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Abstrat. We investigate the in�nitary logi L

!

1!

, in whih sentenes may

have arbitrary disjuntions and onjuntions, but they involve only a �nite num-

ber of distint variables. We show that various �xpoint logis an be viewed

as fragments of L

!

1!

, and we desribe a game-theoreti haraterization of the

expressive power of the logi. Finally, we study asymptoti probabilities of prop-

erties expressible in L

!

1!

on �nite strutures. We show that the 0-1 law holds

for L

!

1!

, i.e., the asymptoti probability of every sentene in this logi exists

and is equal to either 0 or 1. This result subsumes earlier work on asymptoti

probabilities for various �xpoint logis and reveals the boundary of 0-1 laws for

in�nitary logis.

�

A preliminary version of this paper appeared under the title \0-1 laws for in�nitary logis" in Pro. 5th

IEEE Symp. on Logi in Computer Siene, June 1990, pp. 156-167.

y

During the preparation of this paper this author was partially supported by NSF Grant CCR-8905038



1 Introdution

In reent years the model theory of �nite strutures has been a meeting point for researh in

omputer siene, ombinatoris, and mathematial logi. Results and tehniques from �nite

model theory have found interesting appliations to several other areas, inluding database

theory [CH82℄, [Var82℄ and omplexity theory [Ajt83℄, [Gur84℄, [Imm86℄. One partiular

diretion of researh has foused on the asymptoti probabilities of properties expressible in

di�erent languages.

In general, if C is a lass of �nite strutures over some voabulary and if P is a property of

some strutures in C, then the asymptoti probability �(P ) on C is the limit as n!1 of the

fration of the strutures in C with n elements whih satisfy P , provided that the limit exists.

We say that P is true almost everywhere on C in ase �(P ) is equal to 1. If �(P ) = 0, then

we say that P is false almost everywhere. It turns out that many interesting properties on

the lass G of all �nite graphs are either true almost everywhere or false almost everywhere.

It is, for example, well known and easy to prove that �(onnetivity)=1, �(rigidity)=1, while

�(planarity)=0 and �(l-olorabilty)=0, for l � 2 [Bol79℄. A theorem of P�osa [P

�

76℄ asserts

that �(Hamiltoniity)=1. On the other hand, statements about ardinalities, suh as \there

is an even number of elements" do not have an asymptoti probability.

Fagin [Fag76℄ and Glebskii et al. [GKLT69℄ were the �rst to establish a fasinating

onnetion between logial de�nability and asymptoti probabilities. More spei�ally, they

showed that if C is the lass of all �nite strutures over some relational voabulary and if

P is any property expressible in �rst-order logi, then �(P ) exists and is either 0 or 1. This

result, whih is known as the 0-1 law for �rst-order logi, beame the starting point of a

series of investigations aiming in disovering the relationship between expressibility in a logi

and asymptoti probabilities. The reent survey by Compton [Com88a℄ ontains an eloquent

aount of developments in this area.

It is well known that �rst-order logi has severely limited expressive power on �nite stru-

tures (f. [Fag75, AU79, Gai82℄). In view of this fat, researhers investigated asymptoti

probabilities in logial languages that go beyond �rst-order logi. Although the 0-1 law fails

for seond-order logi, it turned out that there are powerful fragments of seond-order logi

for whih the 0-1 law holds. Moreover, the boundary of 0-1 laws for fragments of seond-

order logi is now understood, through the work of [KS85, Kau87, KV87, PS89, KV90a,

PS91, KV92℄.

The limited expressive power of �rst-order logi is also due to the absene of any reursion

mehanism. Thus, a di�erent diretion of investigation pursued the study of 0-1 laws for

extensions of �rst-order logi that allow for �xpoint or iterative onstruts. Talanov [Tal81℄

showed that the 0-1 holds for �rst-order logi augmented with a transitive losure operator.

This result was extended by Talanov and Knyazev [TK86℄, and, independently, by Blass,

Gurevih and Kozen [BGK85℄ who proved that a 0-1 law holds for positive-�xpoint logi.

1

Positive-Fixpoint logi is obtained from �rst-order logi by adding the least-�xpoint operator

for positive formulas [Mos74, CH82℄. It an express properties whih are not �rst-order

de�nable, suh as onnetivity, ayliity and 2-olorability. On the other hand the lass

1

To be preise, Talanov and Knyazev's result was in terms of a ertain iterative extension of �rst-order

logi, whih in partiular inludes positive-�xpoint logi. The study of 0-1 laws for iterative extensions of

�rst-order logi was further pursued by Knyazev [Kny89℄.
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of positive-�xpoint properties is in general properly ontained in PTIME. In partiular,

\parity" (\there is an even number of elements") is not expressible in positive-�xpoint logi

over the lass of all �nite strutures.

In [KV87℄ we studied the extension of �rst-order logi that results by adding while

looping as an iteration onstrut. This programming query language was introdued by

Chandra and Harel [CH82℄ and, as Abiteboul and Vianu [AV89℄ showed reently, an be

viewed as �rst-order logi augmented with a partial-�xpoint operator for arbitrary �rst-

order formulas. Following [AV89℄, we use the term partial-�xpoint properties for properties

expressible in this logi. Partial-�xpoint properties ontain all positive-�xpoint properties

and are in turn properly ontained in the ones omputable in PSPACE. Moreover, there are

partial-�xpoint properties that are omplete for PSPACE.

In [KV87℄ we announed the 0-1 law for partial-�xpoint logi (we alled it there iterative

logi) and skethed a proof that uses model-theoreti methods similar to the ones employed

by Blass, Gurevih and Kozen [BGK85℄ for positive-�xpoint logi. In partiular, the proof

uses the ompatness theorem of mathematial logi and a model-theoreti haraterization

of !-ategorial theories due to Engeler [Eng59℄, Ryll-Nardzewski [RN59℄, Svenonius [Sve59℄,

and Vaught [Vau61℄.

Are there logis having higher expressive power than partial-�xpoint logi and possessing

the 0-1 law?

Sine �rst-order logi has a �nitary syntax, another way to inrease its expressive power

is to allow for in�nitary formation rules. One of the most powerful logis resulting this way

is the in�nitary logi L

1!

whih allows for arbitrary disjuntions and onjuntions. The

0-1 law fails, however, for L

1!

, sine \parity" is expressible as a ountable disjuntion of

�rst-order sentenes.

Barwise [Bar77℄ introdued a family L

k

1!

, k a positive integer, of in�nitary logis that

onsist of all sentenes of L

1!

with at most k distint variables. Although these logis were

studied originally on in�nite strutures, they turn out to have interesting uses in theoretial

omputer siene. They have been investigated on �nite strutures in their own right in

[Kol85, KV90b℄. They also underlie muh of the work in [Imm82, dR87, LM89, CFI89℄,

although their use there is rather impliit.

We investigate here de�nability and 0-1 laws for the in�nitary languages L

k

1!

, k � 1.

We show �rst that every partial-�xpoint property is expressible by a formula of L

k

1!

, for

some k � 1. This ontainment is strit, sine it is known that the in�nitary languages

L

k

1!

, k � 2, an express non-reursive properties. After this, we establish that the 0-1 law

holds for the in�nitary logi L

!

1!

=

S

1

k=1

L

k

1!

. This result on the one hand subsumes the

earlier work on 0-1 laws for positive-�xpoint logi and partial-�xpoint logi and on the other

reveals the boundary of 0-1 laws for fragments of L

1!

, sine, as mentioned before, \parity" is

expressible as a ountable disjuntion of �rst-order sentenes (a disjuntion, however, whih

involves in�nitely many distint variables).

We supply three di�erent proofs of the 0-1 law for L

!

1!

, eah one illuminating the result

from a di�erent perspetive. The �rst proof is a generalization of the proofs in [BGK85℄ for

positive-�xpoint logi and in [KV87℄ for partial-�xpoint logi. This proof is interesting in its

use of in�nite-model theory to prove a result in �nite-model theory (a paradigm established

by Fagin [Fag76℄). In ontrast, our next two proofs are in the spirit of \pure" �nite-model

theory and they do not appeal to \in�nitisti" arguments. One proof is based on a quanti�er-
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elimination method, while the seond uses pebble games for in�nitary logis.

2 In�nitary Logis

The limited expressive power of �rst-order logi is due to its �nitary syntax and to the

absene of any reursion or iteration mehanism. Higher expressive power an be ahieved

by augmenting the syntax of �rst-order logi either with in�nitary formation rules or with

�xpoint operators that at as reursion or iteration onstruts. In this setion we onsider

ertain in�nitary logis, study their properties, and ompare them to �xpoint logis.

2.1 In�nitary Logis with a Fixed Number of Variables

Di�erent in�nitary logis arise by allowing for in�nite disjuntions and onjuntions, or by

allowing for in�nite strings of quanti�ers, or by allowing for both at the same time. We

onsider the in�nitary logi L

1!

, whih is the extension of �rst-order logi that results by

allowing in�nite disjuntions and onjuntions in the syntax, while keeping the quanti�er

strings �nite (f. [BF85℄). To illustrate the gain in expressive power, reall the well-known

fat that the property \there is an even number of elements" is not expressible by any �rst-

order sentene on �nite strutures. Let �

n

be a �rst-order sentene stating that there are

exatly n elements. Then the in�nitary sentene

W

1

n=1

�

2n

asserts that \there is an even

number of elements".

We now de�ne formally the syntax of the in�nitary logi L

1!

.

De�nition 2.1: Let � be a voabulary onsisting of �nitely many relational and onstant

symbols and let fv

1

; : : : ; v

n

g be a ountable set of variables. The lass L

1!

of in�nitary

formulas over � is the smallest olletion of expressions suh that

� it ontains all �rst-order fomulas over �;

� if ' is an in�nitary formula, then so is :';

� if  is an in�nitary formula and v

i

is a variable, then (8v

i

)' and (9v

i

)' are also

in�nitary formulas;

� if 	 is a set of in�nitary formulas, then

W

	 and

V

	 are also in�nitary formulas.

2

The onept of a free variable in a L

1!

formula is de�ned in the same way as for �rst-order

logi. A sentene of L

1!

is a formula ' of L

1!

with no free variables. The semantis

of in�nitary formulas is a diret extension of the semantis of �rst-order logi, with

W

	

interpreted as a disjuntion over all formulas in 	 and

V

	 interpreted as a onjuntion.

In general, in�nitary formulas, even in�nitary sentenes, may have an in�nite number of

distint variables. We now fous attention on fragments of L

1!

in whih the total number

2

In mathematial logi, the notation L

��

, where � and � are in�nite ardinal numbers, has been used to

denote the in�nitary logi in whih we an form new formulas by taking disjuntions and onjuntions of

sets of formulas of ardinality less than �, and by applying strings of quanti�ers of length less than �. Thus,

L

1!

= [

�

L

�!

.
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of variables is required to be �nite. Variables, however, may have an in�nite number of

ourrenes in suh formulas.

De�nition 2.2: Let k be a positive integer.

� The in�nitary logi with k variables, denoted by L

k

1!

, onsists of all formulas of L

1!

with at most k distint variables.

� The in�nitary logi L

!

1!

onsists of all formulas of L

1!

with a �nite number of distint

variables. Thus,

L

!

1!

=

1

[

k=1

L

k

1!

:

� We write L

k

!!

for the olletion of all �rst-order formulas with at most k variables.

The family L

!

1!

of the in�nitary languages L

k

1!

, k � 1, was introdued �rst by Barwise

[Bar77℄, as a tool for studying positive-�xpoint logi on in�nite strutures. Sine that time,

however, these languages have had numerous uses and appliations in theoretial omputer

sienes. Indeed, they underlie muh of the work in [Imm82, dR87, LM89, CFI89℄ and they

have also been studied in their own right in [Kol85, KV90b℄.

We now give some examples that illustrate the expressive power of in�nitary logi with

a �xed number of variables.

Example 2.3: Cardinalities of Total Orders

Assume that the voabulary � onsists of a binary relation symbol < and we are onsidering

only the strutures in whih the interpretation of < is a total order. Let �

n

be a �rst-order

sentene asserting that \there are at least n elements". On arbitrary strutures over the

voabulary �, the sentene �

n

requires n distint variables. Immerman and Kozen [IK89℄

pointed out, however, that on total orders �

n

is equivalent to a sentene in L

2

!!

. For example,

�

4

an be written as

(9x9y)(x < y ^ (9x)(y < x ^ (9y)(x < y))):

It follows that on total orders the sentene �

n

asserting that there are exatly n elements

is also in L

2

!!

, sine it is equivalent to �

n

^ :�

n+1

. As a result, on total orders properties

suh as \there is an even number of elements", \the universe is �nite", et., are expressible

in L

2

1!

. In general, if P is any set of positive integers, then the property \the ardinality of

the total order is a member of P" is expressible in L

2

1!

, sine it is de�nable by

_

n2P

�

n

:

It follows, that L

!

1!

an express non-reursive properties on total orders.

4



Example 2.4: Paths and Connetivity

Assume that the voabulary � onsists of a single binary relation E and let p

n

(x; y) be a

�rst-order formula over � asserting that there is a path of length n from x to y. The obvious

way to write p

n

(x; y) requires n + 1 variables, namely

(9x

1

: : :9x

n�1

)(E(x; x

1

) ^ E(x

1

; x

2

) ^ : : : ^ E(x

n�1

; y)):

It is well known, however, that eah p

n

(x; y) is equivalent to a formula in L

3

!!

, i.e. a �rst-order

formula with at most three distint variables x; y; z. To see this, put

p

1

(x; y) � E(x; y)

and assume, by indution on n, that p

n�1

(x; y) is equivalent to a formula in L

3

!!

. Then

p

n

(x; y) � (9z)[E(x; z) ^ (9x)(x = z ^ p

n�1

(x; y))℄:

It follows that \onnetivity" is a property of graphs expressible in L

3

1!

, sine it is given

by the formula

(8x8y)(

1

_

n=1

p

n

(x; y)):

Similarly, the property \there is no yle" is also in L

3

1!

, sine it is de�nable by:

(8x)(

1

^

n=1

:p

n

(x; x)):

More generally, if P is any set of positive integers, then the property \x and y are onneted

by a path whose length is a number in P" is expressible in L

3

1!

via the formula:

_

n2P

p

n

(x; y):

It follows that L

!

1!

an express non-reursive properties on �nite graphs.

Properties suh as \onnetivity" and \there is no yle" are also known to be express-

ible in positive-�xpoint logi. We onsider next extensions of �rst-order logi with �xpoint

formation rules and ompare the resulting logis to L

!

1!

.

2.2 Fixpoint Logis

Let � be a voabulary, let S be an n-ary relation symbol not in �, let '(x

1

; : : : ; x

n

; S) be

a �rst-order formula over the voabulary � [ fSg, and let D be a �nite struture over �.

The formula ' gives rise to an operator �(S) from n-ary relations on the universe D of D

to n-ary relations on D, where

�(T ) = f(a

1

; : : : ; a

n

) : D j= '(a

1

; : : : ; a

n

; T )g;

for every n-ary relation T on D.

Every suh operator �(S) generates a sequene of stages that are obtained by iterating

�(S). We will be interested here in the relationship between the stages of the operator and

its �xpoints.
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De�nition 2.5: Let D be a �nite struture over the voabulary �.

� The stages �

m

, m � 1, of � on D, are de�ned by the indution:

�

1

= �(;); �

m+1

= �(�

m

):

� We say that a relation T on D is a �xpoint of the operator �(S) (or, of the formula ')

if �(T ) = T .

Intuitively, one would like to assoiate with an operator �(S) the \limit" of its stages. This

is possible only when the sequene �

m

, m � 1, of the stages \onverges", i.e., when there

is an integer m

0

suh that �

m

0

= �

m

0

+1

and, hene, �

m

0

= �

m

; for all m � m

0

: Notie

that in this ase �

m

0

is a �xpoint of �(S), sine �

m

0

= �

m

0

+1

= �(�

m

0

). The sequene of

stages, however, may not onverge. In partiular, this will happen if the formula '(x; S) has

no �xpoints. Thus, additional onditions have to be imposed on the formulas onsidered in

order to ensure that the sequene of stages onverges.

A formula '(x

1

; : : : ; x

n

; S) is positive in S if every ourrene of S in ' is within an even

number of negations. Positivity is a natural syntati ondition that guarantees onvergene.

Indeed, if '(x; S) is positive in S, then the assoiated operator � ismonotone (i.e., if T

1

� T

2

,

then �(T

1

) � �(T

2

)) and, as a result, the sequene �

m

, m � 1, of stages is inreasing. If

D is a �nite struture with s elements, then every stage �

m

has at most s

n

elements and,

onsequently, there is an integer m

0

� s

n

suh that �

m

0

= �

m

for every m � m

0

. Thus, the

sequene of stages of '(x; S) onverges to �

m

0

. Moreover, it is easy to verify that �

m

0

is the

least �xpoint of '(x; S), i.e., it is a �xpoint of ' with the property that �

m

0

� T for every

�xpoint T of '. We write '

1

or �

1

to denote the least �xpoint of '.

Remark 2.6: Although here we are mainly interested in �nite strutures, we should point

out that the stages of a formula an also be de�ned on in�nite strutures. This is done by

trans�nite indution on the ordinals, where at limit stages the operator �(S) is applied to

the union of the previously de�ned stages. A positive formula has a least �xpoint on every

in�nite struture, whih is equal to some trans�nite stage of the formula.

The existene of least �xpoints for positive formulas is an instane of a more general

result about �xpoints in a lattie-theoreti framework (f. Tarski [Tar55℄).

Positive-�xpoint logi is �rst-order logi augmented with the least �xpoint formation rule for

positive formulas. The anonial example of a formula of positive-�xpoint logi is provided

by the least �xpoint '

1

(x; y) of the �rst-order formula

E(x; y) _ (9z)(S(x; z) ^ S(z; y)):

In this ase '

1

(x; y) de�nes the transitive losure of the edge relation E. It follows that

onnetivity is a property expressible in positive-�xpoint logi, but, as is well known (f.

[Fag75, AU79℄), not in �rst-order logi.
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As a fresh example, we onsider 2-olorability. Using Ehrenfeuht-Fraiss�e games, it an

be proved that this property is not expressible in �rst-order logi. We now show that 2-

olorability on direted graphs without loops is expressible in �xpoint logi. For this, let

'(x; y; S) be the �rst-order formula

E(x; y) _ (9z)(9w)(E(x; z) ^ E(z; w) ^ S(w; y));

where E is a binary relation symbol in the voabulary �. It is easy to verify that '

1

(x; y)

holds if and only if there is a path of odd length from x to y. It follows that a direted graph

G = (A;E) is not 2-olorable if and only if 9x'

1

(x; x).

The theory of positive-�xpoint logi on in�nite strutures was developed in Moshovakis

[Mos74℄. Chandra and Harel [CH82℄ were the �rst to fous attention on the olletion

FP of properties expressible in positive-�xpoint logi on �nite strutures (positive-�xpoint

properties). Sine that time positive-�xpoint logi has been studied extensively on �nite

strutures and this has resulted to a thorough understanding of its expressive power (f.

[Cha88℄ for a survey of results in this area). We should remark that often in the literature

positive-�xpoint logi is referred to as simply �xpoint logi.

Every positive-�xpoint property is omputable in polynomial time (in the size of the �nite

struture), beause the sequene of stages onverges to the least �xpoint in polynomially

many iterations. On the other hand there are PTIME properties, suh as \there is an

even number of elements", that are not in FP [CH82℄. Positive-�xpoint logi an express,

however, PTIME-omplete properties, for example the path systems problem in Cook [Coo74℄.

Moreover, on ordered �nite strutures (i.e., on �nite strutures where a binary relation symbol

is always interpreted as a total order) we have that FP=PTIME ([Imm86, Var82℄).

How an we obtain logis with iteration onstruts that are more expressive than positive-

�xpoint logi? A more powerful logi results if one iterates arbitrary �rst-order operators, un-

til a �xpoint is reahed (whih may never happen). In this ase we may have non-terminating

omputations, unlike positive-�xpoint logi, where the iteration is guaranteed to onverge.

De�nition 2.7: Let � be a voabulary, let S be an n-ary relation symbol not in �, let

'(x

1

; : : : ; x

n

; S) be a �rst-order formula over the voabulary � [ fSg, let D be a �nite

struture over �, and let �

m

, m � 1, be the sequene of stages of the assoiated operator

�(S).

If there is an integerm

0

suh that �

m

0

= �

m

0

+1

, then we put '

1

= �

1

= �

m

0

; otherwise,

we set '

1

= �

1

= ;. In the former ase we say that ' onverges on D, and in the latter

ase we say that ' diverges on D. We all '

1

the partial-�xpoint of ' on D.

Partial-Fixpoint Logi is �rst-order logi augmented with the partial-�xpoint formation

rule for arbitrary �rst-order formulas. We write PFP for the olletion of all properties

de�nable by formulas of partial-�xpoint logi on �nite strutures.

Partial-�xpoint logi on �nite strutures has been investigated by Abiteboul and Vianu

[AV89℄. In partiular, they established that the lass PFP of partial-�xpoint properties on

�nite strutures oinides with the lass of properties expressible in the language RQL (ranked

query language), introdued by Chandra and Harel [CH82℄ and studied also in [KV87℄ under

the name iterative logi. The latter is an extension of �rst-order logi obtained by adding

while looping as an iteration onstrut.
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As with positive-�xpoint logi, the syntax of partial-�xpoint logi allows for the in-

terleaving of �rst-order operations (inluding negation) with the partial-�xpoint operator.

Abiteboul and Vianu [AV89℄ showed, however, that this does not give rise to a hierarhy of

properties and that a single appliation of the partial-�xpoint operator suÆes to generate

all PFP properties. An analogous result for �xpoint logi had been obtained by Immerman

[Imm86℄, and Gurevih and Shelah [GS86℄.

Notie that for every �rst-order formula '(x

1

; : : : ; x

n

; S), if D is a �nite struture with

s elements, then either the sequene �

m

, m � 1, of stages onverges or it yles. Whih of

the two is the ase an be determined by arrying out at most 2

s

n

iterations of �. Thus, the

omputation of the partial-�xpoint requires spae polynomial in the size s of the struture D,

sine we only have to store one stage at a time and ompute the next stage, while making sure

that the urrent level of iteration has not exeeded 2

s

n

. Notie also that if '(x

1

; : : : ; x

n

; S)

is a positive in S formula, then the partial-�xpoint of ' oinides with the least �xpoint

of ', beause the sequene of stages onverges. It follows that partial-�xpoint logi is an

extension of positive-�xpoint logi.

As a result of the above fats, we have that

FP � PFP � PSPACE:

The lass PFP of partial-�xpoint properties is properly ontained in PSPACE, sine the

property of \ardinality is even" is not in PFP [CH82℄. On the other hand, it turns out that

on ordered �nite strutures PFP = PSPACE, beause on suh strutures partial-�xpoint

logi an simulate PSPACE omputations. (This was shown by Vardi [Var82℄ to hold for the

lass of while properties, whih is equivalent to PFP [AV89℄.) Note that this implies that

PFP 6� PTIME, assuming that PTIME 6= PSPACE.

Chandra and Harel [CH82℄ posed the problem of showing that FP is properly ontained

in PFP on the lass of all �nite strutures over a voabulary �. No progress was made on

this problem until reently, when Abiteboul and Vianu [AV91℄ showed that FP 6= PFP if and

only if PTIME 6= PSPACE. Thus, the separation problem for these two �xpoint logis on the

lass of all �nite strutures is equivalent to one of the outstanding problems in omplexity

theory.

Our next result shows that partial-�xpoint logi an be subsumed by the in�nitary logi

L

!

1!

.

Theorem 2.8 : Let � be a voabulary, let S be an n-ary relation symbol not in �, let

'(x

1

; : : : ; x

n

; S) be a �rst-order formula over the voabulary � [ fSg, and assume that the

total number of distint variables (free and bound) ourring in ' is equal to k. Let �(S) be

the operator assoiated with ', where

�(T ) = f(a

1

; : : : ; a

n

) : D j= '(a

1

; : : : ; a

n

; T )g;

for any n-ary relation T on the universe D of a struture D over �. Then

� For every m � 1, the stage �

m

(x

1

; : : : ; x

n

) of � is de�nable by a formula of L

k+n

!!

on

all �nite strutures over �.

� The partial-�xpoint '

1

(x

1

; : : : ; x

n

) of '(x

1

; : : : ; x

n

; S) is de�nable by a formula of L

k+n

1!

on all �nite strutures.
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Proof: Let y

1

; : : : ; y

n

be n new distint variables not ourring in '. We will show, by

indution on m, that every stage �

m

, m � 1, is expressible by a formula '

m

(x

1

; : : : ; x

n

) of

L

k+n

!!

whose variables are those of ' and y

1

; : : : ; y

n

. The laim is obvious for the �rst stage

�

1

= �(;). Assume that the indution hypothesis holds for �

m

. By de�nition of the stages,

we have that

�

m+1

(x

1

; : : : ; x

n

) � '(x

1

; : : : ; x

n

;�

m

):

At this point, one would like to replae every ourrene of a subformula of the form

S(t

1

; : : : ; t

n

) in '(x

1

; : : : ; x

n

; S) by the formula '

m

(x

1

=t

1

; : : : ; x

n

=t

n

), where the latter formula

is obtained from '

m

(x

1

; : : : ; x

n

) by substituting t

i

for eah free ourrene of x

i

, 1 � i � n.

This, however, may inrease the total number of variables in the resulting formula beyond any

predesribed bounds, sine one would have to make the substitutions not to '

m

(x

1

; : : : ; x

n

),

but to an equivalent formula (possibly having more variables) in whih eah t

i

an be susti-

tuted for x

i

(without hanging the meaning of the formula). It turns out, nevertheless, that

the above diÆulty an be irumvented as follows.

Replae every ourrene of a subformula of the form S(t

1

; : : : ; t

n

) in '(x

1

; : : : ; x

n

; S) by

the expression

(9y

1

: : :9y

n

)[(y

1

= t

1

^ : : : ^ y

n

= t

n

)^

(9x

1

: : :9x

n

)(x

1

= y

1

^ : : : ^ x

n

= y

n

^ ~'

m

(x

1

; : : : ; x

n

))℄:

The resulting expression yields a formula '

m+1

(x

1

; : : : ; x

n

) of L

k+n

!!

(whose variables are those

of ' and y

1

; : : : ; y

n

) that de�nes �

m+1

uniformly on all �nite strutures.

It is now easy to show that on �nite strutures the partial-�xpoint '

1

of the formula

'(x

1

; : : : ; x

n

; S) is expressible by a formula of L

k+n

1!

. Reall that '

1

is equal to some stage

�

m

0

suh that �

m

0

= �

m

0

+1

, if suh a stage exists , or equal to ; otherwise. Thus,

'

1

(x) �

1

_

m=1

[(8x)('

m+1

(x)$ '

m

(x))℄ ^ '

m

(x):

The preeding Theorem 2.8 onstitutes an extension of an earlier result to the e�et that

on every �xed struture the in�nitary logi L

!

1!

an express every positive-�xpoint formula.

That result appeared in print in [Bar77, Imm82℄, but atually goes bak to the unpublished

Ph.D. thesis of A. Rubin [Rub75℄.

Corollary 2.9: L

!

1!

an express every partial-�xpoint property on �nite strutures. Thus,

on �nite strutures

FP � PFP � L

!

1!

:

As mentioned earlier, L

!

1!

on �nite graphs an apture non-reursive properties. Sine every

PFP property is reursive (atually in PSPACE), it follows that the inlusion PFP � L

!

1!

is proper.
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2.3 L

k

1!

-Equivalene and Pebble Games

Two strutures are equivalent in some logi L if no sentene of L distinguishes them. This

is a entral onept in every logi and plays an important role in model theory. We disuss

here equivalene in the in�nitary logis with a �xed number of variables.

De�nition 2.10: Let A and B be two strutures over the voabulary � and let k be a

positive integer.

� Assume that a

1

; : : : ; a

m

and b

1

; : : : ; b

m

are �nite sequenes of distint elements from

the universes of A and B respetively, where 1 � m � k. We write

(A; a

1

; : : : ; a

m

) �

k

1!

(B; b

1

; : : : ; b

m

)

to denote that for every formula '(u

1

; : : : ; u

m

) of L

k

1!

with free variables among

u

1

; : : : ; u

m

we have that

A; a

1

; : : : ; a

m

j= '(u

1

; : : : ; u

m

) if and only if B; b

1

; : : : ; b

m

j= '(u

1

; : : : ; u

m

):

� We say that A is L

k

1!

-equivalent to B, and we write A �

k

1!

B, if A and B satisfy the

same sentenes of L

k

1!

.

� We say that A is L

k

!!

-equivalent to B, and we write A �

k

!!

B, if A and B satisfy the

same sentenes of �rst-order logi with k variables.

The onnetion between de�nability in L

k

1!

and the equivalene relation�

k

1!

is desribed

by the following two propositions.

Proposition 2.11: Let � be a voabulary, let F be the lass of all �nite strutures over �,

and let k be a positive integer. Then every equivalene lass of the equivalene relation �

k

1!

on F is de�nable by a sentene of L

k

1!

.

Proof: Observe �rst that the equivalene relation �

k

1!

on F has only ountably many

equivalene lasses. This is beause there are only ountably many non-isomorphi �nite

strutures and every equivalene lass is a union of isomorphism lasses. Let C

0

; C

1

; : : : be

an enumeration of the equivalene lasses of �

k

1!

on F .

Let i � 0. For all j 6= i, there is a sentene  

j

of L

k

1!

suh that  

j

holds for the strutures

in C

i

, but fails for the strutures in C

j

. Thus, the ountable onjuntion

V

j 6=i

 

j

is a sentene

of L

k

1!

that is satis�ed exatly by the strutures in C

i

.

Proposition 2.12: Let C be a lass of �nite strutures over the voabulary � and let k be a

positive integer. Then the following statements are equivalent:

1. The lass C is L

k

1!

-de�nable, i.e. there is a sentene ' of L

k

1!

suh that for any �nite

struture A over � we have that

A 2 C () A j= ':

10



2. If A and B are �nite strutures over � suh that A 2 C and A �

k

1!

B, then B 2 C.

Proof: The diretion (1)) (2) follows from the de�nition of �

k

1!

.

For the other diretion, assume that statement (2) holds for the lass C. The preeding

Proposition 2.11 implies that for eah i � 0 there is a sentene 	

i

of L

k

1!

that de�nes the

i-th equivalene lass C

i

of �

k

1!

on �nite strutures. We now laim that the ountable

disjuntion

W

C

i

�C

	

i

, whih is a sentene of L

k

1!

, de�nes the lass C. Assume that A is a

struture in C and let C

l

be the equivalene lass of L

k

1!

to whih A belongs. Then, by

hypothesis, we have that C

l

� C. Thus, A j=

W

C

i

�C

	

i

, sine A j= 	

l

. Conversely, assume

that A is a �nite struture satisfying �

l

, where C

l

� C. Then A 2 C

l

, so A 2 C.

Remark 2.13: Note that the proof of Proposition 2.12 used only the property that L

k

1!

is losed under ountable onjuntions and disjuntions. Thus, the proposition an be gen-

eralized to any logi that has this losure property. In partiular, the proposition an be

applied to any logi that is losed under �nite onjuntions and disjuntions and has a �nite

number of equivalene relations. For example, if we onsider the fragment L

r

of �rst-order

logi onsisting of �rst-order sentenes of quanti�er depth r, then the analogous version of

the above Proposition 2.12 holds for L

r

. The reason for this is that, by Fraiss�e's theorem

[Fra54℄, the relation of elementary equivalene on L

r

has �nitely many equivalene lasses.

It is known that �

k

1!

-equivalene an be haraterized in terms of an in�nitary k-pebble

game. This game was impliit in Barwise [Bar77℄ and was desribed in detail in Immerman

[Imm82℄.

De�nition 2.14: Assume that A and B are two strutures over the voabulary � and let



1

; : : : ; 

l

and d

1

; : : : ; d

l

be the interpretations of the onstant symbols of � on A and B,

respetively.

The k-pebble game between Players I and II on the strutures A and B has the following

rules:

Player I hooses one of the two strutures A and B and plaes a pebble on one of its

elements. Player II responds by plaing a pebble on an element of the other struture. Player

I hooses again one of the two strutures and the game ontinues this way until k pebbles

have been plaed on eah struture.

Let a

i

and b

i

, 1 � i � k, be the elements of A and B respetively piked by the two

players in the i-th move. Player I wins the game at this point if one of the following two

onditions holds:

� Two of the pebbles are on the same element of one of the strutures, while the orre-

sponding two pebbles are on di�erent elements of the other struture, i.e., a

i

= a

j

and

b

i

6= bj (or a

i

6= a

j

and b

i

= b

j

), for some i and j suh that 1 � i < j � k.

� The previous ondition fails and the mapping h with

h(a

i

) = b

i

; 1 � i � k;

and

h(

j

) = d

j

; 1 � j � l;
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is not an isomorphism between the substrutures of A and B with universes

fa

1

; : : : ; a

k

g [ f

1

; : : : ; 

l

g

and

fb

1

; : : : ; b

k

g [ fd

1

; : : : ; d

l

g

respetively.

If both onditions fail, then Player I removes some orresponding pairs of pebbles and the

game resumes until again k pebbles have been plaed on eah struture. Player II wins the

game if he an ontinue playing \forever", i.e. if Player I an never win a round of the game.

In the preeding de�nition we have desribed in a rather informal the onept \Player II

wins the k-pebble game on A and B". The onept of a winning strategy for Player II in the

k-pebble game is formalized in what follows (f. also [Bar77, Imm82℄).

De�nition 2.15: Let A and B be two strutures over the voabulary � and let 

1

; : : : ; 

l

and d

1

; : : : ; d

l

be the interpretations of the onstant symbols of � on A and B respetively.

A partial isomorphism between A and B is a funtion h suh that its domain is a �nite

subset of the universe of A ontaining the elements 

1

; : : : ; 

l

of A, its range is a �nite subset

of the universe of B ontaining the elements d

1

; : : : ; d

l

of B, h(

j

) = d

j

; 1 � j � l, and suh

that h is an isomorphism between the substrutures of A and B with universes the domain

and range of h respetively.

De�nition 2.16: Let k be a positive integer, let A and B be two strutures over the

voabulary �, and let 

1

; : : : ; 

l

and d

1

; : : : ; d

l

be the interpretations of the onstant symbols

of � on A and B respetively.

We say that Player II has a winning strategy in the k-pebble game on A and B if there

is a non-empty family H of partial isomorphisms between A and B suh that

� H is losed under subfuntions: if f 2 H and f(

1

; d

1

); : : : ; (

l

; d

l

)g � g � f (as sets of

ordered pairs), then g 2 H.

� H has the bak and forth property up to k: if f 2 H and jf j < k + l, then for any

element a 2 A (respetively b 2 B) there is an element b in B (respetively a 2 A)

suh that the funtion f [ f(a; b)g is in H.

The ruial onnetion between k-pebble games and L

k

1!

-equivalene is provided by the

following result, whih is due to Barwise [Bar77℄ (f. also [Imm82℄). We inlude here a

detailed proof of this result, sine only a hint for the proof is given in [Bar77℄.

Theorem 2.17: Let A and B be two strutures over the voabulary �, and let k be a positive

integer. The following are equivalent:

1. A �

k

1!

B.
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2. Player II has a winning strategy for the k-pebble game on A and B.

Proof: Let 

1

; : : : ; 

l

and d

1

; : : : ; d

l

be the interpretations of the onstant symbols of � on

A and B, respetively. Assume �rst that A �

k

1!

B. We have to show that there is a family

H of partial isomorphisms on A and B that provides a winning strategy for Player II in the

k-pebble game.

The desired family H onsists of all partial isomorphisms between A and B suh that

the following hold:

� The domain of h is a set of the form f

1

; : : : ; 

l

; a

1

; : : : ; a

m

g and the range of h is a set

of the form fd

1

; : : : ; d

l

; b

1

; : : : ; b

m

g, where m � k.

� h(

j

) = d

j

for all j � m, and h(a

i

) = b

i

, for all i � m.

� (A; a

1

; : : : ; a

m

) �

k

1!

(B; b

1

; : : : ; b

m

).

We show now that H has the required properties:

1. H is non-empty, beauseA �

k

1!

B and, thus, the funtion h with h(

j

) = d

j

, 1 � j � l,

is a member of H.

2. It is lear from the de�nitions that H is losed under subfuntions.

3. It remains to show thatH has the bak and forth property up to k. Assume that f 2 H

and jf j = m+ l < k+ l. Then there are sequenes of distint elements a

1

; : : : ; a

m

in A

and b

1

; : : : ; b

m

in B suh that h(a

i

) = b

i

, 1 � i � m and

(A; a

1

; : : : ; a

m

) �

k

1!

(B; b

1

; : : : ; b

m

):

There are two parts in the bak-and-forth property up to k: in the \forth" part we have

to show that for every element a in A there is an element b in B suh that f [ fa; bg

is in H, while in the \bak" part we have to show that for every b in B there is an a

in A suh that f [ fa; b; g is in H.

We laim that for any element a in A that is di�erent from a

1

; : : : ; a

m

there is an

element b in B that is di�erent from b

1

; : : : ; b

m

and is suh that

(A; a

1

; : : : ; a

m

; a) �

k

1!

(B; b

1

; : : : ; b

m

; b):

Assume that no suh b 2 B exists for a ertain a 2 A. Then for every b 2 B that is

di�erent from b

1

; : : : ; b

m

there is a formula  

b

(v

1

; : : : ; v

m

; v) of L

k

1!

over � suh that

(A; a

1

; : : : ; a

m

; a) j=  

b

(v

1

; : : : ; v

m

; v)

and

(B; b

1

; : : : ; b

m

; b) 6j=  

b

(v

1

; : : : ; v

m

; v):

Hene,

(A; a

1

; : : : ; a

m

) j= (9v)

0

�

(v

1

6= v) ^ : : : ^ (v

m

6= v) ^

^

b2B

 

b

(v

1

; : : : ; v

m

; v)

1

A

;

13



and, at the same time,

(B; b

1

; : : : ; b

l

) 6j= (9v)

0

�

(v

1

6= v) ^ : : : ^ (v

m

6= v) ^

^

b2B

 

b

(v

1

; : : : ; v

m

; v)

1

A

:

But this is a ontradition, sine

(9v)

0

�

(v

1

6= v) ^ : : : ^ (v

m

6= v) ^

^

b2B

 

b

(v

1

; : : : ; v

m

; v)

1

A

is an L

k

1!

-formula and (A; a

1

; : : : ; a

m

) �

k

1!

(B; b

1

; : : : ; b

m

).

This onludes the argument for the \forth" part of the bak-and-forth-property. The

\bak" part is analogous, using an in�nitary onjuntion over elements of A.

Assume now that Player II has a winning strategy in the k-pebble game on A and B. Let

H be a family of partial isomorphisms providing Player II with a winning strategy.

We will show, by indution on the onstrution of L

k

1!

formulas, that if  (v

1

; : : : ; v

m

) is

a formula of L

k

1!

whose variables are among v

1

; : : : ; v

k

and whose free variables are among

v

1

; : : : ; v

m

, then the following property (�) holds:

(�) For all h 2 H with jhj � l + m and for any elements fa

1

; : : : ; a

m

g (not

neessarily distint) from the domain of h, we have

(A; a

1

; : : : ; a

m

) j=  (v

1

; : : : ; v

m

) if and only if (B; h(a

1

); : : : ; h(a

m

) j=  (v

1

; : : : ; v

m

)):

After property (�) is established, we will be able to infer that A �

k

1!

B by applying this

property to sentenes of L

k

1!

and to an arbitrary member of the non-empty family H.

The base ase in the indution (atomi formulas and inequalities) is obvious. The indu-

tive steps for negation :, in�nitary disjuntion

W

, and in�nitary onjution

V

are straight-

forward using the indution hypothesis.

Assume that the formula  (v

1

; : : : ; v

m

) is of the form (9v)�(v

1

; : : : ; v

m

; v) and that the

property (�) holds for the formula �(v

1

; : : : ; v

m

; v). Let h be a partial isomorphism in H suh

that jhj � l+m. We have to show that if a

1

; : : : ; a

m

are arbitrary elements (not neessarily

distint) from the domain of h, then

A; a

1

; : : : ; a

m

j= (9v)�(v

1

; : : : ; v

m

; v) () B; h(a

1

); : : : ; h(a

m

) j= (9v)�(v

1

; : : : ; v

m

; v):

Notie that, by our assumption about the variables of  , we must have that v is a variable

v

j

, for some j suh that 1 � j � k. We now distinguish two ases, namely the ase where

j > m and the ase where j � m.

If j > m, then it must also be the ase that m < k. Let a 2 A be suh that

(A; a

1

; : : : ; a

m

; a) j= �(v

1

; : : : ; v

m

; v

j

):

Consider the subfuntion h

�

of h with domain the set f

1

; : : : ; 

l

; a

1

; : : : ; a

m

g. Notie that h

�

is a member of H, sine H is losed under subfuntions. By the \forth" part of the bak and

14



forth property applied to h

�

and a, there is an element b 2 B suh that h

�

[f(a; b)g is in H.

By applying the indution hypothesis to �(v

1

; : : : ; v

m

; v) and to h

�

[ f(a; b)g, we infer that

(B; h(a

1

); : : : ; h(a

m

); b) j= �(v

1

; : : : ; v

m

; v

j

)

and, hene,

(B; h(a

1

); : : : ; h(a

m

)) j= (9v

j

)�(v

1

; : : : ; v

m

; v

j

):

The other diretion is proved in a similar way using the \bak" part of the bak and forth

property up to k for the family H.

Finally, assume that j � m. In this ase, the free variables of the formula � are among

the variables v

1

; : : : ; v

m

and

(A; a

1

; : : : ; a

i�1

; a

i+1

; : : : ; a

m

) j= (9v

j

)�(v

1

; : : : ; v

m

):

Let g be the subfuntion of h with domain the set

f

1

; : : : ; 

l

; a

1

; : : : ; a

i�1

; a

i+1

; : : : ; a

m

g:

Observe that jgj � l +m� 1 < l + k and that g is a member of H, sine H is losed under

subfuntions. Let a 2 A be suh that

A; a

1

; : : : ; a

i�1

; a; a

i+1

; : : : ; a

m

j= �(v

1

; : : : ; v

m

):

By the \forth part" of the bak and forth property applied to g and a, there is an element

b 2 B suh that g [ f(a; b)g is in H. By applying the indution hypothesis to �(v

1

; : : : ; v

m

)

and to g [ f(a; b)g, we infer that

(B; g(a

1

); : : : ; g(a

i�1

); b; g(a

i+1

); : : : ; g(a

m

)) j= �(v

1

; : : : ; v

m

)

and, hene,

(B; h(a

1

); : : : ; h(a

m

)) j= (9v

j

)�(v

1

; : : : ; v

m

);

sine g(a

i

) = h(a

i

) for i 6= j and the satisfation relation depends only on the free variables

of a formula. The other diretion is proved in a similar way using the \bak" part of the

bak and forth property up to k for the family H.

Remark 2.18:

The preeding Theorem 2.17 and the above remarks should be ontrasted with C. Karp's

[Kar65℄ haraterization of equivalene in the in�nitary logi L

1!

(f. also [BF85℄). Aord-

ing to this result, two strutures A and B satisfy the same sentenes of L

1!

if and only if

there is a family H of partial isomorphisms between A and B suh that H has the bak and

forth property (with no ardinality restritions on the size of the partial isomorphisms). It

should be pointed out H does not have to possess the losure under subfuntions property,

whih was used in a ritial way in establishing the diretion (2) ) (1) of the preeding

Theorem 2.17.

For L

1!

, the proof goes through without the losure under subfuntions property, be-

ause in the ase of existential quanti�ation one an rename variables and assume that the

existentially quanti�ed variable v is not one of the variables v

1

; : : : ; v

m

.
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The preeding Theorem 2.17 holds for arbitrary �nite or in�nite strutures A and B.

In the ase of in�nite strutures, the in�nitary syntax of L

k

1!

plays a ruial role in the

proof. On the other hand, lose srutiny of the proof reveals that if both A and B are �nite

strutures, then one an restrit attention to the �rst-order sentenes of L

k

1!

.

Corollary 2.19: Let A and B be two �nite strutures over the voabulary � and let k be a

positive integer. The following are equivalent:

1. A �

k

!!

B.

2. A �

k

1!

B.

3. Player II has a winning strategy for the k-pebble game on A and B.

Proof: The argument used in the proof of Theorem 2.17 goes here through virtually un-

hanged. One need only observe that in showing the impliation (1)) (3) the onjuntions

over the universes A and B are �nite and, thus, the resulting formulas are in L

k

!!

.

The preeding Corollary 2.19 yields the following normal-form theorem for sentenes of

L

k

1!

on �nite strutures.

Corollary 2.20: Let � be a voabulary and let k be a positive integer. Every sentene of L

k

1!

is equivalent on �nite strutures over � to a ountable disjuntion of ountable onjuntions

of L

k

!!

-sentenes.

Proof: From Proposition 2.11 and Corollary 2.19 it follows that the �

k

1!

-equivalene lass

of a �nite struture A an be de�ned by the onjuntion

V

	

A

of the set 	

A

of all sentenes

of L

k

!!

that are true on A. As a result, every sentene  of L

k

1!

is equivalent on �nite

strutures to

V

Aj= 

	

A

.

As a onsequene of Proposition 2.12 and Theorem 2.17, we get a game-theoreti har-

aterization of de�nability in the logis L

k

1!

, k � 1, for lasses of �nite strutures.

Proposition 2.21: Let C be a lass of �nite strutures over the voabulary � and let k be a

positive integer. Then the following statements are equivalent:

1. The lass C is L

k

1!

-de�nable.

2. If A and B are �nite strutures over � suh that A 2 C and Player II has a winning

strategy for the k-pebble game on A and B, then B 2 C.

The preeding results provide tools for establishing that ertain properties are not ex-

pressible in in�nitary logi with a �nite number of variables. More spei�ally, in order to

establish that a property Q is not expressible by any formula of L

!

1!

on �nite strutures

it is enough to show that for any k � 1 there are �nite strutures A

k

and B

k

suh that

A

k

j= Q, B

k

6j= Q, and Player II has a winning strategy for the k-pebble game on A

k

and

B

k

. Moreover, Proposition 2.21 guarantees that this method is also omplete, i.e., if Q is not

expressible in L

k

1!

, then suh strutures A

k

and B

k

must exist.

The following examples illustrate the use of k-pebble games in deriving lower bounds for

expressibility.
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Example 2.22: Cliques, Even Cardinality, and Finiteness

Assume that the voabulary � onsists of a binary relation symbol E. Let k be a positive

integer, let K

k

be the omplete graph with k nodes (the k-lique), and let K be a omplete

graph with more than k nodes.

It is quite obvious that Player II has a winning strategy for the k-pebble game between

K

k

and K. The family H of partial isomorphisms onsists of all 1-1 mappings between

substrutures of K

k

and K eah with l elements, 0 � l � k.

The immediate onsequenes of this fat are:

� For any �xed k, the property \there are exatly k elements" an not be expressed on

�nite graphs by any formula of

S

m<k

L

m

1!

; in other words, this property requires at

least k variables (f. also [Imm82℄ for a di�erent proof of this fat).

� The property \there is an even number of nodes" an not be expressed on �nite graphs

by any formula of L

!

1!

. (This should be ontrasted with the earlier Example 2.3

onerning the expressive power of L

!

1!

on total orders.)

It follows that the in�nitary logi L

1!

has stritly higher expressive power than the in�nitary

logi L

!

1!

.

Example 2.23: Hamiltonian Graphs (Immerman [Imm82℄, de Rougemont [dR87℄)

Let D

m

, m � 1, be the totally disonneted graph with m elements, let C

n

, n � 1, be the

yle with n elements, and let A

m;n

be the produt graph of D

m

and C

n

, i.e., the vertex set

of A

m;n

is the union of the vertex sets of D

m

and C

n

, while the set of edges of A

m;n

onsists

of the edges of C

n

and edges between every vertex of D

m

and every vertex of C

n

. It easy to

see that

� A

m;n

is Hamiltonian if and only if m � n.

� Player II has a winning strategy for the k-pebble game on A

k;k

and A

k+1;k

, for every

k � 1.

It follows that Hamiltoniity is not expressible by any formula of L

!

1!

. This was established

�rst in [Imm82℄; the above proof is from [dR87℄.

Example 2.24: Eulerian Graphs

Reall that an undireted graph is Eulerian if and only if every vertex has even degree. Let

B

k

= (V;E) be the undireted graph with vertex set fa; b; 

1

; : : : ; 

k

g and edges

(a; 

1

); : : : ; (a; 

k

); (b; 

1

); : : : ; (b; 

k

):

It is lear that B

k

is Eulerian if and only if k is an even number. Moreover, Player II has

an obvious winning strategy for the k-pebble game on B

k

and B

k+1

. Thus, the property of

being Eulerian is a polynomial-time property that is not expressible by any formula of L

!

1!

.
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In eah of the preeding examples the winning strategy of Player II was quite obvious.

More sophistiated appliations of pebble games have appeared in several plaes in the litera-

ture, inluding [Imm82, CFI89, LM89, KV90b℄, where this method has been used suessfully

to establish limitations of the expressive power of various logis.

Problem: We onlude this setion by presenting an open problem. We showed earlier that

2-olorability is a property expressible in �xpoint logi and, onsequently, it is de�nable by

a sentene of L

!

1!

. It is not known, however, whether or not 3-olorability is expressible in

L

!

1!

.

3 0-1 Laws for In�nitary Logis

Let � be a voabulary onsisting of �nitely many relation symbols only and let C be the

lass of all �nite strutures over � with universe an initial segment f1; 2; :::; ng of the integers

for some n � 1.

If P is a property of (some) strutures in C, then the (labeled) asymptoti probabilty

�(P ) on C is de�ned to be equal to the limit as n!1 of the fration of strutures in C of

ardinality n whih satisfy P , provided this limit exists. If L is a logi, we say that the 0-1

law holds for L in ase �(P ) exists and is equal to 0 or 1 for every property P expressible in

the logi L.

In the past, 0-1 laws for various logis L were proved by establishing �rst a transfer

theorem for L of the following kind:

There is an in�nite struture R over the voabulary � suh that for any property

P expressible in L we have:

R satis�es P () �(P ) = 1 on C:

This method was disovered by Fagin [Fag76℄ in his proof of the 0-1 law for �rst-order

logi on �nite strutures. It was also used later in [BGK85℄ to establish the 0-1 law for

positive-�xpoint logi and in [KV87, KV90a℄ to show that the 0-1 law holds iterative logi

(partial-�xpoint logi) and for ertain fragments of seond-order logi.

It turns out that there is a ountable struture R over the voabulary � that satis�es

the above equivalene for all these logis. Moreover, this struture R is unique up to iso-

morphism. We all R the ountable random struture over the voabulary �. The random

struture R is haraterized by an in�nite set of extension axioms, whih, intuitively, assert

that every type an be extended to any other possible type. The preise de�nitions are as

follows.

De�nition 3.1: Let � be a voabulary onsisting of relation symbols only.

� If x = (x

1

; :::; x

m

) is a sequene of distint variables, then a type t(x) in the variables x

over � is the onjuntion of all the formulas in a maximally onsistent set S of equalities

x

i

= x

j

, inequalities x

i

6= x

j

, atomi formulas in the variables x, and negated atomi

formulas in the variables x.

� Let z be a variable that is di�erent from all the variables in x. We say that a type

t(x; z) extends the type s(x) if every onjunt of s(x) is also a onjunt of t(x; z).
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� With eah pair s(x) and t(x; z) of types suh that t extends s we assoiate a �rst-order

extension axiom �

s;t

stating that

(8x)(s(x)! (9z)t(x; z)):

Let T be the set of all extension axioms. The theory T was studied by Gaifman [Gai64℄, who

showed, using a bak and forth argument, that any two ountable models of T are isomorphi

(T is an !-ategorial theory). Fagin [Fag76℄ realized that the extension axioms are relevant

to the study of probabilities on �nite strutures and proved that on the lass C of all �nite

strutures over a �nite voabulary �

�(�

s;t

) = 1

for any extension axiom �

s;t

. The equivalene between truth on R and almost sure truth on

C (and onsequently the 0-1 law for �rst-order logi on �nite strutures) follows from these

two results by an appliation of the ompatness theorem.

In proving the 0-1 law for positive-�xpoint logi, Blass, Gurevih and Kozen [BGK85℄ used

the 0-1 law for �rst-order logi together with a well known model-theoreti haraterization of

!-ategorial theories, due to Engeler [Eng59℄, Ryll-Nardzewski [RN59℄, Svenonius [Sve59℄,

and Vaught [Vau61℄. This haraterization asserts that a set � of �rst-order sentenes has a

unique (up to isomorphism) ountable model if and only if for every n there are only �nitely

many inequivalent �rst-order formulas with n free variables in the models of �. In [KV87℄ we

obtained the 0-1 law for iterative logi (partial-�xpoint logi) by employing a model theoreti

argument similar to the one in [BGK85℄ for positive-�xpoint logi. We give a sketh of this

argument next.

Let '(x

1

; : : : ; x

n

; S) be a �rst-order formula suh that x

1

; : : : ; x

n

are its free variables

and S is a n-ary relation symbol not in the voabulary �. Let � be the operator assoiated

with '(x

1

; : : : ; x

n

; S), and let �

m

be the m-th stage of �, m � 1. Reall that, by Theorem

2.8, eah stage �

m

of � is de�nable by a formula '

m

(x

1

; : : : ; x

n

) of �rst-order logi. Sine

the random struture R is a model of the !-ategorial theory T of all extension axioms, it

follows that there are only �nitely many inequivalent �rst-order formulas with n free variables

over R. Thus, there are integers N < N

0

suh that

R j= (8x

1

) : : : (8x

n

)('

N

(x

1

; : : : ; x

n

)$ '

N

0

(x

1

; : : : ; x

n

)):

Let N;N

0

be the smallest suh integers. Note that if N

0

= N + 1, then ' onverges on R in

N stages. Otherwise, ' diverges on R, and we have that

R 6j= (8x

1

) : : : (8x

n

)('

N

(x

1

; : : : ; x

n

)$ '

N+1

(x

1

; : : : ; x

n

)):

In the �rst ase '

1

is equivalent to '

N

, and in the seond ase '

1

is equivalent to false.

Thus, '

1

is equivalent to a �rst-order formula, and this fat is witnessed by �rst-order

sentenes. The transfer theorem for �rst-order logi implies that the witness sentenes that

hold in R are true almost everywhere on the lass C of all �nite strutures over �. Thus,

partial-�xpoint logi ollapses to �rst-order logi on almost all �nite-strutures. The 0-1 law
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for partial-�xpoint logi is now obtained immediately from the 0-1 law for �rst-order logi.

Moreover, the transfer theorem extends to partial-�xpoint logi as well.

We note that the proof of the 0-1 law for ertain fragments of seond-order logi in

[KV87, KV90a℄ used among others the 0-1 law for �rst-order logi, the ompatness theorem,

and further model-theoreti properties of the logis onsidered.

In what follows here we show that the 0-1 law holds for the in�nitary logi L

!

1!

on �nite

strutures and give three di�erent proofs. The �rst proof extends the proofs in [BGK85,

KV87℄ in their use of !-ategoriity and their appeal to the 0-1 law for �rst-order logi. In

ontrast, neither of the other two proofs employs any \in�nitisti" methods. The �rst of these

proofs uses a quanti�er-elimination method, while the seond one uses the pebble games of

the previous setion and their relation to L

k

1!

-equivalene. These proofs do not assume the

0-1 law for �rst-order logi, they do not involve the random struture R or any other in�nite

struture, and they do not make use of ompatness or of any of its onsequenes. Moreover,

the 0-1 law is derived diretly without establishing a transfer theorem �rst.

The results reported here on the one hand subsume the earlier ones in [Fag76℄, [BGK85℄,

and [KV87℄, and on the other hand provide a unifying treatment of 0-1 laws for �rst-order

logi and its extensions with �xpoint operators or in�nitary syntax.

3.1 0-1 Laws via a Transfer Theorem

The proof of the 0-1 law for partial-�xpoint logi desribed earlier used the fat that partial-

�xpoint logi ollapses to �rst-order logi on the random struture R, and furthermore, this

ollapse is witnessed by a �rst-order sentene. Now it is easy to see that L

k

1!

also ollapses

to L

k

!!

over the random struture R, sine, by the aforementioned haraterization of !-

ategorial theories, every in�nite disjuntion of L

k

!!

-formula has only a �nite number of

nonequivalent disjunts. What is not immediately obvious is that this ollapse is witnessed

by a �rst-order sentene. Nevertheless, this turns out to be the ase.

Lemma 3.2: For every k > 0, there is a �rst-order sentene  

k

suh that

1. R j=  

k

, and

2. for any L

k

1!

-formula ', there is an L

k

!!

-formula '

0

suh that  

k

j= '$ '

0

.

Proof: For tehnial onveniene assume that only the variables x

1

; : : : ; x

k

are used in

formulas of L

k

1!

.

Sine R is a model of the !-ategorial theory T of all extension axioms, it follows

that there are only �nitely many inequivalent formulas of L

k

!!

over R. Let �

1

; : : : ; �

m

be representatives from the equivalene lasses of formulas. Note that this olletion of

formulas must express the atomi formulas and be losed, up to equivalene, under negation,

disjuntion, and existential quanti�ation. That is, for eah atomi formula p(x

1

; : : : ; x

k

)

there is some �

i

suh that R j= (8x

1

: : :8x

k

)(p(x

1

; : : : ; x

k

) $ �

i

). Also, for eah �

i

there

exists �

i

0

suh that R j= (8x

1

: : :8x

k

)(:�

i

$ �

i

0

). Similarly, for eah �

i

; �

j

there exists �

k

suh that R j= (8x

1

: : : 8x

k

)(�

i

_ �

j

$ �

k

). Finally, for eah �

i

and variable x

j

there exists

�

l

suh that R j= (8x

1

: : :8x

k

)(9x

j

�

i

$ �

l

).

We all the above sentenes the losure axioms. Let  

k

be the onjuntion of all the

losure axioms. Notie that  

k

is a sentene of L

k

!!

, beause there are only �nitely many
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inequivalent formulas of L

k

!!

. Moreover, it is lear that R j=  

k

. It remains to prove the

seond laim. We show that if  

k

is taken as an axiom, then eah formula of L

k

1!

is equivalent

to one of the �

i

's. The proof is by indution on the struture of formulas of L

k

1!

, assuming

that formulas are built using negation, in�nite disjuntions, and existential quanti�ation.

Let ' be a formula of L

k

1!

. If ' is an atomi formula, then by the losure axioms it is

equivalent to an �

i

. If ' is :� or 9x

j

�, then by the indution hypothesis � is equivalent

to an �

i

, and, by the losure axioms, ' is equivalent to an �

i

. Finally, if ' is the in�nite

disjuntion

W

'

j

of L

k

!!

-formulas, then by the indution hypothesis eah '

j

is equivalent to

some �

i

, and by the losure axioms ' is equivalent to some �

i

.

The transfer theorem for L

!

1!

follows from Lemma 3.2.

Theorem 3.3: If ' is a sentene of L

!

1!

, then the following are equivalent:

1. �(') = 1.

2. R j= '.

Proof: Let ' be a sentene of L

k

1!

. By Lemma 3.2 and the 0-1 law for �rst-order logi

we have that �( 

k

) = 1 and, for any L

k

1!

-sentene ', there is an L

k

!!

-sentene '

0

suh that

 

k

j= '$ '

0

. If R j= ', then R j= '

0

, and by the 0-1 law for �rst-order logi we have that

�('

0

) = 1. It follows that �(') = 1. If R 6j= ', then R j= :', and �(') = 0.

The 0-1 law for L

!

1!

is an immediate onsequene of the transfer theorem.

Theorem 3.4: The 0-1 law holds for the in�nitary logi L

!

1!

, i.e., if  is a sentene of

L

!

1!

, then the asymptoti probability �( ) exists and is equal to either 0 or 1.

Remark 3.5: The 0-1 law for L

!

1!

has also ertain immediate appliations to de�nability

theory. For example, the property \there is an even number of elements" is not expressible

in L

!

1!

, beause it does not have an asymptoti probability. This fat was obtained earlier

in Example 2.22 using k-pebble games.

Remark 3.6: There is an extensive literature on 0-1 laws for �rst-order logi on restrited

lasses of �nite strutures (f. [Com88a℄ for a survey of results in this area). The method

developed in Lemma 3.2 and Theorem 3.3 applies to arbitrary lasses C of �nite strutures

and yields the 0-1 law for L

!

1!

on C, provided the set of �rst-order sentenes with probability

1 on C is an �

0

-ategorial theory. This is, for example, the ase with the lass of partial

orders investigated by Compton [Com88b℄, and the lass of K

l+1

-free graphs investigated by

Kolaitis, Pr�omel, and Rothshild [KPR87℄.

3

3.2 0-1 Laws via Quanti�er-Elimination

Glebskii et al. [GKLT69℄ proved the 0-1 law for �rst-order logi, independently of Fagin

[Fag76℄, using what amounts to a ertain quanti�er-elimination method. We use here a

di�erent quanti�er-elimination method that has its origin in Grandjean's work [Gra83℄ on

the omputational omplexity of the 0-1 law for �rst-order logi.

3

We thank an anonymous referee for making the observations ontained in this remark.
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De�nition 3.7: If k is a positive integer, then we write �

k

for the onjuntion of all extension

axioms �

s;t

with at most k variables.

Notie that eah �

k

is a sentene of L

k

!!

, i.e., it is a �rst-order sentene with at most k

distint variables.

Theorem 3.8: Let k and m be two positive integers suh that m � k. If s(x

1

; : : : ; x

m

) is a

type over the voabulary � and '(x

1

; : : : ; x

m

) is a formula of L

k

1!

with free variables among

x = (x

1

; : : : ; x

m

), then exatly one of the following two statements holds:

1. �

k

j= (8x)(s(x)! '(x)):

2. �

k

j= (8x)(s(x)! :'(x)):

Proof: This theorem will be proved by indution on the onstrution of formulas in L

k

1!

whose variables are among x

1

; : : : ; x

k

and whose free variables are among x

1

; : : : ; x

m

, simul-

taneously for allm � k and for all types s(x

1

; : : : ; x

m

). A ruial use of the extension axioms

will be made in the ase where the formula '(x) starts with an existential quanti�er.

The base ase of the indution (equalities and atomi formulas) and the indution step

for the negation (:) are obvious. Assume that '(x

1

; : : : ; x

m

) is an in�nitary onjuntion

V

	

of formulas  (x

1

; : : : ; x

m

) of L

k

1!

. By indution hypothesis, for eah  2 	 either

� �

k

j= (8x)(s(x)!  (x))

or

� �

k

j= (8x)(s(x)! : (x)):

If there is a formula  2 	 suh that �

k

j= (8x)(s(x)! : (x)), then

�

k

j= (8x)(s(x)! :

^

	(x));

otherwise,

�

k

j= (8x)(s(x)!

^

	(x)):

Assume next that '(x

1

; : : : ; x

m

) is the formula (9z) (x

1

; : : : ; x

m

; z) and that the indution

hypothesis holds for  (x

1

; : : : ; x

m

; z). If

�

k

j= (8x)(s(x)! :(9z) (x; z));

then (2) holds for '(x

1

; : : : ; x

m

). Otherwise,

�

k

6j= (8x)(s(x)! :(9z) (x; z)):

We will show that in the latter ase

�

k

j= (8x)(s(x)! (9z) (x; z):

Notie that, by our assumption about the variables of '(x

1

; : : : ; x

m

), we must have that the

variable z is the variable x

j

, for some j suh that 1 � j � k. We now distinguish two ases,

namely the ase where j > m and the ase where j � m.
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Case 1: j > m, whih means that the variable z is di�erent from all the variables x

1

; : : : ; x

m

.

Notie that in this ase m must be less than k.

Sine �

k

6j= (8x)(s(x) ! :(9z) (x; z)); there is a struture D over � suh that D j= �

k

and

D j= (9x)(s(x) ^ (9z) (x; z)):

Let a

1

; : : : ; a

m

; b be elements of the universe D of D suh that

D j= s(a

1

; : : : ; a

m

) ^  (a

1

; : : : ; a

m

; b):

Let t(x

1

; : : : ; x

m

; z) be the unique type suh that D j= t(a

1

; : : : ; a

m

; b), i.e., t(x

1

; : : : ; x

m

; z) is

the onjuntion of all equalities, inequalities, atomi formulas, and negated atomi formulas

in the variables x

1

; : : : ; x

m

; z satis�ed by a

1

; : : : ; a

m

; b. Notie that the type t(x

1

; : : : ; x

m

; z)

extends the type s(x

1

; : : : ; x

m

). We also have that

D j= (9x

1

: : :9x

m

)(9z)(t(x

1

; : : : ; x

m

; z) ^  (x

1

; : : : ; x

m

; z)):

By applying the indution hypothesis to the formula  (x

1

; : : : ; x

m

; z) of L

k

1!

and to the type

t(x

1

; : : : ; x

m

; z), we infer that

�

k

j= (8x)(8z)(t(x; z) !  (x; z)):

Sine the type t is an extension of the type s and �

k

is the onjuntion of all extension axioms

with at most k variables, it follows that

�

k

j= (8x)(s(x)! (9z)t(x; z)):

We an now onlude that

�

k

j= (8x)(s(x)! (9z) (x; z)):

Case 2: j � m, whih means that the variable z is the variable x

j

for some j � m. In this

ase, the free variables of the formula  are among the variables x

1

; : : : ; x

m

and, moreover,

we have that there is a struture D over � suh that D j= �

k

and

D j= (9x

1

: : :9x

m

)(s(x

1

; : : : ; x

m

) ^ (9x

j

) (x

1

; : : : ; x

m

)):

Let a

1

; : : : ; a

m

be elements of the universe D of D suh that

D; a

1

; : : : ; a

m

j= s(x

1

; : : : ; x

m

) ^ (9x

j

) (x

1

; : : : ; x

m

);

let x

�

be the sequene of variables x

1

; : : : ; x

j�1

; x

j+1

; : : : ; x

m

, and let s

�

(x

�

) be the unique

type suh that D j= s

�

(a

1

; : : : ; a

j�1

; a

j+1

; : : : ; a

m

). Then there is an element b of the universe

D of D suh that

D j= s

�

(a

1

; : : : ; a

j�1

; a

j+1

; : : : ; a

m

) ^  (a

1

; : : : ; a

j�1

; b; a

j+1

; : : : ; a

m

):

Let t

�

(x

1

; : : : ; x

j

; : : : ; x

m

) be the unique type suh that D j= t

�

(a

1

; : : : ; a

j�1

; b; a

j+1

: : : ; a

m

).

Notie that the type t

�

(x

1

; : : : ; x

m

) extends the type s

�

(x

�

) and that

D j= (9x

1

: : :9x

m

)(t

�

(x

1

; : : : ; x

m

) ^  (x

1

; : : : ; x

m

)):
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By applying the indution hypothesis to the formula  (x

1

; : : : ; x

m

) of L

k

1!

and to the type

t

�

(x

1

; : : : ; x

m

), we infer that

�

k

j= (8x

1

: : :8x

m

)(t

�

(x

1

; : : : ; x

m

)!  (x

1

; : : : ; x

m

)):

Sine the type t

�

(x

1

; : : : ; x

m

) is an extension of the type s

�

(x

�

) and �

k

is the onjuntion of

all extension axioms with at most k variables, it follows that

�

k

j= (8x

�

)(s

�

(x

�

)! (9x

j

)t

�

(x

1

; : : : ; x

m

)):

We an now onlude that

�

k

j= (8x

�

)(s

�

(x

�

)! (9x

j

) (x

1

; : : : ; x

m

))

and, onsequently,

�

k

j= (8x)(s(x)! (9x

j

) (x

1

; : : : ; x

m

));

sine (8x)(s(x)! s

�

(x

�

)) is valid.

Corollary 3.9: If  is a sentene of L

k

1!

, then either �

k

j=  or �

k

j= : : As a result, if

A and B are two models of �

k

, then A �

k

1!

B.

The �rst-order version of the preeding Theorem 3.8 was obtained by Grandjean [Gra83℄,

while Immerman [Imm82℄ established Corollary 3.9 for sentenes of L

k

!!

.

We now have all the mahinery needed to establish the 0-1 law.

Theorem 3.10: The 0-1 law holds for the in�nitary logi L

!

1!

, i.e., if  is a sentene of

L

!

1!

, then the asymptoti probability �( ) exists and is equal to either 0 or 1.

Proof: If  is a sentene of L

k

1!

, for some k � 1, then, by Corollary 3.9,

�

k

j=  or �

k

j= : :

In the �rst ase we have that �( ) = 1 and in the seond �(: ) = 1, beause �(�

k

) = 1.

The latter holds, beause �

k

is a �nite onjuntion of extension axioms and, as Fagin [Fag76℄

showed, �(�

s;t

) = 1 for eah extension axiom �

s;t

.

We an also easily derive a transfer theorem for eah in�nitary logi L

k

1!

, k � 1.

Theorem 3.11: Let k be a positive integer, and let B be a model of �

k

. If  is a sentene

of L

k

1!

, then the following are equivalent:

1. �( ) = 1.

2. �

k

j=  .

3. B j=  .
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Proof: Let  be a sentene of L

k

1!

suh that �( ) = 1. Then �

k

j=  , sine, otherwise,

it would follow from Corollary 3.9 that �

k

j= : , whih in turn yields that �(: ) = 1 and

�( ) = 0. It is obvious that if �

k

j=  , then B j=  . Finally, assume that B j=  . Then

�( ) = 1, sine, otherwise, by the 0-1 law for L

k

1!

, we would onlude that �(: ) = 1,

whih implies that B j= : .

Corollary 3.12: If R is the ountable random struture over the voabulary � and  is a

sentene of L

!

1!

, then

�( ) = 1 () R j=  :

Proof: The random struture R is a model of eah �

k

, k � 1.

Notie that eah �

k

has both �nite and in�nite models; atually, an arbitrary �nite

struture over � is a model of �

k

with probability 1. In partiular, there are in�nitely many

ountable models satisfying the transfer theorem for the in�nitary logi L

k

1!

. This should be

ontrasted with the situation in L

!

1!

, where the random struture R is the unique ountable

struture satisfying the transfer theorem, sine L

!

1!

inludes all the extension axioms, whih

have a unique ountable model.

Although we used earlier the term \quanti�er-elimination method", we did not atually

justify this terminology. We onlude this setion by establishing a quanti�er-elimination

theorem for L

k

1!

on models of �

k

, whih strengthens Lemma 3.3.

Theorem 3.13: Let k be a positive integer and let '(x

1

; : : : ; x

m

) be a formula of L

k

1!

with

free variables among x = (x

1

; : : : ; x

m

). Then there is a quanti�er-free formula �(x

1

; : : : ; x

m

)

of L

k

!!

suh that

�

k

j= (8x)('(x)$ �(x)):

Proof: Let X

'

be the set of all types s(x

1

; : : : ; x

m

) for whih there is a struture D suh

that

D j= �

k

^ (9x)(s(x) ^ '(x)):

We laim that the required formula �(x

1

; : : : ; x

m

) is

_

s2X

'

s(x

1

; : : : ; x

m

):

Notie �rst that �(x

1

; : : : ; x

m

) is a quanti�er-free formula of L

k

!!

, beause the voabulary �

is �nite and, as a result, there are �nitely many distint types in the variables x

1

; : : : ; x

m

.

Moreover, it follows from the de�nitions that

�

k

j= (8x)('(x)! �(x)):

For the other diretion, let D be a model of �

k

, let a

1

; : : : ; a

m

be elements from the universe

D of D, and let s(x

1

; : : : ; x

m

) be a type in the set X

'

suh that

D j= s(a

1

; : : : ; a

m

):

By Theorem 3.8, exatly one of the following two statements holds:
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1. �

k

j= (8x)(s(x)! '(x)):

2. �

k

j= (8x)(s(x)! :'(x)):

Sine s(x

1

; : : : ; x

m

) is a type in the set X

'

, the seond statement (2) is ruled out and, hene,

D j= '(a

1

; : : : ; a

m

):

Remark 3.14: Notie that the proof of Theorem 3.10 implies in partiular that if a sen-

tene  of L

k

1!

is true almost everywhere, then there is a �rst-order sentene that is true

almost everywhere and logially implies  . Blass and Harary [BH79℄ showed that there is no

�rst-order sentene that is true almost everywhere and logially implies Hamiltoniity. We

an, therefore, onlude that there is no property of L

!

1!

that is true almost everywhere and

logially implies Hamiltoniity. In other words, there is no suÆient ondition for Hamil-

toniity whih is expressible in L

!

1!

and has asymptoti probability equal to 1. This an

be viewed as a strengthening of the earlier fat in Example 2.23 that Hamiltoniity is not

expressible in L

!

1!

.

3.3 0-1 Laws via Pebble Games

Let k be a �xed positive integer. If A is a �nite struture, then we write [A℄ for the

equivalene lass of A with respet to the equivalene relation �

k

1!

. In what follows we will

show that there is a tight onnetion between 0-1 laws and the asymptoti probabilities of

equivalene lasses [A℄. Atually, this turns out to be a general fat that holds for arbitrary

probability measures.

So far all the results presented here are about the uniform probability measures on C, i.e.,

all strutures with n elements arry the same probability. There is, however, a well developed

study of random strutures under variable probability measures. This started with the work

of Erd�os and R�enyi [ER60℄ and is presented in detail in Bollob�as [Bol85℄. In general, for

eah n � 1 one has a probability measure pr

n

on all strutures in C with n elements, where

pr

n

may be a non-uniform distribution. The asymptoti probability pr(P ) of a property

P (relative to the probability measures pr

n

, n � 1) is de�ned by pr(P ) = lim

n!1

pr

n

(P ),

provided this limit exists. If L is a logi, then we say that a 0-1 law holds for L relative to

the measure pr if for every sentene  of L the asymptoti probability pr( ) exists and is

either 0 or 1. Notie that, stritly speaking, pr is not a probability measure, beause it is

not ountably additive (it is, however, �nitely additive).

Spener and Shelah [SS88℄ investigated 0-1 laws for �rst-order logi under variable prob-

ability measures on the lass of undireted graphs. They obtained a lassi�ation of the

probability measures for whih the �rst-order 0-1 law holds. We establish next a neessary

and suÆient ondition for the existene of 0-1 laws for L

k

1!

under arbitrary probability

measures.

Theorem 3.15: Let K be a lass of �nite strutures over the voabulary �, let k be a positive

integer, and let pr

n

, n � 1, be a sequene of probability measures on the strutures in K with

n elements. Then the following are equivalent:

26



1. The 0-1 law holds for the in�nitary logi L

k

1!

relative to the measure pr.

2. There is an equivalene lass C of the equivalene relation �

k

1!

suh that pr(C) = 1.

Proof: Assume that pr(C) = 1 for some equivalene lass C of �

k

1!

and let  be a sentene

of L

k

1!

. If  holds for the strutures in C, then pr( ) = 1, beause the set of models of

 ontains C. If, on the other hand,  fails for the strutures in C, then pr(: ) = 1 and,

hene, pr( ) = 0.

In the other diretion, we show that if the 0-1 law held for L

k

1!

relative to a measure,

but every equivalene lass C of �

k

1!

had probability 0, then we ould �nd a sentene of

L

k

1!

whose probability is neither 0 nor 1. To see this, let C

0

; C

1

; : : : be an enumeration of

the equivalene lasses of �

k

1!

on K, and let C

n

j

be the set of n-element strutures in C

j

.

Note that for all n > 0 there exists some integer m suh that C

n

m

0

= ; for all m

0

� m, sine

there are �nitely many n-element strutures. Let m

1

< m

2

< : : : be an inreasing sequene

suh that C

n

m

0

= ; for all m

0

� m

n

.

We denote by N the set of nonnegative integers, and we denote by [0; j) the set f0; : : : ; j�

1g. For any set X � N , let C

X

=

S

i2X

C

i

. We de�ne pr

n

(X) (resp., pr(X)) to be pr

n

(C

X

)

(resp. pr(C

X

)). We are going to use the following three properties:

1. If X is �nite, then pr(X) = 0, sine by assumption pr(C

i

) = 0 for all i � 0.

2. pr

n

([0; m

n

)) = 1, sine pr

n

(N) = 1 and C

n

m

= ; for all m � m

n

.

3. If X � [0; m

n

) and Z � N � [0; m

n

), then pr

l

(X) = pr

l

(X [ Z) for all l � n, sine

C

l

m

= ; for all m 2 Z and l � n.

We onstrut a set X of integers suh that for in�nitely many i's we have that pr

i

(X) >

3=4 and in�nitely many i's we have that pr

i

(X) < 1=4. It follows that pr(X) is unde�ned.

X is onstruted in stages. In the i-th stage we de�ne a nonnegative integer n

i

and a pair

of �nite disjoint sets X

i

; Y

i

� [0; m

n

i

) suh that the following hold:

1. X

i

� X

i+1

, Y

i

� Y

i+1

, and X

i

[ Y

i

= [0; m

n

i

);

2. if i is odd, then pr

n

i

(X

i

) > 3=4, and if i is even then pr

n

i

(X

i

) < 1=4.

The desired set X is simply

S

i

X

i

. We now de�ne the sets X

i

and Y

i

by indution. For i = 1,

let n

1

= 1, X

1

= [0; m

1

), and Y

1

= ;. Then pr

1

(X

1

) = 1. Assume indutively, that n

i

, X

i

and Y

i

have been de�ned. There are two ases now.

Case 1: If i is odd, then pr

n

i

(X

i

) > 3=4. Sine pr(X

i

) = 0, there is an integer q > n

i

suh

that pr

q

(X

i

) < 1=4. We let n

i+1

= q, X

i+1

= X

i

, and Y

i+1

= [0; m

q

)�X

i

.

Case 2: If i is even, then pr

n

i

(X

i

) < 1=4. Sine pr(Y

i

) = 0, there is an integer q > n

i

, suh

that pr

q

([0; m

q

)� Y

i

) > 3=4. We let n

i+1

= q, X

i

= [0; m

q

)� Y

i+1

, and Y

i+1

= Y

i

.

Now let X =

S

i

X

i

. It is easy to see that X is disjoint from Y

i

, for all i � 1. Sine

X

i

[ Y

i

= [0; m

n

i

), it follows that pr

n

i

(X) = pr

n

i

(X

i

). It follows that there are in�nitely

many i's suh pr

n

i

(X) > 3=4, and there in�nitely many i's suh that pr

n

i

(X) < 1=4. Thus,

pr(X) is unde�ned. Using Proposition 2.11, we an onstrut a sentene '

X

of L

k

1!

that

de�nes the lass C

X

. It follows that pr('

X

) is unde�ned.
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Remark 3.16:

1. Notie that if the 0-1 law holds for L

k

1!

relative to a measure pr, then there is exatly

one equivalene lass C of �

k

1!

suh that pr(C) = 1. All other equivalene lasses of

�

k

1!

have probability 0.

2. We should also point out that the preeding theorem does not hold in general for

arbitrary logis. For example, if L is �rst-order logi and pr is the uniform measure �,

then the 0-1 law holds for L, but eah equivalene lass of L has probability 0, beause

every �nite struture is desribed up to isomorphism by a �rst-order sentene.

The ruial property of L

k

1!

used in the proof is its losure under in�nite onjuntions

and disjuntions. Let L

r

be the fragment of �rst-order logi onsisting of �rst-order

sentenes of quanti�er depth r. By Fraiss�e's theorem [Fra54℄, the relation of elementary

equivalene on L

r

has �nitely many equivalene lasses and, onsequently, L

r

is losed

under arbitrary disjuntions and onjuntions. Thus, the analogous version of the

above Theorem 3.15 holds for L

r

.

3. Spener [Spe91℄ obtained 0-1 laws for �rst-order logi with respet to the lass of

undireted graphs relative to ertain variable probability measures by examining �rst-

order sentenes of �xed quanti�er depth and using Ehrenfeuht-Fraiss�e games. The

idea of using games to obtain 0-1 laws seems to originate with the work of Lynh

[Lyn80℄ (f. also Compton [Com88a℄).

We now return to the uniform measure � on L

k

1!

and give a di�erent proof of the 0-1

law for L

k

1!

using the preeding Theorem 3.15 and the haraterization of �

k

1!

in terms of

pebble games.

Theorem 3.17: Let C be the lass of all �nite strutures, let k be a positive integer, and

let �

k

be the onjuntion of all extension axioms with at most k variables. If A is a �nite

struture that is a model of �

k

, then �([A℄) = 1. As a result, the 0-1 law holds for L

k

1!

relative to the uniform measure on C.

Proof: If A and B are both models of �

k

, then it is easy to verify that Player II has a

winning strategy in the k-pebble game on A and B. Intuitively, the winning strategy for

Player II is provided by the elements of A and B witnessing the extension axioms with at

most k variables. We now desribe this more formally.

Let 

1

; : : : ; 

l

and d

1

; : : : ; d

l

be the interpretations of the onstant symbols of the voab-

ulary � on A and B, respetively. We have to show that there is a family H of partial

isomorphisms on A and B that provides a winning strategy for Player II in the k-pebble

game.

The desired family H is built by starting with the partial isomorphism that maps 

i

to

d

i

, for 1 � i � k, and taking the losure under subfuntions and bak-and-forth extensions,

where a bak-and-forth-extension is de�ned as follows.
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Let h be a member of H whose domain is the set f

1

; : : : ; 

l

; a

1

; : : : ; a

m

g, where

m < k, and let a be an element that is not in the domain of h. Let s(x

1

; : : : ; x

m

)

and t(x

1

; : : : ; x

m

; z) be types suh thatA j= s(a

1

; : : : ; a

m

) andA j= t(a

1

; : : : ; a

m

; a).

Sine h is a partial isomorphism, we also have B j= s(a

1

; : : : ; a

m

). Consider the

extension axiom �

s;t

, i.e.,

(8x

1

; : : : ; x

m

)(s(x

1

; : : : ; x

m

)! (9z)t(x

1

; : : : ; x

m

; z)):

Sine �

s;t

uses at most k variables and B j= �

k

, there exists an element b suh

that B j= t(h(a

1

); : : : ; h(a

m

); b). Thus, h [ (a; b) is a partial isomorphism, whih

is added to H. This is the \forth" extension; the \bak" extension is de�ned

analogously using the fat that A j= �

k

.

It follows from Theorem 2.17 that if A and B are both models of �

k

, then A �

k

1!

B.

Sine �(�

k

) = 1 [Fag76℄, it follows that �([A℄) = 1, for any �nite struture A that is a model

of �

k

.

4 Conluding Remarks

We established here the 0-1 law for the in�nitary logi L

!

1!

under the uniform probability

measure. It is an interesting open problem to investigate 0-1 laws for �xpoint logis or for

in�nitary logis under variable probability measures. No results in this diretion are known

at present, but our Theorem 3.15 provides a handle for attaking this problem.

Previous investigations of 0-1 laws for �rst-order logi and �xpoint logis examined also

the omputational omplexity of the deision problem for the values of the probabilities,

namely the omplexity of deiding whether the probability of a sentene is 0 or 1 [Gra83℄,

[BGK85℄, [KV87℄. This problem, however, is omputationally meaningful only when the

logi under onsideration has an e�etive syntax. Thus, this investigation annot be arried

out for the in�nitary logis L

k

1!

, k � 1.
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