether a siate is incompleie with respect 1o 2 join
dependency are both WP.complete problerns, Furthermore, t z. g?‘iiéﬁié: problems
of testing consistency and o¢ ompleteness un nder full dependencies are shown to be
compleie in exponential time. In Section ’E we study the ff, cision problem for
consisiency and completeness when embedded dependencies are present. By relat
ing consistency and completeness (o z:h% well-studied guestion of dependency

COTSIS

RS I%]
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implication, we show that both are undecidable in the general case. Finally, in
Section 6 we examine the construction of seis of sentences similar 1o C, and £,
but without using a predicate that stands for the universal relation scheme. We
show that this can %}ﬁ done when the database scheme is weakly cover-embedding,
a necessary condition for independence of the database scheme [15].

Our results deal with Efﬁi‘/ﬁfff relations and dependencies, that 15, a value may
appear in different columns of a relation. However, all of the results, except for

Theorems 8, 9, and 15, can be specialized to the typad case.

2. Definitions and Notation

2.1 KRELATIONS, DATABASE 3’%",@"{‘%3 AND Tasrpaux. We fix a3 finile set of
attributes called the universe, I == {A,, ..., A,}. Each attribute 4, has an associated
infinite set called its domain and denoted dom({4;). Since we deal with uniyped
daiabases, we let all the domains be ihﬁ same, say the integers. A relation scheme
R is a subset of U. A database scherme B = 1K, ..., B} 15 a collection of relation
schemes such that the union of the B;s 18 zj A fuzi!f defined on “,iaucn scheme &
is a function that rnaps each atiribute in £ 1o a value. The value can be either an
integer or a variable taken from an infinite set of nninterpreted symbols, A tuple
can be visualized as a row of 2 1able where the columns ave labeled by the attributes.
A tableau on R is a finite set of tuples defined on #. Iy ;g aiupleon Rand Xisa
subset of B, 1{X] denotes the restriction of [ to A, z HAY s an integer for every 4
é"{'g X, we say that 1 is total on X. A relation on R is 2 tableau on R such that every

pie is %Qidj on R. A relation on U is called a universal relation.

For v a tableau on K and X a subset of B, the prejection of v on X is
wplrYy = X1 & rand 715 toial on X1

MNote that our definition of projection correspoends to what 15 sometimes called

toial projeciion in the iiterature, so the projection of any tableau on any set of

attributes is always a relation, When R = {&,, ..., R}, we write wg{r) for (wg {7),
WR;{\})}O

A state of a database scheme B ig g function p that maps every relation scheme
0 R 1o a relation on R, We write

g o= (*%Di} ey ”/=<> = <§9{§%i;; R Q{EP}}

We associate with each siate p of R a tableau 7, defined on the universe, 7,
contains exactly one tuple for each tuple in each relation a,,f The mple
corresponding to tuple [ in p{R) is constructed by letting r{R] = if% ] and filling
the rest of # with distinet variables that appear nowhere else in f e

;E’

g

o

Example 3. Let R = (AR, BCD, AD}, and p 15 the state below.

p(AB} o{BCI a{ALN)
A B E T b A B
i Z 25 & { 9
i 3 4 6 7
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-

i 2 b I f)z

i3 b bs
by 2 5 8
by 4 6 1
I b by 9

A valuation v for a tableau R is a2 mapping from the symbols in the tableau into
variables and constants such that »(¢) = ¢ for every constant ¢ that appears in 7.

39 DErENDENCIES.  Following [6], we use tableaux to represent implicational
denendencies. A template dependency (YD) is a pair d = (T, w), where T is 2
tableau containing no constanis and w is a tuple containing no constanis. We say
d is full or total if w[A] appears in T for every atiribute 4. Otherwise, d is said to
be embedded or partial. A relation 7 satisfies d if for every valuation » such
that »(T) C I, there exists an exiension »’ of v to all the symbols of w such that
vlw) €& 1. [nformally, a template dependency says that, if certain tuples appear in
/. then some other tuple must also appear. Template dependencies are a special
case of the (uple-generating dependencies {TGDs), where a set of tuples 18 allowed
instead of the single tuple w. For total dependencies, one can assume without loss
of generality that a single tuple appears on the right-hand side [6]; thus total
template dependencies are no less general than total tuple-generating dependencies.
Join dependencies (TDs) [1, 24] are a special case of total TIs. An equality-
generating dependency (EGD) is a pair d = (T, (@, ap)), where T is a tableau
containing no constants, and &, @; are variables that appear in 7 for some 4. A
iableau S satisfies an EGD d = (T (a,, @)y if for every valuation » such that »(7)
C S wlay) = vlay). Functional dependencies (FI3s) are a special case of EGDs. We
use the term dependency in the generic sense, meaning either a TGD or an EGD.

BGDe also act like TGDs, since by generating new equalities they generate new
tuples. This action can be simulated by total TDs. Beeri and Vardi [5, 6] show how
10 construct, given a set I of dependencies, a set 5 of TGDs that has the following

55

properiies:

(1) D is obtained from D by replacing each EGD by some This.
(2) DD

L 4 A5, .

(3) Letdbea TGD. T D d, then D 4.

We call [ the EGD-free version of 2.

4. Consisiency and Completeness
i1 this section, we define two properties of 2 database state with respect (o a sei of
dependencies, consistency, and completeness, which we consider to be two different

aspects of dependency satisfaction. We characierize these properties in terms of the
satisfiability of two first-order theories associated with the state.
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et us fix a database scheme B = {R,, ..., R,} Let wea(D, p) be the set of ali
weak instances for a database state p under a set of dependencies D. That i,
wEAK(D, p)is the set of all upiversal relations satisfying £ such that their projections
contain each relation in p. We say that a state p 18 mnsisszzz with set of dependencies

D iFWEAK(D, p) % &, The complerion of a state p, p7, is defined by

¥ o N b eld 3,
FEweax(D.o)

where the intersection is taken relationwise. Note that p © o™ for any p. We say
that a siate p is complete with respect to set of dependencies D if p equals its
completion, that is, p = p*

Intuitively, a state p is consisient if there is some way of adding tuples o relations
of o that will tranfsorm it into the sei of projections of some satisfying universal
instance. If p is consistent, then there are many different sets of tuples that can be
added to it io demonsirate its consistency aé{aws’&vw there are certain tuples that
must appear in every such extension of p. If all these necessary tuples are already
it p, then we say p i complete. MNote that ;Ezﬁ definition of completeness is based
on the EGD-free version of D, I, This is done to allow consistency and complete-
ness io be independent notions. Although weax(D, p) could be empty (for
inconsistent p), weax(D, p) is never empty. We show later that, for consistent
siates, it does not matter whether I or D is used.

Several workers [11, 237 have advocated the use of first-order logic 10 express
dependencies and other constrainis. As we explained in the introduction, their
approach does not easily generalize to dependencies in multirelation databases.
Given a dependency statement such as X —» ¥ in a database scheme where X aﬂﬁ
¥ do not appear together in one relation scheme, or appear in raore than one, it
not clear how satisfaction of the dependency can be formalized as satisfaction Qf
sorne firsi-order senience.

The notions of satisfaction proposed above do provide 2 means of using f’iz’g?-
order logic to formalize dependencies; a rather drastic shift in point of view is,
however, required. It is no longer g’;{sysﬁﬁ to write down a senience for each
dependency and ask whether the database provides a maodel for each of these
sentences. Consider for example the notion of consistency as satisfaction, and let
dy = A s O, dy = B — C, with the database scheme {48, BCl. Let p(4dB) =
(00, 01) and p(BCY == (01, 12). It is easy to see that p is consisient with o, and
with o5, but i 8 no {'{}aggg’z 2nt with {d), ol

Our approach is 1o construct two sets of sentences, C, and &, for each siaie p.
We show that o is consistent exactly ’Vhﬁ‘i‘i ', is finitely satisfiable and that p is
compleie sxaeiiv when K, is finitely satisfiable. Thus we reduce both notions of
satisfaction to the standard logical ﬁf}iﬁf}%i of finite satisfiability. Note that, in this
approach, consistency and corapleiensss of a siate are not first-order notions; they
are statements about first-order theories rather than statements in these theories.

Before constructing the sets of sentences O, and X, we fix a linear ordering on
he elemnents of the universe /. We now write U as the sequence (4y, ..., 4y).
W relation scheme R in B may be writien as the sequence (A, ..., 4,,), where

', and K, each conta in two subsets of sentences, the database scheme axioms
and the sigfe axioms. The scheme axioms depend only on the database scheme B
and the set of dependencies [ "fi;% state axioms depend on the siate p.

e scheme axioms of bas; C, and K, inch ﬁ i‘zs contairang IASIONCe axioms,
For ecach relation scheme K| i‘zerg is one containing instance axiom that savs that

\
;731
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every tuple in the R-relation of the state must be the projection on K of some fuple
of the universal relation. In other words, the containing instance axioms assert the
existence of a containing instance for the state. Formally, for each relation scheme
R= (A, ..., A4,)inR, there is a sentence of the form

Yy ig%{‘ﬁ(}l‘n s e s yﬁ’f} o Fj{i"%} 2y i*!'n}}s

where v is the sequence Vi, Vo, ooy Yy X is the sequence Xi, ..., Xn-ms and
uy, ..., U, 054 sequence without repetitions of variables such that i, is y; for all
{ = [ = m, and the resi of the us are xs.

The scheme axioms of C, also include the dependency axioms, which are just
the dependencies in D encoded as implicational sentences as described by Fagin
[10]. X, also contains dependency axioms, but in this case we use the BEGD-free
version of 13, I3, rather than D itself. ‘

The state axioms of both €, and X, contain the state ¢ encoded as a set of
quantifier-free senfences. For each tuple (@, ..., Gm) 10 o(R), we include the
sentence B{ay, . . ., Gm), Where the ¢;'s are constants.

Finally, the state axioms of &, include the disiinctness axioms, and those of K,
‘nclude the completeness axioms. The distinctness axioms are the set of inegualities

¢ d. where ¢ and 4 are distinct constanis appearing in p. The completeness axioms

contain, for each tuple (4, ... d., Y such that each g, appears i p Hut the tuple
tself does not appear in p(R), the sentence

%f?{ Aﬁgf\‘yﬁv Gyy o v o5 G Z%’m?%

where y 15 consiructed 35 in the containing instance axioms. Intuitively, the

compleieness axioms say that only tuples appearing in p(R) can be in the projection
of the universal relation on K.

Example 4. We construct and X, for the state shown in Example 1. Uis the
sequence (5, O, K, H) R contains the schemes R, = (5, €, By= (O R, HY, and
Ry = {5 R, #). The dependencies are the functional dependencies SH -+ K,
R -, and the multivailued dependency (MVD) s> S RH.

—Containing insiance axioms

Ve, v i Hs(Rale, 1, 1 Uis, ¢, r, h
s, r b JclRsls, n h { 5

(Vsicicahyrm X UGse, ¢, o ) A UESy € 72, fy) > £y == T2)
. - i 2 - 2 £ Y
{81, O 71, Yy N U(sy, ¢, 7y, ) = €0 % G2

(s, 520 by o XU (se, € 7 g A U5y, €1, P2, ) = Uls2, €0 1, i)

P
Lo
T
I
™~y
)
(5
::S—v
g
Sy’
e,
£
My
Lom
)

e B Defree dependency axioms
g b . e MTT 8 ¥ / A ) ; i ’ v UGS ' V
{“‘zs’kﬂ';‘i‘;gefiCzC:sh!}52““2}@“}{‘?%? ey, Ty, ) A (s, ¢z, 12, ) A {52, &3, 115 12}

I ~ . Hy 1)
s D5, €3, 12, B2 ))
N ’ - ) , . . % ¥ -~ 2] 5 )
(Vs a0 iy XUS L G o i) A Uls, €2, 1, i) A Ytss, e, r2, )
};' N s A
wr Ei{5y, 02, 72, H2))

.k i i e " o Y F ¥ - i FFs -
2 Cy ?"3f§gﬁ3}é Ty, 03, 1, fj?;; A ijf<5‘39 Ty, o, 5‘22} e ij{é’g% Sy Ty ‘Lf;}}

\

Loy
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—=State axioms
Ry Jack, CS5378)
Ry{C5378, B215, M0}
{8378, B213, WE{‘E}
Rsl{Jack, 5215, M1D)

- E3Istinctness axioms

B215 % B213

MG = W10
Jack # C5378
Jack ¢ B7i5 e,

—Completeness axioms

For Ry:

Ve, b J{f 5378, CS378, », b

Vir, A U(B215, CS378, v, b)Y esc.
For &,

"3’5 v s, OS378, B213, M10)

Vs v Uls, CS3T8. B215, w10 eic.

= Uldack, ¢, B213, Wi0) et

%Cﬂ consisis of the containing instance axiocms, the dependency axioms, the state
axioms, and the distinciness axioms. K, consists of the containing instance axioms,
the EGD-free dependency axioms, the state axioms, and the completeness axioms.

Before proceeding ic our resulis, we ;m?‘{}dziw sorae basic definitions and
notation of model theory. A siructure for a language L consists of a domain of
elements and an interpretation of each ?E“ﬁfﬁt&iﬁ and constant of L. A structure
with a finite domain is finire. 1f M is a structure with domain 4 and P is a k-arv
predicate symbol, then M{P) € 4% is the sz;‘a‘e‘fpremizmz of Pin M, and if ¢ is 2
constant, M(c) &€ 4 is the .;ﬁ‘iﬁi’?iﬁi&iﬁ(}i} of ¢ in M.

A structure M for a language L is a model of 2 set of seniences T if for every
o € 2, o is true in M, written 4 & {we assume the reader to be familiar with the
notion of truth in a model). A set of sentences is finitely satisfiable if it has 2 finite
model.

The next two theorems establish that finite satisflability of €, and X, are identical
respectively to consistency and completeness of » with respect io D,

THEOREM L. O, is finitely satisfiable if and onlv if p is consisient with D.

Proor. I p is consistent, it 5&; clear that for every 7 € WEAR(D, p) the structure
M with MR) = p{R) agr% M{U) = ['is a finite model of C,. For the converse, let
M be a finite model of C,. For es {:%f pair of constanis ¢, d in the language of (),
we have Ml b2 ¢ ## 4, 50 E%f%{{} ¢ M(d)., Thus we can assume, without loss of
generality, that constants are interpreted as themselves, that is, Mi{c) = c. It is easy
to verify that ﬁ/?(é’/} is 2 containing instance for p that satisfies D, That is, M(D) &
WEAR{D, p}, 50 p 5 consistent with . [
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TueoREM 2. K, is finitely satisfiable if and only if p is complete with respect

Proor. Suppose K, is satisfiable with a finite model M. We claim that X, has
1 finite model M’ where no iwo constants have the same interpretation. To
construct M’. we replace each element of the domain of M with many distinct
copies of that element. For example, if (a, b, ¢) € M(R), then M’'(R) would
contain tuples {ay, by, 1), (@, by, e2), (ay, by, ¢3). If two constants are interpreted
as the same elernent in M, they would be interpreted as two distinct copies of that
element in M’. Since &, does not have equality in it, M’ is still a model for &,
Thus, without loss of generality, we can assume that in M’ constants are inierpreted
as themselves, so M/(U) € weak(D, p). By the completeness axioms, wp{f) does
noi contain any tuple construcied from values appearing in p but not itself
appearing in p. Hence, p* cannot contain any such tuple, 5o p is complete,

For the converse, suppose that p is complete. Consider the set S of all tuples ¢
on some relation scheme R such that ¢ is constructed from values appearing inp
but 7 is not in p. Since p is complete, if 7 is an R-tuple in §, then there 1s a universal
velation /, € weak(D, p) such that ¢ € wx(l). We use now the direct product
construction |10] to produce a universal relation [ € weAk(D, p) such that if i is
an R-tuple from 5, then ¢ ¢ wp(/). [ is the direct product X ¢ f;, construcied as
follows. Let 8= {/,, ..., im}. The values in [ are m-sequences ¢ = (C1yoovsCmyof
consiants from p, where we identify the m-sequence (¢, ¢, ..., €) with the constant
¢ Now a tuple s is in 7 if and only if the tuple s, which is obtained from s by
projecting each m-sequence on its /ith component, is in [, . It is straightforward to
verify that 7 is a containing insiance for p. Furthermore, since dependencies are
preserved under direct product [10], [ must satisfy D. The finite structure M with
M(R) = p{R) for each R and M(U) = ['is a model of K,. T

4. Testing Satisfaction under Full Dependencies

In this section we show thag both consistency and completeness of a staie can be
tesied by chasing the associated tableau, when embedded dependencies are not
present. Thus the upper bounds on complexity known for chasing tableaux under
various special kinds of full dependencies apply also to testing satisfaction. Through-
out this section, D is a set of full dependencies. We start by defining the chase of a
tableau under full dependencies and establishing preliminary resulis about chasing
with the EGD-free version of D,

The chase of a tableau 7" with respect to a set of dependencies D, denoted by
criasep( 7)), is the result of applying the following two transformation rules exhaus-

le. I (5, w) is a TD in D, and there exists a valuation » such that
yC T add v(w) to the rows of 7.

EGD-Bule. Suppose (S, (a, az)) is an EGD in D, and there exists 2 valuation

v such that »(8) C 7, and v{ga), v(ay) are not both constants. If only one of v(a,),
15 ) constant, rename all occurrences of the other one in 710 that constant.

£ hoth are variables, rename all occurrences of the higher numbered variable io

lower numbered one.

iven a tableau 7, and set of dependencies I, we write

# s CHASER(T,) and T = CHASER{T,)

where 13 is the EGDufree version of 1,
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We need some prefiminary results before characterizing consistent states.

1a3

Lemma 1. Foreach T € wear{lD, ), there is a valuation » such thar »(T% G 1

induction on the computation of 7%, [
Lemma 2. For any consistent state o, [ Viewean bl = w(TF).

PrOOFE.  Let [ € wrear{D, p). Let » be the valuation of the orevious lemma,
{7y C L Then

ip

#a(T5) & mal(T3 ) REETH )

it follows that 7e(7T5) € Mhewubo.n ra{f}. For the other inclusion, let 7 be a tuple

in the Rrcomponent of (Ve (rr(D] Let » be an injective valuation for 77
that maps each variable to 2 constani not appearing n { Singe »{(75) &
WEAK(D, p), 1 € we(v(TF)). By construction of », thus implies that 7 raust come

from some Ri-total tuple of 77, s0 ¢ &€ wp {77, [l

Consistency and completeness of a state can be characterized in terms of the

associated fableau 7, as {ollows.

Turorem 3. The following are equivalent.

L

(ay plis consisient with D.
(bY T saiisfies 1.

PrOOF

{ay implies (b)Y, let I € weax(D, p), and let v be the valu aﬁ;m‘* of Lemma [
Supg;as that 7% does not satisfy some d & D, d cannot be a T1), since in that case
g TDe-rule is apta ficable ¢ "”"*"5 ;%mﬁ d must be an EGT (5 {63;} ay)y, and there 18
a valuation » such that »{8) © 7% and »"(a)) # v'{(a22). Both »'(a,) and v (a2}
m ust be constants, otherwise an ;d{‘s‘ﬁwﬂsiﬁ is applicable to 7%, Bui now »(»" (&) &
Fand v(v'{a;) # v(v (a2}), 30 { does not satisfy De—a ¢ Qﬁii’&d%ﬁiz%&

(b} implies {z). letw bean 253;5463‘.%%!” valuation for 7% thai maps each variable

a constan: not appearing in p. Then »{(7T7) satisfies si and it i3 a containing
nisiance for p. Thus weag(D, p)y# & L

+
T

et

We need two more preliminary results before charactenzing complete siates,

=

LEMMA 3. For each T € weaxd{D, ), there is ¢ valuarion v such thot »(T7) G 1,

ProoF. By induction on the computation of 7. [
The next lemma shows that the completion of 3 staie can be obtained from 77

bl ES { gv«,\
14

Lenun 4 Forany state p, p” o= weld ;)

iy

Procr. Let & wreaxiD, p). Let » be the valuation of the previcus lemma,

TN & weld).

other inclusion, let 1 be 3 fuple in the
‘ 118 e valuation for 7 ;‘“ that maps cach vanable
oA {‘{}ﬁ‘am“h m}“i appearing in 1. Since »{77) € wg K{ 3op), 1€ wep{1)). By

hat ¢ must come from some Hi-total tuple of 7
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Tueorem 4. The following are equivalent:

{(ay pis complete with respect to D.
(0} o is complete with respect (0 D,
(©) p=w(T})

Proor. The equivalence of (a) and (b) is iramediate from the fact that D = [,
The equivalence of (a) and (c) follows directly from Lemma 4. [

We have defined completeness and consistency to be independent notions.
However, it Is interesiing to note that for consistent states the notion of complete-
RESS Can ije simplified,

THEOREM 5. For staie p consisieni with dependencies D, the jollowing are
equivalent:

(a) p is complete with respect io D
(b) p=wal(TY).
{c) o= {o}}iéw%rami’).p) {ﬁﬁ{f}i

PROOF

(bY eqguivalent to (¢, Follows from Lemma 2.

{a} equivcffeﬁs to {b}. By Theorem 4, p 15 complete with respect to D iff
p o= wg{T7). We claim that we(T%) = =u(77) for consisient states. Since p is
{anssstcm by Theorern [, 7°F satisfies 20 ng property (2) of D, we also have that

i satisfies D, Hence, by wmma 3, there is a valuation » such that »{(77) & 77
Consequently, wa(7T,) © wp{775). For the {}?E’l%‘i inclusion, let 7 be a tuple in the s‘i‘
component of m{ T 3. iz% » be & map for 7, that sends distinct constants to distinet
variables. Let v{ L) andletsbea iu;ﬁu such that s[&] = (¢} and the rest of
s consisis of éi:ﬁmm new variables. We claim that D (7)) 5). Indeed, there 15 a
tuple z; in 7% such that 1 [R,] =1 Th E’é’*f’}%’ﬁ? there is a tuple 5, in CHASER(T) such
that s, [ &1 = s[&] By th @smiig in [6], it follows that 2 &= (T, 5). But then also
D= (T, 5), by property { ,5} £ 0. Thus, by the results in [6] there is a tuple 5y it
CHASE5( ) ) such that &R = sIR, L It.follows that / € frg{?‘*‘; (i

CoROLLARY L. The jollowing are gguivgfgﬁfb
za} p is consisteni and complete with respect to D,
(B 7% satisfies D and p = wp{T7).

(€} o= Dievpmne bralDh

m relaies consistency and completeness to standard satisfaction

THEOREM 6. For B = [}, p{I)) satisfies D if and only if p is consisieni and
cormpleie with respect 1o 1.

Sinece J & weaK{D, p), p 18 conststent with D,
ﬁg{f}ig Since L= %Riﬂ' ji, Ciﬁ&fa}j ﬁ{gwaﬁg(g‘y}
; very F & wear{D, p), J G T that s, p G wp{f}, 80
%;g;‘;‘ ;5 Therefore p is complete with respect 1o 3,

2o 2.0}

iet p be consistent and co ;g}é&% with respect {0 0, Then

-
-
e
o
s
pny

,j‘ satisfies U by

T
Theorem 3, and p = w(7T%) by Theorem 5. Sir §§Lf§ and all dependencies

g S euter D 3t
are otal, clearly wp(TF) = 7% hence o

i e
ﬁfg
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As a consequence of Theorems 3 and 4, the chase is a decision procedure for
consistency and completeness under full dependencies. In the resi of this section
we shall give upper and lower complexity bounds for these problems.
We first give NP-completeness results that follow from Theorem 6.

(1} For B = U], testing wheiher a stale p is inconsistent with a ivped EGD or
whether it is incomplete with respect to a JD is NP-complete.

(2) For R = [U}, testing whether a state p is not complete with respeci o a sei D of
Jull dependencies is NP-compleie.

(3} Testing whether a siaie p is inconsisieni with o set D of EGDs is NP-completie,

Proor

(1) In 20} itis shown that testing whether a relation viblates a JD is NP-complete,
and in (4] it is 5:%‘;@%%;;,; that testing whether a refation violates a typed EGID is
NFP.complete, The clairn now follows by Theorem 6.

(2) The claim follows by the above-mentioned NP-completeness resulis in [4] and
{207 and Theorem 6

{3) NP-hardness follows from the first clairg; we have io show that the problem is
in NF. To test for is’;ca?iszfs‘fer@f}g one constructs 7, and chases it by D, If at
any stage the chase require deniifyving two co fzsm?‘;i& then p is inconsisient
with £3. By [4] chasing by EGDs can be done in nondeterministic polynoraial

time. [

We now refer to the general case and prove lower and upper exponential time
i
bounds,

Tueorswm 8. Tesiing whether o siate p is consisient with a sei 1) of full
dependencies is EXPTIME.-compleie.

Proor.  As observed before, 1o test for ;ﬁC{}n@'éés‘i?my one constructs 7,
chases it by . If at any stage the chase requires identifyi ying two constants, %i en g
is inconsistent with . Otherwise, it is consistent. An analysis of the chase in [4]
shows that it can be done in exponeniial time. I remains to show that the problem
1s EXPTIME-hard. We show it by f{iﬁl&ﬁiii}ﬁ from the 1m§§§1(‘aﬂeﬁ problem for full
Tis, which was sh@wn in {8110 be Gyﬁhf‘iﬁw{mmgﬂe?@ That 18, given a S@? Dof
full TDs and a full TD 4, we construct in §3{3E}’¥}0ﬁii&g time a set 07 of full
dependencies and 3 ai@iﬁ o such that [ & 4iff 5 is inconsistent with D7,

Let U be the relation scheme for the dependencies 22U d. Let d be (7, w), with
T = lwy, ..., Wl. Without loss of gmu’a%ﬁy assume that there are at least two
variables in 7 To test whether 0 & g, we chase 7 by D and see whethe; W i
generated. The idea of the reduction is to have a staie p that “looks like” T and a
set 7 of de Eﬁﬂd?ﬂ(‘ws that simulate 2 and in addition force identification of two
constanis if w is generated. [n order io do that, we need o mark the tuples in the
original state and the tuples that are generated by the chase. The marking is done
by egualities by the tuples. For that we add new atinbutes: the database scheme s
R = {{}], where

77 ==

M

. P ¥y 3
4 fégg vow ey SRy 43S 53; 2w sy ,3;,&.

ARV

¢
-

et o be a one-lo-one valuation that maps the variables in 7 1o constanis,
o{U’Y has tuples 17,, . .. i, that correspond to the tuples wy, ..., W, in 7in the
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H sz{{j} = (W),
(2) wfA] and 1i4;] are the same new consiant, and
(3} u, has distinct new constants elsewhere.

Mote that, since R has a single relation scheme, T, is just p(U").
Let now (5, v) be a full TD in [, We construct a full T2 (87, v") on U’ and
put it in D7, For each tuple v, in .5 we have a tuple v/ in S defined as follows:

« oy op

U oot =,

¢ ¢
i ¢
(2) v/ has distinct new variables elsewhere.

v’ is defined as follows:

(1) p'[U]= v, and
(2) 0'{d, Ay, ... Anl =018, By LBy = odB, By Bl

For example, if (5, v) is

v f g ki
v | gl h
vie fLog &

then (57, v') 15

Py
Q
S

A /él f§2 /ég i f’?g .32 Bg

v b bl b2 b3 b bl B2 B3 [ g h

Ui b bt b2 B3 f g Ml
Vi Y s
v 1t g A

(Dots represent variables with URIQUE OCCUITeNCes.)

In addition we put in D7 an EGD (T, (a1, a2)), where ¢, and a, are two
distinet variables from 7. 77 has tuples wi, ..., Wi, w’ that correspond to
Vgie wor e H"i’fh W

w! is defined as follows:
5}7'5? = W
L and w!i4,] are the same new variable, and

w! has new distinct variables elsewhere.

iefined as follows:

u,m
o o
i
£

1y wll = w, and
Y w' has new distinet variables elsswhere.
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o
o
fort
T
P
m
:::““”D
-~~~
=
Ry
o
Lz

FOr exar

then the constructed EGD is (77, LN, where 7 iy
A H A i fﬁg A 3 g 1 f%;;a fﬁ; Foo H
wit oal el - . . . g
wiloaZz o - - gl . 5 ogl A
wit a3 . . . g3 f1 g 4
w' fog ok

{L2ots represent variables with unique CCCUITENCES. )

To prove that D k= d iff p is inconsistent wih 137 we show that a chase of 7 by O
can be simulated by a chase of 7 » by D7, and vice versa,

Consider first o chase of 7 by ?? We claim that for any tuple ¢ generated by a
T (8, v) in a chase of ”""by 2, one can generate a tuple 7 by the TD (87, v') in
achase of 7, by I’ such that

§ 7

?

/'~\ ot

y U == wfr), and

(2) 1'jA1+ f’?ﬁ,j for 1= 1= m.

”%7*!6 leave the verification of %zz«x claim fo the reader. If D= 4, then wis generated

by the chase of 7 by . Therefore, a chase of 7, by D’ generates a tuple v such

that w{{/} = a(w). Let ug now Qgﬁgﬁ?‘y the EGDY (77, {ay, a43)) with a valuation 8

that maps w/ to w; and w' io u ﬁ agrees with « on the variables of 7 so we are

forced to identify o{a,) and c{ay ). That means that p is inconsistent with D7,
Consider now a chase of 77, %‘w f;‘ - We clairn that for any tuple ¢ generated by

a T {87, v’y inachase of 7, by 73/, one can generate a tuple £ by the TD (& v)

i a chase of T by £} such that

E“"ﬂ

, P N
(1) 171U = (), and

5N i 43 7 Y 5 = g .
() t'[AT# U [Adfor t < i= m

We leave the verification of this Qi&éﬁz the reader. If p is inconsistent with 737
then the EGD (77, (a), @) must be a §i££§ with some valuation 2. But since
w4l = w/[4;], w/ cannot be mapped Ty by B ia} any other tuple but &, Thus 8

5 sarticular, ﬁfwﬂ’){fﬁ = G‘(W) That is, w'

g “E'

agrees with o on the variables of 77 In p £
musi be mapped to a tuple %a‘n@f&*@:@é by ‘“E‘zt chase of T, such that ulU1 = a{w).
?zi then w is generated by a chase of T'hy D, s0 DB 4.

o complete the proof we note that the reduction from D and 4 1o pand D7 can

be 5;?’39 i1 polynormial tme, [

COROLLARY 2. For R = {1}, testing whether a siate 215 consisteni with a set

L of full dependencies is EXPTIME complete.

i"

¢ foclause {2) of Theorem 7. Although
romplete even for database schemes with a single relation
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scheme, for completeness there is a corplexity gap beiween the case of database
schemes with a single relation scheme and the case of database schemes with two
refation schemes.

THEOREM 9.  Testing whether a staie p is complete with respect to a set D of full
TDs is EXPTIME-complete.

PrROOE.  To test for incompleteness, one constructs 7, and chases it by D. I at
any stagc: a tuple £1s generated such that ifﬁ 1 has no variables and /{R,] is notin
p{K,) for some f}f the relation schemes &, in the database scheme R, then p is
incomplete with respect D. Otherwise, it is complete. An analysis of the chase in
[4] shows that it can be done in exponential time. It remnains to show that the
problem is EXPTIME-hard. We show it by reduction from the 15@:}?1;{:@?10;1 problem
for full TDs which was shown in [8] to be EXPT IMF-complete. That is, given a
set [ of full TDs and a full 11"” d, we construct in polynomial time a set 27 of full
TDs and a siate p such that D k= d iff p is incomplete with D7,

Let [/ be the relation scheme for the dependencies D U d. Let d be (T, w), with
T o= dwy, .., Wl Without loss of generality, assume that w is not in 7. To test
whether D b= ¢, we chase 7' by Iy and see whether w is generated. The idea of the
ceduction is to have a state p that “looks like” T and a set 27 of dependencies that
simulaie O and in addition generate a “forbidden” tuple if w is generated. Unlike
the reduction in the proof of Theorem 8, we have to be careful not to generafe
“forbidden” tuples too early. For that we add new attributes; the database scheme
is B = {R,, ], where R, = UU {4, B, 4y, ..., Am] and Ry = {C, D}. The new
universe 1s U7 = K, U Koo

Tet o be a one-io-one valuation that map the variables in T 1o constanis.
o(R,) has tuples 1, ..., i, that correspond to the tuples wy, ..., Wy in 7 in the
following way:

b U] = odwi),
VoAl e { , and ;14,1 are the same new constant, an
Y u; has ghsfm ¢ constants elsewhere.
(R>)

m.

o

i
e
{?
i
i

as a single tuple i such that 1] C] and o[ 21 are the same new constant.
in fﬁ, the tuples 1, ..., i, are extended with distinct new variables for the
attributes € and 1, and i is extended with unique variables for all attributes other
than Cand D {‘%‘is‘, idea is that for every tuple / generated by a chase of Tp, A4,
aﬂ(* D1 are »’3@;2%} les, so no “forbidden” tuple is generated until the very last step.

[

e

Let now (S5, v) be a full TD sz’s I We construct a full TD (87, v’y on U’ and
putitin 7. For each tuple v, in & we have a tuple v/ in 57 defined as follows:

é“%e; 2,

Finally, v’ ia defined as iollows:

AmbP ™= UalA, -5 Smb
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ble {any variable from v will do), and

vi: f g Al
vy gl kA
vy Jiog A

A B 4 Ay 4 C D F G H
vy f al a2 &3 el di S g ok
vé: al a2 a3 ¢ ¢ fI gi W
i a4 ad cl di g Al
piroas as . P -2 I
vinoab  ab . FA U

{Dots represent variables with unigue occurrences.)

In addition we put in D7 a full TD (77, w'). 77 has tuples w§, wi, ..., wl thai
correspond 10 W, Wy, ..., W

wy is defined as follows:

Y Wl E
J 0 P 3 g
7} wq has new distinet variables elsewhers,

(3y w/il}=w,
(4) w/[A] and w;[4;] are the same new variable, and

{5) w/ has new distinct variables elsewhere.

Finally, w’ is defined as follows:

(1 wlU]=w, and
Y T4 ¢ g .l T ., FE 4 F $ $ P 5
2y wild, B, A4y, . A, O Di=wild B A, ..., A, C, DL

For example, if (7, w) is

i
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then (77, w') is
A B A Ay 43 D E F G H

w gl a2 al a3 ad ct di [ g A
wi fog
wi: al ¢l al a3 a4 el di ;g hi
whtoas -« ab - f gl h
wi: ab - . .ooaw6 - - f1 g h

(Dots represent variables with unigue OCCUTTENCES. )

To prove that D = d f p is incomplete with respect to D' we show that a chase
of 7"by I can be simulated by a chase of T, by I}, and vice versa.

Consider first a chase of 7 by D. We claim that for any tuple [ generated by a
TD (5. v) in a chase of T'by [, one can generate a tuple ¢ by the TD (57, v") in
a chase of T, by D’ such that

U] == i)
i'[4] and 1’[B] are the same constan,
WA . LA, t/[C], and /[ D] are distinct variables.

We leave the verification of this claim to the reader. f DF d, then w is generated
by the chase of 7' by D. Therefore, a chase of T, by D’ generates a tuple u such
that #[{'] = a{w). Let us now apply the TD (77, w’) in the chase of T, with the
valuation 8 that maps w4 1o 1 and maps w! t0 u;. This generates the tupie B{w’)
with

3

(1} BlwH)UT = af{w), and
(2) BOW)A, B, A, oo, A, O D= 4, B, Ay, oo Am, C DL
it follows that 8(w )[R, ] consists solely of constants and is not in p(R,), since wis
not in 7 So p is incomplete with respect (o D’

Consider now a chase of 7, by 2, We claim that for any tuple 17 generated by
a T (57, v’Y in a chase of 7, by D', one can generate a tuple ¢ by the TD (5, v)
in a chase of T by D such that

(1 U= alf),
(2y 1'[A] and 1’ 8] are the same constant, and
(3 1A, L AW TCT, and £'{ D} are distinct variables.

We leave the verification of this claim to the reader. If p is incomplete with respect
1 then the T (77, w') musi be applied with some valuation 8. But, since w/ [4]
= w/[4,], w] cannot be mapped to any other tuple but u;. Thus 8 necessarily agrees
with o on the variables that are in 7. In particular, 8 (wHUT = alw), so ws must
be mapped to a tuple u generated by the chase of T, such that u[U] = a(w). But
then w is generated by a chase of T'by I, s0 Di=d

To complete the proof we note that the reduction from D and d to p and D' is

[

polyaomial. [

We note that in the proofs of Theorern 8 and 9 we have untyped dependencies
in 17 even if the dependencies in [ are typed. We believe that the exponential
lower bounds for consistency and compleieness hold also for typed dependencies.
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3. Testing Satisfacrion under Embedded Dependencies

in the previous section, we restricted our attention to full dependencies in order to
obtain decidability results. In this section we retumn to arbitrary sets of dependen-
cies. Our main result will be that both consistency and corapleteness are undecid-
able in this general seiting. To show this, we will prove that consistency and
completeness are recursively equivalent 1o certain dependency implication prob-
lems that are known to be undecidable.

The first step is to reduce consistency 1o the implication problem of EGDs by a
set of dependencies. Let o be a state and D 3 set of arbitrary dependencies.
Construct a set of EGDs £, as follows, Let 7' = u( 7,) be an isomorphic image of
¥, in which 1o constanis appear. For every pair of distinct constants o and d in
Lo AT wle), »(d)) is an element of &,

TneoreM 10, p is consistent with I if and only if for no EGD e € E, is it the
case thar D k= e

P& weak(D, p). We can construct from v
a homomorphism 5 with (7)) € 7 and for each constant ¢ of o, #lv{c)) = ¢ 7
certainly satisfies D, but it viplates each EGIY in £, Therefore no element of £, is
imnplied by D,

For the converse, suppose thers is n
fer, oo adand e = (T, (v(e), v(d))). Construct from 7 an atomic sentence 7 by
letting 7 be the conjunction of all sentences Ui} such that 7 is a tuple in 7. Now
consider the sentence d given by

no ¢ & E, such that D &= e Let B, =

- p

Ax(r A wle) 5% w{dy A - A () # u(dl)),

where % 15 a sequence of all the variables in 7. We claim that &' = D U dis finitely
satisfiable. Suppose not then D= ~d. Now ~d is a disiunctive EGD of the form

%;g{’} e y{ff;} = ?f{§;> ‘\__j e \,?5 ;j{{;’{;‘,} P y{gj’i}}

We now rely on a finite version of a theorem of McKinsey [21] due 1o Graham
Lo conclude that for some | = /= k) Db V5 v{c;y = v{d)),
that 15, D = g, contradicting our assumption that © does not imply ¢ for any

Since D' is finitely satisfiable, it has a finite model M. Let s{cy be the domain
¥

element assigned to each variable »(¢) of d tc make 4 true in M. Note that
s{e,) 5 s(d,) for every ¢, d; appearing in an inequality in 4, 50 we can assume

~

without loss of generality that s{¢) = ¢, Then MI{U) is a weak instance for p,
showing that p is consistent. [

We now reduce the implication problem for EGDs to the consistency problem.
et D be any set of dependencies and et ¢ = (7', (g, 0)) be an EGD. We form the
set K. of states of the universal scheme {1/} as follows. For each mapping » from
the symbols of 7" to constants such that »{a) 5 w{D), v{T) is a member of 2,.

et

THEOREM 11, DB e if and only if no siate in R, is consisient with D.

PROOF.  Suppose D e, and let »(7) be any state in R,. Clearly (7)) violates e.
Any weak nsiance in WEAK(D, »(T)) must satisfy 2, and hence ¢, But v{T would
hiave 1o be a subset of such a weak instance, which is in possible. Hence no such

weak (nstance exists and »(7) is inconsistent with 7.

e
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For the converse, suppose [ does not tmply e. Let [ be any relation that satisfies
7 but not e. Such a relation must contain a homomorphic image »(7) of 7, such
that v(a) 5 #(b). Hence [ is a weak instance for v(77, which is an element of K,. U

From the last two theorems we obtain the following immediate corollary, relating
the decidability of the membership problem for an EGD from a set of dependencies
and the decidability of consistency under that set of dependencies.

COROLLARY % Let D be a set of dependencies. Let D, be the sei of EGDs
implied by D. The following are equivalent.

(a) D, is recursive.

(b) For every database scheme R over ihe universe on which I} is defined, the
consistency of every siate of R is decidable. ‘

(¢} The consistency of every state of the universal scheme of I} is decidable.

PROOF

(a) implies (b). Follows from Theorem 14,
() implies (¢). Immediate.
(¢) implies (a). Follows from Theorem 11, E]

The development of the last two theorems can be repeated to relate cormapleteness
to T implication. For the analog to Theorem 10, construct a set of exponentially
many TDs, G,, from a state p. Elements of G, are of the form (7, w), where T is
the image of 7, under an injection v to variables, and w is constructed as follows.
et R, be a relation scheme in the given database scheme, and let 1 be a tuple on
R, such that ( consists of constants taken from p but £ & o(R). Then wiR,] = »(7)
and the rest of w consists of distinct new variables. informally, each element
(T, w) of G, says that a containing instance for p must contain a tuple w such that
its projection on some relation scheme 15 not in p. Mote that G, is a set of embedded

TDs.

Turorem 12. p is complete with respect to D if and only if for no element
g € G, is it the case that D= g.

Proor.  If there is some g = (7, w) € &, such that D F= g, then let R be the
relation scheme that led us to inciude g in G,. There is some tuple / constructed
with values from p that does not appear in p(R). By property (3) of DB, we know
that if Dk g then D = g. Let 1 be an element of weAk(D, p). Since I satisfies D, it
satisfies g. Let u be a valuation such that w(T,) & I Since 7 is the image of T,
under an injection » and I satisfies g, /7 must contain some tuple whose projection
on R is i it follows that 1 € [Meweaxd {r=(D)}, 50 p is incomplete.

For the converse, suppose that no g & G, is implied by [, By property (3} of D,
no g € G, 1s implied by . Thus, for every g € G,, there is a universal relation g
such that /, satisfies D but not g. Let g = (T, w) and let ¢ be the fuple on relaiion
scheme R that led to the inclusion of g in G,. There is a valuation » such that »{7}
C I, and #(w[R]) & wr(ly). By the multiple copies construction of Theorem 7, we
can assume that v is injective. Thus we can assume without loss of generality that
I, & weAk(D, p), and 1 €& wr{l,). It follows that [ & p"(R). Since this is true for
every tuple { constructed from values in p but not itself in p(R), it follows that p is
complete.

11, et D be a set of dependencies and g = (1, w)
T, We may assume w & T, else g is trivial. Let ¥ be the relation scheme of

n B9
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PROCE,  Again the proof parallels that of Theorem 11, If D k= g, then the
completion ¢ of o for each ¢ € K is such that v(WR] € a"(R), but »(w) & ¢(R),
hence every such ¢ is incomplete. .

Conversely, if £ does not imply g, let 7 be a relation on U that satisfes I but
not g /s a weak instance for the state ¢ = w{/) in K. Since ¢ is exactly the
projection of one of its weak instances, it must be complete.

CoroLLARY 4. Let Dy be the set of all TDs implied by a set of dependencies D,
Ly is recursive if and only If completeness of any state of any database scheme over
the atiributes of I} is decidable.

We now state the main result of this section, which is a corollary of the four
theorems abave.

TueorREM 14, There does not exist an algorithm that will determine Jor every
pair (D, p} whether p is consisient nor whether p is complete with respect io D,

Proor. The implication problem of EGDs from arbitrary dependencies was
shown undecidable by Vardi [26]. Implication of TDs was shown undecidable by
Vardi [28] and Gurevich and Lewis [16]. [

Since no aigorithms exist for deciding either completeness or consistency, we
consider solvable subcases. If implication is decidable for D, for example, if D
contains enly full dependencies, consistency and completeness are decidable, as
shown in the previous section. But there may be specific database schemes for
which consistency and completeness are decidable, even if implication is not.
However, there is 1o algorithm that will decide, given a database scheme and a set
of dependencies, whether consistency and completeness are decidable for that
scheme and those dependencies.

THEOREM 15, The set A = {(D, R) | consistency and completeness of states of
R with respect 1o DD are decidable} is not recursive,

Prooy.  Vardi [27] showed that it is undecidable whether the implication
problem for a set of dependencies D is decidable. Suppose 4 were recursive. For a
fixed set of dependencies D, the predicate of these dependencies has a fixed arity,
that is, z fixed set of attributes. There are only finitely many database schemes over
this set of attributes. As implication is decidable for I if and only if (D, R) € 4
for each of these finitely many Rs, an algorithm for membership in 4 would vield
algorithm o test decidability of the implication problem. So 4 cannoi be

weive, ]

n C, and K, use a predicate letter corresponding 1o the universal

elation scheme for the database. It is interesting 1o ask whether we can construct
a2 theory properties similar to Theorems 4 and 5, but using only predicate
vibols &, ..., B, of the same arities and sorts as the relation schemes, thusg
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satisfaction can be expressed in a “local” way, without having io resort to the
existence of 2 universal relaion.

There is a special case, the independent schemes, when the question can clearly
be answered in the affirmative. Given a set of dependencies D on a database
scheme (R, ..., R}, the projected dependencies D; are all the dependencies that
must hold in any relation r; on K, such thai 7 = wg(r), where 718 a universal
relation satisfying 1. A state p is called locally satisfying if every p(R;) satisfies ;.
A database scheme is said to be independent if every locally satisfying state is
consistent with /). When the database scheme is independent, we can write down
the required set of sentences by expressing each dependency in the context of some
R,. For special cases such as functional and multivalued dependencies, projected
dependencies can be easily characterized in terms of the original set D, although
finding the D;s is computationally hard [{7]. For more general classes of depend-
encies, we do not even know if the D;s are finife. In the general case, the resulis in
this section should be viewed as existence proofs for the desired sets of sentences,
rather than effective consiructions.

Our main result in this section is that in fact it is possible to construct a set of
sentences with the desired properiies when the database scheme is weakly cover
embedding. To define this notion, note that the projected dependencies ©; can be
viewed as embedded dependencies on U. For D; defined on R;, we say a relation
on U satisfies D; if wp (7} does. We say thai a database scheme R weakly cover
embeds a set of dependencies D if any state of R consisient with Ui, Dyis
consistent with 2. In the framework of Section 4, in a weakly cover embedding
scheme it suffices to chase using only dependencies local to some relation scheme
of R, :

it is easy to see that the class of weakly cover embedding schemes contains both
the cover embedding or dependency preserving schemes [18] and the independent
schemes. Since, for cover embedding schemes, we have UL, D= D, such schemes
are weakly cover embedding. Since any state consistent with UL, I is locally
consistent, the independent schemes are weakly cover embedding. A polynomial
time algorithm for testing whether a weakly cover embedding database scheme is
independent, in the case where all dependencies are FDs, is given in {15]. Even for
this testricted case, no algorithm to test whether a scheme is weakly cover embed-
ding is known.

Giiven a staie p of a weakly cover embedding database scheme, we consiruct a
new set of sentences B, as follows. The language of B, is the same as the language
of C,, except that we do not use the universal predicate letter U. B, contains four
kinds of seniences.

—State axioms. For each R, and each tuple [ € p(R,), the sentence R{1).
—Join-consistency axioms. For each R;in the database scheme, B, contains the
sentence

VR(RA%) > (b« bR} A - A Ra(va)))

where v, = x and the vs are constructed from values in % and the bs so that for
all | = p, g = n, if the jib attribute of R, is the kth atiribute of R,, then v,{ji =
v 0k, Tntuitively, the join-consistency axioms, together with the state contain-
raeni axjoms, assert the existence of a join-consistent state that contains p.
—Dependencies. For each i, the set of dependencies 1, can be rewritien as a set
of first-order sentences on ;.
—Distinciness axioms. As before, these assert that all constants are distinct.
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Eimmpfg 5. We construct B, for state of Examples | and 4. The universe is

’? s:
U= {5 C R, #], the relation schemes Ri=8C Ry = CRH, Ry = = SRH, and the
{iﬁ;ﬁf"§?1(§931€§98 SH w2 B, RH s  The projected dependenies are: s O,
Dy we ARH s C}, Dy = [SH - R].

—=Stale axioms

By(Jack, CS378)
Fo(C5378, B215, M1i0)
Ez{ 5378, B213, Wi0)
Bi{lack, Biis et
~-Join-consisiency axioms
ﬁ?j %g«iﬁ){é{ {}Z;ﬂ,p; e {Zﬁf?;f?y}{ég?(ngiﬁy; A 33{%15‘;@?}
(Vo0 )(Ra(xiaxs) — (bR (1) A Ry(byaxs))
iff‘ii,f";},z){ggi\,a;/‘w/‘f},; R ;igéz); (%3;\;5;@} A ﬁfq{f},{;:lfz}}}
~—Dependencie
f%ﬁ"gi;ﬁg{‘]f"v {;"i? {,1553’”; P A igvié')f!:!’é;} o 7] TRy }
{33"5@;';;35{, {5{;{5‘;5’"; !?g A H \ng‘wz }wm}* Fy o= '2}

e LHSHACINOSS axioms

BII5 # 5213
ﬁ/ﬁf PRS ‘é W%%} f‘f@&

THEOREM 16, For a weakly cover W;ﬁf}fdwﬁg daiabase scheme, B, is Sinitely
satisfiable if and f?i’?/ v if p is consisieni with D,

"o

FROOF

M

) Suppose p is consistent, an ixdl let I & WEAR{D, p). Let r, = wr,({) for each 1.
C mzsz{fifs*" the inferpretation for & 7, where gdcéé constant is mappﬁd to iseif and R,
is interpreted as # for each i a%y definition of projected dependencies, each 7,
satisfies D,. Since 7i 3&@9@3&1‘:};3’;@ wnstance for p, the 7,5 satisfy the state coniainment
axioms. Finally, the s are join~consistent by construction and thus satisfy the
join-consistency axi Gz‘m {t follows that we have a finite model for B,.

{Onaly ify Suppose B, ia finitel ¥ §§?;g€za§:1§, Proceeding as in ?heosem I, we can
assume that there s a daiabas@ sf;ﬁi:s ¢’ that satisfies B,. That is, o’ contains o, is
jom ¢ mszsm‘si and p"(R;) satisfies 73, for each /. Let [ be a universal refation such
that wa(l) = p’. Clearly J satisfies the Dis, s0 1 € weax(U, Dy, I 3 shswmg that
s C{.&z}s:és‘sx nf with LE{ L. Since R is weakly cover mﬁéﬁdiﬁzng? is also consistent
with 2. Since o € 5/, wraxd L2, 07) G WEAR(D, p), 50 p is consistent with . [

i

\

The following example shows that the constraction above does not ﬁmezagiz 0
GONCGVEr em ﬂr‘aﬁ sf;i omes: we leave oper the question of whether such s set of
sentences can be constructed at all for arbit irary schemes,

Example 6. Let R = {4C, BOYL Do (AR v C C s B p{ACY = [{01), {02y,
plBC) = {31y, (32)], Note that J o= G Dy = (O s ris‘é %? is 6&%}1 i see that p i3
consistent with 2, U uz but not consistent with 0. However , B2, 18 consistent i
this example, since pis a Jjoin-consistent state that satisfies ?,fi‘i{i i?}QﬂE dep smﬁwc

and hence provides a model for A,
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7. Discussion

We have pointed out that there are two separate sides to the standard notion of
dependency satisfaction; consistency and completeness. We view consisiency as
corresponding to a “lazy evaluation” tactic for constraint maintenance. As long as
no violations can be proved, the state is considered legal. The derived tuples not
present in the state can be generated on demand, for purposes such as query
answering. Note the similarity of this policy io the “deductive databases” approach
[11], where any fact deducible from the stored relations is considered part of the
iatabase. Requiring both consistency and completeness corresponds 1o a constraini
maintenance policy that guarantees that all derived tuples will be present in the
database at all times. There 15 a storage-computation trade-off in the choice of a
policy. This irade-off applies not only to multirelation databases but also to single
relations. Consistency of a relation under a set of, say, FDs and MVDs, is strictly
weaker than standard satisfaction.

The combination of our niotions of satisfaction with the concept of independence
leads to interesting questions. For example, what are the database schemes such
that every focally consistent siate is consistent and complete? Chan and Mendelzon
[7] have characterized these schemes when the join dependency for the database
scheme and a set of functional dependencies are given. :
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