> Abstract

A fundamental problem with epistemic logics
F bascd on Hintikka's possible-worlds semantics is
E the logical omniscience problem. A partial so-
- lution to the problem is to use Montague and
Scott’s approach to modal logic; in that ap-
proach, agent’s knowledge is characterized not by
a sct of possible worlds but rather by a set of
propositions known by the agent. By imposing
various closure conditions on the set of proposi-
tions known by the agent, we can model agents
with different reasoning powers.

In this paper we study the complexity of the
decision problem for epistemic logics based on
Montague and Scott's semantics. We are mainly
interested in finding out how assumptions about
the agents’ reasoning power affects the complex-
ity of reasoning about the agents’ knowledge. We
study a spectrum of assumptions and show that
the complexity of the logic under different as-
sumptions is always in NP or PSPACE. Further-
more, we seem to pinpoint the “mental faculty”
that raises the complexity of the logic from NP
to PSPACE; it is the ability to combine distinct
items of knowledge, namely, to infer from the
facts p and ¢ the fact p A gq.

1 Introduction
Epistemic logic, the logic of epistemic notions

such as knowledge and belief, is a major area
of research in artificial intelligence (cf. [HM85,
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MH69, Moo85, XW83]). The main existing for-
mal model for epistemic notions, originated by
Hintikka [Hin62], is based on the possible world
approach. The basic notions of this approach are
aset W of worlds and relations of possibility (also
called accessibility) between them. Knowledge
and belief of an agent who is situated in an actual
world w is characterized by a subset Wy, of W as
the set of worlds that are epistemic alternatives

to w; the agent knows or believes a fact ¢ if ¢
holds in all the worlds in W,,.

A fundamental problem with this model is the
so called logical omniscience problem [Hin75).
Essentially, the problem is that an agent always
knows all the consequences of her knowledge.
Formally, the axiom Kp A K(p — g) — Kjq, is
fundamental to Hintikka’s semantics. This sit-
uation is, of course, unintuitive and unrealistic.
Dealing with the logical omniscience problem is
a major issue in epistemic logic.

In [Var86)] we argued that the source of the log-
ical omniscience problem is Hintikka’s interpre-
tation of knowledge in terms of possibility rela-
tions. We suggested an alternative formal model,
based on a model proposed, in a somewhat differ-
ent context, by Montague [Mon68, Mon70] and
Scott [Sco70]. In this model we have epistemic
structures’ that have multiple worlds but there
is no notion of possibility among worlds. Agent’s
knowledge is characterized not by a set of possible

! Epistemic structures are called belicf structures in
{Var86]




worlds but rather by a set of propositions known
by the agent. By imposing various closure con-
ditions on the set of propositions known by the
agent, we can model agents with different rea-
soning powers. In fact, by imposing enough con-
ditions we carn model even logically omniscient
agents. We should note, however, that this ap-
proach does not completely solve the logical om-
niscience problem. While the axiom KpA K(p —
g) — Kgq, is fundamental to Hintikka’s semantics,
the (weaker) inference rule p = ¢ + Kq = Kq is
fundamental to Montague's and Scott’s seman-
tics.

In this paper we study the complexity of the
decision problem for epistemic structures. We
are mainly interested in finding out how assump-
tions about the agents’ reasoning power affects
the complexity of reasoning about the agents’
knowledge. For example, we consider agents that
are able to draw inferences from their knowledge
(characterized by the axiom K(pAg¢) — Kp) and
agents that are introspective of their knowledge
(characterized by the axiom Kp — KKp). While
it is known that for certain assumptions the com-
plexity of epistemic logic is PSPACE-complete
[Lad77, HMB85], the best known complexity un-
der other assumptions is nondeterministic dou-
bly exponential time (this follows from results
in [Seg71]). We study a spectrum of assump-
tions and show that the complexity of the logic
under different assumptions is always in NP or
PSPACE. Furthermore, we seem to pinpoint the
“mental faculty” that raises the complexity of the
logic from NP to PSPACE; it is the ability to
combine distinct items of knowledge, namely, to
infer from the facts p and ¢ the fact pA ¢ (this is
characterized by the axiom KpAKq — K(pAq)).

Our main technical tool is the ubiquitous
tableau, developed for classical logic by Beth
[Bet59] and Smullyan [Smu68] and extended to
modal logic by Kripke [Kri63]. Unfortunately,
the modal tableau technique is quite messy (as
Kripke himsell acknowledged), because it com-
bines trees that deal with the nondeterminism
of propositional disjunction (i.e., if the formula
pV g is true, then either p is true or g is true, but
we do not know which one is true) with trees
that deal with the multiplicity of worlds in a
modal setting. By combining the tool of valu-
ations [Hin57, KP81, Lop78] and the idea of the
tableau as an updale process [Fit83], we manage
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to eliminate trees altogether. We believe that our
approach to tableaux is of interest for its own
sake.

2 Epistemic Structures

The most straightforward way to model epistemic
notions is by means of epistemic setls. Assume
that we have an assertion language L. Then an
epistemic set for an agent is simply a set of sen-
tences of L; these are the sentences that the agent
knows or believes. This approach is purely syn-
tactical. To obtain a semantical analogue, we
assume a set W of worlds and a relation |= of
salisfaclion between worlds in W and sentences
in L (ie,, w = ¢ if w satisfies ¢). The inten-
ston of a sentence ¢ is the set of worlds in which
i is satisfied, i.e, {w|w = ¥}. Semantically, a
sentence expresses the proposition that is its in-
tension, where a proposition is simply a set of
worlds. An epistemic set for an agent is now a set
of propositions; these are the propositions that
the agent knows or believes.

We formalize this approach. We assume a
set P of atomic propositions and a set A of
agents. An episiemic frame is a pair I' = (W, N),
where W is a nonempty set, which we take to
be the set of worlds, and N : A x W — 22"
is an epistemic assignment, which assigns to ev-
ery agent in a world a set of propositions, i.e.,
an epistemic set. An episiemic siruclure is a
triple M = (W, N, I), where (W, I) is an cpis-
temic frame and [ : P — 2% is an infension
assignment, which gives the intensions of atomic
propositions.?

The language L is the smallest set that contains
P, is closed under propositional connectives, and
contains E,p (we use E as a generic epistemic
modality, without having to commit to knowl-
edge or beliel) if ¢ is in L and a is in A. The
epistemic depth of a formula 9, denoted depth (),
is the level of nesting of epistemic modalities in
Y. The episiemic size of a formula ¢, denoted
size(y) is the number of epistemic modalities in
1. Note that the epistemic size of ¢ is greater or
equal to the depth of ¥.

21f there is only one agent then N can be taken as a
function N : W — 22" Such structures are called in
the literature neighbourhood structures (the sets in N(u),
for u € W, are called neighbourhoods) [Seg71] or minimal
structures [Che80).




=

We can now define what it means for worlds to

| satisfy formulas of L.

o M,w = p, where p € P, if w € I(p).

o« MywkE —o if Myw £ .

e MuwkEeVYyiiMuwlkpo MywkE 4.
o Mywk Ezo if {u|M,u = ¢} € N(a,w).

i We can extend the intension assignment I to ar-

bitrary formulas by defining I(¢) to be the set
{v!M,u |= ¢}. The crucial clause in the defini-
tion of satisfaction is the clause for F,¢. It can
be read as saying that a believes ¢ in w if I(yp)
is in the epistemic set of a in w.?

It is important to understand that epistemic
structure can be viewed as a generalization of
Kripke structures. A Kripke structure M is of the
form (W, R, I}, where W is a set of worlds, I is
an intension assignment for atomic propositions,
and B: A = 2W’ assigns a possibility relation
among worlds to each agent. The Kripke seman-
tics is Myw = Eap ¥ M, u |= ¢ for every u such
that {(w,u) € R(a). Define R(a,w) to be the set
{v|(w,u) € R(a)}, i.e., the set of “a-neighbours”
ol w. We can assign epistemic sets to agents and
worlds by N(a,w) = {U|R(a,w) C U}. It is
casy to see that w satisfies ¢ according to our
cpistemic semantics precisely when w satisfies ¢
according to Kripke semantics.

Does our model solve the logical omniscience
problem? It does and it does not. It does, be-
cause it is no longer the case that if a believes
v and ¢ implies ¥ then a believes . In par-
ticular, an agent does not have to believe in all
valid sentences and she can believe in contradic-
tory propositions. Nevertheless, if a believes ¢,
and ¢ is equivalent to 7, then a believes 1. This,
however, is unavoidable as long as one wishes
to sce epistemic modalities as operators on in-
tensions. We refer the reader to [Cre85, Tho80]
where different approaches to propositional atti-
tudes (which include epistemic attitudes) are de-
scribed.

The agents in our model have very little reason-
ing power. This is clearly demonstrated by the

3 We remark that in [Var86] we criticized the above ap-
proach becauseit takes the notion of a world as a primitive
notion. We described there an alternative constructive
approach. This has no bearing on our investigation here,
since the two approaches are equivalent with respect to
the decision problem.
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fact that the formulas E,¢ A E,9¥ and E,(¢ A )
are incomparable, i.e., neither of them implies the
other. In fact, it is instructive to characterize all
the valid sentences (¢ is valid if it satisfied by any
world w in any epistemic structure M).

Proposition 2.1: The following formal system
13 sound and complete for validity in episiemic
struclures:

EO All propasitional tautologies.
RO From ¢ and ¢ D ¥ infer .
R2 From ¢ = 9 infer E,p = E,9.

Proposition 2.1 was proven for the single agent
case by Segerberg [Seg71] (Segerberg called that
logic the weakest classical modal logic, denoted
E). The proof used the canonical model tech-
nique (cf. [Che80}).

By Proposition 2.1, validity is fully character-
ized by propositional reasoning plus substitutiv-
ity of equivalents. We often would like, how-
ever, to consider agents with somewhat more de-
veloped “mental faculties”. We now list several
modes of reasoning that we may wish to endow
our agents with:

E1 -E, false

E2 E,true

E3 E,(pAq)D E.q

E4 E,pAE.qD E,(pAgq)
E5 E,p D E,E.p

E6 - 2P D Eg- aP-

E7T E,pDp

E1-E4 express aspects of logical omniscience.
E1 says that agents do not believe contradictory
propositions, while E2 says that agents believe
self-evident truth. E3 says that agents can make
inferences, while 4 says that agents can combine
facts. E5-E6 express introspection. E5 says that
agents are aware of their beliefs and E6 says that
agents are aware of their ignorance. E7 does not
really reflect reasoning; rather, it is the axiom
of knowledge - it says that il @ knows ¢ then ¢
is true (this distinguishes knowledge from belief).
Note that E1-E7 are not necessarily independent.
For example, it is easy to see that E7 entails E1.

It is easy to express the above reasoning modcs
by closure conditions on epistemic sets N(a, w)in
an epistemic frame F = (W, N):




C1 ¢ € N{a,w)

C2 W € N(a,w)

C3IH U € N(a,w)and U C V, then V €
N(a,w).

C4 {U € N(a,w) and V € N(a,w), then UN
V € N(a,w).

C5 H U € N(a,w) then {u|U € N(a,u)} €
N(a,w).

C6 If U ¢ N{a,w) then {u|U ¢ N(a,u)} €
N(a,w).

C7 IfU € N(a,w), then w € U.

The conditions C1-C7 captures E1-E7 is a pre-
cise sense. An epistemic frame F = (W,I) is
said to validate a formula ¢ if ¢ is satisfied in all
worlds of all structures (W, N, I) (i.e, all struc-
tures obtained by adding an intension assignment
to the frame F).

Proposition 2.2: For 1 <t < 7, an episltemic
structure F validates Fi if and only if F salisfies
Ci.

Let € be the class of all epistemic structures.
If S is a subset of {1,..., 7}, then &g is the class
of all epistemic structures that satisfy Cj for all
J € §. For example £, 3; is the class of all epis-
temic structures that satisfy C1 and C2. This
gives rise to 128 (not necessarily distinct) classes
of structures. It is easy to see that epistemic
structures that correspond to Kripke structures
are in £(33,4)- It is not hard to show that ev-
ery epistemic structure in £{3 34} correspond to
a Kripke structure. Thus, the logic of £{5 34 is
the multi-agent extension of the modal logic K
(cf. [Che80]). Similarly, it can be shown that the
logic in £{y,2,3} is the logic of local reasoning in
[FH88] (without, however, the modalities for im-
plicit belicf; see [Var86]),* and the logic of &3
is the multi-agent extension of the modal logic U
(cf. [Fit83}).

A formula ¢ is £g-satisfiable if it is satisfied by
a world in a structure in £s. We are interested in

studying the complexity of the satisfiability prob-
lem for these classes £s of epistemic structures.

4The logic of local reasoning is interpreted over epis-
temic structures. An agent a is said to explicitly believe
o if there is a set U € N(a,w) such that M,u |= ¢ for
all u € U. An agent a is said to smplicitly believe ¢ if
MulFypforall u € nUeN(a,w)U'
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In particular, we are interested in the relation-
ship between S and the complexity of satisfiabil-
ity problem for £s.

Theorem 2.3: IfS is a subset of {1,...,7}, then
the satisfiabslity problem for Es is in PSPACE. If
S is a subset of {1,...,7} and 4 € S, then the
salisfiability problem for €5 ts in NP.

The proof of this theorem is by analyzing the
128 (not necessarily distinct) cases. Of course,
we analyze only a few cases here. The focus is on
upper bounds. We discuss lower bounds in our
concluding remarks.

3 The Satisfiability Problem
3.1 ¢, 8{1}, 5{2}, 5{3}, and 8{5}

Segerberg [Seg71] proved the finite-model prop-
erty for the logic E (i.e., the class £ with one
agent). More precisely, he showed that if a for-
mula ¢ is satisfiable, then it is satisfiable in a
structure where the number of worlds is at most
exponential in the length of the formula. Since
the size of an epistemic set can be exponen-
tial in the number of worlds, Segerberg’s finite-
model property yields a nondeterministic doubly
exponential-time decision procedure. We obtain
here a nondeterministic polynomial-time decision
procedure.

We start by stating an obvious lemma.

Lemma 3.1: Let M = (W,N,I) € &, let ¢ be
a formula, let w € W, and let a € A. Then
M,w [ E,¢ if and only iff U # I(p) for all
U € N(a,w).

If ¢ is a formula, then sub(yp) is the set of all
subformulas of ¢ and their negations (we identify
the formula -y with ¥). A valuation for ¢ is
a function v : sub(y) — {0,1} that satisfies the
following conditions:®

L v(9$) =11 v(-9) =0,
2. U(¢l \ 1/)2) = 1iff U(d)]) =1or V(‘(bg) = 1,

and
3. v(p)=1.

5Our valuations are called model setsin [Hin57], atoms
in [KP81] and semi-valeationsin [Lop78).




Proposition 3.2: A formule ¢ is E-salisfiable if
and only if there ezists a valuation v for ¢ such
that if Eqa¥1 and Eg¥; are in sub(p), v(Eat) =
1, and v(Eqa¥2) = 0, then (1 A-92) V(- A2)
is £-satisfiable.

Proof: Suppose first that ¢ is satisfied by a
world w of a structure M = (W,N,I), ie,
M,w | ¢. Define a valuation v for ¢ by:
v(p) =1 M,w = 9 and v(9) =0if M, w £ ¢.
[t is easy to check that v is indeed a valuation
for w. Suppose now that E.¢; and E,¢; are in
sub(), v(Ea¥1) = 1, and v(Ea¥2) = 0. Then
M,w }= Eqa¢1 and M, w £ Ea¢z. Thus, by def-
inition, I(¥) € N(a,w) and I(¥;) ¢ N(a,w).
By Lemma 3.1, it follows that I(¥1) # I(¥2)-
Thus, there is a world u such that either u» €
[(n) = I(¥2) or u € I(#2) — I(¥1). In the
first case we have M,u |= ¥; A ~¢, and in the
second case we have M,u |= —%¥; A ¥2. Thus,
M,u k= (¥1 A =¥2) V (~¥1 Ad2)

Suppose now that the conditions of the propo-
sition holds. That is, there exists a valuation v
for ¢ such that

if E,¢, and E,9; are in sub(p), v(Eath) =
1, and v(E,¥2) = 0, then there exists a
structure My,,y, = (W%.\ONN%,%,I%J’:)
and a world wy,y, € Wy, y, such that

Mi'mbﬂ Wy,,¥3 }: ("!’l A “'/’2) v ("'/’l A ¢2)

Let Mi,...,M, be an enumeration of the
structures My, y, from clause (2) above, i.c., we
take one structure for each pair %), 2, where
M; = (W;, N;, I;), and let w, ..., w, be an enu-
meration of the worlds wy, y, from clause (2)
above, where w; € W;. We can assume without
loss of generality that W; n W; = 0 for i # ;.

We define a structure M = (W, N, I) as follows.
Intuitively, we construct M by taking a union
‘of the M;'s with the addition of a new world w
that will satisfy @. The nontrivial part in the
construction is defining the epistemic assignment.
We do it jn such a way that the truth values of
formulas in sub(y) are preserved (though it may
change for other formulas). The set W of worlds
is the set U;=1 W;u{w}, where w is a new world.

Also define Io : sub(p) — 2{¥} by

I(¥) = { éw} ifv(¥) =1

otherwise
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Before defining I and N, we define an inten-
sion assignment J : sub(p) — 2% by J(¢¥) =
Uj=o 1;(#). Note that by construction we have
that J(~9) = W — J(¥) and J(41 V 92) =
J(¥1)UJ(¥2). We now define I as the projection
of J on P (we can assume without loss of gener-
ality that P C sub(y)), that is, I(p) = J(p) for
p € P. It remains to define N.

For u € W, we put U C W in N(a, u) precisely
when Mj,u | Es¢y and U = J(#¥u) for some
E.yy € sub(yp). We claim that if V € N(a,u)
and V = J(¢) for some E,¢ € sub(yp), then
Mj,u | E,¢. Indeed, since V = J¥) €
N(a,u), we must have that M;,u iz E.¥v and
V = J(%v) for some E,dv € sub(y). But since
J(¥) = J(¥v), we also have Ii(¥) = Ii(¥v), so
Mj,u | E.¢ il Mj,u k= Ep¢y. It follows that
M;,u k= B,

Also, we put U C W in N(a, w) precisely when
v(E.dy) = 1 and U = J(Yu) for some E Yy €
sub(p). We claim that il V € N(a,w)and V =
J(¥) for some E,9 € sub(p), then v(E,9) =
1. Indeed, since V = J(¥) € N(a,u), we must
have that v(E,¥v) =1 and V = J(¥v) for some
E, v € sub(y). Suppose now that v(E,¥) =
0. Then, by assumption, there exists a structure
M; = (W_,-,Nj,Ij) and a world wj € Wj such that
M;,wj E (Yv A-Y)V (~¥v A ¢). It follows that
Ii(¢v) # I;(#). Consequently J(¥v) # J(¥),

which is a contradiction.

We now show by induclion on the structure
of formulas that I and J agree on sub(y). This
holds by construction for atomic propositions. It
is easy to deal with propositional connectives,
since we know that J(-¢) = W — J(¥) and
J(¥1 V ¥2) = J(¥1) U J(¢2) and similarly for I.
Assume inductively that I[{(¢) = J(¥). Suppose
first that v € J(E,¥). Then either u = w and
v(Es9) =1 oru € W and Mj,u k= E,¢. In
either case we have thal J(¢) € N(a,u). Since
I($) = J(¥), it follows that M,u E E,¢, ie.,
u € I(E,%¥). Suppose now that u € I(Eq¥), i.e,
M,u | E,¢, or, equivalently, I(¥) € N(a,u).
Since I(¥) = J(¢¥) it follows that either v = w
and v(E,¥) =1oru € W; and M;,u = E.¢. In
either case we have that v € J(E.¢).

Since v(¢) = 1, we have that w € J(v), and
consequently w € I(¢). That is, M,w = ¢. §

It is easy to see from Proposition 3.2 that satis-




fiability for £ can be decided in polynomial space.
Consider the following algorithm:

1. Nondeterministically guess a valuation v for
®.

2. For all E,%4, and E,9, in sub(yp), such that
V(Ea¥1) = 1 and v(E,¥7) = 0, nondeter-
ministically and recursively check that either
(%1 A =9¥2) or =9 A 9, is satisfiable.

It is easy to see that this is an alternating
polynomial-time algorithm, since the depth of
formulas the algorithm deals with decreases at
each level of the recursion. Thus, we can simu-
late this algorithm by a deterministic polynomial
space algorithm [CKS81); intuitively, the deter-
ministic algorithm conducts a depth-first search
for an accepting computation tree of the alter-
nating algorithm.

To appreciate the simplicity of our approach,
the reader should compare it with the standard
modal tableau approach, as in [HM85, Lad77,
Kri63]. In the standard approach, given a for-
mula ¢ one constructs a tree to find all valua-
tions for ¢. Here we just quantify existentially
over all valuations for ¢. Also, instcad of using
trees to deal with multiplicity of worlds, Propo-
sition 3.2 just gives a recursive condition in the
spirit of Fitting’s update rules [Fit83]. The result
is a “tree-less” tableau.

It turns out, however, that the use here of

an alternating polynomial-time algorithm is an
overkill.

Theorem 3.3: The satisfiability problem for €
1s in NP,

Proof: To determine satisfiability of ¢, we
use Proposition 3.2 and the fact there are only
quadratically many formulas of the form ¢; A5,
for formulas ¥; and ¥ in sub(p). Thus, we can
usc dynamic programming techniques to deter-
mine satisfiability of such formulas:

o At stage i determine satisfiability of formulas
of the form ¥; A ~¢,, depth(¢1 A ~9,) =1,
for formulas 9; and ¥, in sub(y).

By Proposition 3.2, every stage can be performed
in nondeterministic polynomial time, and only
depth(y) stages have to be performed. |

We now show how to deal with &1y and £y;.
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Proposition 3.4: 4 formula ¢ is £(1)-satisfiad
if and only if there exists a valuation v for o suck’
that ‘

1. if Eg9 is in sub(p) and v(E,9¥) = 1, then v
13 £(1)-satisfiable, and o

2. if Egiy and Eq4; are in sub(y), V(Eq1,) =
1, and v(E,v2) = 0, then (P1A=92)V (- A
¥2) is E(yy-satisfiable.

Proposition 3.5: 4 formula ¢ is E(2)-satisfiable
if and only if there ezists a valuation v for ¢ such
that

1. if Egv is in sub(p) and v(E.¥) = 0, then
¥ 1s E(3)-satisfiable, and

2. if Eqy1 and Equv; are in sub(p), v(E,91) =
1, and v(E, 1) = 0, then (¥1 A=) V(=9 A
Pa) is E(2)-satisfiable.

Corollary 3.6: The satisfiability problems for
&1y and €3y are in NP.

To deal with €3} we first adapt Lemma 3.1.

Lemma 3.7: Let M = (W,N,I) € Eqay, let o
be a formula, let w € W, and let a € A. Then
M,w ¢ E.p if and only if U € I(yp) for all
U € N(a,w).

Proof: By Lemma 3.1, M, w - E ¢ if and only
it U # I(p) for all U € N(a,w). HU ¢ I(yp)
for all U € N(a, w), then in particular U # I(y)
for all U € N(a,w). Suppose that U # I(¢) for
all U € N(a,w), but V C I(p) for some V €
N(a,w). By C3, VU I(yp) € N(a,w). But VU
I(p) = I(p) - contradiction. §

We can now state the condition for Eiay-
satisfiability.

Proposition 3.8: 4 formula ¢ is E(3}-satisfiable
if and only if there ezists a valuation v for ¢ such
that of Eq 9y and E49 are in sub(p), v(E,v,) =
1, and U(E,ﬂ/)g) = 0, then (1/11 A ‘!1/)2) 19 8(3}-
salisfiable.

Corollary 3.9:
E(3) 15 in NP,

The satisfiability problem for




[ ]t is casy to combine Propositions 3.4, 3.5 and
i § Lo characterize Es-satisfiability and obtain an
NP decision procedure forall § C {1,2,3}. Since
¢ logic of £{1,2,3) 18 the logic of local reason-
fng in [FH88] (without, however, modalities for
implicit belief), this establishes that the satisfia-
bility problem for that logic is in NP. (Note, how-
E over, that with modalities for implicit beliefl the
f satisfiability problem for that logic is PSPACE-
E complete [FH88}.)

We conclude this section by demonstrating how
(o deal with introspection.

Proposition 3.10 : A formula ¢ is &5)-
satisfiable if and only if there extsts a valuation v
Jor 0 such thal if B,y and Egva are in sub(y),
v(Ea¥1) = 1, and V(Ea¥2) = 0, then both (Y1 A
o )V (1 A%2) and (Ea 1 A~i2)V (- Esd1A2)
are £5)-satisfiable.

Corollary 3.11: The satisfiability problem for
£(sy 13 in NP.

Proof: To determine satisfiability of ¢, we use
Proposition 3.10 and the fact that there are only
quadratically many formulas of the form ¥; A~
for formulas 1, and %5 in sub(p).

As before, we can use dynamic programming
techniques to determine satisfiability of such for-
mulas:

o At stagei determine 5{5}-satisﬁability of {or-
mulas of the form %1 A 79, where size(¥; A
~4,) = 1, for formulas ¥, and ¥, in sub(y).

Clearly, every stage can be performed in non-
deterministic polynomial time, and at most
2size(y) stages have to be performed. il

3.2 4y Eq2,9,4)r and E(23,4,5)

The main feature of the logics in the previous
subsection is that the recursive condition in the
characterization of satisfiability is expressed in
terms of combinations of one or two subformulas.
As aresult, there are only polynomially many dis-
tinct nodes in the computation tree of the natural
alternating polynomial-time algorithm for satis-
fiability, which is the basis for our nondetermin-
istic polynomial-time upper bounds. This is not

T
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the case any more when agents can epistemically
combine facts.

We start by adapting Lemma 3.1 to £q4).

Lemma 3.12: Let M = (W, N,I) € €4y, let ¢
be a formula, let w € W, and let a € A. Then
M,w [ Eop if and only iff (Vio, U # I(9) for
all nonempty subsets {Uy,.. .,[Jk} C N(a,w).

Proof: By Lemma 3.1, M, w }£ E, v il and only
Mf U # I(p) for all U € N(a,w). I N5, U; #
I(¢) for all subsets {Uy,...,Us} € N(a,w), in
particular U # I(yp) for all U € N(a,w). Sup-
pose that U # I(p) for all U € N(a,w), but
ﬂ;___l U; = I(¢) for some subset {Uy, .. LUkt C
N(a,w). By C4, n;___l U; € N(a,w). But
ﬂ;=1 U, = I(v) - contradiction.

We can now characterize £(4)-satisfiability.

Proposition 3.13 : A formula ¢ is &(4y-
satisfiable if and only if there exists a valuation v
for ¢ such that if Eqy, ..., Eathx are in sub(y),
v(Eq¥) =1, for 1 < j < k, and v(Ea¥r) = 0,
then either /\f__:_ll ¥j Ay i E(4}-2atisfiable or
Y APy is 8{4]-aatiaﬁablc Jorsomej, 1< j<k.

Theorem 3.14: The salisfiabilily problem for
£(4) 13 in PSPACE.

Proof: Consider the following algorithm:

1. Nondeterministically guess a valuation v for
w.

2. For all E 41, ..., Ea¥k in sub(y), such that
v(E,¥;) =1,for 1 £ j <k, and v(E.¥x) =
0, nondeterministically and recursively check
that either /\_’:;11 Pj A~y is Ep4)-satisfiable
or P A Py is 8{4}—satisﬁable for some j,
1<j<k.

Again, it is easy to see that this is an alternating
polynomial-time algorithm, and therefore can be
simulated by a deterministic polynomial space al-
gorithm. Thus, the satisfiability problem for £(4)
is in PSPACE. 1

We now consider £(3,3,4}- Recall that the logic
for this class is the multi-agent extension of the
modal logic K. The satisfiability problem for this
logic is known to be PSPACE-complete [IIM85,
Lad77}.




Lemma 3.15: Let M = (W,N,I) € £(2,3,4}, let
@ be a formula, let w € W, and let a € A. Then
M,w £ E,p if and only iff nUEN(c,w) U & I{v).

Proof: First note that by C2, the set {U €
N(a,w)} is nonempty.

By Lemma 3.7, M,w ¢ E,p il and only iff
UgI(e)forall U € N(a,w). f Nyenqaw U €
I(¢), then U € I{y) for all U € N(a,w). Sup-
pose that U € I(y) for all U € N(a,w), but
Nuenta,wy U € 1(w). By C4, NyenawU €
N(a,w) - contradiction. I

Proposition 3.16 : A formula ¢ is £(334-
satisfiable tf and only if there exists a valua-
tion v for ¢ such that if E,¢ € sub(yp) and
v(E.¢;) =0, then /\u(E.¢')=1 V' Ay 18 Ep3.4)-
satisfiable.’

Corollary 3.17: The satisfiability problem for
£12,3,4) 18 in PSPACE.

We note that valuations were used in [Lop78]
to obtain a decision procedure for the modal logic
K. The method there-is much more complicated
than ours and its running time is exponential.

We conclude this section by demonstrating how
to deal with introspection. We consider the logic

£(2,3,4,5)» which is the multi-agent extension of
the modal logic K4 (cf. [Che80]).

Proposition 3.18: A formula ¢ is &(2,3,4,5)
satisfiable if and only if there erists a valua-
tion v for ¢ such that if E,9 € sub(y) and
V(Eq¥;) = 0, then both /\V(E-‘b,):l ¥ A -1 and
Au(E.w')=1 EoY' A~ are E(33,4 5} -3atisfiable.

Corollary 3.19: The satisfiability problem for
8(2'3'4'5} is tn PSPACE.

Proof: At first attempt one may try to come
up with the obvious alternating algorithm that
correspond to Proposition 3.18, as in the proof
of Theorem 3.14. Unfortunately, this does not
work, since when the algorithm recursively check
that Av(E.W):I Eo ' Ay is £(3,3,4,5)-satisliable,

¢If the index set for the conjunction Au(E )= ,1/" is

empty then the formula /\v(E v)= 1/1 A -y degenerates

to .
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neither the epistemic depth nor nor the episteﬁf‘k
size are decreased. As aresult, the algorithm may
not terminate.

To achieve termination we describe a dual.l.
gorithm for £(33,4,5)-unsatisfiabity: i

For every valuation v for ¢ guess a [of- "
mula E,¢ in sub(y) such that v(E,9) =
0, and recursively and nondeterministi-
cally check that either /\V(E =1 ¥ A

Y or Ayg.gn=1 La¥' A 9 s 8{”4'5'-
unsatisfiable.

There is a subtlety here in showmg that this
alternating algorithm terminates in polynomial
time. We first have to define the notion of a com-
pulation forest for a formula ¢, whose unsatisfaia-
bility is being tested. Nodes in a computation for-
est are labeled by formulas and valuations for the
formulas. The roots are labeled by the formula ¢
and all valuations for ¢. Suppose now that z is
a node in the computation forest labeled by the
formula ¥, and the valuation v. Then there is
a formula # of the form /\V(E.'{,,)=l P A g, in
which case we say that 8 is of the first kind, or
Av(E.‘t-' =1 Ea¥' A =€, in which case we say that
6 is of the second kind, where £ is a formula such
that E,¢ € sub(yp) and v(E,£) = 0, such that the
children of z are labeled by # and all valuations
for 4. In this case we say that z is an a-parent. In
particular, if ¢ has no valuations, then z is a leal.
It is easy to see that ¢ is £(3 3 4,5)-unsatisfiable
iff there is a finite computation forest for ¢. It
remains to prove that if there is a finite compu-
tation forest, then there is a forest whose depth
is polynomial in the length of ¢.

Some observations are now in order. First, if
8 is of the first kind then its epistemic depth is
smaller than the epistemic depth of 3. Second,
if £ is an a-parent of ¥, and y is an b-parent of
z, where a # b, and z, y, and z are labeled by
the formulas ¥., ¥y, ¥., correspondingly, then
then all the conjuncts of ¥, are proper sublor-
mulas of ¢¥,. It follows that the only way the
forest can have superpolynomially long branches
is if there is some a such that the forest has a su-
perpolynomially long sequence of nodes that are
all a-parents labeled by formulas of the second
type. Finally, if  is an a-parent of y, z and y
are labeled by the formulas 1, and ¥, corre-
spondingly, where ¥, is of the second kind, and




by valuations v; and vy, and if E,a € sub(y:),
- then vz(€aa) = 1 entails vy(€aa) = 1. We call
this property the monotonicily of valuations.

Since the algorithm recursively try to prove
unsatisfiability of formulas, we can assume with-
out loss of generality that the computation for-
est is nonredundant, th~t is, if = is an ances-
tor of y, then z and y are labeled by distinct
formulas. Let m be the number of formulas of
the form E.¢ in sub(p). Let E,é1,..., Eobm
be an enumeration of these formulas. Suppose
that T1,.--,Tm(m+1)+1 i @ sequence of nodes
in the computation forest, where z; is an a-
parent of zi41 for 1 < i < m(m + 1), and z;
is labeled by the formula 9¥; and the valuation
i, for 1 < i < m(m + 1) + 1. Because of
the monotonicity of valuations, there is some j,
| < j < m? -1, such that vj, Vi1, Vjam+a
agree on Ezé, for 1 < i £ m. Without loss
of generality, we can assume that all these val-
uations assign 1 to E.é1,..., Eak and assign 0
40 Eolkgts-+) Eabm, where 1 < k < m. It fol-
lows that ¥j41,..-) Pj+m+1 are all of the form
/\:-°=1 E.t; A&, where k < | < m. Consequently,
for some j',j", j < 3' < j" <j+m+1, we have
that ¥, and t;» are ide_ntical - contradiction.

It follows from our analysis, that if ¢ has a
nonredundant computation forest, then it has a
forest whose depth is at most cubic in the length
of . This proves that the algorithm terminates
in polynomial time. il

4 Concluding remarks

We have described a methodology for establish-
ing upper bounds on complexity of epistemic rea-
soning. Since all our logics extend propositional
logic, the satisfiability problem is clearly NP-
hard. We conjecture that all our bounds are
tight. That is, for § C {1,...,7}, if 4 € S,
then the satisfiability problem for £ is PSPACE-
complete, otherwise, the satisfiability problem is
NP-complete. Intuitively, the conjecture is that
it is the ability to epistemically combine facts
that causes epistemic reasoning to be harder than
propositional reasoning.

Finally, we note that it is possible to obtain
characterizations for satisfiability in the spirit of
Proposition 3.16 for logics such as propositionel
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dynamic logic [FL79]. These characterizations,
however, do not yields decision procedures in a
straightforward manner as here, since the obvi-
ous algorithms for either satisfiability or unsatis-
fiability do not terminate (cf. [Pra80, VW86]).
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