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Abstra
t. We investigate the in�nitary logi
 L

!

1!

, in whi
h senten
es may

have arbitrary disjun
tions and 
onjun
tions, but they involve only a �nite num-

ber of distin
t variables. We show that various �xpoint logi
s 
an be viewed

as fragments of L

!

1!

, and we des
ribe a game-theoreti
 
hara
terization of the

expressive power of the logi
. Finally, we study asymptoti
 probabilities of prop-

erties expressible in L

!

1!

on �nite stru
tures. We show that the 0-1 law holds

for L

!

1!

, i.e., the asymptoti
 probability of every senten
e in this logi
 exists

and is equal to either 0 or 1. This result subsumes earlier work on asymptoti


probabilities for various �xpoint logi
s and reveals the boundary of 0-1 laws for

in�nitary logi
s.
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1 Introdu
tion

In re
ent years the model theory of �nite stru
tures has been a meeting point for resear
h in


omputer s
ien
e, 
ombinatori
s, and mathemati
al logi
. Results and te
hniques from �nite

model theory have found interesting appli
ations to several other areas, in
luding database

theory [CH82℄, [Var82℄ and 
omplexity theory [Ajt83℄, [Gur84℄, [Imm86℄. One parti
ular

dire
tion of resear
h has fo
used on the asymptoti
 probabilities of properties expressible in

di�erent languages.

In general, if C is a 
lass of �nite stru
tures over some vo
abulary and if P is a property of

some stru
tures in C, then the asymptoti
 probability �(P ) on C is the limit as n!1 of the

fra
tion of the stru
tures in C with n elements whi
h satisfy P , provided that the limit exists.

We say that P is true almost everywhere on C in 
ase �(P ) is equal to 1. If �(P ) = 0, then

we say that P is false almost everywhere. It turns out that many interesting properties on

the 
lass G of all �nite graphs are either true almost everywhere or false almost everywhere.

It is, for example, well known and easy to prove that �(
onne
tivity)=1, �(rigidity)=1, while

�(planarity)=0 and �(l-
olorabilty)=0, for l � 2 [Bol79℄. A theorem of P�osa [P

�

76℄ asserts

that �(Hamiltoni
ity)=1. On the other hand, statements about 
ardinalities, su
h as \there

is an even number of elements" do not have an asymptoti
 probability.

Fagin [Fag76℄ and Glebskii et al. [GKLT69℄ were the �rst to establish a fas
inating


onne
tion between logi
al de�nability and asymptoti
 probabilities. More spe
i�
ally, they

showed that if C is the 
lass of all �nite stru
tures over some relational vo
abulary and if

P is any property expressible in �rst-order logi
, then �(P ) exists and is either 0 or 1. This

result, whi
h is known as the 0-1 law for �rst-order logi
, be
ame the starting point of a

series of investigations aiming in dis
overing the relationship between expressibility in a logi


and asymptoti
 probabilities. The re
ent survey by Compton [Com88a℄ 
ontains an eloquent

a

ount of developments in this area.

It is well known that �rst-order logi
 has severely limited expressive power on �nite stru
-

tures (
f. [Fag75, AU79, Gai82℄). In view of this fa
t, resear
hers investigated asymptoti


probabilities in logi
al languages that go beyond �rst-order logi
. Although the 0-1 law fails

for se
ond-order logi
, it turned out that there are powerful fragments of se
ond-order logi


for whi
h the 0-1 law holds. Moreover, the boundary of 0-1 laws for fragments of se
ond-

order logi
 is now understood, through the work of [KS85, Kau87, KV87, PS89, KV90a,

PS91, KV92℄.

The limited expressive power of �rst-order logi
 is also due to the absen
e of any re
ursion

me
hanism. Thus, a di�erent dire
tion of investigation pursued the study of 0-1 laws for

extensions of �rst-order logi
 that allow for �xpoint or iterative 
onstru
ts. Talanov [Tal81℄

showed that the 0-1 holds for �rst-order logi
 augmented with a transitive 
losure operator.

This result was extended by Talanov and Knyazev [TK86℄, and, independently, by Blass,

Gurevi
h and Kozen [BGK85℄ who proved that a 0-1 law holds for positive-�xpoint logi
.

1

Positive-Fixpoint logi
 is obtained from �rst-order logi
 by adding the least-�xpoint operator

for positive formulas [Mos74, CH82℄. It 
an express properties whi
h are not �rst-order

de�nable, su
h as 
onne
tivity, a
y
li
ity and 2-
olorability. On the other hand the 
lass

1

To be pre
ise, Talanov and Knyazev's result was in terms of a 
ertain iterative extension of �rst-order

logi
, whi
h in parti
ular in
ludes positive-�xpoint logi
. The study of 0-1 laws for iterative extensions of

�rst-order logi
 was further pursued by Knyazev [Kny89℄.

1



of positive-�xpoint properties is in general properly 
ontained in PTIME. In parti
ular,

\parity" (\there is an even number of elements") is not expressible in positive-�xpoint logi


over the 
lass of all �nite stru
tures.

In [KV87℄ we studied the extension of �rst-order logi
 that results by adding while

looping as an iteration 
onstru
t. This programming query language was introdu
ed by

Chandra and Harel [CH82℄ and, as Abiteboul and Vianu [AV89℄ showed re
ently, 
an be

viewed as �rst-order logi
 augmented with a partial-�xpoint operator for arbitrary �rst-

order formulas. Following [AV89℄, we use the term partial-�xpoint properties for properties

expressible in this logi
. Partial-�xpoint properties 
ontain all positive-�xpoint properties

and are in turn properly 
ontained in the ones 
omputable in PSPACE. Moreover, there are

partial-�xpoint properties that are 
omplete for PSPACE.

In [KV87℄ we announ
ed the 0-1 law for partial-�xpoint logi
 (we 
alled it there iterative

logi
) and sket
hed a proof that uses model-theoreti
 methods similar to the ones employed

by Blass, Gurevi
h and Kozen [BGK85℄ for positive-�xpoint logi
. In parti
ular, the proof

uses the 
ompa
tness theorem of mathemati
al logi
 and a model-theoreti
 
hara
terization

of !-
ategori
al theories due to Engeler [Eng59℄, Ryll-Nardzewski [RN59℄, Svenonius [Sve59℄,

and Vaught [Vau61℄.

Are there logi
s having higher expressive power than partial-�xpoint logi
 and possessing

the 0-1 law?

Sin
e �rst-order logi
 has a �nitary syntax, another way to in
rease its expressive power

is to allow for in�nitary formation rules. One of the most powerful logi
s resulting this way

is the in�nitary logi
 L

1!

whi
h allows for arbitrary disjun
tions and 
onjun
tions. The

0-1 law fails, however, for L

1!

, sin
e \parity" is expressible as a 
ountable disjun
tion of

�rst-order senten
es.

Barwise [Bar77℄ introdu
ed a family L

k

1!

, k a positive integer, of in�nitary logi
s that


onsist of all senten
es of L

1!

with at most k distin
t variables. Although these logi
s were

studied originally on in�nite stru
tures, they turn out to have interesting uses in theoreti
al


omputer s
ien
e. They have been investigated on �nite stru
tures in their own right in

[Kol85, KV90b℄. They also underlie mu
h of the work in [Imm82, dR87, LM89, CFI89℄,

although their use there is rather impli
it.

We investigate here de�nability and 0-1 laws for the in�nitary languages L

k

1!

, k � 1.

We show �rst that every partial-�xpoint property is expressible by a formula of L

k

1!

, for

some k � 1. This 
ontainment is stri
t, sin
e it is known that the in�nitary languages

L

k

1!

, k � 2, 
an express non-re
ursive properties. After this, we establish that the 0-1 law

holds for the in�nitary logi
 L

!

1!

=

S

1

k=1

L

k

1!

. This result on the one hand subsumes the

earlier work on 0-1 laws for positive-�xpoint logi
 and partial-�xpoint logi
 and on the other

reveals the boundary of 0-1 laws for fragments of L

1!

, sin
e, as mentioned before, \parity" is

expressible as a 
ountable disjun
tion of �rst-order senten
es (a disjun
tion, however, whi
h

involves in�nitely many distin
t variables).

We supply three di�erent proofs of the 0-1 law for L

!

1!

, ea
h one illuminating the result

from a di�erent perspe
tive. The �rst proof is a generalization of the proofs in [BGK85℄ for

positive-�xpoint logi
 and in [KV87℄ for partial-�xpoint logi
. This proof is interesting in its

use of in�nite-model theory to prove a result in �nite-model theory (a paradigm established

by Fagin [Fag76℄). In 
ontrast, our next two proofs are in the spirit of \pure" �nite-model

theory and they do not appeal to \in�nitisti
" arguments. One proof is based on a quanti�er-

2



elimination method, while the se
ond uses pebble games for in�nitary logi
s.

2 In�nitary Logi
s

The limited expressive power of �rst-order logi
 is due to its �nitary syntax and to the

absen
e of any re
ursion or iteration me
hanism. Higher expressive power 
an be a
hieved

by augmenting the syntax of �rst-order logi
 either with in�nitary formation rules or with

�xpoint operators that a
t as re
ursion or iteration 
onstru
ts. In this se
tion we 
onsider


ertain in�nitary logi
s, study their properties, and 
ompare them to �xpoint logi
s.

2.1 In�nitary Logi
s with a Fixed Number of Variables

Di�erent in�nitary logi
s arise by allowing for in�nite disjun
tions and 
onjun
tions, or by

allowing for in�nite strings of quanti�ers, or by allowing for both at the same time. We


onsider the in�nitary logi
 L

1!

, whi
h is the extension of �rst-order logi
 that results by

allowing in�nite disjun
tions and 
onjun
tions in the syntax, while keeping the quanti�er

strings �nite (
f. [BF85℄). To illustrate the gain in expressive power, re
all the well-known

fa
t that the property \there is an even number of elements" is not expressible by any �rst-

order senten
e on �nite stru
tures. Let �

n

be a �rst-order senten
e stating that there are

exa
tly n elements. Then the in�nitary senten
e

W

1

n=1

�

2n

asserts that \there is an even

number of elements".

We now de�ne formally the syntax of the in�nitary logi
 L

1!

.

De�nition 2.1: Let � be a vo
abulary 
onsisting of �nitely many relational and 
onstant

symbols and let fv

1

; : : : ; v

n

g be a 
ountable set of variables. The 
lass L

1!

of in�nitary

formulas over � is the smallest 
olle
tion of expressions su
h that

� it 
ontains all �rst-order fomulas over �;

� if ' is an in�nitary formula, then so is :';

� if  is an in�nitary formula and v

i

is a variable, then (8v

i

)' and (9v

i

)' are also

in�nitary formulas;

� if 	 is a set of in�nitary formulas, then

W

	 and

V

	 are also in�nitary formulas.

2

The 
on
ept of a free variable in a L

1!

formula is de�ned in the same way as for �rst-order

logi
. A senten
e of L

1!

is a formula ' of L

1!

with no free variables. The semanti
s

of in�nitary formulas is a dire
t extension of the semanti
s of �rst-order logi
, with

W

	

interpreted as a disjun
tion over all formulas in 	 and

V

	 interpreted as a 
onjun
tion.

In general, in�nitary formulas, even in�nitary senten
es, may have an in�nite number of

distin
t variables. We now fo
us attention on fragments of L

1!

in whi
h the total number

2

In mathemati
al logi
, the notation L

��

, where � and � are in�nite 
ardinal numbers, has been used to

denote the in�nitary logi
 in whi
h we 
an form new formulas by taking disjun
tions and 
onjun
tions of

sets of formulas of 
ardinality less than �, and by applying strings of quanti�ers of length less than �. Thus,

L

1!

= [

�

L

�!

.

3



of variables is required to be �nite. Variables, however, may have an in�nite number of

o

urren
es in su
h formulas.

De�nition 2.2: Let k be a positive integer.

� The in�nitary logi
 with k variables, denoted by L

k

1!

, 
onsists of all formulas of L

1!

with at most k distin
t variables.

� The in�nitary logi
 L

!

1!


onsists of all formulas of L

1!

with a �nite number of distin
t

variables. Thus,

L

!

1!

=

1

[

k=1

L

k

1!

:

� We write L

k

!!

for the 
olle
tion of all �rst-order formulas with at most k variables.

The family L

!

1!

of the in�nitary languages L

k

1!

, k � 1, was introdu
ed �rst by Barwise

[Bar77℄, as a tool for studying positive-�xpoint logi
 on in�nite stru
tures. Sin
e that time,

however, these languages have had numerous uses and appli
ations in theoreti
al 
omputer

s
ien
es. Indeed, they underlie mu
h of the work in [Imm82, dR87, LM89, CFI89℄ and they

have also been studied in their own right in [Kol85, KV90b℄.

We now give some examples that illustrate the expressive power of in�nitary logi
 with

a �xed number of variables.

Example 2.3: Cardinalities of Total Orders

Assume that the vo
abulary � 
onsists of a binary relation symbol < and we are 
onsidering

only the stru
tures in whi
h the interpretation of < is a total order. Let �

n

be a �rst-order

senten
e asserting that \there are at least n elements". On arbitrary stru
tures over the

vo
abulary �, the senten
e �

n

requires n distin
t variables. Immerman and Kozen [IK89℄

pointed out, however, that on total orders �

n

is equivalent to a senten
e in L

2

!!

. For example,

�

4


an be written as

(9x9y)(x < y ^ (9x)(y < x ^ (9y)(x < y))):

It follows that on total orders the senten
e �

n

asserting that there are exa
tly n elements

is also in L

2

!!

, sin
e it is equivalent to �

n

^ :�

n+1

. As a result, on total orders properties

su
h as \there is an even number of elements", \the universe is �nite", et
., are expressible

in L

2

1!

. In general, if P is any set of positive integers, then the property \the 
ardinality of

the total order is a member of P" is expressible in L

2

1!

, sin
e it is de�nable by

_

n2P

�

n

:

It follows, that L

!

1!


an express non-re
ursive properties on total orders.

4



Example 2.4: Paths and Conne
tivity

Assume that the vo
abulary � 
onsists of a single binary relation E and let p

n

(x; y) be a

�rst-order formula over � asserting that there is a path of length n from x to y. The obvious

way to write p

n

(x; y) requires n + 1 variables, namely

(9x

1

: : :9x

n�1

)(E(x; x

1

) ^ E(x

1

; x

2

) ^ : : : ^ E(x

n�1

; y)):

It is well known, however, that ea
h p

n

(x; y) is equivalent to a formula in L

3

!!

, i.e. a �rst-order

formula with at most three distin
t variables x; y; z. To see this, put

p

1

(x; y) � E(x; y)

and assume, by indu
tion on n, that p

n�1

(x; y) is equivalent to a formula in L

3

!!

. Then

p

n

(x; y) � (9z)[E(x; z) ^ (9x)(x = z ^ p

n�1

(x; y))℄:

It follows that \
onne
tivity" is a property of graphs expressible in L

3

1!

, sin
e it is given

by the formula

(8x8y)(

1

_

n=1

p

n

(x; y)):

Similarly, the property \there is no 
y
le" is also in L

3

1!

, sin
e it is de�nable by:

(8x)(

1

^

n=1

:p

n

(x; x)):

More generally, if P is any set of positive integers, then the property \x and y are 
onne
ted

by a path whose length is a number in P" is expressible in L

3

1!

via the formula:

_

n2P

p

n

(x; y):

It follows that L

!

1!


an express non-re
ursive properties on �nite graphs.

Properties su
h as \
onne
tivity" and \there is no 
y
le" are also known to be express-

ible in positive-�xpoint logi
. We 
onsider next extensions of �rst-order logi
 with �xpoint

formation rules and 
ompare the resulting logi
s to L

!

1!

.

2.2 Fixpoint Logi
s

Let � be a vo
abulary, let S be an n-ary relation symbol not in �, let '(x

1

; : : : ; x

n

; S) be

a �rst-order formula over the vo
abulary � [ fSg, and let D be a �nite stru
ture over �.

The formula ' gives rise to an operator �(S) from n-ary relations on the universe D of D

to n-ary relations on D, where

�(T ) = f(a

1

; : : : ; a

n

) : D j= '(a

1

; : : : ; a

n

; T )g;

for every n-ary relation T on D.

Every su
h operator �(S) generates a sequen
e of stages that are obtained by iterating

�(S). We will be interested here in the relationship between the stages of the operator and

its �xpoints.

5



De�nition 2.5: Let D be a �nite stru
ture over the vo
abulary �.

� The stages �

m

, m � 1, of � on D, are de�ned by the indu
tion:

�

1

= �(;); �

m+1

= �(�

m

):

� We say that a relation T on D is a �xpoint of the operator �(S) (or, of the formula ')

if �(T ) = T .

Intuitively, one would like to asso
iate with an operator �(S) the \limit" of its stages. This

is possible only when the sequen
e �

m

, m � 1, of the stages \
onverges", i.e., when there

is an integer m

0

su
h that �

m

0

= �

m

0

+1

and, hen
e, �

m

0

= �

m

; for all m � m

0

: Noti
e

that in this 
ase �

m

0

is a �xpoint of �(S), sin
e �

m

0

= �

m

0

+1

= �(�

m

0

). The sequen
e of

stages, however, may not 
onverge. In parti
ular, this will happen if the formula '(x; S) has

no �xpoints. Thus, additional 
onditions have to be imposed on the formulas 
onsidered in

order to ensure that the sequen
e of stages 
onverges.

A formula '(x

1

; : : : ; x

n

; S) is positive in S if every o

urren
e of S in ' is within an even

number of negations. Positivity is a natural synta
ti
 
ondition that guarantees 
onvergen
e.

Indeed, if '(x; S) is positive in S, then the asso
iated operator � ismonotone (i.e., if T

1

� T

2

,

then �(T

1

) � �(T

2

)) and, as a result, the sequen
e �

m

, m � 1, of stages is in
reasing. If

D is a �nite stru
ture with s elements, then every stage �

m

has at most s

n

elements and,


onsequently, there is an integer m

0

� s

n

su
h that �

m

0

= �

m

for every m � m

0

. Thus, the

sequen
e of stages of '(x; S) 
onverges to �

m

0

. Moreover, it is easy to verify that �

m

0

is the

least �xpoint of '(x; S), i.e., it is a �xpoint of ' with the property that �

m

0

� T for every

�xpoint T of '. We write '

1

or �

1

to denote the least �xpoint of '.

Remark 2.6: Although here we are mainly interested in �nite stru
tures, we should point

out that the stages of a formula 
an also be de�ned on in�nite stru
tures. This is done by

trans�nite indu
tion on the ordinals, where at limit stages the operator �(S) is applied to

the union of the previously de�ned stages. A positive formula has a least �xpoint on every

in�nite stru
ture, whi
h is equal to some trans�nite stage of the formula.

The existen
e of least �xpoints for positive formulas is an instan
e of a more general

result about �xpoints in a latti
e-theoreti
 framework (
f. Tarski [Tar55℄).

Positive-�xpoint logi
 is �rst-order logi
 augmented with the least �xpoint formation rule for

positive formulas. The 
anoni
al example of a formula of positive-�xpoint logi
 is provided

by the least �xpoint '

1

(x; y) of the �rst-order formula

E(x; y) _ (9z)(S(x; z) ^ S(z; y)):

In this 
ase '

1

(x; y) de�nes the transitive 
losure of the edge relation E. It follows that


onne
tivity is a property expressible in positive-�xpoint logi
, but, as is well known (
f.

[Fag75, AU79℄), not in �rst-order logi
.

6



As a fresh example, we 
onsider 2-
olorability. Using Ehrenfeu
ht-Fraiss�e games, it 
an

be proved that this property is not expressible in �rst-order logi
. We now show that 2-


olorability on dire
ted graphs without loops is expressible in �xpoint logi
. For this, let

'(x; y; S) be the �rst-order formula

E(x; y) _ (9z)(9w)(E(x; z) ^ E(z; w) ^ S(w; y));

where E is a binary relation symbol in the vo
abulary �. It is easy to verify that '

1

(x; y)

holds if and only if there is a path of odd length from x to y. It follows that a dire
ted graph

G = (A;E) is not 2-
olorable if and only if 9x'

1

(x; x).

The theory of positive-�xpoint logi
 on in�nite stru
tures was developed in Mos
hovakis

[Mos74℄. Chandra and Harel [CH82℄ were the �rst to fo
us attention on the 
olle
tion

FP of properties expressible in positive-�xpoint logi
 on �nite stru
tures (positive-�xpoint

properties). Sin
e that time positive-�xpoint logi
 has been studied extensively on �nite

stru
tures and this has resulted to a thorough understanding of its expressive power (
f.

[Cha88℄ for a survey of results in this area). We should remark that often in the literature

positive-�xpoint logi
 is referred to as simply �xpoint logi
.

Every positive-�xpoint property is 
omputable in polynomial time (in the size of the �nite

stru
ture), be
ause the sequen
e of stages 
onverges to the least �xpoint in polynomially

many iterations. On the other hand there are PTIME properties, su
h as \there is an

even number of elements", that are not in FP [CH82℄. Positive-�xpoint logi
 
an express,

however, PTIME-
omplete properties, for example the path systems problem in Cook [Coo74℄.

Moreover, on ordered �nite stru
tures (i.e., on �nite stru
tures where a binary relation symbol

is always interpreted as a total order) we have that FP=PTIME ([Imm86, Var82℄).

How 
an we obtain logi
s with iteration 
onstru
ts that are more expressive than positive-

�xpoint logi
? A more powerful logi
 results if one iterates arbitrary �rst-order operators, un-

til a �xpoint is rea
hed (whi
h may never happen). In this 
ase we may have non-terminating


omputations, unlike positive-�xpoint logi
, where the iteration is guaranteed to 
onverge.

De�nition 2.7: Let � be a vo
abulary, let S be an n-ary relation symbol not in �, let

'(x

1

; : : : ; x

n

; S) be a �rst-order formula over the vo
abulary � [ fSg, let D be a �nite

stru
ture over �, and let �

m

, m � 1, be the sequen
e of stages of the asso
iated operator

�(S).

If there is an integerm

0

su
h that �

m

0

= �

m

0

+1

, then we put '

1

= �

1

= �

m

0

; otherwise,

we set '

1

= �

1

= ;. In the former 
ase we say that ' 
onverges on D, and in the latter


ase we say that ' diverges on D. We 
all '

1

the partial-�xpoint of ' on D.

Partial-Fixpoint Logi
 is �rst-order logi
 augmented with the partial-�xpoint formation

rule for arbitrary �rst-order formulas. We write PFP for the 
olle
tion of all properties

de�nable by formulas of partial-�xpoint logi
 on �nite stru
tures.

Partial-�xpoint logi
 on �nite stru
tures has been investigated by Abiteboul and Vianu

[AV89℄. In parti
ular, they established that the 
lass PFP of partial-�xpoint properties on

�nite stru
tures 
oin
ides with the 
lass of properties expressible in the language RQL (ranked

query language), introdu
ed by Chandra and Harel [CH82℄ and studied also in [KV87℄ under

the name iterative logi
. The latter is an extension of �rst-order logi
 obtained by adding

while looping as an iteration 
onstru
t.
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As with positive-�xpoint logi
, the syntax of partial-�xpoint logi
 allows for the in-

terleaving of �rst-order operations (in
luding negation) with the partial-�xpoint operator.

Abiteboul and Vianu [AV89℄ showed, however, that this does not give rise to a hierar
hy of

properties and that a single appli
ation of the partial-�xpoint operator suÆ
es to generate

all PFP properties. An analogous result for �xpoint logi
 had been obtained by Immerman

[Imm86℄, and Gurevi
h and Shelah [GS86℄.

Noti
e that for every �rst-order formula '(x

1

; : : : ; x

n

; S), if D is a �nite stru
ture with

s elements, then either the sequen
e �

m

, m � 1, of stages 
onverges or it 
y
les. Whi
h of

the two is the 
ase 
an be determined by 
arrying out at most 2

s

n

iterations of �. Thus, the


omputation of the partial-�xpoint requires spa
e polynomial in the size s of the stru
ture D,

sin
e we only have to store one stage at a time and 
ompute the next stage, while making sure

that the 
urrent level of iteration has not ex
eeded 2

s

n

. Noti
e also that if '(x

1

; : : : ; x

n

; S)

is a positive in S formula, then the partial-�xpoint of ' 
oin
ides with the least �xpoint

of ', be
ause the sequen
e of stages 
onverges. It follows that partial-�xpoint logi
 is an

extension of positive-�xpoint logi
.

As a result of the above fa
ts, we have that

FP � PFP � PSPACE:

The 
lass PFP of partial-�xpoint properties is properly 
ontained in PSPACE, sin
e the

property of \
ardinality is even" is not in PFP [CH82℄. On the other hand, it turns out that

on ordered �nite stru
tures PFP = PSPACE, be
ause on su
h stru
tures partial-�xpoint

logi
 
an simulate PSPACE 
omputations. (This was shown by Vardi [Var82℄ to hold for the


lass of while properties, whi
h is equivalent to PFP [AV89℄.) Note that this implies that

PFP 6� PTIME, assuming that PTIME 6= PSPACE.

Chandra and Harel [CH82℄ posed the problem of showing that FP is properly 
ontained

in PFP on the 
lass of all �nite stru
tures over a vo
abulary �. No progress was made on

this problem until re
ently, when Abiteboul and Vianu [AV91℄ showed that FP 6= PFP if and

only if PTIME 6= PSPACE. Thus, the separation problem for these two �xpoint logi
s on the


lass of all �nite stru
tures is equivalent to one of the outstanding problems in 
omplexity

theory.

Our next result shows that partial-�xpoint logi
 
an be subsumed by the in�nitary logi


L

!

1!

.

Theorem 2.8 : Let � be a vo
abulary, let S be an n-ary relation symbol not in �, let

'(x

1

; : : : ; x

n

; S) be a �rst-order formula over the vo
abulary � [ fSg, and assume that the

total number of distin
t variables (free and bound) o

urring in ' is equal to k. Let �(S) be

the operator asso
iated with ', where

�(T ) = f(a

1

; : : : ; a

n

) : D j= '(a

1

; : : : ; a

n

; T )g;

for any n-ary relation T on the universe D of a stru
ture D over �. Then

� For every m � 1, the stage �

m

(x

1

; : : : ; x

n

) of � is de�nable by a formula of L

k+n

!!

on

all �nite stru
tures over �.

� The partial-�xpoint '

1

(x

1

; : : : ; x

n

) of '(x

1

; : : : ; x

n

; S) is de�nable by a formula of L

k+n

1!

on all �nite stru
tures.
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Proof: Let y

1

; : : : ; y

n

be n new distin
t variables not o

urring in '. We will show, by

indu
tion on m, that every stage �

m

, m � 1, is expressible by a formula '

m

(x

1

; : : : ; x

n

) of

L

k+n

!!

whose variables are those of ' and y

1

; : : : ; y

n

. The 
laim is obvious for the �rst stage

�

1

= �(;). Assume that the indu
tion hypothesis holds for �

m

. By de�nition of the stages,

we have that

�

m+1

(x

1

; : : : ; x

n

) � '(x

1

; : : : ; x

n

;�

m

):

At this point, one would like to repla
e every o

urren
e of a subformula of the form

S(t

1

; : : : ; t

n

) in '(x

1

; : : : ; x

n

; S) by the formula '

m

(x

1

=t

1

; : : : ; x

n

=t

n

), where the latter formula

is obtained from '

m

(x

1

; : : : ; x

n

) by substituting t

i

for ea
h free o

urren
e of x

i

, 1 � i � n.

This, however, may in
rease the total number of variables in the resulting formula beyond any

predes
ribed bounds, sin
e one would have to make the substitutions not to '

m

(x

1

; : : : ; x

n

),

but to an equivalent formula (possibly having more variables) in whi
h ea
h t

i


an be susti-

tuted for x

i

(without 
hanging the meaning of the formula). It turns out, nevertheless, that

the above diÆ
ulty 
an be 
ir
umvented as follows.

Repla
e every o

urren
e of a subformula of the form S(t

1

; : : : ; t

n

) in '(x

1

; : : : ; x

n

; S) by

the expression

(9y

1

: : :9y

n

)[(y

1

= t

1

^ : : : ^ y

n

= t

n

)^

(9x

1

: : :9x

n

)(x

1

= y

1

^ : : : ^ x

n

= y

n

^ ~'

m

(x

1

; : : : ; x

n

))℄:

The resulting expression yields a formula '

m+1

(x

1

; : : : ; x

n

) of L

k+n

!!

(whose variables are those

of ' and y

1

; : : : ; y

n

) that de�nes �

m+1

uniformly on all �nite stru
tures.

It is now easy to show that on �nite stru
tures the partial-�xpoint '

1

of the formula

'(x

1

; : : : ; x

n

; S) is expressible by a formula of L

k+n

1!

. Re
all that '

1

is equal to some stage

�

m

0

su
h that �

m

0

= �

m

0

+1

, if su
h a stage exists , or equal to ; otherwise. Thus,

'

1

(x) �

1

_

m=1

[(8x)('

m+1

(x)$ '

m

(x))℄ ^ '

m

(x):

The pre
eding Theorem 2.8 
onstitutes an extension of an earlier result to the e�e
t that

on every �xed stru
ture the in�nitary logi
 L

!

1!


an express every positive-�xpoint formula.

That result appeared in print in [Bar77, Imm82℄, but a
tually goes ba
k to the unpublished

Ph.D. thesis of A. Rubin [Rub75℄.

Corollary 2.9: L

!

1!


an express every partial-�xpoint property on �nite stru
tures. Thus,

on �nite stru
tures

FP � PFP � L

!

1!

:

As mentioned earlier, L

!

1!

on �nite graphs 
an 
apture non-re
ursive properties. Sin
e every

PFP property is re
ursive (a
tually in PSPACE), it follows that the in
lusion PFP � L

!

1!

is proper.
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2.3 L

k

1!

-Equivalen
e and Pebble Games

Two stru
tures are equivalent in some logi
 L if no senten
e of L distinguishes them. This

is a 
entral 
on
ept in every logi
 and plays an important role in model theory. We dis
uss

here equivalen
e in the in�nitary logi
s with a �xed number of variables.

De�nition 2.10: Let A and B be two stru
tures over the vo
abulary � and let k be a

positive integer.

� Assume that a

1

; : : : ; a

m

and b

1

; : : : ; b

m

are �nite sequen
es of distin
t elements from

the universes of A and B respe
tively, where 1 � m � k. We write

(A; a

1

; : : : ; a

m

) �

k

1!

(B; b

1

; : : : ; b

m

)

to denote that for every formula '(u

1

; : : : ; u

m

) of L

k

1!

with free variables among

u

1

; : : : ; u

m

we have that

A; a

1

; : : : ; a

m

j= '(u

1

; : : : ; u

m

) if and only if B; b

1

; : : : ; b

m

j= '(u

1

; : : : ; u

m

):

� We say that A is L

k

1!

-equivalent to B, and we write A �

k

1!

B, if A and B satisfy the

same senten
es of L

k

1!

.

� We say that A is L

k

!!

-equivalent to B, and we write A �

k

!!

B, if A and B satisfy the

same senten
es of �rst-order logi
 with k variables.

The 
onne
tion between de�nability in L

k

1!

and the equivalen
e relation�

k

1!

is des
ribed

by the following two propositions.

Proposition 2.11: Let � be a vo
abulary, let F be the 
lass of all �nite stru
tures over �,

and let k be a positive integer. Then every equivalen
e 
lass of the equivalen
e relation �

k

1!

on F is de�nable by a senten
e of L

k

1!

.

Proof: Observe �rst that the equivalen
e relation �

k

1!

on F has only 
ountably many

equivalen
e 
lasses. This is be
ause there are only 
ountably many non-isomorphi
 �nite

stru
tures and every equivalen
e 
lass is a union of isomorphism 
lasses. Let C

0

; C

1

; : : : be

an enumeration of the equivalen
e 
lasses of �

k

1!

on F .

Let i � 0. For all j 6= i, there is a senten
e  

j

of L

k

1!

su
h that  

j

holds for the stru
tures

in C

i

, but fails for the stru
tures in C

j

. Thus, the 
ountable 
onjun
tion

V

j 6=i

 

j

is a senten
e

of L

k

1!

that is satis�ed exa
tly by the stru
tures in C

i

.

Proposition 2.12: Let C be a 
lass of �nite stru
tures over the vo
abulary � and let k be a

positive integer. Then the following statements are equivalent:

1. The 
lass C is L

k

1!

-de�nable, i.e. there is a senten
e ' of L

k

1!

su
h that for any �nite

stru
ture A over � we have that

A 2 C () A j= ':

10



2. If A and B are �nite stru
tures over � su
h that A 2 C and A �

k

1!

B, then B 2 C.

Proof: The dire
tion (1)) (2) follows from the de�nition of �

k

1!

.

For the other dire
tion, assume that statement (2) holds for the 
lass C. The pre
eding

Proposition 2.11 implies that for ea
h i � 0 there is a senten
e 	

i

of L

k

1!

that de�nes the

i-th equivalen
e 
lass C

i

of �

k

1!

on �nite stru
tures. We now 
laim that the 
ountable

disjun
tion

W

C

i

�C

	

i

, whi
h is a senten
e of L

k

1!

, de�nes the 
lass C. Assume that A is a

stru
ture in C and let C

l

be the equivalen
e 
lass of L

k

1!

to whi
h A belongs. Then, by

hypothesis, we have that C

l

� C. Thus, A j=

W

C

i

�C

	

i

, sin
e A j= 	

l

. Conversely, assume

that A is a �nite stru
ture satisfying �

l

, where C

l

� C. Then A 2 C

l

, so A 2 C.

Remark 2.13: Note that the proof of Proposition 2.12 used only the property that L

k

1!

is 
losed under 
ountable 
onjun
tions and disjun
tions. Thus, the proposition 
an be gen-

eralized to any logi
 that has this 
losure property. In parti
ular, the proposition 
an be

applied to any logi
 that is 
losed under �nite 
onjun
tions and disjun
tions and has a �nite

number of equivalen
e relations. For example, if we 
onsider the fragment L

r

of �rst-order

logi
 
onsisting of �rst-order senten
es of quanti�er depth r, then the analogous version of

the above Proposition 2.12 holds for L

r

. The reason for this is that, by Fraiss�e's theorem

[Fra54℄, the relation of elementary equivalen
e on L

r

has �nitely many equivalen
e 
lasses.

It is known that �

k

1!

-equivalen
e 
an be 
hara
terized in terms of an in�nitary k-pebble

game. This game was impli
it in Barwise [Bar77℄ and was des
ribed in detail in Immerman

[Imm82℄.

De�nition 2.14: Assume that A and B are two stru
tures over the vo
abulary � and let




1

; : : : ; 


l

and d

1

; : : : ; d

l

be the interpretations of the 
onstant symbols of � on A and B,

respe
tively.

The k-pebble game between Players I and II on the stru
tures A and B has the following

rules:

Player I 
hooses one of the two stru
tures A and B and pla
es a pebble on one of its

elements. Player II responds by pla
ing a pebble on an element of the other stru
ture. Player

I 
hooses again one of the two stru
tures and the game 
ontinues this way until k pebbles

have been pla
ed on ea
h stru
ture.

Let a

i

and b

i

, 1 � i � k, be the elements of A and B respe
tively pi
ked by the two

players in the i-th move. Player I wins the game at this point if one of the following two


onditions holds:

� Two of the pebbles are on the same element of one of the stru
tures, while the 
orre-

sponding two pebbles are on di�erent elements of the other stru
ture, i.e., a

i

= a

j

and

b

i

6= bj (or a

i

6= a

j

and b

i

= b

j

), for some i and j su
h that 1 � i < j � k.

� The previous 
ondition fails and the mapping h with

h(a

i

) = b

i

; 1 � i � k;

and

h(


j

) = d

j

; 1 � j � l;
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is not an isomorphism between the substru
tures of A and B with universes

fa

1

; : : : ; a

k

g [ f


1

; : : : ; 


l

g

and

fb

1

; : : : ; b

k

g [ fd

1

; : : : ; d

l

g

respe
tively.

If both 
onditions fail, then Player I removes some 
orresponding pairs of pebbles and the

game resumes until again k pebbles have been pla
ed on ea
h stru
ture. Player II wins the

game if he 
an 
ontinue playing \forever", i.e. if Player I 
an never win a round of the game.

In the pre
eding de�nition we have des
ribed in a rather informal the 
on
ept \Player II

wins the k-pebble game on A and B". The 
on
ept of a winning strategy for Player II in the

k-pebble game is formalized in what follows (
f. also [Bar77, Imm82℄).

De�nition 2.15: Let A and B be two stru
tures over the vo
abulary � and let 


1

; : : : ; 


l

and d

1

; : : : ; d

l

be the interpretations of the 
onstant symbols of � on A and B respe
tively.

A partial isomorphism between A and B is a fun
tion h su
h that its domain is a �nite

subset of the universe of A 
ontaining the elements 


1

; : : : ; 


l

of A, its range is a �nite subset

of the universe of B 
ontaining the elements d

1

; : : : ; d

l

of B, h(


j

) = d

j

; 1 � j � l, and su
h

that h is an isomorphism between the substru
tures of A and B with universes the domain

and range of h respe
tively.

De�nition 2.16: Let k be a positive integer, let A and B be two stru
tures over the

vo
abulary �, and let 


1

; : : : ; 


l

and d

1

; : : : ; d

l

be the interpretations of the 
onstant symbols

of � on A and B respe
tively.

We say that Player II has a winning strategy in the k-pebble game on A and B if there

is a non-empty family H of partial isomorphisms between A and B su
h that

� H is 
losed under subfun
tions: if f 2 H and f(


1

; d

1

); : : : ; (


l

; d

l

)g � g � f (as sets of

ordered pairs), then g 2 H.

� H has the ba
k and forth property up to k: if f 2 H and jf j < k + l, then for any

element a 2 A (respe
tively b 2 B) there is an element b in B (respe
tively a 2 A)

su
h that the fun
tion f [ f(a; b)g is in H.

The 
ru
ial 
onne
tion between k-pebble games and L

k

1!

-equivalen
e is provided by the

following result, whi
h is due to Barwise [Bar77℄ (
f. also [Imm82℄). We in
lude here a

detailed proof of this result, sin
e only a hint for the proof is given in [Bar77℄.

Theorem 2.17: Let A and B be two stru
tures over the vo
abulary �, and let k be a positive

integer. The following are equivalent:

1. A �

k

1!

B.
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2. Player II has a winning strategy for the k-pebble game on A and B.

Proof: Let 


1

; : : : ; 


l

and d

1

; : : : ; d

l

be the interpretations of the 
onstant symbols of � on

A and B, respe
tively. Assume �rst that A �

k

1!

B. We have to show that there is a family

H of partial isomorphisms on A and B that provides a winning strategy for Player II in the

k-pebble game.

The desired family H 
onsists of all partial isomorphisms between A and B su
h that

the following hold:

� The domain of h is a set of the form f


1

; : : : ; 


l

; a

1

; : : : ; a

m

g and the range of h is a set

of the form fd

1

; : : : ; d

l

; b

1

; : : : ; b

m

g, where m � k.

� h(


j

) = d

j

for all j � m, and h(a

i

) = b

i

, for all i � m.

� (A; a

1

; : : : ; a

m

) �

k

1!

(B; b

1

; : : : ; b

m

).

We show now that H has the required properties:

1. H is non-empty, be
auseA �

k

1!

B and, thus, the fun
tion h with h(


j

) = d

j

, 1 � j � l,

is a member of H.

2. It is 
lear from the de�nitions that H is 
losed under subfun
tions.

3. It remains to show thatH has the ba
k and forth property up to k. Assume that f 2 H

and jf j = m+ l < k+ l. Then there are sequen
es of distin
t elements a

1

; : : : ; a

m

in A

and b

1

; : : : ; b

m

in B su
h that h(a

i

) = b

i

, 1 � i � m and

(A; a

1

; : : : ; a

m

) �

k

1!

(B; b

1

; : : : ; b

m

):

There are two parts in the ba
k-and-forth property up to k: in the \forth" part we have

to show that for every element a in A there is an element b in B su
h that f [ fa; bg

is in H, while in the \ba
k" part we have to show that for every b in B there is an a

in A su
h that f [ fa; b; g is in H.

We 
laim that for any element a in A that is di�erent from a

1

; : : : ; a

m

there is an

element b in B that is di�erent from b

1

; : : : ; b

m

and is su
h that

(A; a

1

; : : : ; a

m

; a) �

k

1!

(B; b

1

; : : : ; b

m

; b):

Assume that no su
h b 2 B exists for a 
ertain a 2 A. Then for every b 2 B that is

di�erent from b

1

; : : : ; b

m

there is a formula  

b

(v

1

; : : : ; v

m

; v) of L

k

1!

over � su
h that

(A; a

1

; : : : ; a

m

; a) j=  

b

(v

1

; : : : ; v

m

; v)

and

(B; b

1

; : : : ; b

m

; b) 6j=  

b

(v

1

; : : : ; v

m

; v):

Hen
e,

(A; a

1

; : : : ; a

m

) j= (9v)

0

�

(v

1

6= v) ^ : : : ^ (v

m

6= v) ^

^

b2B

 

b

(v

1

; : : : ; v

m

; v)

1

A

;
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and, at the same time,

(B; b

1

; : : : ; b

l

) 6j= (9v)

0

�

(v

1

6= v) ^ : : : ^ (v

m

6= v) ^

^

b2B

 

b

(v

1

; : : : ; v

m

; v)

1

A

:

But this is a 
ontradi
tion, sin
e

(9v)

0

�

(v

1

6= v) ^ : : : ^ (v

m

6= v) ^

^

b2B

 

b

(v

1

; : : : ; v

m

; v)

1

A

is an L

k

1!

-formula and (A; a

1

; : : : ; a

m

) �

k

1!

(B; b

1

; : : : ; b

m

).

This 
on
ludes the argument for the \forth" part of the ba
k-and-forth-property. The

\ba
k" part is analogous, using an in�nitary 
onjun
tion over elements of A.

Assume now that Player II has a winning strategy in the k-pebble game on A and B. Let

H be a family of partial isomorphisms providing Player II with a winning strategy.

We will show, by indu
tion on the 
onstru
tion of L

k

1!

formulas, that if  (v

1

; : : : ; v

m

) is

a formula of L

k

1!

whose variables are among v

1

; : : : ; v

k

and whose free variables are among

v

1

; : : : ; v

m

, then the following property (�) holds:

(�) For all h 2 H with jhj � l + m and for any elements fa

1

; : : : ; a

m

g (not

ne
essarily distin
t) from the domain of h, we have

(A; a

1

; : : : ; a

m

) j=  (v

1

; : : : ; v

m

) if and only if (B; h(a

1

); : : : ; h(a

m

) j=  (v

1

; : : : ; v

m

)):

After property (�) is established, we will be able to infer that A �

k

1!

B by applying this

property to senten
es of L

k

1!

and to an arbitrary member of the non-empty family H.

The base 
ase in the indu
tion (atomi
 formulas and inequalities) is obvious. The indu
-

tive steps for negation :, in�nitary disjun
tion

W

, and in�nitary 
onju
tion

V

are straight-

forward using the indu
tion hypothesis.

Assume that the formula  (v

1

; : : : ; v

m

) is of the form (9v)�(v

1

; : : : ; v

m

; v) and that the

property (�) holds for the formula �(v

1

; : : : ; v

m

; v). Let h be a partial isomorphism in H su
h

that jhj � l+m. We have to show that if a

1

; : : : ; a

m

are arbitrary elements (not ne
essarily

distin
t) from the domain of h, then

A; a

1

; : : : ; a

m

j= (9v)�(v

1

; : : : ; v

m

; v) () B; h(a

1

); : : : ; h(a

m

) j= (9v)�(v

1

; : : : ; v

m

; v):

Noti
e that, by our assumption about the variables of  , we must have that v is a variable

v

j

, for some j su
h that 1 � j � k. We now distinguish two 
ases, namely the 
ase where

j > m and the 
ase where j � m.

If j > m, then it must also be the 
ase that m < k. Let a 2 A be su
h that

(A; a

1

; : : : ; a

m

; a) j= �(v

1

; : : : ; v

m

; v

j

):

Consider the subfun
tion h

�

of h with domain the set f


1

; : : : ; 


l

; a

1

; : : : ; a

m

g. Noti
e that h

�

is a member of H, sin
e H is 
losed under subfun
tions. By the \forth" part of the ba
k and

14



forth property applied to h

�

and a, there is an element b 2 B su
h that h

�

[f(a; b)g is in H.

By applying the indu
tion hypothesis to �(v

1

; : : : ; v

m

; v) and to h

�

[ f(a; b)g, we infer that

(B; h(a

1

); : : : ; h(a

m

); b) j= �(v

1

; : : : ; v

m

; v

j

)

and, hen
e,

(B; h(a

1

); : : : ; h(a

m

)) j= (9v

j

)�(v

1

; : : : ; v

m

; v

j

):

The other dire
tion is proved in a similar way using the \ba
k" part of the ba
k and forth

property up to k for the family H.

Finally, assume that j � m. In this 
ase, the free variables of the formula � are among

the variables v

1

; : : : ; v

m

and

(A; a

1

; : : : ; a

i�1

; a

i+1

; : : : ; a

m

) j= (9v

j

)�(v

1

; : : : ; v

m

):

Let g be the subfun
tion of h with domain the set

f


1

; : : : ; 


l

; a

1

; : : : ; a

i�1

; a

i+1

; : : : ; a

m

g:

Observe that jgj � l +m� 1 < l + k and that g is a member of H, sin
e H is 
losed under

subfun
tions. Let a 2 A be su
h that

A; a

1

; : : : ; a

i�1

; a; a

i+1

; : : : ; a

m

j= �(v

1

; : : : ; v

m

):

By the \forth part" of the ba
k and forth property applied to g and a, there is an element

b 2 B su
h that g [ f(a; b)g is in H. By applying the indu
tion hypothesis to �(v

1

; : : : ; v

m

)

and to g [ f(a; b)g, we infer that

(B; g(a

1

); : : : ; g(a

i�1

); b; g(a

i+1

); : : : ; g(a

m

)) j= �(v

1

; : : : ; v

m

)

and, hen
e,

(B; h(a

1

); : : : ; h(a

m

)) j= (9v

j

)�(v

1

; : : : ; v

m

);

sin
e g(a

i

) = h(a

i

) for i 6= j and the satisfa
tion relation depends only on the free variables

of a formula. The other dire
tion is proved in a similar way using the \ba
k" part of the

ba
k and forth property up to k for the family H.

Remark 2.18:

The pre
eding Theorem 2.17 and the above remarks should be 
ontrasted with C. Karp's

[Kar65℄ 
hara
terization of equivalen
e in the in�nitary logi
 L

1!

(
f. also [BF85℄). A

ord-

ing to this result, two stru
tures A and B satisfy the same senten
es of L

1!

if and only if

there is a family H of partial isomorphisms between A and B su
h that H has the ba
k and

forth property (with no 
ardinality restri
tions on the size of the partial isomorphisms). It

should be pointed out H does not have to possess the 
losure under subfun
tions property,

whi
h was used in a 
riti
al way in establishing the dire
tion (2) ) (1) of the pre
eding

Theorem 2.17.

For L

1!

, the proof goes through without the 
losure under subfun
tions property, be-


ause in the 
ase of existential quanti�
ation one 
an rename variables and assume that the

existentially quanti�ed variable v is not one of the variables v

1

; : : : ; v

m

.
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The pre
eding Theorem 2.17 holds for arbitrary �nite or in�nite stru
tures A and B.

In the 
ase of in�nite stru
tures, the in�nitary syntax of L

k

1!

plays a 
ru
ial role in the

proof. On the other hand, 
lose s
rutiny of the proof reveals that if both A and B are �nite

stru
tures, then one 
an restri
t attention to the �rst-order senten
es of L

k

1!

.

Corollary 2.19: Let A and B be two �nite stru
tures over the vo
abulary � and let k be a

positive integer. The following are equivalent:

1. A �

k

!!

B.

2. A �

k

1!

B.

3. Player II has a winning strategy for the k-pebble game on A and B.

Proof: The argument used in the proof of Theorem 2.17 goes here through virtually un-


hanged. One need only observe that in showing the impli
ation (1)) (3) the 
onjun
tions

over the universes A and B are �nite and, thus, the resulting formulas are in L

k

!!

.

The pre
eding Corollary 2.19 yields the following normal-form theorem for senten
es of

L

k

1!

on �nite stru
tures.

Corollary 2.20: Let � be a vo
abulary and let k be a positive integer. Every senten
e of L

k

1!

is equivalent on �nite stru
tures over � to a 
ountable disjun
tion of 
ountable 
onjun
tions

of L

k

!!

-senten
es.

Proof: From Proposition 2.11 and Corollary 2.19 it follows that the �

k

1!

-equivalen
e 
lass

of a �nite stru
ture A 
an be de�ned by the 
onjun
tion

V

	

A

of the set 	

A

of all senten
es

of L

k

!!

that are true on A. As a result, every senten
e  of L

k

1!

is equivalent on �nite

stru
tures to

V

Aj= 

	

A

.

As a 
onsequen
e of Proposition 2.12 and Theorem 2.17, we get a game-theoreti
 
har-

a
terization of de�nability in the logi
s L

k

1!

, k � 1, for 
lasses of �nite stru
tures.

Proposition 2.21: Let C be a 
lass of �nite stru
tures over the vo
abulary � and let k be a

positive integer. Then the following statements are equivalent:

1. The 
lass C is L

k

1!

-de�nable.

2. If A and B are �nite stru
tures over � su
h that A 2 C and Player II has a winning

strategy for the k-pebble game on A and B, then B 2 C.

The pre
eding results provide tools for establishing that 
ertain properties are not ex-

pressible in in�nitary logi
 with a �nite number of variables. More spe
i�
ally, in order to

establish that a property Q is not expressible by any formula of L

!

1!

on �nite stru
tures

it is enough to show that for any k � 1 there are �nite stru
tures A

k

and B

k

su
h that

A

k

j= Q, B

k

6j= Q, and Player II has a winning strategy for the k-pebble game on A

k

and

B

k

. Moreover, Proposition 2.21 guarantees that this method is also 
omplete, i.e., if Q is not

expressible in L

k

1!

, then su
h stru
tures A

k

and B

k

must exist.

The following examples illustrate the use of k-pebble games in deriving lower bounds for

expressibility.
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Example 2.22: Cliques, Even Cardinality, and Finiteness

Assume that the vo
abulary � 
onsists of a binary relation symbol E. Let k be a positive

integer, let K

k

be the 
omplete graph with k nodes (the k-
lique), and let K be a 
omplete

graph with more than k nodes.

It is quite obvious that Player II has a winning strategy for the k-pebble game between

K

k

and K. The family H of partial isomorphisms 
onsists of all 1-1 mappings between

substru
tures of K

k

and K ea
h with l elements, 0 � l � k.

The immediate 
onsequen
es of this fa
t are:

� For any �xed k, the property \there are exa
tly k elements" 
an not be expressed on

�nite graphs by any formula of

S

m<k

L

m

1!

; in other words, this property requires at

least k variables (
f. also [Imm82℄ for a di�erent proof of this fa
t).

� The property \there is an even number of nodes" 
an not be expressed on �nite graphs

by any formula of L

!

1!

. (This should be 
ontrasted with the earlier Example 2.3


on
erning the expressive power of L

!

1!

on total orders.)

It follows that the in�nitary logi
 L

1!

has stri
tly higher expressive power than the in�nitary

logi
 L

!

1!

.

Example 2.23: Hamiltonian Graphs (Immerman [Imm82℄, de Rougemont [dR87℄)

Let D

m

, m � 1, be the totally dis
onne
ted graph with m elements, let C

n

, n � 1, be the


y
le with n elements, and let A

m;n

be the produ
t graph of D

m

and C

n

, i.e., the vertex set

of A

m;n

is the union of the vertex sets of D

m

and C

n

, while the set of edges of A

m;n


onsists

of the edges of C

n

and edges between every vertex of D

m

and every vertex of C

n

. It easy to

see that

� A

m;n

is Hamiltonian if and only if m � n.

� Player II has a winning strategy for the k-pebble game on A

k;k

and A

k+1;k

, for every

k � 1.

It follows that Hamiltoni
ity is not expressible by any formula of L

!

1!

. This was established

�rst in [Imm82℄; the above proof is from [dR87℄.

Example 2.24: Eulerian Graphs

Re
all that an undire
ted graph is Eulerian if and only if every vertex has even degree. Let

B

k

= (V;E) be the undire
ted graph with vertex set fa; b; 


1

; : : : ; 


k

g and edges

(a; 


1

); : : : ; (a; 


k

); (b; 


1

); : : : ; (b; 


k

):

It is 
lear that B

k

is Eulerian if and only if k is an even number. Moreover, Player II has

an obvious winning strategy for the k-pebble game on B

k

and B

k+1

. Thus, the property of

being Eulerian is a polynomial-time property that is not expressible by any formula of L

!

1!

.
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In ea
h of the pre
eding examples the winning strategy of Player II was quite obvious.

More sophisti
ated appli
ations of pebble games have appeared in several pla
es in the litera-

ture, in
luding [Imm82, CFI89, LM89, KV90b℄, where this method has been used su

essfully

to establish limitations of the expressive power of various logi
s.

Problem: We 
on
lude this se
tion by presenting an open problem. We showed earlier that

2-
olorability is a property expressible in �xpoint logi
 and, 
onsequently, it is de�nable by

a senten
e of L

!

1!

. It is not known, however, whether or not 3-
olorability is expressible in

L

!

1!

.

3 0-1 Laws for In�nitary Logi
s

Let � be a vo
abulary 
onsisting of �nitely many relation symbols only and let C be the


lass of all �nite stru
tures over � with universe an initial segment f1; 2; :::; ng of the integers

for some n � 1.

If P is a property of (some) stru
tures in C, then the (labeled) asymptoti
 probabilty

�(P ) on C is de�ned to be equal to the limit as n!1 of the fra
tion of stru
tures in C of


ardinality n whi
h satisfy P , provided this limit exists. If L is a logi
, we say that the 0-1

law holds for L in 
ase �(P ) exists and is equal to 0 or 1 for every property P expressible in

the logi
 L.

In the past, 0-1 laws for various logi
s L were proved by establishing �rst a transfer

theorem for L of the following kind:

There is an in�nite stru
ture R over the vo
abulary � su
h that for any property

P expressible in L we have:

R satis�es P () �(P ) = 1 on C:

This method was dis
overed by Fagin [Fag76℄ in his proof of the 0-1 law for �rst-order

logi
 on �nite stru
tures. It was also used later in [BGK85℄ to establish the 0-1 law for

positive-�xpoint logi
 and in [KV87, KV90a℄ to show that the 0-1 law holds iterative logi


(partial-�xpoint logi
) and for 
ertain fragments of se
ond-order logi
.

It turns out that there is a 
ountable stru
ture R over the vo
abulary � that satis�es

the above equivalen
e for all these logi
s. Moreover, this stru
ture R is unique up to iso-

morphism. We 
all R the 
ountable random stru
ture over the vo
abulary �. The random

stru
ture R is 
hara
terized by an in�nite set of extension axioms, whi
h, intuitively, assert

that every type 
an be extended to any other possible type. The pre
ise de�nitions are as

follows.

De�nition 3.1: Let � be a vo
abulary 
onsisting of relation symbols only.

� If x = (x

1

; :::; x

m

) is a sequen
e of distin
t variables, then a type t(x) in the variables x

over � is the 
onjun
tion of all the formulas in a maximally 
onsistent set S of equalities

x

i

= x

j

, inequalities x

i

6= x

j

, atomi
 formulas in the variables x, and negated atomi


formulas in the variables x.

� Let z be a variable that is di�erent from all the variables in x. We say that a type

t(x; z) extends the type s(x) if every 
onjun
t of s(x) is also a 
onjun
t of t(x; z).
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� With ea
h pair s(x) and t(x; z) of types su
h that t extends s we asso
iate a �rst-order

extension axiom �

s;t

stating that

(8x)(s(x)! (9z)t(x; z)):

Let T be the set of all extension axioms. The theory T was studied by Gaifman [Gai64℄, who

showed, using a ba
k and forth argument, that any two 
ountable models of T are isomorphi


(T is an !-
ategori
al theory). Fagin [Fag76℄ realized that the extension axioms are relevant

to the study of probabilities on �nite stru
tures and proved that on the 
lass C of all �nite

stru
tures over a �nite vo
abulary �

�(�

s;t

) = 1

for any extension axiom �

s;t

. The equivalen
e between truth on R and almost sure truth on

C (and 
onsequently the 0-1 law for �rst-order logi
 on �nite stru
tures) follows from these

two results by an appli
ation of the 
ompa
tness theorem.

In proving the 0-1 law for positive-�xpoint logi
, Blass, Gurevi
h and Kozen [BGK85℄ used

the 0-1 law for �rst-order logi
 together with a well known model-theoreti
 
hara
terization of

!-
ategori
al theories, due to Engeler [Eng59℄, Ryll-Nardzewski [RN59℄, Svenonius [Sve59℄,

and Vaught [Vau61℄. This 
hara
terization asserts that a set � of �rst-order senten
es has a

unique (up to isomorphism) 
ountable model if and only if for every n there are only �nitely

many inequivalent �rst-order formulas with n free variables in the models of �. In [KV87℄ we

obtained the 0-1 law for iterative logi
 (partial-�xpoint logi
) by employing a model theoreti


argument similar to the one in [BGK85℄ for positive-�xpoint logi
. We give a sket
h of this

argument next.

Let '(x

1

; : : : ; x

n

; S) be a �rst-order formula su
h that x

1

; : : : ; x

n

are its free variables

and S is a n-ary relation symbol not in the vo
abulary �. Let � be the operator asso
iated

with '(x

1

; : : : ; x

n

; S), and let �

m

be the m-th stage of �, m � 1. Re
all that, by Theorem

2.8, ea
h stage �

m

of � is de�nable by a formula '

m

(x

1

; : : : ; x

n

) of �rst-order logi
. Sin
e

the random stru
ture R is a model of the !-
ategori
al theory T of all extension axioms, it

follows that there are only �nitely many inequivalent �rst-order formulas with n free variables

over R. Thus, there are integers N < N

0

su
h that

R j= (8x

1

) : : : (8x

n

)('

N

(x

1

; : : : ; x

n

)$ '

N

0

(x

1

; : : : ; x

n

)):

Let N;N

0

be the smallest su
h integers. Note that if N

0

= N + 1, then ' 
onverges on R in

N stages. Otherwise, ' diverges on R, and we have that

R 6j= (8x

1

) : : : (8x

n

)('

N

(x

1

; : : : ; x

n

)$ '

N+1

(x

1

; : : : ; x

n

)):

In the �rst 
ase '

1

is equivalent to '

N

, and in the se
ond 
ase '

1

is equivalent to false.

Thus, '

1

is equivalent to a �rst-order formula, and this fa
t is witnessed by �rst-order

senten
es. The transfer theorem for �rst-order logi
 implies that the witness senten
es that

hold in R are true almost everywhere on the 
lass C of all �nite stru
tures over �. Thus,

partial-�xpoint logi
 
ollapses to �rst-order logi
 on almost all �nite-stru
tures. The 0-1 law
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for partial-�xpoint logi
 is now obtained immediately from the 0-1 law for �rst-order logi
.

Moreover, the transfer theorem extends to partial-�xpoint logi
 as well.

We note that the proof of the 0-1 law for 
ertain fragments of se
ond-order logi
 in

[KV87, KV90a℄ used among others the 0-1 law for �rst-order logi
, the 
ompa
tness theorem,

and further model-theoreti
 properties of the logi
s 
onsidered.

In what follows here we show that the 0-1 law holds for the in�nitary logi
 L

!

1!

on �nite

stru
tures and give three di�erent proofs. The �rst proof extends the proofs in [BGK85,

KV87℄ in their use of !-
ategori
ity and their appeal to the 0-1 law for �rst-order logi
. In


ontrast, neither of the other two proofs employs any \in�nitisti
" methods. The �rst of these

proofs uses a quanti�er-elimination method, while the se
ond one uses the pebble games of

the previous se
tion and their relation to L

k

1!

-equivalen
e. These proofs do not assume the

0-1 law for �rst-order logi
, they do not involve the random stru
ture R or any other in�nite

stru
ture, and they do not make use of 
ompa
tness or of any of its 
onsequen
es. Moreover,

the 0-1 law is derived dire
tly without establishing a transfer theorem �rst.

The results reported here on the one hand subsume the earlier ones in [Fag76℄, [BGK85℄,

and [KV87℄, and on the other hand provide a unifying treatment of 0-1 laws for �rst-order

logi
 and its extensions with �xpoint operators or in�nitary syntax.

3.1 0-1 Laws via a Transfer Theorem

The proof of the 0-1 law for partial-�xpoint logi
 des
ribed earlier used the fa
t that partial-

�xpoint logi
 
ollapses to �rst-order logi
 on the random stru
ture R, and furthermore, this


ollapse is witnessed by a �rst-order senten
e. Now it is easy to see that L

k

1!

also 
ollapses

to L

k

!!

over the random stru
ture R, sin
e, by the aforementioned 
hara
terization of !-


ategori
al theories, every in�nite disjun
tion of L

k

!!

-formula has only a �nite number of

nonequivalent disjun
ts. What is not immediately obvious is that this 
ollapse is witnessed

by a �rst-order senten
e. Nevertheless, this turns out to be the 
ase.

Lemma 3.2: For every k > 0, there is a �rst-order senten
e  

k

su
h that

1. R j=  

k

, and

2. for any L

k

1!

-formula ', there is an L

k

!!

-formula '

0

su
h that  

k

j= '$ '

0

.

Proof: For te
hni
al 
onvenien
e assume that only the variables x

1

; : : : ; x

k

are used in

formulas of L

k

1!

.

Sin
e R is a model of the !-
ategori
al theory T of all extension axioms, it follows

that there are only �nitely many inequivalent formulas of L

k

!!

over R. Let �

1

; : : : ; �

m

be representatives from the equivalen
e 
lasses of formulas. Note that this 
olle
tion of

formulas must express the atomi
 formulas and be 
losed, up to equivalen
e, under negation,

disjun
tion, and existential quanti�
ation. That is, for ea
h atomi
 formula p(x

1

; : : : ; x

k

)

there is some �

i

su
h that R j= (8x

1

: : :8x

k

)(p(x

1

; : : : ; x

k

) $ �

i

). Also, for ea
h �

i

there

exists �

i

0

su
h that R j= (8x

1

: : :8x

k

)(:�

i

$ �

i

0

). Similarly, for ea
h �

i

; �

j

there exists �

k

su
h that R j= (8x

1

: : : 8x

k

)(�

i

_ �

j

$ �

k

). Finally, for ea
h �

i

and variable x

j

there exists

�

l

su
h that R j= (8x

1

: : :8x

k

)(9x

j

�

i

$ �

l

).

We 
all the above senten
es the 
losure axioms. Let  

k

be the 
onjun
tion of all the


losure axioms. Noti
e that  

k

is a senten
e of L

k

!!

, be
ause there are only �nitely many
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inequivalent formulas of L

k

!!

. Moreover, it is 
lear that R j=  

k

. It remains to prove the

se
ond 
laim. We show that if  

k

is taken as an axiom, then ea
h formula of L

k

1!

is equivalent

to one of the �

i

's. The proof is by indu
tion on the stru
ture of formulas of L

k

1!

, assuming

that formulas are built using negation, in�nite disjun
tions, and existential quanti�
ation.

Let ' be a formula of L

k

1!

. If ' is an atomi
 formula, then by the 
losure axioms it is

equivalent to an �

i

. If ' is :� or 9x

j

�, then by the indu
tion hypothesis � is equivalent

to an �

i

, and, by the 
losure axioms, ' is equivalent to an �

i

. Finally, if ' is the in�nite

disjun
tion

W

'

j

of L

k

!!

-formulas, then by the indu
tion hypothesis ea
h '

j

is equivalent to

some �

i

, and by the 
losure axioms ' is equivalent to some �

i

.

The transfer theorem for L

!

1!

follows from Lemma 3.2.

Theorem 3.3: If ' is a senten
e of L

!

1!

, then the following are equivalent:

1. �(') = 1.

2. R j= '.

Proof: Let ' be a senten
e of L

k

1!

. By Lemma 3.2 and the 0-1 law for �rst-order logi


we have that �( 

k

) = 1 and, for any L

k

1!

-senten
e ', there is an L

k

!!

-senten
e '

0

su
h that

 

k

j= '$ '

0

. If R j= ', then R j= '

0

, and by the 0-1 law for �rst-order logi
 we have that

�('

0

) = 1. It follows that �(') = 1. If R 6j= ', then R j= :', and �(') = 0.

The 0-1 law for L

!

1!

is an immediate 
onsequen
e of the transfer theorem.

Theorem 3.4: The 0-1 law holds for the in�nitary logi
 L

!

1!

, i.e., if  is a senten
e of

L

!

1!

, then the asymptoti
 probability �( ) exists and is equal to either 0 or 1.

Remark 3.5: The 0-1 law for L

!

1!

has also 
ertain immediate appli
ations to de�nability

theory. For example, the property \there is an even number of elements" is not expressible

in L

!

1!

, be
ause it does not have an asymptoti
 probability. This fa
t was obtained earlier

in Example 2.22 using k-pebble games.

Remark 3.6: There is an extensive literature on 0-1 laws for �rst-order logi
 on restri
ted


lasses of �nite stru
tures (
f. [Com88a℄ for a survey of results in this area). The method

developed in Lemma 3.2 and Theorem 3.3 applies to arbitrary 
lasses C of �nite stru
tures

and yields the 0-1 law for L

!

1!

on C, provided the set of �rst-order senten
es with probability

1 on C is an �

0

-
ategori
al theory. This is, for example, the 
ase with the 
lass of partial

orders investigated by Compton [Com88b℄, and the 
lass of K

l+1

-free graphs investigated by

Kolaitis, Pr�omel, and Roths
hild [KPR87℄.

3

3.2 0-1 Laws via Quanti�er-Elimination

Glebskii et al. [GKLT69℄ proved the 0-1 law for �rst-order logi
, independently of Fagin

[Fag76℄, using what amounts to a 
ertain quanti�er-elimination method. We use here a

di�erent quanti�er-elimination method that has its origin in Grandjean's work [Gra83℄ on

the 
omputational 
omplexity of the 0-1 law for �rst-order logi
.

3

We thank an anonymous referee for making the observations 
ontained in this remark.
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De�nition 3.7: If k is a positive integer, then we write �

k

for the 
onjun
tion of all extension

axioms �

s;t

with at most k variables.

Noti
e that ea
h �

k

is a senten
e of L

k

!!

, i.e., it is a �rst-order senten
e with at most k

distin
t variables.

Theorem 3.8: Let k and m be two positive integers su
h that m � k. If s(x

1

; : : : ; x

m

) is a

type over the vo
abulary � and '(x

1

; : : : ; x

m

) is a formula of L

k

1!

with free variables among

x = (x

1

; : : : ; x

m

), then exa
tly one of the following two statements holds:

1. �

k

j= (8x)(s(x)! '(x)):

2. �

k

j= (8x)(s(x)! :'(x)):

Proof: This theorem will be proved by indu
tion on the 
onstru
tion of formulas in L

k

1!

whose variables are among x

1

; : : : ; x

k

and whose free variables are among x

1

; : : : ; x

m

, simul-

taneously for allm � k and for all types s(x

1

; : : : ; x

m

). A 
ru
ial use of the extension axioms

will be made in the 
ase where the formula '(x) starts with an existential quanti�er.

The base 
ase of the indu
tion (equalities and atomi
 formulas) and the indu
tion step

for the negation (:) are obvious. Assume that '(x

1

; : : : ; x

m

) is an in�nitary 
onjun
tion

V

	

of formulas  (x

1

; : : : ; x

m

) of L

k

1!

. By indu
tion hypothesis, for ea
h  2 	 either

� �

k

j= (8x)(s(x)!  (x))

or

� �

k

j= (8x)(s(x)! : (x)):

If there is a formula  2 	 su
h that �

k

j= (8x)(s(x)! : (x)), then

�

k

j= (8x)(s(x)! :

^

	(x));

otherwise,

�

k

j= (8x)(s(x)!

^

	(x)):

Assume next that '(x

1

; : : : ; x

m

) is the formula (9z) (x

1

; : : : ; x

m

; z) and that the indu
tion

hypothesis holds for  (x

1

; : : : ; x

m

; z). If

�

k

j= (8x)(s(x)! :(9z) (x; z));

then (2) holds for '(x

1

; : : : ; x

m

). Otherwise,

�

k

6j= (8x)(s(x)! :(9z) (x; z)):

We will show that in the latter 
ase

�

k

j= (8x)(s(x)! (9z) (x; z):

Noti
e that, by our assumption about the variables of '(x

1

; : : : ; x

m

), we must have that the

variable z is the variable x

j

, for some j su
h that 1 � j � k. We now distinguish two 
ases,

namely the 
ase where j > m and the 
ase where j � m.
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Case 1: j > m, whi
h means that the variable z is di�erent from all the variables x

1

; : : : ; x

m

.

Noti
e that in this 
ase m must be less than k.

Sin
e �

k

6j= (8x)(s(x) ! :(9z) (x; z)); there is a stru
ture D over � su
h that D j= �

k

and

D j= (9x)(s(x) ^ (9z) (x; z)):

Let a

1

; : : : ; a

m

; b be elements of the universe D of D su
h that

D j= s(a

1

; : : : ; a

m

) ^  (a

1

; : : : ; a

m

; b):

Let t(x

1

; : : : ; x

m

; z) be the unique type su
h that D j= t(a

1

; : : : ; a

m

; b), i.e., t(x

1

; : : : ; x

m

; z) is

the 
onjun
tion of all equalities, inequalities, atomi
 formulas, and negated atomi
 formulas

in the variables x

1

; : : : ; x

m

; z satis�ed by a

1

; : : : ; a

m

; b. Noti
e that the type t(x

1

; : : : ; x

m

; z)

extends the type s(x

1

; : : : ; x

m

). We also have that

D j= (9x

1

: : :9x

m

)(9z)(t(x

1

; : : : ; x

m

; z) ^  (x

1

; : : : ; x

m

; z)):

By applying the indu
tion hypothesis to the formula  (x

1

; : : : ; x

m

; z) of L

k

1!

and to the type

t(x

1

; : : : ; x

m

; z), we infer that

�

k

j= (8x)(8z)(t(x; z) !  (x; z)):

Sin
e the type t is an extension of the type s and �

k

is the 
onjun
tion of all extension axioms

with at most k variables, it follows that

�

k

j= (8x)(s(x)! (9z)t(x; z)):

We 
an now 
on
lude that

�

k

j= (8x)(s(x)! (9z) (x; z)):

Case 2: j � m, whi
h means that the variable z is the variable x

j

for some j � m. In this


ase, the free variables of the formula  are among the variables x

1

; : : : ; x

m

and, moreover,

we have that there is a stru
ture D over � su
h that D j= �

k

and

D j= (9x

1

: : :9x

m

)(s(x

1

; : : : ; x

m

) ^ (9x

j

) (x

1

; : : : ; x

m

)):

Let a

1

; : : : ; a

m

be elements of the universe D of D su
h that

D; a

1

; : : : ; a

m

j= s(x

1

; : : : ; x

m

) ^ (9x

j

) (x

1

; : : : ; x

m

);

let x

�

be the sequen
e of variables x

1

; : : : ; x

j�1

; x

j+1

; : : : ; x

m

, and let s

�

(x

�

) be the unique

type su
h that D j= s

�

(a

1

; : : : ; a

j�1

; a

j+1

; : : : ; a

m

). Then there is an element b of the universe

D of D su
h that

D j= s

�

(a

1

; : : : ; a

j�1

; a

j+1

; : : : ; a

m

) ^  (a

1

; : : : ; a

j�1

; b; a

j+1

; : : : ; a

m

):

Let t

�

(x

1

; : : : ; x

j

; : : : ; x

m

) be the unique type su
h that D j= t

�

(a

1

; : : : ; a

j�1

; b; a

j+1

: : : ; a

m

).

Noti
e that the type t

�

(x

1

; : : : ; x

m

) extends the type s

�

(x

�

) and that

D j= (9x

1

: : :9x

m

)(t

�

(x

1

; : : : ; x

m

) ^  (x

1

; : : : ; x

m

)):
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By applying the indu
tion hypothesis to the formula  (x

1

; : : : ; x

m

) of L

k

1!

and to the type

t

�

(x

1

; : : : ; x

m

), we infer that

�

k

j= (8x

1

: : :8x

m

)(t

�

(x

1

; : : : ; x

m

)!  (x

1

; : : : ; x

m

)):

Sin
e the type t

�

(x

1

; : : : ; x

m

) is an extension of the type s

�

(x

�

) and �

k

is the 
onjun
tion of

all extension axioms with at most k variables, it follows that

�

k

j= (8x

�

)(s

�

(x

�

)! (9x

j

)t

�

(x

1

; : : : ; x

m

)):

We 
an now 
on
lude that

�

k

j= (8x

�

)(s

�

(x

�

)! (9x

j

) (x

1

; : : : ; x

m

))

and, 
onsequently,

�

k

j= (8x)(s(x)! (9x

j

) (x

1

; : : : ; x

m

));

sin
e (8x)(s(x)! s

�

(x

�

)) is valid.

Corollary 3.9: If  is a senten
e of L

k

1!

, then either �

k

j=  or �

k

j= : : As a result, if

A and B are two models of �

k

, then A �

k

1!

B.

The �rst-order version of the pre
eding Theorem 3.8 was obtained by Grandjean [Gra83℄,

while Immerman [Imm82℄ established Corollary 3.9 for senten
es of L

k

!!

.

We now have all the ma
hinery needed to establish the 0-1 law.

Theorem 3.10: The 0-1 law holds for the in�nitary logi
 L

!

1!

, i.e., if  is a senten
e of

L

!

1!

, then the asymptoti
 probability �( ) exists and is equal to either 0 or 1.

Proof: If  is a senten
e of L

k

1!

, for some k � 1, then, by Corollary 3.9,

�

k

j=  or �

k

j= : :

In the �rst 
ase we have that �( ) = 1 and in the se
ond �(: ) = 1, be
ause �(�

k

) = 1.

The latter holds, be
ause �

k

is a �nite 
onjun
tion of extension axioms and, as Fagin [Fag76℄

showed, �(�

s;t

) = 1 for ea
h extension axiom �

s;t

.

We 
an also easily derive a transfer theorem for ea
h in�nitary logi
 L

k

1!

, k � 1.

Theorem 3.11: Let k be a positive integer, and let B be a model of �

k

. If  is a senten
e

of L

k

1!

, then the following are equivalent:

1. �( ) = 1.

2. �

k

j=  .

3. B j=  .
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Proof: Let  be a senten
e of L

k

1!

su
h that �( ) = 1. Then �

k

j=  , sin
e, otherwise,

it would follow from Corollary 3.9 that �

k

j= : , whi
h in turn yields that �(: ) = 1 and

�( ) = 0. It is obvious that if �

k

j=  , then B j=  . Finally, assume that B j=  . Then

�( ) = 1, sin
e, otherwise, by the 0-1 law for L

k

1!

, we would 
on
lude that �(: ) = 1,

whi
h implies that B j= : .

Corollary 3.12: If R is the 
ountable random stru
ture over the vo
abulary � and  is a

senten
e of L

!

1!

, then

�( ) = 1 () R j=  :

Proof: The random stru
ture R is a model of ea
h �

k

, k � 1.

Noti
e that ea
h �

k

has both �nite and in�nite models; a
tually, an arbitrary �nite

stru
ture over � is a model of �

k

with probability 1. In parti
ular, there are in�nitely many


ountable models satisfying the transfer theorem for the in�nitary logi
 L

k

1!

. This should be


ontrasted with the situation in L

!

1!

, where the random stru
ture R is the unique 
ountable

stru
ture satisfying the transfer theorem, sin
e L

!

1!

in
ludes all the extension axioms, whi
h

have a unique 
ountable model.

Although we used earlier the term \quanti�er-elimination method", we did not a
tually

justify this terminology. We 
on
lude this se
tion by establishing a quanti�er-elimination

theorem for L

k

1!

on models of �

k

, whi
h strengthens Lemma 3.3.

Theorem 3.13: Let k be a positive integer and let '(x

1

; : : : ; x

m

) be a formula of L

k

1!

with

free variables among x = (x

1

; : : : ; x

m

). Then there is a quanti�er-free formula �(x

1

; : : : ; x

m

)

of L

k

!!

su
h that

�

k

j= (8x)('(x)$ �(x)):

Proof: Let X

'

be the set of all types s(x

1

; : : : ; x

m

) for whi
h there is a stru
ture D su
h

that

D j= �

k

^ (9x)(s(x) ^ '(x)):

We 
laim that the required formula �(x

1

; : : : ; x

m

) is

_

s2X

'

s(x

1

; : : : ; x

m

):

Noti
e �rst that �(x

1

; : : : ; x

m

) is a quanti�er-free formula of L

k

!!

, be
ause the vo
abulary �

is �nite and, as a result, there are �nitely many distin
t types in the variables x

1

; : : : ; x

m

.

Moreover, it follows from the de�nitions that

�

k

j= (8x)('(x)! �(x)):

For the other dire
tion, let D be a model of �

k

, let a

1

; : : : ; a

m

be elements from the universe

D of D, and let s(x

1

; : : : ; x

m

) be a type in the set X

'

su
h that

D j= s(a

1

; : : : ; a

m

):

By Theorem 3.8, exa
tly one of the following two statements holds:
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1. �

k

j= (8x)(s(x)! '(x)):

2. �

k

j= (8x)(s(x)! :'(x)):

Sin
e s(x

1

; : : : ; x

m

) is a type in the set X

'

, the se
ond statement (2) is ruled out and, hen
e,

D j= '(a

1

; : : : ; a

m

):

Remark 3.14: Noti
e that the proof of Theorem 3.10 implies in parti
ular that if a sen-

ten
e  of L

k

1!

is true almost everywhere, then there is a �rst-order senten
e that is true

almost everywhere and logi
ally implies  . Blass and Harary [BH79℄ showed that there is no

�rst-order senten
e that is true almost everywhere and logi
ally implies Hamiltoni
ity. We


an, therefore, 
on
lude that there is no property of L

!

1!

that is true almost everywhere and

logi
ally implies Hamiltoni
ity. In other words, there is no suÆ
ient 
ondition for Hamil-

toni
ity whi
h is expressible in L

!

1!

and has asymptoti
 probability equal to 1. This 
an

be viewed as a strengthening of the earlier fa
t in Example 2.23 that Hamiltoni
ity is not

expressible in L

!

1!

.

3.3 0-1 Laws via Pebble Games

Let k be a �xed positive integer. If A is a �nite stru
ture, then we write [A℄ for the

equivalen
e 
lass of A with respe
t to the equivalen
e relation �

k

1!

. In what follows we will

show that there is a tight 
onne
tion between 0-1 laws and the asymptoti
 probabilities of

equivalen
e 
lasses [A℄. A
tually, this turns out to be a general fa
t that holds for arbitrary

probability measures.

So far all the results presented here are about the uniform probability measures on C, i.e.,

all stru
tures with n elements 
arry the same probability. There is, however, a well developed

study of random stru
tures under variable probability measures. This started with the work

of Erd�os and R�enyi [ER60℄ and is presented in detail in Bollob�as [Bol85℄. In general, for

ea
h n � 1 one has a probability measure pr

n

on all stru
tures in C with n elements, where

pr

n

may be a non-uniform distribution. The asymptoti
 probability pr(P ) of a property

P (relative to the probability measures pr

n

, n � 1) is de�ned by pr(P ) = lim

n!1

pr

n

(P ),

provided this limit exists. If L is a logi
, then we say that a 0-1 law holds for L relative to

the measure pr if for every senten
e  of L the asymptoti
 probability pr( ) exists and is

either 0 or 1. Noti
e that, stri
tly speaking, pr is not a probability measure, be
ause it is

not 
ountably additive (it is, however, �nitely additive).

Spen
er and Shelah [SS88℄ investigated 0-1 laws for �rst-order logi
 under variable prob-

ability measures on the 
lass of undire
ted graphs. They obtained a 
lassi�
ation of the

probability measures for whi
h the �rst-order 0-1 law holds. We establish next a ne
essary

and suÆ
ient 
ondition for the existen
e of 0-1 laws for L

k

1!

under arbitrary probability

measures.

Theorem 3.15: Let K be a 
lass of �nite stru
tures over the vo
abulary �, let k be a positive

integer, and let pr

n

, n � 1, be a sequen
e of probability measures on the stru
tures in K with

n elements. Then the following are equivalent:
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1. The 0-1 law holds for the in�nitary logi
 L

k

1!

relative to the measure pr.

2. There is an equivalen
e 
lass C of the equivalen
e relation �

k

1!

su
h that pr(C) = 1.

Proof: Assume that pr(C) = 1 for some equivalen
e 
lass C of �

k

1!

and let  be a senten
e

of L

k

1!

. If  holds for the stru
tures in C, then pr( ) = 1, be
ause the set of models of

 
ontains C. If, on the other hand,  fails for the stru
tures in C, then pr(: ) = 1 and,

hen
e, pr( ) = 0.

In the other dire
tion, we show that if the 0-1 law held for L

k

1!

relative to a measure,

but every equivalen
e 
lass C of �

k

1!

had probability 0, then we 
ould �nd a senten
e of

L

k

1!

whose probability is neither 0 nor 1. To see this, let C

0

; C

1

; : : : be an enumeration of

the equivalen
e 
lasses of �

k

1!

on K, and let C

n

j

be the set of n-element stru
tures in C

j

.

Note that for all n > 0 there exists some integer m su
h that C

n

m

0

= ; for all m

0

� m, sin
e

there are �nitely many n-element stru
tures. Let m

1

< m

2

< : : : be an in
reasing sequen
e

su
h that C

n

m

0

= ; for all m

0

� m

n

.

We denote by N the set of nonnegative integers, and we denote by [0; j) the set f0; : : : ; j�

1g. For any set X � N , let C

X

=

S

i2X

C

i

. We de�ne pr

n

(X) (resp., pr(X)) to be pr

n

(C

X

)

(resp. pr(C

X

)). We are going to use the following three properties:

1. If X is �nite, then pr(X) = 0, sin
e by assumption pr(C

i

) = 0 for all i � 0.

2. pr

n

([0; m

n

)) = 1, sin
e pr

n

(N) = 1 and C

n

m

= ; for all m � m

n

.

3. If X � [0; m

n

) and Z � N � [0; m

n

), then pr

l

(X) = pr

l

(X [ Z) for all l � n, sin
e

C

l

m

= ; for all m 2 Z and l � n.

We 
onstru
t a set X of integers su
h that for in�nitely many i's we have that pr

i

(X) >

3=4 and in�nitely many i's we have that pr

i

(X) < 1=4. It follows that pr(X) is unde�ned.

X is 
onstru
ted in stages. In the i-th stage we de�ne a nonnegative integer n

i

and a pair

of �nite disjoint sets X

i

; Y

i

� [0; m

n

i

) su
h that the following hold:

1. X

i

� X

i+1

, Y

i

� Y

i+1

, and X

i

[ Y

i

= [0; m

n

i

);

2. if i is odd, then pr

n

i

(X

i

) > 3=4, and if i is even then pr

n

i

(X

i

) < 1=4.

The desired set X is simply

S

i

X

i

. We now de�ne the sets X

i

and Y

i

by indu
tion. For i = 1,

let n

1

= 1, X

1

= [0; m

1

), and Y

1

= ;. Then pr

1

(X

1

) = 1. Assume indu
tively, that n

i

, X

i

and Y

i

have been de�ned. There are two 
ases now.

Case 1: If i is odd, then pr

n

i

(X

i

) > 3=4. Sin
e pr(X

i

) = 0, there is an integer q > n

i

su
h

that pr

q

(X

i

) < 1=4. We let n

i+1

= q, X

i+1

= X

i

, and Y

i+1

= [0; m

q

)�X

i

.

Case 2: If i is even, then pr

n

i

(X

i

) < 1=4. Sin
e pr(Y

i

) = 0, there is an integer q > n

i

, su
h

that pr

q

([0; m

q

)� Y

i

) > 3=4. We let n

i+1

= q, X

i

= [0; m

q

)� Y

i+1

, and Y

i+1

= Y

i

.

Now let X =

S

i

X

i

. It is easy to see that X is disjoint from Y

i

, for all i � 1. Sin
e

X

i

[ Y

i

= [0; m

n

i

), it follows that pr

n

i

(X) = pr

n

i

(X

i

). It follows that there are in�nitely

many i's su
h pr

n

i

(X) > 3=4, and there in�nitely many i's su
h that pr

n

i

(X) < 1=4. Thus,

pr(X) is unde�ned. Using Proposition 2.11, we 
an 
onstru
t a senten
e '

X

of L

k

1!

that

de�nes the 
lass C

X

. It follows that pr('

X

) is unde�ned.
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Remark 3.16:

1. Noti
e that if the 0-1 law holds for L

k

1!

relative to a measure pr, then there is exa
tly

one equivalen
e 
lass C of �

k

1!

su
h that pr(C) = 1. All other equivalen
e 
lasses of

�

k

1!

have probability 0.

2. We should also point out that the pre
eding theorem does not hold in general for

arbitrary logi
s. For example, if L is �rst-order logi
 and pr is the uniform measure �,

then the 0-1 law holds for L, but ea
h equivalen
e 
lass of L has probability 0, be
ause

every �nite stru
ture is des
ribed up to isomorphism by a �rst-order senten
e.

The 
ru
ial property of L

k

1!

used in the proof is its 
losure under in�nite 
onjun
tions

and disjun
tions. Let L

r

be the fragment of �rst-order logi
 
onsisting of �rst-order

senten
es of quanti�er depth r. By Fraiss�e's theorem [Fra54℄, the relation of elementary

equivalen
e on L

r

has �nitely many equivalen
e 
lasses and, 
onsequently, L

r

is 
losed

under arbitrary disjun
tions and 
onjun
tions. Thus, the analogous version of the

above Theorem 3.15 holds for L

r

.

3. Spen
er [Spe91℄ obtained 0-1 laws for �rst-order logi
 with respe
t to the 
lass of

undire
ted graphs relative to 
ertain variable probability measures by examining �rst-

order senten
es of �xed quanti�er depth and using Ehrenfeu
ht-Fraiss�e games. The

idea of using games to obtain 0-1 laws seems to originate with the work of Lyn
h

[Lyn80℄ (
f. also Compton [Com88a℄).

We now return to the uniform measure � on L

k

1!

and give a di�erent proof of the 0-1

law for L

k

1!

using the pre
eding Theorem 3.15 and the 
hara
terization of �

k

1!

in terms of

pebble games.

Theorem 3.17: Let C be the 
lass of all �nite stru
tures, let k be a positive integer, and

let �

k

be the 
onjun
tion of all extension axioms with at most k variables. If A is a �nite

stru
ture that is a model of �

k

, then �([A℄) = 1. As a result, the 0-1 law holds for L

k

1!

relative to the uniform measure on C.

Proof: If A and B are both models of �

k

, then it is easy to verify that Player II has a

winning strategy in the k-pebble game on A and B. Intuitively, the winning strategy for

Player II is provided by the elements of A and B witnessing the extension axioms with at

most k variables. We now des
ribe this more formally.

Let 


1

; : : : ; 


l

and d

1

; : : : ; d

l

be the interpretations of the 
onstant symbols of the vo
ab-

ulary � on A and B, respe
tively. We have to show that there is a family H of partial

isomorphisms on A and B that provides a winning strategy for Player II in the k-pebble

game.

The desired family H is built by starting with the partial isomorphism that maps 


i

to

d

i

, for 1 � i � k, and taking the 
losure under subfun
tions and ba
k-and-forth extensions,

where a ba
k-and-forth-extension is de�ned as follows.
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Let h be a member of H whose domain is the set f


1

; : : : ; 


l

; a

1

; : : : ; a

m

g, where

m < k, and let a be an element that is not in the domain of h. Let s(x

1

; : : : ; x

m

)

and t(x

1

; : : : ; x

m

; z) be types su
h thatA j= s(a

1

; : : : ; a

m

) andA j= t(a

1

; : : : ; a

m

; a).

Sin
e h is a partial isomorphism, we also have B j= s(a

1

; : : : ; a

m

). Consider the

extension axiom �

s;t

, i.e.,

(8x

1

; : : : ; x

m

)(s(x

1

; : : : ; x

m

)! (9z)t(x

1

; : : : ; x

m

; z)):

Sin
e �

s;t

uses at most k variables and B j= �

k

, there exists an element b su
h

that B j= t(h(a

1

); : : : ; h(a

m

); b). Thus, h [ (a; b) is a partial isomorphism, whi
h

is added to H. This is the \forth" extension; the \ba
k" extension is de�ned

analogously using the fa
t that A j= �

k

.

It follows from Theorem 2.17 that if A and B are both models of �

k

, then A �

k

1!

B.

Sin
e �(�

k

) = 1 [Fag76℄, it follows that �([A℄) = 1, for any �nite stru
ture A that is a model

of �

k

.

4 Con
luding Remarks

We established here the 0-1 law for the in�nitary logi
 L

!

1!

under the uniform probability

measure. It is an interesting open problem to investigate 0-1 laws for �xpoint logi
s or for

in�nitary logi
s under variable probability measures. No results in this dire
tion are known

at present, but our Theorem 3.15 provides a handle for atta
king this problem.

Previous investigations of 0-1 laws for �rst-order logi
 and �xpoint logi
s examined also

the 
omputational 
omplexity of the de
ision problem for the values of the probabilities,

namely the 
omplexity of de
iding whether the probability of a senten
e is 0 or 1 [Gra83℄,

[BGK85℄, [KV87℄. This problem, however, is 
omputationally meaningful only when the

logi
 under 
onsideration has an e�e
tive syntax. Thus, this investigation 
annot be 
arried

out for the in�nitary logi
s L

k

1!

, k � 1.
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