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erties expressible in L% = on finite structures. We show that the 0-1 law holds
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1 Introduction

In recent years the model theory of finite structures has been a meeting point for research in
computer science, combinatorics, and mathematical logic. Results and techniques from finite
model theory have found interesting applications to several other areas, including database
theory [CH82], [Var82] and complexity theory [Ajt83], [Gur84], [Imm86]. One particular
direction of research has focused on the asymptotic probabilities of properties expressible in
different languages.

In general, if C'is a class of finite structures over some vocabulary and if P is a property of
some structures in C, then the asymptotic probability u(P) on C'is the limit as n — oo of the
fraction of the structures in C' with n elements which satisfy P, provided that the limit exists.
We say that P is true almost everywhere on C' in case u(P) is equal to 1. If u(P) = 0, then
we say that P s false almost everywhere. It turns out that many interesting properties on
the class G of all finite graphs are either true almost everywhere or false almost everywhere.
It is, for example, well known and easy to prove that p(connectivity)=1, p(rigidity)=1, while
p(planarity)=0 and j(l-colorabilty)=0, for I > 2 [Bol79]. A theorem of Pésa [P76] asserts
that p(Hamiltonicity)=1. On the other hand, statements about cardinalities, such as “there
is an even number of elements” do not have an asymptotic probability.

Fagin [Fag76] and Glebskii et al. [GKLTG69] were the first to establish a fascinating
connection between logical definability and asymptotic probabilities. More specifically, they
showed that if C' is the class of all finite structures over some relational vocabulary and if
P is any property expressible in first-order logic, then u(P) exists and is either 0 or 1. This
result, which is known as the 0-1 law for first-order logic, became the starting point of a
series of investigations aiming in discovering the relationship between expressibility in a logic
and asymptotic probabilities. The recent survey by Compton [Com88a] contains an eloquent
account of developments in this area.

It is well known that first-order logic has severely limited expressive power on finite struc-
tures (cf. [Fag7h, AU79, Gai82]). In view of this fact, researchers investigated asymptotic
probabilities in logical languages that go beyond first-order logic. Although the 0-1 law fails
for second-order logic, it turned out that there are powerful fragments of second-order logic
for which the 0-1 law holds. Moreover, the boundary of 0-1 laws for fragments of second-
order logic is now understood, through the work of [KS85, Kau87, KV87, PS89, KV90a,
PS91, KV92].

The limited expressive power of first-order logic is also due to the absence of any recursion
mechanism. Thus, a different direction of investigation pursued the study of 0-1 laws for
extensions of first-order logic that allow for fixpoint or iterative constructs. Talanov [Tal81]
showed that the 0-1 holds for first-order logic augmented with a transitive closure operator.
This result was extended by Talanov and Knyazev [TK86], and, independently, by Blass,
Gurevich and Kozen [BGK85] who proved that a 0-1 law holds for positive-firpoint logic.'
Positive-Fixpoint logic is obtained from first-order logic by adding the least-fizpoint operator
for positive formulas [Mos74, CH82]. It can express properties which are not first-order
definable, such as connectivity, acyclicity and 2-colorability. On the other hand the class

ITo be precise, Talanov and Knyazev’s result was in terms of a certain iterative extension of first-order
logic, which in particular includes positive-fixpoint logic. The study of 0-1 laws for iterative extensions of
first-order logic was further pursued by Knyazev [Kny89].



of positive-fixpoint properties is in general properly contained in PTIME. In particular,
“parity” (“there is an even number of elements”) is not expressible in positive-fixpoint logic
over the class of all finite structures.

In [KV87] we studied the extension of first-order logic that results by adding while
looping as an iteration construct. This programming query language was introduced by
Chandra and Harel [CH82] and, as Abiteboul and Vianu [AV89] showed recently, can be
viewed as first-order logic augmented with a partial-fixrpoint operator for arbitrary first-
order formulas. Following [AV89], we use the term partial-fizpoint properties for properties
expressible in this logic. Partial-fixpoint properties contain all positive-fixpoint properties
and are in turn properly contained in the ones computable in PSPACE. Moreover, there are
partial-fixpoint properties that are complete for PSPACE.

In [KV87] we announced the 0-1 law for partial-fixpoint logic (we called it there iterative
logic) and sketched a proof that uses model-theoretic methods similar to the ones employed
by Blass, Gurevich and Kozen [BGK85] for positive-fixpoint logic. In particular, the proof
uses the compactness theorem of mathematical logic and a model-theoretic characterization
of w-categorical theories due to Engeler [Eng59], Ryll-Nardzewski [RN59], Svenonius [Sve59],
and Vaught [Vau61].

Are there logics having higher expressive power than partial-fixpoint logic and possessing
the 0-1 law?

Since first-order logic has a finitary syntax, another way to increase its expressive power
is to allow for infinitary formation rules. One of the most powerful logics resulting this way
is the infinitary logic L., which allows for arbitrary disjunctions and conjunctions. The
0-1 law fails, however, for L., since “parity” is expressible as a countable disjunction of
first-order sentences.

Barwise [Bar77] introduced a family Lf | k a positive integer, of infinitary logics that
consist of all sentences of Ly, with at most k& distinct variables. Although these logics were
studied originally on infinite structures, they turn out to have interesting uses in theoretical
computer science. They have been investigated on finite structures in their own right in
[Kol85, KV90b]|. They also underlie much of the work in [Imm82, dR87, LM89, CFI89],
although their use there is rather implicit.

We investigate here definability and 0-1 laws for the infinitary languages L* , k& > 1.
We show first that every partial-fixpoint property is expressible by a formula of L%, for
some k£ > 1. This containment is strict, since it is known that the infinitary languages
LF k> 2, can express non-recursive properties. After this, we establish that the 0-1 law
holds for the infinitary logic L = 2>, L* . This result on the one hand subsumes the
earlier work on 0-1 laws for positive-fixpoint logic and partial-fixpoint logic and on the other
reveals the boundary of 0-1 laws for fragments of L., since, as mentioned before, “parity” is
expressible as a countable disjunction of first-order sentences (a disjunction, however, which
involves infinitely many distinct variables).

We supply three different proofs of the 0-1 law for L% ., each one illuminating the result
from a different perspective. The first proof is a generalization of the proofs in [BGKS85] for
positive-fixpoint logic and in [KV87] for partial-fixpoint logic. This proof is interesting in its
use of infinite-model theory to prove a result in finite-model theory (a paradigm established
by Fagin [Fag76]). In contrast, our next two proofs are in the spirit of “pure” finite-model
theory and they do not appeal to “infinitistic” arguments. One proof is based on a quantifier-



elimination method, while the second uses pebble games for infinitary logics.

2 Infinitary Logics

The limited expressive power of first-order logic is due to its finitary syntax and to the
absence of any recursion or iteration mechanism. Higher expressive power can be achieved
by augmenting the syntax of first-order logic either with infinitary formation rules or with
fixpoint operators that act as recursion or iteration constructs. In this section we consider
certain infinitary logics, study their properties, and compare them to fixpoint logics.

2.1 Infinitary Logics with a Fixed Number of Variables

Different infinitary logics arise by allowing for infinite disjunctions and conjunctions, or by
allowing for infinite strings of quantifiers, or by allowing for both at the same time. We
consider the infinitary logic L., which is the extension of first-order logic that results by
allowing infinite disjunctions and conjunctions in the syntax, while keeping the quantifier
strings finite (cf. [BF85]). To illustrate the gain in expressive power, recall the well-known
fact that the property “there is an even number of elements” is not expressible by any first-
order sentence on finite structures. Let p, be a first-order sentence stating that there are
exactly n elements. Then the infinitary sentence \/;2, ps, asserts that “there is an even
number of elements”.
We now define formally the syntax of the infinitary logic L.

Definition 2.1: Let ¢ be a vocabulary consisting of finitely many relational and constant
symbols and let {v;,...,v,} be a countable set of variables. The class Lo, of infinitary
formulas over o is the smallest collection of expressions such that

e it contains all first-order fomulas over o;
e if v is an infinitary formula, then so is —y;

e if ¢ is an infinitary formula and v; is a variable, then (Vv;)¢ and (Jv;)¢ are also
infinitary formulas;

e if U is a set of infinitary formulas, then \/ ¥ and A ¥ are also infinitary formulas.?

The concept of a free variable in a L., formula is defined in the same way as for first-order
logic. A sentence of Ly, is a formula ¢ of L., with no free variables. The semantics
of infinitary formulas is a direct extension of the semantics of first-order logic, with \/ ¥
interpreted as a disjunction over all formulas in ¥ and A V¥ interpreted as a conjunction.

In general, infinitary formulas, even infinitary sentences, may have an infinite number of
distinct variables. We now focus attention on fragments of L., in which the total number

2In mathematical logic, the notation L.y, where & and X are infinite cardinal numbers, has been used to
denote the infinitary logic in which we can form new formulas by taking disjunctions and conjunctions of
sets of formulas of cardinality less than k, and by applying strings of quantifiers of length less than A. Thus,
Loow = Ug Ly



of variables is required to be finite. Variables, however, may have an infinite number of
occurrences in such formulas.

Definition 2.2: Let k& be a positive integer.

k

ow, consists of all formulas of L.,

e The infinitary logic with k variables, denoted by L
with at most &k distinct variables.

e The infinitary logic L%, , consists of all formulas of L, with a finite number of distinct
variables. Thus,

o
k
L‘;O(U = U LOO(AJ'
k=1
e We write LF  for the collection of all first-order formulas with at most k& variables.

The family L¥  of the infinitary languages L% , k > 1, was introduced first by Barwise
[Bar77], as a tool for studying positive-fixpoint logic on infinite structures. Since that time,
however, these languages have had numerous uses and applications in theoretical computer
sciences. Indeed, they underlie much of the work in [Imm82, dR87, LM89, CFI89] and they
have also been studied in their own right in [Kol85, KV90b)].

We now give some examples that illustrate the expressive power of infinitary logic with

a fixed number of variables.

Example 2.3: Cardinalities of Total Orders

Assume that the vocabulary ¢ consists of a binary relation symbol < and we are considering
only the structures in which the interpretation of < is a total order. Let 7,, be a first-order
sentence asserting that “there are at least n elements”. On arbitrary structures over the
vocabulary o, the sentence 7, requires n distinct variables. Immerman and Kozen [IK89]
pointed out, however, that on total orders 7, is equivalent to a sentence in L2 . For example,
74 can be written as

(Fzdy)(z <y A (Fz)(y <z A (Ty)(z <y))).

It follows that on total orders the sentence p, asserting that there are exactly n elements
is also in L2 , since it is equivalent to 7, A =T,41. As a result, on total orders properties
such as “there is an even number of elements”, “the universe is finite”, etc., are expressible
in L2 . In general, if P is any set of positive integers, then the property “the cardinality of

the total order is a member of P” is expressible in L?_, since it is definable by

oow?
V on.

neP

It follows, that L¥ 6 can express non-recursive properties on total orders. I



Example 2.4: Paths and Connectivity

Assume that the vocabulary o consists of a single binary relation E and let p,(x,y) be a
first-order formula over o asserting that there is a path of length n from z to y. The obvious
way to write p,(z,y) requires n + 1 variables, namely

(Fzq ... Fzp 1) (E(z,21) AN E(z1,22) Ao o AN E(21,Y)).

3

o ws 1€ afirst-order

It is well known, however, that each p,(z, y) is equivalent to a formula in L
formula with at most three distinct variables x,y, z. To see this, put

pi(z,y) = E(z,y)
and assume, by induction on n, that p,_i(z,y) is equivalent to a formula in L3 . Then
Pa(@,y) = (F2)[E(z, 2) A (Fz)(x = 2 A pnr(z,9))].

It follows that “connectivity” is a property of graphs expressible in L
by the formula

3

sows SINce 1t 18 given

(V29) (V Pl ).

n=1

Similarly, the property “there is no cycle” is also in L3__, since it is definable by:

) A “pa ).

More generally, if P is any set of positive integers, then the property “z and y are connected
by a path whose length is a number in P” is expressible in L2, via the formula:

V pal@,y).
neprP
It follows that L% can express non-recursive properties on finite graphs.
|

Properties such as “connectivity” and “there is no cycle” are also known to be express-
ible in positive-fixpoint logic. We consider next extensions of first-order logic with fixpoint
formation rules and compare the resulting logics to LY .

2.2 Fixpoint Logics

Let o be a vocabulary, let S be an n-ary relation symbol not in o, let ¢(z1,...,2,,S) be
a first-order formula over the vocabulary o U {S}, and let D be a finite structure over o.
The formula ¢ gives rise to an operator ®(S) from n-ary relations on the universe D of D
to n-ary relations on D, where

O(T) ={(ay,...,a,) : D Eplar,...,a,,T)},

for every n-ary relation 7" on D.

Every such operator ®(S) generates a sequence of stages that are obtained by iterating
®(S). We will be interested here in the relationship between the stages of the operator and
its fizpoints.



Definition 2.5: Let D be a finite structure over the vocabulary o.
e The stages ", m > 1, of ® on D, are defined by the induction:

o' = o)), ™! = B(O™).

e We say that a relation T on D is a fizpoint of the operator ®(S) (or, of the formula )
if &(T) = T.

Intuitively, one would like to associate with an operator ®(S) the “limit” of its stages. This
is possible only when the sequence ®™, m > 1, of the stages “converges”, i.e., when there
is an integer mg such that ®m = ®™0*+! and, hence, ®™ = ®™, for all m > my. Notice
that in this case ®™ is a fixpoint of ®(S), since "0 = d™o*t! = (d™). The sequence of
stages, however, may not converge. In particular, this will happen if the formula ¢(x, S) has
no fixpoints. Thus, additional conditions have to be imposed on the formulas considered in
order to ensure that the sequence of stages converges.

A formula (x4, ..., x,,S) is positive in S if every occurrence of S in ¢ is within an even
number of negations. Positivity is a natural syntactic condition that guarantees convergence.
Indeed, if p(x, S) is positive in S, then the associated operator ® is monotone (i.e., if Ty C Ty,
then ®(77) C ®(T3)) and, as a result, the sequence ®™, m > 1, of stages is increasing. If
D is a finite structure with s elements, then every stage ®” has at most s” elements and,
consequently, there is an integer my < s such that ®™° = ®™ for every m > my. Thus, the
sequence of stages of p(x, S) converges to ®™°. Moreover, it is easy to verify that ®™° is the
least fixpoint of ¢(x,S), i.e., it is a fixpoint of ¢ with the property that ®™° C T for every
fixpoint T" of . We write > or &> to denote the least fixpoint of .

Remark 2.6: Although here we are mainly interested in finite structures, we should point
out that the stages of a formula can also be defined on infinite structures. This is done by
transfinite induction on the ordinals, where at limit stages the operator ®(S) is applied to
the union of the previously defined stages. A positive formula has a least fixpoint on every
infinite structure, which is equal to some transfinite stage of the formula.

The existence of least fixpoints for positive formulas is an instance of a more general
result about fixpoints in a lattice-theoretic framework (cf. Tarski [Tar55]). i

Positive-fixpoint logic is first-order logic augmented with the least fizpoint formation rule for
positive formulas. The canonical example of a formula of positive-fixpoint logic is provided
by the least fixpoint p*°(z,y) of the first-order formula

E(z,y)V (32)(S(z,2) A S(z,y)).

In this case ™ (x,y) defines the transitive closure of the edge relation E. It follows that
connectivity is a property expressible in positive-fixpoint logic, but, as is well known (cf.
[Fag75, AUT9]), not in first-order logic.



As a fresh example, we consider 2-colorability. Using Ehrenfeucht-Fraissé games, it can
be proved that this property is not expressible in first-order logic. We now show that 2-
colorability on directed graphs without loops is expressible in fixpoint logic. For this, let
¢(z,y,S) be the first-order formula

E(z,y)V (32)(Fw)(E(z,2z) AN E(z,w) A S(w,y)),

where E' is a binary relation symbol in the vocabulary o. It is easy to verify that o> (x,y)
holds if and only if there is a path of odd length from x to y. It follows that a directed graph
G = (A, E) is not 2-colorable if and only if Jz¢>(z, x).

The theory of positive-fixpoint logic on infinite structures was developed in Moschovakis
[Mos74]. Chandra and Harel [CH82] were the first to focus attention on the collection
FP of properties expressible in positive-fixpoint logic on finite structures (positive-fizpoint
properties). Since that time positive-fixpoint logic has been studied extensively on finite
structures and this has resulted to a thorough understanding of its expressive power (cf.
[Cha8] for a survey of results in this area). We should remark that often in the literature
positive-fixpoint logic is referred to as simply fizpoint logic.

Every positive-fixpoint property is computable in polynomial time (in the size of the finite
structure), because the sequence of stages converges to the least fixpoint in polynomially
many iterations. On the other hand there are PTIME properties, such as “there is an
even number of elements”, that are not in FP [CH82|. Positive-fixpoint logic can express,
however, PTIME-complete properties, for example the path systems problem in Cook [CooT74].
Moreover, on ordered finite structures (i.e., on finite structures where a binary relation symbol
is always interpreted as a total order) we have that FP=PTIME ([Imm86, Var82]).

How can we obtain logics with iteration constructs that are more expressive than positive-
fixpoint logic? A more powerful logic results if one iterates arbitrary first-order operators, un-
til a fixpoint is reached (which may never happen). In this case we may have non-terminating
computations, unlike positive-fixpoint logic, where the iteration is guaranteed to converge.

Definition 2.7: Let o be a vocabulary, let S be an n-ary relation symbol not in o, let
o(x1,...,1,,S) be a first-order formula over the vocabulary o U {S}, let D be a finite
structure over o, and let ™, m > 1, be the sequence of stages of the associated operator
d(S).

If there is an integer my such that ®™0 = ®™0F! then we put ™ = &> = d™0; otherwise,
we set > = ®* = (). In the former case we say that ¢ converges on D, and in the latter
case we say that ¢ diverges on D. We call ¢*° the partial-fizpoint of ¢ on D.

Partial-Fizpoint Logic is first-order logic augmented with the partial-fixpoint formation
rule for arbitrary first-order formulas. We write PFP for the collection of all properties
definable by formulas of partial-fixpoint logic on finite structures. i

Partial-fixpoint logic on finite structures has been investigated by Abiteboul and Vianu
[AV89]. In particular, they established that the class PFP of partial-fixpoint properties on
finite structures coincides with the class of properties expressible in the language RQL (ranked
query language), introduced by Chandra and Harel [CH82] and studied also in [KV87] under
the name iterative logic. The latter is an extension of first-order logic obtained by adding
while looping as an iteration construct.



As with positive-fixpoint logic, the syntax of partial-fixpoint logic allows for the in-
terleaving of first-order operations (including negation) with the partial-fixpoint operator.
Abiteboul and Vianu [AV89] showed, however, that this does not give rise to a hierarchy of
properties and that a single application of the partial-fixpoint operator suffices to generate
all PFP properties. An analogous result for fixpoint logic had been obtained by Immerman
[Imm86], and Gurevich and Shelah [GS86].

Notice that for every first-order formula ¢(z1,...,z,,S), if D is a finite structure with
s elements, then either the sequence ®™, m > 1, of stages converges or it cycles. Which of
the two is the case can be determined by carrying out at most 2°" iterations of ®. Thus, the
computation of the partial-fixpoint requires space polynomial in the size s of the structure D,
since we only have to store one stage at a time and compute the next stage, while making sure
that the current level of iteration has not exceeded 2°". Notice also that if o(z1,...,2,,S5)
is a positive in S formula, then the partial-fixpoint of ¢ coincides with the least fixpoint
of ¢, because the sequence of stages converges. It follows that partial-fixpoint logic is an
extension of positive-fixpoint logic.

As a result of the above facts, we have that

FP C PFP C PSPACE.

The class PFP of partial-fixpoint properties is properly contained in PSPACE, since the
property of “cardinality is even” is not in PFP [CH82]. On the other hand, it turns out that
on ordered finite structures PFP = PSPACE, because on such structures partial-fixpoint
logic can simulate PSPACE computations. (This was shown by Vardi [Var82] to hold for the
class of while properties, which is equivalent to PFP [AV89].) Note that this implies that
PFP ¢ PTIME, assuming that PTIME # PSPACE.

Chandra and Harel [CH82] posed the problem of showing that FP is properly contained
in PFP on the class of all finite structures over a vocabulary o. No progress was made on
this problem until recently, when Abiteboul and Vianu [AV91] showed that FP # PFP if and
only if PTIME # PSPACE. Thus, the separation problem for these two fixpoint logics on the
class of all finite structures is equivalent to one of the outstanding problems in complexity
theory.

Our next result shows that partial-fixpoint logic can be subsumed by the infinitary logic

w
Ly ..

Theorem 2.8: Let o be a vocabulary, let S be an n-ary relation symbol not in o, let
o(x1,...,x,,S) be a first-order formula over the vocabulary o U {S}, and assume that the
total number of distinct variables (free and bound) occurring in ¢ is equal to k. Let ®(S) be
the operator associated with o, where

O(T) ={(ay,...,a,) : D Eplar,...,a,,T)},
for any n-ary relation T on the universe D of a structure D over . Then

o For every m > 1, the stage ®™(xy,...,1,) of ® is definable by a formula of L¥I™ on
all finite structures over o.

o The partial-fitpoint ™ (z1, ..., 7,) of p(x1,. .., Tn, S) is definable by a formula of LEI™
on all finite structures.



Proof: Let y;,...,y, be n new distinct variables not occurring in ¢. We will show, by
induction on m, that every stage ®™, m > 1, is expressible by a formula ¢©™(z1,...,x,) of
L+ whose variables are those of ¢ and yy,...,y,. The claim is obvious for the first stage
d! = ®(). Assume that the induction hypothesis holds for ®™. By definition of the stages,
we have that

™2y, 1) = @z, . .., 2, ™).

At this point, one would like to replace every occurrence of a subformula of the form
S(ty,...,tn) inp(z1,...,2,,5) by the formula ¢™(zy /t1, ..., x,/t,), where the latter formula
is obtained from ¢™(x1,...,x,) by substituting ¢; for each free occurrence of x;, 1 < i < n.
This, however, may increase the total number of variables in the resulting formula beyond any
predescribed bounds, since one would have to make the substitutions not to ™ (z1, ..., x,),
but to an equivalent formula (possibly having more variables) in which each ¢; can be susti-
tuted for x; (without changing the meaning of the formula). It turns out, nevertheless, that
the above difficulty can be circumvented as follows.

Replace every occurrence of a subformula of the form S(¢y,...,t,) in ¢(x1,...,z,,S) by
the expression

(Fzy ... 3z) (1=t Ao AZy =Y A" (21, ..., T4))]-

The resulting expression yields a formula o™ (x1, ..., z,) of L¥}" (whose variables are those
of ¢ and yi,...,y,) that defines ®™*! uniformly on all finite structures.

It is now easy to show that on finite structures the partial-fixpoint ©> of the formula
©(z1,...,Tn,S) is expressible by a formula of LEf™. Recall that ¢> is equal to some stage

oow *
d™o such that ™0 = ®™oF! if such a stage exists , or equal to () otherwise. Thus,

po(x) = ? (V) (™ (x) > @™ (x))] A ¢ ().

The preceding Theorem 2.8 constitutes an extension of an earlier result to the effect that
on every fixed structure the infinitary logic L%  can express every positive-fixpoint formula.
That result appeared in print in [Bar77, Imm82], but actually goes back to the unpublished
Ph.D. thesis of A. Rubin [Rub75].

Corollary 2.9: L¥ = can express every partial-fizpoint property on finite structures. Thus,
on finite structures

FP C PFP C LY.

As mentioned earlier, L%  on finite graphs can capture non-recursive properties. Since every
PFP property is recursive (actually in PSPACE), it follows that the inclusion PFP C L%
is proper.



2.3 L% -Equivalence and Pebble Games

Two structures are equivalent in some logic L if no sentence of L distinguishes them. This
is a central concept in every logic and plays an important role in model theory. We discuss
here equivalence in the infinitary logics with a fixed number of variables.

Definition 2.10: Let A and B be two structures over the vocabulary ¢ and let k£ be a
positive integer.

e Assume that aq1,...,a,, and by,...,b,, are finite sequences of distinct elements from
the universes of A and B respectively, where 1 < m < k. We write

(A,a1,...,am) =" (B,b,...,0n)

:Oow

to denote that for every formula o(ui,...,u,) of LE = with free variables among
Ui, ..., U, we have that

Aay,...,am Ep(ur,...,uy) if and only if B,by, ..., by, E @(ug, ..., up).

e We say that A is L*  -equivalent to B, and we write A =* B, if A and B satisfy the
same sentences of L .

e We say that A is LF -equivalent to B, and we write A =" B, if A and B satisfy the
same sentences of first-order logic with k£ variables.

—k

—oow

The connection between definability in L*__ and the equivalence relation is described

by the following two propositions.

Proposition 2.11: Let o be a vocabulary, let F be the class of all finite structures over o,
and let k be a positive integer. Then every equivalence class of the equivalence relation =¥
on F is definable by a sentence of LY. .

Proof: Observe first that the equivalence relation =F on F has only countably many

equivalence classes. This is because there are only countably many non-isomorphic finite

structures and every equivalence class is a union of isomorphism classes. Let Cy, C},... be
an enumeration of the equivalence classes of =~ on F.

Let 7 > 0. For all j # i, there is a sentence t; of L¥  such that ¢; holds for the structures
in C, but fails for the structures in C';. Thus, the countable conjunction A;; ¢ is a sentence
of LF , that is satisfied exactly by the structures in C;. I

Proposition 2.12: Let C be a class of finite structures over the vocabulary o and let k be a
positive integer. Then the following statements are equivalent:

1. The class C is L¥_-definable, i.e. there is a sentence @ of L¥. such that for any finite
structure A over o we have that

AelC—= AEop

10



2. If A and B are finite structures over o such that A € C and A B, then B € C.

—k
oW
Proof: The direction (1) = (2) follows from the definition of =%__.

For the other direction, assume that statement (2) holds for the class C. The preceding
Proposition 2.11 implies that for each i > 0 there is a sentence U; of LX  that defines the
i-th equivalence class C; of =¥ _ on finite structures. We now claim that the countable
disjunction V¢, ce ¥;, which is a sentence of L¥ , defines the class C. Assume that A is a
structure in C and let C; be the equivalence class of L*  to which A belongs. Then, by
hypothesis, we have that C; C C. Thus, A |= V¢, Vi, since A = ¥;. Conversely, assume

that A is a finite structure satisfying ®;, where C; C C. Then A € C;,s0 A € C. 1

Remark 2.13: Note that the proof of Proposition 2.12 used only the property that LF
is closed under countable conjunctions and disjunctions. Thus, the proposition can be gen-
eralized to any logic that has this closure property. In particular, the proposition can be
applied to any logic that is closed under finite conjunctions and disjunctions and has a finite
number of equivalence relations. For example, if we consider the fragment L, of first-order
logic consisting of first-order sentences of quantifier depth r, then the analogous version of
the above Proposition 2.12 holds for L,. The reason for this is that, by Fraissé’s theorem
[Frab4], the relation of elementary equivalence on L, has finitely many equivalence classes. I

It is known that =" _-equivalence can be characterized in terms of an infinitary k-pebble
game. This game was implicit in Barwise [Bar77] and was described in detail in Immerman

[Imm82].

Definition 2.14: Assume that A and B are two structures over the vocabulary ¢ and let
¢i,...,¢ and dq,...,d; be the interpretations of the constant symbols of ¢ on A and B,
respectively.

The k-pebble game between Players I and IT on the structures A and B has the following
rules:

Player I chooses one of the two structures A and B and places a pebble on one of its
elements. Player II responds by placing a pebble on an element of the other structure. Player
I chooses again one of the two structures and the game continues this way until £ pebbles
have been placed on each structure.

Let a; and b;, 1 < ¢ < k, be the elements of A and B respectively picked by the two
players in the i-th move. Player I wins the game at this point if one of the following two
conditions holds:

e Two of the pebbles are on the same element of one of the structures, while the corre-
sponding two pebbles are on different elements of the other structure, i.e., a; = a; and
b; # bj (or a; # a; and b; = b;), for some 7 and j such that 1 <i < j <k.

e The previous condition fails and the mapping h with

and



is not an isomorphism between the substructures of A and B with universes

{ala"'aak}u{cla---acl}

and
{b1,..., 0} U{dy,...,d;}

respectively.

If both conditions fail, then Player I removes some corresponding pairs of pebbles and the
game resumes until again k£ pebbles have been placed on each structure. Player II wins the
game if he can continue playing “forever”, i.e. if Player I can never win a round of the game.
|

In the preceding definition we have described in a rather informal the concept “Player II
wins the k-pebble game on A and B”. The concept of a winning strategy for Player II in the
k-pebble game is formalized in what follows (cf. also [Bar77, Imm82]).

Definition 2.15: Let A and B be two structures over the vocabulary ¢ and let ¢q,..., ¢
and dy,...,d; be the interpretations of the constant symbols of & on A and B respectively.

A partial isomorphism between A and B is a function h such that its domain is a finite
subset of the universe of A containing the elements ¢q,...,¢; of A, its range is a finite subset
of the universe of B containing the elements dy,...,d; of B, h(c;) =d;, 1 < j <, and such
that h is an isomorphism between the substructures of A and B with universes the domain
and range of h respectively. I

Definition 2.16: Let k£ be a positive integer, let A and B be two structures over the
vocabulary o, and let ¢1,...,¢ and dq, ..., d; be the interpretations of the constant symbols
of 0 on A and B respectively.

We say that Player II has a winning strategy in the k-pebble game on A and B if there
is a non-empty family H of partial isomorphisms between A and B such that

e M is closed under subfunctions: if f € H and {(c1,dy),..., (c,d)} C g C f (as sets of
ordered pairs), then g € H.

e H has the back and forth property up to k: if f € H and |f| < k + [, then for any
element a € A (respectively b € B) there is an element b in B (respectively a € A)
such that the function f U {(a,b)} is in H.

The crucial connection between k-pebble games and L¥_ -equivalence is provided by the
following result, which is due to Barwise [Bar77] (cf. also [Imm82]). We include here a
detailed proof of this result, since only a hint for the proof is given in [Bar77].

Theorem 2.17: Let A and B be two structures over the vocabulary o, and let k be a positive
integer. The following are equivalent:

1. A=F B.

12



2. Player II has a winning strateqy for the k-pebble game on A and B.

Proof: Let ¢y,...,c; and dy,...,d; be the interpretations of the constant symbols of ¢ on
A and B, respectively. Assume first that A =F B. We have to show that there is a family
‘H of partial isomorphisms on A and B that provides a winning strategy for Player II in the
k-pebble game.

The desired family H consists of all partial isomorphisms between A and B such that
the following hold:

e The domain of & is a set of the form {¢,...,¢,a1,...,a,} and the range of h is a set
of the form {dy,...,d;,b1,...,b,}, where m < k.

e h(c;) =d; for all j < m, and h(a;) = b;, for all i < m.
o (Aay,...,a,) = (B,b,...,b0y).
We show now that H has the required properties:

1. H is non-empty, because A =F B and, thus, the function h with h(c;) = d;, 1 < j <1,
is a member of H.

2. It is clear from the definitions that #H is closed under subfunctions.

3. It remains to show that H has the back and forth property up to k. Assume that f € H
and |f| = m+1 < k+1. Then there are sequences of distinct elements a, ..., a, in A
and by, ..., by, in B such that h(a;) =b;, 1 <i <m and

(A, ay, .. .,Clm) Eléow (B, bl; .. ;bm)

There are two parts in the back-and-forth property up to k: in the “forth” part we have
to show that for every element a in A there is an element b in B such that f U {a, b}
is in ‘H, while in the “back” part we have to show that for every b in B there is an «
in A such that fU {a,b,} is in H.

We claim that for any element a in A that is different from aq,...,a, there is an
element b in B that is different from by,...,b,, and is such that

(A, ay,...,am,a) =X (B,by,...,0m,b).

:oow

Assume that no such b € B exists for a certain a € A. Then for every b € B that is
different from by, ..., b,, there is a formula ¢y (vy, ..., v, v) of LE , over o such that

(A ar,...,am,a) Evp(vi, ..., 0m,0)

and
(B, by, ..y by, b) = p(v1, ..oy U, 0).

Hence,

(A,a,...,an) E (Jv) ((v1 ZO)A A (o ZU)A N ¢b(vl,...,vm,v)),

beB

13



and, at the same time,

(B,by,...,b) ~= (Fv) ((v1 ZO)A A (o ZU)A N ¢b(v1,...,vm,v)).

beB

But this is a contradiction, since

beB

(Fv) ((vl%v)A.../\(vm%v)/\ A wb(vl,...,vm,v))

is an L* -formula and (A, aq,...,an) =%, (B,bi, ..., by).

This concludes the argument for the “forth” part of the back-and-forth-property. The
“back” part is analogous, using an infinitary conjunction over elements of A.

Assume now that Player II has a winning strategy in the k-pebble game on A and B. Let
‘H be a family of partial isomorphisms providing Player II with a winning strategy.

We will show, by induction on the construction of LE_ formulas, that if ¢(vy, ..., v,) is
a formula of LX  whose variables are among vy, ..., v; and whose free variables are among
V1, --.,Unm, then the following property (x) holds:

(¥) For all h € H with |h| > [ + m and for any elements {ai,...,a,} (not
necessarily distinct) from the domain of h, we have

(Aa ay, .. -aam) ): w(vla s -avm) if and Only if (Ba h’(al)a Tt h(am) ): w(vla e 'JUm))'

After property (x) is established, we will be able to infer that A =F B by applying this
property to sentences of LX_and to an arbitrary member of the non-empty family #.

The base case in the induction (atomic formulas and inequalities) is obvious. The induc-
tive steps for negation —, infinitary disjunction \/, and infinitary conjuction A are straight-
forward using the induction hypothesis.

Assume that the formula ¢(vy,...,v,) is of the form (Jv)x(vy,...,vm,v) and that the
property (x) holds for the formula x(vy, ..., v, v). Let h be a partial isomorphism in H such
that |h| <1+ m. We have to show that if ay,...,a,, are arbitrary elements (not necessarily
distinct) from the domain of h, then

Aay,...,a0n E (3v)x(vi,...,0;m,v) <= B,h(a1),...,h(an) E (3v)x(vi,. .., 0m,v).

Notice that, by our assumption about the variables of ¢), we must have that v is a variable
vj, for some j such that 1 < j < k. We now distinguish two cases, namely the case where
j > m and the case where 7 < m.

If 7 > m, then it must also be the case that m < k. Let a € A be such that

(A,ar,...,am,a) = x(v1,. .., Um,v)).

Consider the subfunction h* of h with domain the set {cy,...,¢,aq,...,a,}. Notice that h*
is a member of H, since H is closed under subfunctions. By the “forth” part of the back and
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forth property applied to h* and a, there is an element b € B such that h*U{(a,b)} is in H.
By applying the induction hypothesis to x(v1, ..., v,,v) and to h* U {(a,b)}, we infer that

(B, h(a1),...,h(am),b) = x(v1, ..., 0m,v))

and, hence,
(B, h(a1), ..., h(am)) E (Fvj)x(v1,. .., Um,v)).
The other direction is proved in a similar way using the “back” part of the back and forth
property up to k for the family H.
Finally, assume that j < m. In this case, the free variables of the formula x are among
the variables vy, ..., v,, and

(Ayar,...,0i 1,041, ..,0n) = (Jvj)x(v1,...,0m).

Let g be the subfunction of h with domain the set

{en, oo apan, a0, 0500, A

Observe that |g| <1+ m — 1 <[+ k and that ¢ is a member of A, since H is closed under
subfunctions. Let a € A be such that

Aaala"'7ai—17a7ai+17"'7am ):X(vla"-avm)-

By the “forth part” of the back and forth property applied to ¢ and a, there is an element
b € B such that g U {(a,b)} is in H. By applying the induction hypothesis to x(vi,...,vn)
and to g U {(a,b)}, we infer that

(B,g(a1),...,9(ai-1),b,9(air1), ..., g(am)) &= x(v1, ..., vm)

and, hence,
(B, h(ar),...,h(an)) E Fvj)x(vi,. .., vm),

since g(a;) = h(a;) for i # j and the satisfaction relation depends only on the free variables
of a formula. The other direction is proved in a similar way using the “back” part of the
back and forth property up to k for the family #. I

Remark 2.18:

The preceding Theorem 2.17 and the above remarks should be contrasted with C. Karp’s
[Kar65] characterization of equivalence in the infinitary logic Le,, (cf. also [BF85]). Accord-
ing to this result, two structures A and B satisfy the same sentences of L., if and only if
there is a family H of partial isomorphisms between A and B such that 7 has the back and
forth property (with no cardinality restrictions on the size of the partial isomorphisms). It
should be pointed out H does not have to possess the closure under subfunctions property,
which was used in a critical way in establishing the direction (2) = (1) of the preceding
Theorem 2.17.

For L., the proof goes through without the closure under subfunctions property, be-
cause in the case of existential quantification one can rename variables and assume that the
existentially quantified variable v is not one of the variables vy,...,v,,. 1
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The preceding Theorem 2.17 holds for arbitrary finite or infinite structures A and B.
In the case of infinite structures, the infinitary syntax of L*  plays a crucial role in the
proof. On the other hand, close scrutiny of the proof reveals that if both A and B are finite
structures, then one can restrict attention to the first-order sentences of LF_ .

Corollary 2.19: Let A and B be two finite structures over the vocabulary o and let k be a
positive integer. The following are equivalent:

1. A =F_B.
9. A=t B.

3. Player II has a winning strateqy for the k-pebble game on A and B.

Proof: The argument used in the proof of Theorem 2.17 goes here through virtually un-
changed. One need only observe that in showing the implication (1) = (3) the conjunctions
over the universes A and B are finite and, thus, the resulting formulas are in L*_. I

The preceding Corollary 2.19 yields the following normal-form theorem for sentences of
Lk on finite structures.

Corollary 2.20: Let o be a vocabulary and let k be a positive integer. Every sentence of L*_
15 equivalent on finite structures over o to a countable disjunction of countable conjunctions
of Lk -sentences.

Proof: From Proposition 2.11 and Corollary 2.19 it follows that the =% -equivalence class
of a finite structure A can be defined by the conjunction A ¥, of the set W, of all sentences
of LF_ that are true on A. As a result, every sentence 1 of L¥  is equivalent on finite
structures to Aapy Ua. ll

As a consequence of Proposition 2.12 and Theorem 2.17, we get a game-theoretic char-
acterization of definability in the logics L, k > 1, for classes of finite structures.

oow ?

Proposition 2.21: Let C be a class of finite structures over the vocabulary o and let k be a
positive integer. Then the following statements are equivalent:

1. The class C is L*,  -definable.

2. If A and B are finite structures over o such that A € C and Player II has a winning
strategy for the k-pebble game on A and B, then B € C.

The preceding results provide tools for establishing that certain properties are not ex-
pressible in infinitary logic with a finite number of variables. More specifically, in order to
establish that a property () is not expressible by any formula of L¥ 6 on finite structures
it is enough to show that for any k£ > 1 there are finite structures A, and B, such that
Ay, E Q, By £~ @, and Player II has a winning strategy for the k-pebble game on Ay and
Bj. Moreover, Proposition 2.21 guarantees that this method is also complete, i.e., if () is not
expressible in L* . then such structures A; and By, must exist.

The following examples illustrate the use of k-pebble games in deriving lower bounds for

expressibility.
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Example 2.22: Cliques, Even Cardinality, and Finiteness

Assume that the vocabulary o consists of a binary relation symbol E. Let k be a positive
integer, let K, be the complete graph with & nodes (the k-cligue), and let K be a complete
graph with more than k£ nodes.

It is quite obvious that Player II has a winning strategy for the k-pebble game between
K, and K. The family H of partial isomorphisms consists of all 1-1 mappings between
substructures of K; and K each with [ elements, 0 <[ < k.

The immediate consequences of this fact are:

e For any fixed k, the property “there are exactly k£ elements” can not be expressed on
finite graphs by any formula of U,,, L% ,; in other words, this property requires at

least k& variables (cf. also [Imm82] for a different proof of this fact).

e The property “there is an even number of nodes” can not be expressed on finite graphs
by any formula of L% . (This should be contrasted with the earlier Example 2.3
concerning the expressive power of L% = on total orders.)

It follows that the infinitary logic L., has strictly higher expressive power than the infinitary
logic L% ..
|

Example 2.23: Hamiltonian Graphs (Immerman [Imm82], de Rougemont [dR87])

Let D,,, m > 1, be the totally disconnected graph with m elements, let C,,, n > 1, be the
cycle with n elements, and let A,, ,, be the product graph of D,, and C,,, i.e., the vertex set
of A, is the union of the vertex sets of D, and C,,, while the set of edges of A,, ,, consists
of the edges of C,, and edges between every vertex of D,, and every vertex of C,,. It easy to
see that

e A, is Hamiltonian if and only if m <n.

e Player II has a winning strategy for the k-pebble game on Ay and Ay, for every
k> 1.

It follows that Hamiltonicity is not expressible by any formula of L% . This was established
first in [Imm8&2]; the above proof is from [dR87]. i

Example 2.24: Eulerian Graphs
Recall that an undirected graph is Eulerian if and only if every vertex has even degree. Let
B, = (V, E) be the undirected graph with vertex set {a,b,ci,...,c,} and edges

(a,c1), ..., (a,ex), (byer), ..., (b, cr).

It is clear that By is Eulerian if and only if £ is an even number. Moreover, Player II has
an obvious winning strategy for the k-pebble game on B, and By, ;. Thus, the property of
being Eulerian is a polynomial-time property that is not expressible by any formula of L% .
|
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In each of the preceding examples the winning strategy of Player IT was quite obvious.
More sophisticated applications of pebble games have appeared in several places in the litera-
ture, including [Immg82, CFI89, LM89, KV90b], where this method has been used successfully

to establish limitations of the expressive power of various logics.

Problem: We conclude this section by presenting an open problem. We showed earlier that
2-colorability is a property expressible in fixpoint logic and, consequently, it is definable by
a sentence of LY . It is not known, however, whether or not 3-colorability is expressible in

w
Ly ..

3 0-1 Laws for Infinitary Logics

Let o be a vocabulary consisting of finitely many relation symbols only and let C' be the
class of all finite structures over o with universe an initial segment {1, 2, ..., n} of the integers
for some n > 1.

If P is a property of (some) structures in C, then the (labeled) asymptotic probabilty
p(P) on C'is defined to be equal to the limit as n — oo of the fraction of structures in C' of
cardinality n which satisfy P, provided this limit exists. If L is a logic, we say that the 0-1
law holds for L in case u(P) exists and is equal to 0 or 1 for every property P expressible in
the logic L.

In the past, 0-1 laws for various logics L were proved by establishing first a transfer
theorem for L of the following kind:

There is an infinite structure R over the vocabulary o such that for any property
P expressible in L we have:

R satisfies P <= p(P)=1onC.

This method was discovered by Fagin [Fag76] in his proof of the 0-1 law for first-order
logic on finite structures. It was also used later in [BGK85] to establish the 0-1 law for
positive-fixpoint logic and in [KV87, KV90a| to show that the 0-1 law holds iterative logic
(partial-fixpoint logic) and for certain fragments of second-order logic.

It turns out that there is a countable structure R over the vocabulary o that satisfies
the above equivalence for all these logics. Moreover, this structure R is unique up to iso-
morphism. We call R the countable random structure over the vocabulary o. The random
structure R is characterized by an infinite set of extension axioms, which, intuitively, assert
that every type can be extended to any other possible type. The precise definitions are as
follows.

Definition 3.1: Let o be a vocabulary consisting of relation symbols only.

e If x = (xy,...,2,) is a sequence of distinct variables, then a type t(x) in the variables x
over o is the conjunction of all the formulas in a mazimally consistent set S of equalities
x; = xj, inequalities z; # x;, atomic formulas in the variables x, and negated atomic
formulas in the variables x.

e Let z be a variable that is different from all the variables in x. We say that a type
t(x, z) extends the type s(x) if every conjunct of s(x) is also a conjunct of ¢(x, z).
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e With each pair s(x) and #(x, z) of types such that ¢ extends s we associate a first-order
extension ariom T, stating that

(Vx)(s(x) = (F2)t(x, 2)).

Let T be the set of all extension axioms. The theory T was studied by Gaifman [Gai64], who
showed, using a back and forth argument, that any two countable models of T" are isomorphic
(T is an w-categorical theory). Fagin [Fag76] realized that the extension axioms are relevant
to the study of probabilities on finite structures and proved that on the class C' of all finite
structures over a finite vocabulary o

U(Ts,t) =1

for any extension axiom 7,. The equivalence between truth on R and almost sure truth on
C' (and consequently the 0-1 law for first-order logic on finite structures) follows from these
two results by an application of the compactness theorem.

In proving the 0-1 law for positive-fixpoint logic, Blass, Gurevich and Kozen [BGKS85] used
the 0-1 law for first-order logic together with a well known model-theoretic characterization of
w-categorical theories, due to Engeler [Eng59], Ryll-Nardzewski [RN59], Svenonius [Sve59)],
and Vaught [Vau61]. This characterization asserts that a set ¥ of first-order sentences has a
unique (up to isomorphism) countable model if and only if for every n there are only finitely
many inequivalent first-order formulas with n free variables in the models of ¥. In [KV87] we
obtained the 0-1 law for iterative logic (partial-fixpoint logic) by employing a model theoretic
argument similar to the one in [BGKS85] for positive-fixpoint logic. We give a sketch of this
argument next.

Let o(z1,...,2,,S) be a first-order formula such that xq,...,z, are its free variables
and S is a m-ary relation symbol not in the vocabulary o. Let ® be the operator associated
with p(z1,...,2,,5), and let @™ be the m-th stage of ®, m > 1. Recall that, by Theorem
2.8, each stage ®™ of ® is definable by a formula ¢™(x1,...,z,) of first-order logic. Since
the random structure R is a model of the w-categorical theory T' of all extension axioms, it
follows that there are only finitely many inequivalent first-order formulas with n free variables
over R. Thus, there are integers N < N’ such that

R &= (Vo) ... (Vo) (@ (21, .. z0) & @™ (21, ..., 2)).

Let N, N’ be the smallest such integers. Note that if N’ = N + 1, then ¢ converges on R in
N stages. Otherwise, ¢ diverges on R, and we have that

R £ (Vo) ... (Vo) (@ (21, . .y zn) < oV T2y, .00, 20)).

o o

In the first case > is equivalent to ¢, and in the second case > is equivalent to false.
Thus, ¢™ is equivalent to a first-order formula, and this fact is witnessed by first-order
sentences. The transfer theorem for first-order logic implies that the witness sentences that
hold in R are true almost everywhere on the class C' of all finite structures over . Thus,
partial-fixpoint logic collapses to first-order logic on almost all finite-structures. The 0-1 law
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for partial-fixpoint logic is now obtained immediately from the 0-1 law for first-order logic.
Moreover, the transfer theorem extends to partial-fixpoint logic as well.

We note that the proof of the 0-1 law for certain fragments of second-order logic in
[KV87, KV90a] used among others the 0-1 law for first-order logic, the compactness theorem,
and further model-theoretic properties of the logics considered.

In what follows here we show that the 0-1 law holds for the infinitary logic LY  on finite
structures and give three different proofs. The first proof extends the proofs in [BGKS85,
KV87] in their use of w-categoricity and their appeal to the 0-1 law for first-order logic. In
contrast, neither of the other two proofs employs any “infinitistic” methods. The first of these
proofs uses a quantifier-elimination method, while the second one uses the pebble games of
the previous section and their relation to L¥ -equivalence. These proofs do not assume the
0-1 law for first-order logic, they do not involve the random structure R or any other infinite
structure, and they do not make use of compactness or of any of its consequences. Moreover,
the 0-1 law is derived directly without establishing a transfer theorem first.

The results reported here on the one hand subsume the earlier ones in [Fag76], [BGK85],
and [KV87], and on the other hand provide a unifying treatment of 0-1 laws for first-order
logic and its extensions with fixpoint operators or infinitary syntax.

3.1 0-1 Laws via a Transfer Theorem

The proof of the 0-1 law for partial-fixpoint logic described earlier used the fact that partial-
fixpoint logic collapses to first-order logic on the random structure R, and furthermore, this
collapse is witnessed by a first-order sentence. Now it is easy to see that L.  also collapses
to LF  over the random structure R, since, by the aforementioned characterization of w-
categorical theories, every infinite disjunction of LF -formula has only a finite number of
nonequivalent disjuncts. What is not immediately obvious is that this collapse is witnessed
by a first-order sentence. Nevertheless, this turns out to be the case.

Lemma 3.2: For every k > 0, there is a first-order sentence vy, such that
1. R E 9y, and

2. for any LE__-formula @, there is an Lk _-formula ' such that iy, = ¢ < ¢'.

Proof: For technical convenience assume that only the variables zq,...,x; are used in
formulas of L% .

Since R is a model of the w-categorical theory T of all extension axioms, it follows
that there are only finitely many inequivalent formulas of Lf  over R. Let ay,...,a,
be representatives from the equivalence classes of formulas. Note that this collection of
formulas must express the atomic formulas and be closed, up to equivalence, under negation,
disjunction, and existential quantification. That is, for each atomic formula p(z,...,xx)
there is some «; such that R = (Vx;...Vag)(p(xy,...,28) < «;). Also, for each «; there
exists ay such that R = (Vo ...Vag) (- <> a;). Similarly, for each o, o there exists ay
such that R |= (V... Vzg)(a; V a; < o). Finally, for each «; and variable z; there exists
oy such that R |= (V... Vo) (Fz04 < o).

We call the above sentences the closure axioms. Let i, be the conjunction of all the
closure axioms. Notice that 1, is a sentence of L¥ . because there are only finitely many

ww?
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inequivalent formulas of LF . Moreover, it is clear that R = 1. It remains to prove the
second claim. We show that if ¢, is taken as an axiom, then each formula of L _ is equivalent
to one of the ;’s. The proof is by induction on the structure of formulas of LX , assuming
that formulas are built using negation, infinite disjunctions, and existential quantification.
Let ¢ be a formula of L . If ¢ is an atomic formula, then by the closure axioms it is
equivalent to an «;. If ¢ is =p or Jdz;p, then by the induction hypothesis p is equivalent
to an q;, and, by the closure axioms, ¢ is equivalent to an «;. Finally, if ¢ is the infinite
disjunction V ¢; of Lk formulas, then by the induction hypothesis each ; is equivalent to

some «;, and by the closure axioms ¢ is equivalent to some «;. 1
The transfer theorem for LY  follows from Lemma 3.2.

w
oow ?

Theorem 3.3: If ¢ is a sentence of L then the following are equivalent:

1. plp) = 1.

2. RE .

Proof: Let ¢ be a sentence of LX . By Lemma 3.2 and the 0-1 law for first-order logic
we have that u(iy,) = 1 and, for any L* -sentence ¢, there is an LF -sentence ¢’ such that
U E e ¢ If R [E @, then R E ¢, and by the 0-1 law for first-order logic we have that
p(e") = 1. Tt follows that p(p) = 1. If R}~ ¢, then R = =g, and pu(p) = 0. 11

The 0-1 law for L%  is an immediate consequence of the transfer theorem.

Theorem 3.4: The 0-1 law holds for the infinitary logic LY, i.e., if ¢ is a sentence of
LY., then the asymptotic probability 11(1)) exists and is equal to either 0 or 1.

Remark 3.5: The 0-1 law for LY  has also certain immediate applications to definability
theory. For example, the property “there is an even number of elements” is not expressible
in LY . because it does not have an asymptotic probability. This fact was obtained earlier

oow?

in Example 2.22 using k-pebble games. 11

Remark 3.6: There is an extensive literature on 0-1 laws for first-order logic on restricted
classes of finite structures (cf. [Com88a| for a survey of results in this area). The method
developed in Lemma 3.2 and Theorem 3.3 applies to arbitrary classes C of finite structures
and yields the 0-1 law for L  on C, provided the set of first-order sentences with probability
1 on C is an Ny-categorical theory. This is, for example, the case with the class of partial
orders investigated by Compton [Com88b], and the class of K -free graphs investigated by
Kolaitis, Promel, and Rothschild [KPR87].

3.2 0-1 Laws via Quantifier-Elimination

Glebskii et al. [GKLT69] proved the 0-1 law for first-order logic, independently of Fagin
[Fag76], using what amounts to a certain quantifier-elimination method. We use here a
different quantifier-elimination method that has its origin in Grandjean’s work [Gra83] on
the computational complexity of the 0-1 law for first-order logic.

3We thank an anonymous referee for making the observations contained in this remark.
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Definition 3.7: If k is a positive integer, then we write 6 for the conjunction of all extension
axioms 7, ; with at most k variables. I

Notice that each 6, is a sentence of LF . i.e., it is a first-order sentence with at most k
distinct variables.

Theorem 3.8: Let k and m be two positive integers such that m < k. If s(x1,...,2,) is a

type over the vocabulary o and @(xy, ..., zy) is a formula of LY with free variables among

X = (Z1,...,%m), then exactly one of the following two statements holds:
1. 0, b= (v%)(s(x) = p(x)).
2. O = (VX)(s(x) = —p(x)).

Proof: This theorem will be proved by induction on the construction of formulas in LF__
whose variables are among x4, ..., z; and whose free variables are among 1, ..., z,,, simul-
taneously for all m < k and for all types s(z1,...,2,). A crucial use of the extension axioms
will be made in the case where the formula (x) starts with an existential quantifier.

The base case of the induction (equalities and atomic formulas) and the induction step
for the negation (—) are obvious. Assume that ¢(z1, ..., x,,) is an infinitary conjunction A ¥
of formulas (1, ...,x,) of L*¥ . By induction hypothesis, for each 1) € W either

o 0 = (Vx)(s(x) = ¥(x))
o 0 = (Vx)(s(x) = —(x)).
If there is a formula ¢ € ¥ such that 6, = (Vx)(s(x) — —t)(x)), then
Ok = (Vx)(s(x) = = \ T(x));

otherwise,

O E (Vx)(s(x) = N\ ¥(x)).
Assume next that ¢(zq,...,x,,) is the formula (32)¢(zq,...,Tm, 2) and that the induction
hypothesis holds for ¢ (xy, ..., zp,2). If

Or = (Vx)(s(x) = ~(32)¥(x, 2)),
then (2) holds for p(z1,...,x,,). Otherwise,
O = (Vx)(s(x) = —(32)¢(x, 2)).
We will show that in the latter case
Or = (Vx)(s(x) = (F2)1(x, 2).

Notice that, by our assumption about the variables of ¢(x1, ..., 2,,), we must have that the
variable z is the variable z;, for some j such that 1 < j < k. We now distinguish two cases,
namely the case where 7 > m and the case where j < m.
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Case 1: j > m, which means that the variable z is different from all the variables z1, ..., z,.
Notice that in this case m must be less than £.

Since O [~ (Vx)(s(x) — =(32)1(x, 2)), there is a structure D over o such that D |= 6y
and

D |= (3x)(s(x) A (32)¢(x, 2)).
Let ay,...,am,,b be elements of the universe D of D such that

D = s(ay,...,am) ANp(a,. .., an,b).

Let t(x1,. .., Tm, 2) be the unique type such that D = t(ay, ..., an,b), i.e., t(x1,..., Ty, 2) is
the conjunction of all equalities, inequalities, atomic formulas, and negated atomic formulas
in the variables x1, ..., 2, z satisfied by a,...,an,b. Notice that the type t(z1,..., Tm, 2)
extends the type s(xy,...,z;,). We also have that

D 3z ... 32,)(32) (1, .oy Tmy 2) AY(T1, ooy Ty 2)).

By applying the induction hypothesis to the formula ¢ (21, ..., Z,, 2) of LE_ and to the type
t(z1,...,%m, 2), we infer that

O 1= (V%) (V2)(t(x, 2) = ¥(x, 2)).

Since the type ¢ is an extension of the type s and 6y, is the conjunction of all extension axioms
with at most k variables, it follows that

Or = (Vx)(s(x) — (F2)t(x, 2)).
We can now conclude that
Or = (Vx)(s(x) = (F2)¥b(x, 2)).

Case 2: j < m, which means that the variable z is the variable z; for some j < m. In this
case, the free variables of the formula ¢ are among the variables 1, ..., x,, and, moreover,
we have that there is a structure D over o such that D [ 6, and

D E 3z ... 3zn)(s(z1, .oy 2m) A (Tz) (@0, ..o, T))-
Let aq,...,a, be elements of the universe D of D such that
D,ay,....an Es(@,...,20) A 3z)Y(21, ... Tm),

let x* be the sequence of variables xy,...,2;_1,%41,...,%n, and let s*(x*) be the unique
type such that D |= s*(ay,...,aj-1,aj41,...,ap). Then there is an element b of the universe
D of D such that

D ): s*(al, vy i1, A5y, - .,am) A ¢(a1, .. .,aj_l,b, Aty - .,am).

Let t*(z1,...,®j,...,Ty) be the unique type such that D |=t*(ay,...,aj_1,b,a41 ..., ap).
Notice that the type t*(xy,..., 2, ) extends the type s*(x*) and that

DE (Jzy...32,) (21, .., 2m) AV(X1, .0y T).
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By applying the induction hypothesis to the formula ¥ (z, ..., z,,) of L%, and to the type
t*(z1,...,2m,), we infer that

O = (Yay .. Vo, ([t (2, ..., 2m) = (21, .., Tm)).

Since the type t*(z1,...,x,) is an extension of the type s*(x*) and 6y, is the conjunction of
all extension axioms with at most k variables, it follows that

Or = (Vx)(s"(x*) = (Fz;)t (21, ..., 2m)).
We can now conclude that

Or = (Vx*)(s"(x*) = (Fzj)(z1,. .., 2m))

and, consequently,
Or = (Vx)(s(x) = (Fz;)Y(z1, ..., Tm)),
since (Vx)(s(x) — s*(x*)) is valid.
|

Corollary 3.9: If ¢ is a sentence of L%, then either 0y, =1 or O, = —). As a result, if

oow?

A and B are two models of 0y, then A = B.

The first-order version of the preceding Theorem 3.8 was obtained by Grandjean [Gra83],
while Immerman [Imm82] established Corollary 3.9 for sentences of LF .
We now have all the machinery needed to establish the 0-1 law.

Theorem 3.10: The 0-1 law holds for the infinitary logic LY., i.e., if 1 is a sentence of

oow?
LUJ

“ s then the asymptotic probability (1)) exists and is equal to either 0 or 1.

Proof: If v is a sentence of L*

oow!

for some k£ > 1, then, by Corollary 3.9,

Or =1 or O = .

In the first case we have that p(y)) = 1 and in the second p(—w) = 1, because p(fx) = 1.
The latter holds, because 6y, is a finite conjunction of extension axioms and, as Fagin [Fag76]
showed, pi(7s;) =1 for each extension axiom 7,. I

We can also easily derive a transfer theorem for each infinitary logic L* , k > 1.

Theorem 3.11: Let k be a positive integer, and let B be a model of 0. If 1 is a sentence

of L%, then the following are equivalent:

1. p(y) =1,
2. 0y = 1b.
3. B
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Proof: Let ¢ be a sentence of L¥  such that p(y)) = 1. Then ) = v, since, otherwise,
it would follow from Corollary 3.9 that 6, = —, which in turn yields that p(—-%) = 1 and
p(y) = 0. It is obvious that if 0y = ¢, then B = 4. Finally, assume that B = 1. Then
p(p) = 1, since, otherwise, by the 0-1 law for L we would conclude that pu(—¢) = 1,

which implies that B = —). I

Corollary 3.12: If R is the countable random structure over the vocabulary o and 1) is a

sentence of LY, . then

py)=1 <= RE.

Proof: The random structure R is a model of each 6, k£ > 1. I

Notice that each 6, has both finite and infinite models; actually, an arbitrary finite
structure over ¢ is a model of #; with probability 1. In particular, there are infinitely many
countable models satisfying the transfer theorem for the infinitary logic L¥ . This should be
contrasted with the situation in L% , where the random structure R is the unique countable
structure satisfying the transfer theorem, since L¥  includes all the extension axioms, which
have a unique countable model.

Although we used earlier the term “quantifier-elimination method”, we did not actually
justify this terminology. We conclude this section by establishing a quantifier-elimination

theorem for Lk on models of 6, which strengthens Lemma 3.3.

Theorem 3.13: Let k be a positive integer and let ¢(zy,...,2,) be a formula of LF. with

oow
free variables among x = (1, ..., %y). Then there is a quantifier-free formula x(x1,. .., Tm)

of L% such that
O = (V%) (0(x) & x(x))-

Proof: Let X, be the set of all types s(x1,...,2,,) for which there is a structure D such
that

D = 0 A (3x)(s(x) A ¢ (x)).

We claim that the required formula x(xy, ..., z,,) is
Vo s(@i,... zm).
s€Xy
Notice first that x(z1,...,2,) is a quantifier-free formula of L* , because the vocabulary o
is finite and, as a result, there are finitely many distinct types in the variables x1, ..., z,.

Moreover, it follows from the definitions that

Ok = (Vo) (p(x) = x(x)).

For the other direction, let D be a model of 0, let aq, ..., a,, be elements from the universe
D of D, and let s(zy,...,7,) be a type in the set X, such that

D E s(ay,...,an).

By Theorem 3.8, exactly one of the following two statements holds:
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L 6 (9)(5(%) = p(x).
2. O E (VX)(s(x) = —p(x)).

Since s(x,...,%Tn,) is a type in the set X, the second statement (2) is ruled out and, hence,

D E g(ay,...,an).

Remark 3.14: Notice that the proof of Theorem 3.10 implies in particular that if a sen-
tence ¢ of LF.  is true almost everywhere, then there is a first-order sentence that is true
almost everywhere and logically implies ¢. Blass and Harary [BH79] showed that there is no
first-order sentence that is true almost everywhere and logically implies Hamiltonicity. We
can, therefore, conclude that there is no property of LY  that is true almost everywhere and
logically implies Hamiltonicity. In other words, there is no sufficient condition for Hamil-
tonicity which is expressible in LY =~ and has asymptotic probability equal to 1. This can
be viewed as a strengthening of the earlier fact in Example 2.23 that Hamiltonicity is not

G Tw
expressible in L% . 11

3.3 0-1 Laws via Pebble Games

Let k be a fixed positive integer. If A is a finite structure, then we write [A] for the
equivalence class of A with respect to the equivalence relation =* . In what follows we will
show that there is a tight connection between 0-1 laws and the asymptotic probabilities of
equivalence classes [A]. Actually, this turns out to be a general fact that holds for arbitrary
probability measures.

So far all the results presented here are about the uniform probability measures on C, i.e.,
all structures with n elements carry the same probability. There is, however, a well developed
study of random structures under variable probability measures. This started with the work
of Erdés and Rényi [ER60] and is presented in detail in Bollobds [Bol85]. In general, for
each n > 1 one has a probability measure pr, on all structures in C with n elements, where
pr, may be a non-uniform distribution. The asymptotic probability pr(P) of a property
P (relative to the probability measures prp,, n > 1) is defined by pr(P) = lim,_, pr,(P),
provided this limit exists. If L is a logic, then we say that a 0-1 law holds for L relative to
the measure pr if for every sentence 1) of L the asymptotic probability pr(v) exists and is
either 0 or 1. Notice that, strictly speaking, pr is not a probability measure, because it is
not countably additive (it is, however, finitely additive).

Spencer and Shelah [SS88] investigated 0-1 laws for first-order logic under variable prob-
ability measures on the class of undirected graphs. They obtained a classification of the
probability measures for which the first-order 0-1 law holds. We establish next a necessary
and sufficient condition for the existence of 0-1 laws for L%  under arbitrary probability
measures.

Theorem 3.15: Let K be a class of finite structures over the vocabulary o, let k be a positive
integer, and let pr,, n > 1, be a sequence of probability measures on the structures in K with
n elements. Then the following are equivalent:
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1. The 0-1 law holds for the infinitary logic L~ relative to the measure pr.

oow

2. There is an equivalence class C of the equivalence relation =% such that pr(C) = 1.

Proof: Assume that pr(C) = 1 for some equivalence class C' of =*  and let ¢ be a sentence
of L% . If 4 holds for the structures in C, then pr(i)) = 1, because the set of models of
Y contains C. If, on the other hand, ¢ fails for the structures in C, then pr(—) = 1 and,
hence, pr(y) = 0.

In the other direction, we show that if the 0-1 law held for L*  relative to a measure,
but every equivalence class C' of =F  had probability 0, then we could find a sentence of
Lk whose probability is neither 0 nor 1. To see this, let Cy, Cy,... be an enumeration of
the equivalence classes of =5, on K, and let CJ' be the set of n-element structures in Cj.
Note that for all n > 0 there exists some integer m such that C, = 0 for all m' > m, since
there are finitely many n-element structures. Let m; < mg < ... be an increasing sequence
such that C”, = () for all m' > m,,.

We denote by N the set of nonnegative integers, and we denote by [0, j) the set {0,...,j—
1}. For any set X C N, let Cx = U;cx C;. We define pr,(X) (resp., pr(X)) to be pr,(Cx)
(resp. pr(Cx)). We are going to use the following three properties:

1. If X is finite, then pr(X) = 0, since by assumption pr(C;) = 0 for all i > 0.
2. pra([0,m,)) = 1, since pr,(N) = 1 and C, = 0 for all m > m,,.

3. If X C [0,m,) and Z C N — [0,m,,), then pr/(X) = pri(X U Z) for all [ < n, since
C! =0 forallme Z and [ < n.

We construct a set X of integers such that for infinitely many i’s we have that pr;(X) >
3/4 and infinitely many i’s we have that pr;(X) < 1/4. It follows that pr(X) is undefined.
X is constructed in stages. In the i-th stage we define a nonnegative integer n; and a pair
of finite disjoint sets X;,Y; C [0,m,,) such that the following hold:

L. X; € Xip, Y5 € Yig, and X; UY; = [0,my,);
2. if 7 is odd, then pr,, (X;) > 3/4, and if 7 is even then pr, (X;) < 1/4.

The desired set X is simply UJ; X;. We now define the sets X; and Y; by induction. For i =1,
let ny =1, X; = [0,my), and Y1 = (). Then pr{(X;) = 1. Assume inductively, that n;, X;
and Y; have been defined. There are two cases now.

Case 1: If i is odd, then pr, (X;) > 3/4. Since pr(X;) = 0, there is an integer ¢ > n; such
that pr,(X;) < 1/4. We let n;y1 = ¢, X;11 = X;, and Yy = [0, my) — X;.

Case 2: If i is even, then pr, (X;) < 1/4. Since pr(Y;) = 0, there is an integer ¢ > n;, such
that pry([0, mg) — Y;) > 3/4. We let n;1y = ¢, X; = [0, my) — Yiq1, and Y =Y.

Now let X = (J; X;. It is easy to see that X is disjoint from Y;, for all # > 1. Since
X, UY; = [0,m,,), it follows that pr, (X) = pr,,(X;). It follows that there are infinitely
many i’s such pr,, (X) > 3/4, and there infinitely many 4’s such that pr,, (X) < 1/4. Thus,
pr(X) is undefined. Using Proposition 2.11, we can construct a sentence x of L  that
defines the class Cx. It follows that pr(px) is undefined. I
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Remark 3.16:

1. Notice that if the 0-1 law holds for L% relative to a measure pr, then there is exactly
one equivalence class C' of =  such that pr(C) = 1. All other equivalence classes of
=k have probability 0.

:oow

2. We should also point out that the preceding theorem does not hold in general for
arbitrary logics. For example, if L is first-order logic and pr is the uniform measure p,
then the 0-1 law holds for L, but each equivalence class of L has probability 0, because
every finite structure is described up to isomorphism by a first-order sentence.

The crucial property of L¥  used in the proof is its closure under infinite conjunctions
and disjunctions. Let L, be the fragment of first-order logic consisting of first-order
sentences of quantifier depth r. By Fraissé’s theorem [Fra54|, the relation of elementary
equivalence on L, has finitely many equivalence classes and, consequently, L, is closed
under arbitrary disjunctions and conjunctions. Thus, the analogous version of the
above Theorem 3.15 holds for L,.

3. Spencer [Spe91] obtained 0-1 laws for first-order logic with respect to the class of
undirected graphs relative to certain variable probability measures by examining first-
order sentences of fixed quantifier depth and using Ehrenfeucht-Fraissé games. The
idea of using games to obtain 0-1 laws seems to originate with the work of Lynch
[Lyn80] (cf. also Compton [Com88al).

We now return to the uniform measure g on L% and give a different proof of the 0-1

law for L¥  using the preceding Theorem 3.15 and the characterization of =F_ in terms of
pebble games.

Theorem 3.17: Let C be the class of all finite structures, let k be a positive integer, and
let @) be the conjunction of all extension axioms with at most k variables. If A is a finite
structure that is a model of O, then u([A]) = 1. As a result, the 0-1 law holds for L%
relative to the uniform measure on C.

Proof: If A and B are both models of 0, then it is easy to verify that Player II has a
winning strategy in the k-pebble game on A and B. Intuitively, the winning strategy for
Player II is provided by the elements of A and B witnessing the extension axioms with at
most k variables. We now describe this more formally.

Let ¢1,...,¢; and dy, ..., d; be the interpretations of the constant symbols of the vocab-
ulary 0 on A and B, respectively. We have to show that there is a family H of partial
isomorphisms on A and B that provides a winning strategy for Player I in the k-pebble
game.

The desired family H is built by starting with the partial isomorphism that maps ¢; to
d;, for 1 < i < k, and taking the closure under subfunctions and back-and-forth extensions,
where a back-and-forth-extension is defined as follows.
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Let h be a member of H whose domain is the set {ci,...,¢,a1,...,a,}, where

m < k, and let a be an element that is not in the domain of h. Let s(xq,...,2y,)
and t(zq, ..., Ty, 2) be types such that A = s(ay,...,an,)and A | t(aq,. .., an,a).
Since h is a partial isomorphism, we also have B = s(ay,. .., an). Consider the

extension axiom Ty, i.e.,
Vi, .oy xm)(s(@, ooy mm) = (F2)E (21, ..o T, 2)).

Since 7y, uses at most & variables and B |= 6, there exists an element b such
that B = t(h(a1),...,h(ay),b). Thus, hU (a,b) is a partial isomorphism, which
is added to H. This is the “forth” extension; the “back” extension is defined
analogously using the fact that A = 0.

It follows from Theorem 2.17 that if A and B are both models of ), then A =* B.
Since u(6y) = 1 [Fag76], it follows that u([A]) = 1, for any finite structure A that is a model

4 Concluding Remarks
We established here the 0-1 law for the infinitary logic L%  under the uniform probability

oow
measure. [t is an interesting open problem to investigate 0-1 laws for fixpoint logics or for
infinitary logics under variable probability measures. No results in this direction are known
at present, but our Theorem 3.15 provides a handle for attacking this problem.

Previous investigations of 0-1 laws for first-order logic and fixpoint logics examined also
the computational complexity of the decision problem for the values of the probabilities,
namely the complexity of deciding whether the probability of a sentence is 0 or 1 [Gra83],
[BGK85], [KV87]. This problem, however, is computationally meaningful only when the
logic under consideration has an effective syntax. Thus, this investigation cannot be carried
out for the infinitary logics L%, k > 1.
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