04/04/2011 15:04 IFAX canon730i@rice.edu -+ Arnetta Jones

I

"t

e — e, P

Proceedings of Symposia in Applied Mathematics
Volume 34, 1986

THE THEORY OF DATA DEPENDENCIES -
A SURVEY

Ronald Fagin and Moshe Y. Vardi

Abstract: The language of database dependencies can be seen as
a language for specifying the semantics of databases. Dependen-
cy theory studies the properies of this language and its use in
database management systems. We survey here three aspects
of dependency theory: the implication problem, the universal
relation model, and acyclicity of database schemes.

1. Introduction

In the relational database model, conceived by Codd in the late 60’s
[Col]l, one views the database as a collection of relations, where each
relation is a set of tuples over some domain of values. One notable feature
of this model is its being almost devoid of semantics. A tuple in a relation
represents a relationship between certain values, but from the mere syntac-
tic definition of the relation one knows nothing about the nature of this
relationship, not even if it is a one-to-one or one-to-many relationship.

One approach to remedy this deficiency is to devise means to specifly
the missing semantics. These semantic specifications are often called
semansic or integrity constraints, since they specify which databases are
meaningful for the application and which are meaningless. Of particular
interest are the constraints called dara dependencies, or dependencies for
short.

1980 Mathematical Subject Classification. Primary 68B15, Secondary 03B25.

® 1986 American Mathematical Society
0160-7634/86 $1.00 + $.25 per page

18

0017053

Z

04/04/2011 15:04 IFAX_ _(_::a_l‘no_n_TS()i_@r'icer.edu o > Arnetta Jones doo2/053

‘!.“‘.{.

20 Ronald Fagin and Moshe Y. Vardi

The study of dependencies began in 1972 with the introduction by
Codd [Co2] of the functional dependencies. After the introduction, inde-
pendently by Fagin and Zaniolo [Fal,Za] in 1976, of multivalued
dependencies, the field became chaotic for a few years in which researchers
introduced many new-classes of dependencies. The sitbation has stabilized
since 1980 with the introduction, again independently by various research- :
ers, of embedded implicational dependencies (EIDs). Essentially, EIDs are
sentences in first-order logic stating that if some tuples, fulfilling certain
equalities, exist in the database then either some other tuples must also
exist in the database or some values in the given tuples must be equal. The
class of EIDs seems to contain most préviouslystudied classes- of ‘dependen-
cies. (Recently, De Bra and Paredaens [DP] considered afiuncrional
dependencies, which are not EIDs.) We give basic definitions and historical
perspective in Section 2. o L

Most of the papers in dependency theory deal exclusively- with various
aspects of the implication problem, i.e., *he problem of deciding for a given
set of dependencies £ and a dependency + whether Z legically implies . -
The reason for. the prominence.of this problem is that an algorithm for ““

-, testing . implication of dependencies enables us to test whether two given . N
. -sets of: dependencies are equivalent or whether a given set of dependencles
- isredundant. A solution for the last two pr.oblems seems a. slgmfwant step
towards. automated datebase schema design, which some researchers see as
the ultimate. goal for research in dependency. theory [BBG] We deal w;th
the implication problem in Section 3.

e 00

o An emerging application for the theory of dependencies is the universal
| _relation model. This model aims at achieving data mdependence. which was
 the original motivation for the ralatmnal model. In the universal relation

) model t,he user vteWs the data as if it is stored in one blg relation. The
data, however. is not avallable in this form ‘but’ rather in severil smaller
relafions. It is the role of the database management system to provide the
interface between the users’ view and the actual data, and it is the role of
the database designer to specify this interface, There have been-different
. a.pprnashes to the question of what this interface should be like. We
describe one approach, the weak universal relation approach, in Seétion 4.

NE: S

One of the the giajor contributions of theoretical computer science is
delineate the line between the computationally feasible and the infeasible.

04/04/2011 15:04 IFAX canon730i@rice.edu » Arnetta Jones 10037053

THEORY OF DATA DEPENDENCIES 21

The plethora of unsolvability and intractability results forces researchers to
lower their aims, and to restrict themselves to “real-world” problems.
That is, rather than trying to solve problems in their full generality, they
try solve the cases that most often arise in practice. Research on acyclicity
of database schemes falls in this vein. The idea is to view database
schemes as hypergraphs. It turns out the acyclicity properties for hyper-
graphs translate into highly desirable database properties. Many problems
that are intractable for general database schemes can be solved quite
efficiently for acyclic schemes. Furthermore, there are arguments that
many applications can be represented by acyclic schemes. We discuss
acyeclicity in Section 3.

A survey like ours of a rich theory necessarily has to be selective. The

selection naturally reflects our tastes and biases, A more comprehensive,
though less up to date, coverage can be found in the books [Ma,Ui].

2. Definitions and historical perspective

E

We begin with some fundamental definiticns about relations. We are
given a fixed finite set U of distinct symbols, called atrributes, which are
column names. From now on, whenever we speak of a set of attributes,
we mean a subset of U. Let R be a set of attributes. An R-tuple (or simply
a tuple, if R is understood) is a function with domain R, Thus, a tuple is a
mapping that associates a value with each attribute in R. Note that under
this definition, the “order of the columns® does not matter. If S is a subset
of R, and if r is an R-tuple, then 1[.5] denotes the S-tuple obtained by
restricting the mapping to §. An R-relation (or a relation over R, or simply a
relation, if R is understood), is a set of R-tuples, In database thecory, we
are most interested in finife relations, which are finite sets of tuples
(although it is sometimes convenient to consider infinite relations). If [is
an R-relation, and if § is a subset of R, then by I[S], the projection of I
onto §, we mean the set of all tuples ¢[S], where ¢ is in I. A database is a
finite collection of relations.

Conventions: Upper-case letters 4,8,C, ... from the start of the alphabet
represent single attributes; upper-case letters R, S,....Z from the end of the
alphabet represent sets of attributes; upper-case letters I.J,... from the

H
R

rian =

tta Jones & oo4/053
04/04/2011 15:04 IFAX canon730i@rice.edu . L2 Ar'ne‘ ‘ SR
s et il B e i R : L

g aE

3
g

22 Ronald Fagin and Moshe Y, Vardi

middle of the alphébet répresent relations; and lower-case letters nL51,...
from the end of the alphabet represent tuples,
Assume that relatioris’ A are over _e‘f-ttr‘ibﬁ‘t_e'ééi\s Rl‘:,\;,..gmrg:s_;;ec-
tively: " The join" of ‘the telations Il ;7..,?"‘, V_whi'p‘h‘ is wrltten _either
ML) or Ty MUK is the set of all tuples ¢ over the attribute set
~ Ryu...R,, such that #[R] is in I; for each i (Our _f;ﬁf@ti@ﬁ ei}éloits_ the fact
‘that the join is associative and commutative.) AP) B

Certain senterices -about relations are of “special ‘practical_ and/or
- theoretical interest for relatiotial ‘databases.” 'Fofr:'ﬁiétdrid:-a_:l_ reasons, such
- sentences are sually called depemdencies. The first dependencymtroduced
and studied was the functional dependency (or FD), due to6 Codd [{féﬁ].;? As
an example, consider the relation in Figure 2.1, with three columns: EMP
(which represents employees): ‘DEPT (which represents ‘departmen ts), and
- 'MGR (which represents managers), The relation in Fgure 21 obeysthe
FD “DEPT-MGR", which is read “DEPT determines MGR™ This means
that whenever two tuples (that is, rows) agree in the DEPT column, then
they necessarily agree also in the MGR column. The relation in Figure 2.2
does not obey this FD, since, for éﬁéiﬁpl'é';qfhérfi{rst and fourth tlﬂip-les'agree :
in the DEPT column but not in the MGR column. We now give the formal § _
definition. Let X and ¥ be subsets of the set U of attributes. The FD X—+Y 5

" *'is said to hold for a ‘reltarirti’c_:')ﬁ'fl if every pair of tuples gf;il_ that agree on.each E
 of theattributes in X also agree in the attributes in Y. .
The original 'mot"i"\‘iatibnf for int'rbdpci;ig FDs (al"lzd‘i_s‘oqu._ :oj thg.lqther
-dependencies we discuss) was to dés_brib"e ,ddtai&g’g?p“ norrnahzatzon Before =
- giving an-example of "horﬁializatipﬁ, ""We“iieed ,t_o“ idét:i:ig the notion of a ’

 relation scheme. A reiarion Scheme'is simply a set R of attributes. Usually,

- "thiere is alsv'an associated set 3 of senterices about ;giqt'ipr‘x_s“g‘\'rrre;; R. A
- relation is an insance of the rélation scheme if it is over R and obeys the
- sentences in Z. Thus, the sentences S can Be thought of as “‘constraints”,

that every “valid instance’ must obey.’ ‘Altkli‘c:g'i;'gh‘we' djo‘ 1_"1‘0;349 go_, we note
* that it is common to define a relation scheme to be a pair <R35>, where

the conistraints = are explicitly included.

We now consider an example of normalization. Assume that the
attributes are {BMP,DEPT._MGR}, and that the only constrainat is. the FD
: hi s in the

- DEPT+MGR. So, in every instance of this scheme, two employ

w e
s

04/04/2011 15:04A IFAX canon730i@rice.edu

> A_r'_n_e__'_c:c_z_a Jones

THEORY OF DATA DEPENDENCIES 23

same department necessarily have the same manager. It might be better to
store the data not in one relation, as in Figure 2.1, but rather in two
relations, as in Figure 2.3: one relation that relates employees to depart-
ments, and one relation that relates departments to managers. We shall
come back to normalization in Section 4.

It is easy to see that FDs can be represented as sentences in first-order
logic [Nil]. Assume, for example, that we are dealing with a 4-ary rela-
tion, where the first, second, third, and fourth columns are called, respec-
tively, 4, B, C, and D. Then the FD AB~C is represented by the following
sentence:

(Vabe, r.'zdldz)((Pa&‘).':ldlI\Pab.':za'z)—,---(r:l = ¢5)). 2.1

Here (Vabc,c,d,d,) is shorthand for VaV¥bV¥c Vc,¥d Vd;, that is, each
variable is universally quantified. Unlike Nicolas, we have used individual
variables rather than tuple variables. Incidentally, we think of P in (2.1)
as a relation symbol, which should not be confused with an instance (that is,
a relation) I, for which (2.1) can hold.

Let X and ¥ be sets of attributes (subsets of U), and let Z be U-XY (by
XY, we mean XuY). Thus, Z is the set of attributes not inXorY Aswe
saw by example above (where X, Y, and Z are, respectively, the singleton
sets [DEPT}, {EMP}, and {MGR}), the FD X-Y is a sufficient condition
for a “lossless decomposition” of a relation with attributes U into two
relations, with attributes XY and XZ respectively. This means that if 7 is a
relation with attributes XYZ that obeys the FD X—7Y, then I can be ob-
tained from its projections J[XY] and I[XZ], by joining them together,
Thus, there is no loss of information in replacing relation [by the two
relations [; and J,. We note that this fact, which is known as Heath’s
Theorem [Hel, is historically one of the first theorems of database theory.

It may be instructive to give an example of a decomposition that does
lose information. Let I be the relation in Figure 2.4, with attributes
STORE, ITEM, and PRICE. Let /; and I, be two projections of 1, onto
{STORE, ITEM} and {ITEM, PRICE}, respectively, as in Figure 2.5.
These projections contain less information than the original relation I.
Thus, we see from relation J; that Macy’s sells toasters; further, we see
from relation 7, that someone sells toasters for 20 dollars, and that some-

0057053

s s AT AR LT R A P

04/04/2011 15:04 IFAX canon730i@rice.edu > An_etta Jones 1006/053

-

24:Ronald Fagin and Moshe.Y. Vardi

one sells toasters for 15 dollars. However, there is no way to tell l'rom
relations I; and I,_ how rnuch Macy's sells toasters for ' ‘

. Fhe next dependency to be mtroduced was the nmlnvaiued dependem:y.
or MVYD, which was defined, lndependently by Fagm [Fal] and" Zamolo
[Za]. It was introduced because of the perceptlon ‘that the- functional
dependency provided too limited a. notion_of “depends on’’. As we shall
see, multivalued dependencles prov:de a necessary and sufflc:ent condltmn
for lossless decomposntlon of a:elatlon mto two of its pro,]ecttons Béefore
we give the formal definition, we present a few examples C“onsxder the
relation in Fxgure 2.6, with attributes EMP SALARY, and CHILD., It
obeys the functional dependency EMP~SALARY, that is, each employee
has exactly one salary. The relatlon does not obey the. FD EMP-CHILD,
since an employee can have more than one child. However it is’ clear that

- in some sense an employee “determines’ his set of children. Thus, the
employee’s seét of children is “determined by’ the employee and by nothmg
else, just as his salary is. Indeed as we shall sce, the multivalued depen-
dency EMP-+CHILD (read "ernployee multldetermmes chlld”) holds for
this relation. As another example, cons:der t.he relatlon m F:gure 2.7, with
atiributes EMP, CHILD, and SKILL. A tuple (e,c,s) appears in this rela-

- tion if and only if e is-an employee, c is one of e's children, and s is one of

.. e's skills. .This relation obeys no nontmnal (nontautologous) ‘functional
dependencies. However, it turns out to. obey the multivalued dependencles
EMP -~ CHILD and EMP--»SKILL Intmu'vely, the MVD EMP-»CHILD ‘

- means that the set of names of the employee 5 chlldren depends ‘only on the

_ emplayee, and is “orthogonal” to the ,mformatlon a.bout his skills. '

We are now ready to forma.lly defme multwalued dependenmes Let I
be a relation over U. As before, let X and Y be subsets of U, and fet"Z be
U-XY. The multlvalued dependency XY holds t'or relatlon "Fif for ®ach
pair r, s of tuples of I for which lX] = .r[X], there isa tuple fin I where (1)
X1 = AX] = s[X]. (2) {[Y] = AY], and (3) qZ] = s[Z]. Of course, if this
multivalued dependency holds for I, then it follows by symmetry that

there is also a tuple u in I where (1) u[X] r{Xj s[X] (2) u[]’] s-[Yl,
.and (3) u[Z) = AZ]. :

~ Multivalued '_depen_dencies obey a number of - useful propertlesFor
example, if U is the disjoint union of X, Y, Z, and W, and if 1 is a relation
~over U that obeys the MVDs X-—Y and Y2, then it Tollows that I obeys

04/04/2011 15:04 IFAX canon730i@rice.edu

P » Arnetta Jones 1007/053

THEORY OF DATA DEPENDENCIES 25

the MVD X-—Z [Fall. So, MVDs obey a law of transitivity. We shall
discuss more properties of MVDs in Section 3, where we give a complete
axiomatization for MVDs.

Note that MVDs, like FDs, can be expressed in first-order logic. For
example, assume that U= {4.B,C.,D,E}. Then the MVD AB--+CD holds for
a relation over U if the following sentence holds, where P plays the role of
the relation symboi: '

(Yabcycod daerep) ((Pabeydiey A Pabcydsey) 3 Pabcydrer). 22)

Embedded dependencies were introduced (Fagin [Fa1)]) as dependencies
that hold in a projection of a relation (although, as we shall see, for certain
classes of dependencies they are defined a little more generally). We shall
simply give an exampie of an embedded MVD; the general case is obvious
from the example, Assume that we are dealing with 4-ary relations, where
we call the four columns ABCD. We say that such a 4-ary relation I obeys
the embedded MVD (or EMVD) A-—B | C if the projection of R orito ABC
obeys the MVD A58 . Thus, the EMVD A--+B1C can be written as
follows:

ey
,é
v e

As a concrete example, assume thit the relation of Figure 2.7, with attrib-
utes EMP, CHIL.D, and SKILL, had an additional attribute BIRTHDATE,
which tells the date of birth of the child. Then this 4-ary relation I would
obey the embedded MVD EMP-CHILD|SKILL. Note that [need not
obey the MVD EMP-—CHILD (although it does obey the MVD
EMP - {CHILD,BIRTHDATE]).

Several dependencies were defined within a few years after the multi-
valued dependency was introduced; we shall mention these other depen-
dencies later in this section, Of these, the most important are the join
dependency, or JD {ABU,Ri2]), and the inclusion dependency, or IND [Fa2].
Assume that X={X,, .., X }isa collection of subsets of U, where X; U ... U
X = U. The relation I, over U, is said to obey the join dependency M [X;,
.- X1, denoted also M [X), if I is the join of its projections X, 11X]
It follows that this join dependency holds for the relation [if and only if J

M

04/04/2011 15:05 IFAX canon7301@rlce edu » Arnetta Jones 1008/053

T OIEE, PRGNS S ™ - e e SR

% ~ RonilldFagha‘and Mostie Y, Vardl

‘_‘contams each’ tupie T for which theéfe are taples wy, ...; wy of I (not-neces-
“sanly distinct) such’ that ‘w; X =X 1 for eath I (Igisn}. AS mexampk,
consider the relation [in Figure 2.8 below.

A "B €D

o

o 1 0
2 3 |
s 1 3. .0 | 3

(=
B

Figure 2.8

. ,Thls relat:on vnolates the]om deperr&em:y [| [AB -ACD; 'BC).: Fm' let Wy, H
wa, w, be, respecti‘\rely, ‘the’ t.up‘les {0,1.0,0); (0:2,3:4), and(5,1.3,0) of .15 Jet :
Xy, X5, Xy be, respectwely. AB, ACD: anhd" BC; ‘and-let r be-the tuple
.. (0.1, 3,4); then wIX] = r[X"] for each i (1<i<n), although ris-not- & tuple in
-:xthe relation 1. However, 1t is’ straightfﬁrward o verily -that the same
' 'relanon I obeys for example the join dbpéndeney it FA*BC BCH,-ABBL:

Let us say that the join dependency ™ X, ... X k] has k eempﬂnem
~ Join dependencies are generahzatmns of multwalued dependencies; thus,
each multivalued dependency is equivalent to-a:join dapendeney -with two
. components, and cnnversely Assume now that X; U .. U X; € U, and
_denote X; U ... U AL by X A rélation 7 with attributes. U is-said to.obey
. 'the embedded join dependency WXy . X] it -its projection J[X]-obeys the
 join dependency B [X, s Xl We sha»lel see soon that join-dependencies
, :_can be written in ‘first-order logic. -‘Bmbedded join dependencies, tao, can
"be so writién, but they requiré -existential quiritifiers;" just as embedded
multivalued dependencies do. Note that our notafion, thesset: U of attrib-
. utes does not appear,, and so the same syntactical object M Xy, ..., Xl is
" used to represent a join dependenicy Gver X and an embedded- join depen-
) dency over U. However. “the two would ‘be written-in distinct ways in
Ny hrst-order logu: * This is actually’a nice cohivenience, especially in the case
of funct:onal dependenc“ies w‘ﬁere a similar e&minent a.pphes

7 ' The intuitive semantics of mitwal-ued dependemaes were: fa:rly well
o understood at ‘the tiine they were:first. defined. However, | it. was not untll
" several years after join depehmﬁes were defined that their semantics was

04/ :
()4/2()11 1? : 0 canon730i@rice.edu

THEORY OF DATA DEPENDENCIES

» Arnetta Jones

27

adequately explained (by Fagin et al. [FMU]). Let us consider an example
(from [EMUD. Assume that the attributes are C(ourse), T(eacher),
R(oom), H(our), S(tudent), and G(rade). The informal meaning of these
attributes is that teacher T teaches course C, course ¢ meets in room R at
hour H, and that student S is getting grade G in course C. If we were to

define a single «yniversal” relation over these attributes, it

getting” g “in” C}.
This relation is of the form

{(c,!,r,h,s,g): Pyte A Pycrh A Pysgel,

{(c,t,r,h,s,g): ;: “teaches” ¢; € “meets in”* r “at hour™ b and s

would be

[13

is

(2.4)

for certain predicates Py, Pas and P3- The fact that 2 relation with attrib-
utes c.L.nhS5E 1S of the form (2.4) for for some predicates Py, Pau and Py is
a severe constraint. In fact [FMU], this constraint is precisely equivatent
to the join dependency | [TC.CRH,SGC]. The obvious generalization of
this observation to arbitrary join dependencies explains their semantics.
Before we leave join dependencies, let us note, as promised. they, too, can

be written as sentences in first-order logic. For example, if we are dealing

with relations with attributes oS8 then the join dependency

M [TC, CRH.S5GC] can be written as

(Vc:rlrzrrlrihh1h,_s313,_gglg.2)
((Pctryh lslglAPctlrhsingPctzrzhzsg Y Pctrhsg)

(2.3)

So far, each of the dependencies We have discussed has two properties:
(1) each is uni-relational, that is, deals with a single relation at a time,
rather than with inter-relationships among several relations, and (2) each

is typed. BY typed, we mean that no variable appears in two distinct
columns. For example, the sentence (ny)((nyl\Pyz)g»sz), which says
that a relation is transitive, is nof typed, since the variable y appear in both
the first and second columns of P in the sentence. The next dependency
that we shall discuss violates both (1) and (2) above, that is, 18 neither
uni-relational nor typed. This dependency is the inclusion dependency, ot

IND [CFP]. Asan example, an IND can say that every

general, an IND is of the forin

MANAGER entry

of the P relation appears as an EMPLOYEE entry of the Q relation. In

1009/053

0470472011 15:05 IFAX canon7301@rlce edu

R STt SOy 'y < i 7—: Arnetta Jones 4010/053

&L.&

Rk '-' Ronald Fagin and Moshe YVardl

OB T e

where-P-and Q are relat:on names: ‘(possibly: the same) and where ithe 4,'s
and B;’s are. attrlbutes “1f°T is the ‘P relation-and J is the Q ‘rélation; then
the IND {2.6) holds if for each téple s of I, there is a tuple 3 of J such-that
sldy... A4,k = {(B,...B »]- Hence, INDs are valuable for database design; smce
they permit us to selectwe‘ly ‘define ‘what data must be duphcated in what
relations. INDs are commonly known in Artificial Intelﬁgence applications
as ISA relationships (cf. Beeri and Korth [BK]). Not surprisingly; the
inclusion dependency, too, can be written in. flrst-order logic. For exam-

" ple, if the P relation has attributes ABC, and the 0 relation has atttibutes
CDE, then the IND P[AB1sQICE] can be written .

(Vabc) (Pabc-p!andb) - (2.7

_ At‘ter miultivatued dependenc;es .were defined, there was.a. period
where a large number of’ other . dependencle% were defined,. We have
,aJready disciissed the classes of join dependenc:es, -embedded . join, depen-

) dencles, and inclasion dependencies. Others (many of which, were intro-
. duced before Join' dependencies) mclude Nicolas’s-mutual dependenne.r [Nil],
which say that a relatiorn is the join of three of its” projections, Mendelzon
and Maier's generalized mutual depeudenctes ‘[NgM], . Paredaens' transitive
dependencies [Pal, which generahze both ¥Ds and MVDs, Ginsburg and

Zaiddan's implied. de_aepdenczes [GZ]. which - generahze FDs, Sagw and
Walecka's subset dependencies [SW], which" generalxze embedded MVDs, 1
“Gadri and Ultman’s and Beeri and Vardi's template dependenc:es {[sU1,

 [BV4]) which- generalize embedded join dependencies,. and Parker and
" parsaye-Ghomi's.extended rrarmnve dépendencies [PP),. which generahze both

© mutual dependencies | and trans;twe" dependencies. : We remark that the last
"3 kinds of depenclemues mentmned ‘Wrere- introduced -to deal ‘with the issue
“"6f ‘& complete- axwmat:zatidﬁ”(see Séction3): subset dependencws were
intreduced to.show. the "difficulty -of completely axwmanzmg embedded
multivalued: dependendiés extended transitive.. dependencws were intro-
-duced: to show the dxfl‘l ulty of compistely. axiomatlzmg transitwe depen-

- :dencies; while template dependenoias were mtroduced to provide a class of
“deépendencies that. 1nclude jbm dependencies. and that can ‘be: completely
axiomatized. Inclusion dependencies,: which hﬂd been used informally for
databases by many practitioners, were not sermusty studléd um:l relatively

late [CFP].

D il

04/04/2011‘715:05 IFAX canon730i@rice.edu

i

-+ Arnetta Jones

THEORY OF DATA DEPENDENCIES 29

Various researchers finally realized that all of these different types of
dependencies can be united into a single class, which we shall call simply
dependencies. Before we can define them formally, we need a few prelimi-
nary concepts. We assume that we are given a set of individual variables
(which represent entries in a relation of a database). The atomic formulas
are those that are either of the form Pz,..z; (where P is the name of a
d-ary relation, and where the z;'s are individual variables), or else of the
form x=y (where x and y are individual variables). Atomic formulas
Pz,..2; we call relational formulas, and atomic formulas x=y we call equali-
ties. A dependency is a first-order senience

(¥x;..%,,) ({4 (AAd)3y .y (B{A..ABY)), (2.8)

where each 4, is a relational formula and where each B, is atomic (ither a
relational formula or an equality). We assume also that each of the x;'s
appears in at least one of the 4,'s, and that n> 1, that is, that there is at
least one 4;, We assume that ->0 (if r=0 then there are no existential
quantifiers), and that s 1 (that is, there must be at least one B,.) Note that
because of all these assumptions, each dependency is obeyed by an empty
database with no tupies. Furthermore, our assumptions guarantec that we
can tell if a dependency holds for a relation by simply considering the
collection of tuples of the relation, and ignoring any underlying “domains
of attributes”. Intuitively, in considering whether a dependency holds for
a relation, the quantifiers can be assumed to range over the elements that
appear in the relation, and not over any larger domain. This property is
called domain independence. See Fagin [Fad] for 2 much more complete
discussion of domain independence.

If each of the formulas B; on the right-hand side of (2.8) is a relational
formula, then we call the dependency a tuple-generating dependency; if all of
these formulas are equalities, then we call the dependency an equality-
generating dependency. Of the dependencies we have { ocused on above, the
(embedded) multivalued dependency, the (embedded) join dependency,
and the inclusion dependency are each tuple-generating dependencies; thus,
each of the first-order sentences (2.2), (2.3), (2.5), and (2.7) above repre-
sent tuple-generating dependencies. Tuple-generating dependencies say
that if a certain pattern of entries appears, then another pattern must
appear. Functional dependencies, as we see by example in the sentence
{2.1) above, are equality-generating dependencies. Equality-generating

10117053

04/04/2011 15:05 IFAX canon730i@rice.edu » Arnetta Jones €1012/053

30 Ronald Fagin and Moshe Y. Vardi -

s, then a eerthm- ‘

dependencles say that if a certain parttem of entnes appears
equality must hold. A full'dependency is.one in which r= “and
(2. 8). that is, one in which there are-no ex;stermal quanuners nnd
there is ‘only one atomic formula B, on the. nght-l.mnd sxde
dependency is of the form o St

(w:l X)((A A AA,,).;.B),.,. _

where each 4; is a relatlonal formula where B is.
multivalued, and join dependencies are all full dependenmes. ~We may refer:
to a dependency (2.8) as an embedded dependency, to emphasize that we are
allowing (but not requiring) existential quantlfters Note that in the case
of full’ dependencles, we would 'not gain anything by allowmg the possnblh-
ty of having several- atomic formulas on the nght-hand susle smee “such 'a
sentence is equwale*nt to a finite set.of- full dependenenes as we have de-

fmed them.

“The class of dependenele.lg was de{med mdependently by
authors, who usually focussed on the. um-r,elauonal case, (‘N%ﬁe that" the
only special case of a dependency that we have mentmned so far that is not
uni-relational is-the: inclusion: dependency.). Beeri and Var:h [BV*I] refer to
4th1s class as'the ‘€lass -of all niple-generating . and equaiﬂy—genemnng dependen—
cies. Fagm {Fad] focused on the typed, um-relat:onal ease, wh:eh he called
embeddeéd implicational dependencies. (with the full dependencles bemg “called
implicational dependencies). Y.annakakis and Papadumtrlou ‘TYP] defined
algebraic dependencies, which are built out_of expreaslons mvolvmg pfo]eC-
tion and join, and which, on the surface look very “different Fromr ‘our
first-order’ definition. It is somewhat surprising that their class (which is
typed) turns out [YP]'to be identical to our. typed, m'u-relat:onal dependen-
 cies. 'Paredaens and Jansseiis {PJ] defined. general degenden ; "wfuch are
' full, typed uni-relatiomal dependencies. . Also, ‘Grant and’ Iacobs IGJ]
) _dehned generahzed dependency constraints, which are full dependenclel

. An often heard’ claim:is: ehat, in_the "real world” one rn.rely encouriters

dependencies ‘in. their: most.general .form... A;:cordmg to this clainr FDs,
" '_‘INDs maybe MVDs are the only kinds of dependencles that eern the' title
~ «real world dependencies’”... We have two answers to thls clmm “First, we
‘believé that there ar¢ real-world situations that do requlre the more gener-
"~ al dependenc:es Even when the database 1tself can be speciﬂed by" FDs

2011 15&)_5 IFAX canon730i@rice.edu » Arnetta Jones 10137053

THEORY OF DATA DEPENDENCIES a1

user views of this database may not be specifiable by FDs [Fad, GZ].
Furthermore, even if only simple dependencies arise in practice, the mere
general dependencies are very useful theoretically. For example, state-
ments about equivalence of queries can be expressed by dependencies [YP].
We refer the reader to [Hu, Va3, Va5)] for more examples of the latter
argument.

3. The Implication Problem
3.1. Implication and finite implicatioﬁ

Logical implicarion is a fundamental notion in logic. Let X be a set of
sentences, and let 7 be a single sentence. We say that I implies 7, denoted
T Er, if every model of = is also a model of . In our context, 2= if
every database that satisfies all dependencies in I satisfies also +. For
example {4+B, B+Cl E A-C.

-

The relevance of implication to database theory became apparent in

} Bernstein's work on synthesis of database schemes using FDs {Ber]. Let X,
and X, be sets of dependencies. We say that Z, is equivalent ro Z,, denoted
Z,=32,, if every database that satisfies all dependencies in Z; also satisfies
all dependencies in 2, and vice versa. We say that Z, is redundant if
Z,cZ, and Z,=3,. (We use € to denote containment and < to denote
proper containment.) Clearly, = is redundant if there is some veZ such
that Z—{v] . Since Bernstein’s synthesis algorithm requires eliminating
redundant FDs , and since the problem of eliminating redundant dependen-
cies can be reduced to the problem of testing implication of dependencies,
the notion of implication became a central notion to dependency theory.
The significance of implication was reconfirmed in later works, e.g.,
[BMSU,Ri2].

In database theory we often like to restrict our attention to finite
databases, since in practice databases are finite. We say that I finitely
implies =, denoted Z |47, if every finite database that satisfies T satisfies
also 7. Clearly, if 2 |=7 holds then Z [z also holds. But it is possible that
Z g7 holds while 2 |rr does not. That is, it is possible that every finite
database that satisfies Z satisfies also 7, but there is an infinite database
that satisfies = but not r. Implication and finite implication lead o two

] 04/()4/2()711 _15:05 I_FAX canon?SQi@rl_c_(_a.egi__u__

i

Arnetta Jones i€1014/053

22 *Ronald;Fagin and Moshe V. Vardi ~—

decision problems. The implication problem is to decide, for a given set Z of

dependencies -and a single dependency r, whethcr 2 I--r. The Sir nite lmpilca- .
tiont -problem: is to decide, for a given.set Z .of dependgneies and a sm&le\
dependerncy r, whether I I=f-r -

Let X = {0y,...,9,}. Then Z =7 (Z |=}r) if and only if oIA...)\o,;At_-g_fr‘ig,
(finitely) unsatisfiable. (A sentence is (finitely) satisfiable if it has a
(finite) model, It is (finitely) unsatisfiable if it has no (finite) meodel.)
Since unsatisfiability is known to be recursivelyi-enumerabls. (Godel's
Compieteness Theorem), and finite satisfiability is ¢learly recursively
enumerable, it follows that the relatioﬁshii‘)‘s‘*l-i and [are: recursively
enumerable, Suppose now that for some class of dependencies = and F¢
are the same. . Then l= and b‘r complernent each other: and they-are both
recurswely enumerable It l'ollows fl'mt they are bothi“reécursive’ [Ro}
Indeed, the standard Lechmque for provmg solvabxhty ol‘ ‘the linphcatron
problem is to show that lmphcatlon and hmte 1mpllcahoﬁ coﬁlct&e. I

.- Dependencies are ¥*3* sentences, ie, they are equivalent to sentences
whese quanuher prefix consnsts of a strmg of umversal quant:fiers followed
by a_ string of existential quantlflers. Tl'lust alA..J\o A--r 1s a !‘9*?‘
sefitence, When Z, howem, consists of full dependenmes., then
o, Awio, A-7 is an:3*V* sentence. Thus, the (finite) |mpheatmn problem
for full dependencies is reducible-to:-the (finite) snmfiab;hty "'roblem for
J*v* sentences. This class of sentences is known as the. tmt;albv ex!ended]
‘Bernays-Schonfinkel class; For this class,. satisfiability | md finite satlshabih- IF
ty coincide,; and therefore ‘both are recursive [DG]. Thus, for full depen-
dencies;: implication: and. finite: implicatipn -coincide, and -are recursive.
Unfortunately, the satisfiability problem for-the Bernays~Schinfinkel class
‘require’ nondeterministic exponential time:{Le], and hence.is-highly intract-
able. Since the class of full dependencies is a proper subset of the class:of
universal sentences, one may hope that the implication problem for fuil
dependenc:es is not that hard We study this problem in‘Section 3.2.. .

" Eor snmphmty ‘we restnct ourselves ‘in the- sequel 46 - relatlonnl
dependencxes i.e., dependencies that refer to a smgle relatlon. o

3.2. The implication problem _t&.ﬁ :juq‘ aepenamaee

04/()42()11 15:06 IFAX__ canon730i@rice.edu

"‘\.‘,‘ﬂ'jj

-+ Arnetta Jones

THEORY OF DATA DEPENDENCIES 33

Since for full dependencies implication and finite implication coincide,
everything we say in this section about implication holds, of course, for
finite implication as well.

Even though the significance of implication was not yet clear in 1974,
it was studied by Armstrong [Arm], apparently just out of mathematical
interest. Armstrong characterized implication of FDs using an axiom systent.
An axiom system consists of axiom schemes and inference rules. A derivation
of a dependency 7 from a set £ of dependencies is a sequence 7y,7y,..,Tp,
where 1_ is 7 and each 7; is either an instance of an axiom scheme or
follows from preceding dependencies in the sequence by one of the infer-
ence rules. X |-t denotes that there is a derivation of r from £. An axiom
system is sound if Z |7 entails T, and it is complete if = [T entails Z |-r.
Armstrong’s system, denoted F@, consists of one axiom and three infer-
ence rules:

FDO (reflexivity axiom): FX-X.

FD1 (transitivity): X-Y, Y+Z | X=+2Z.

FD2 (augmentation and projection): X+Y F WZ ,if XeW and Y22Z.
FD3 (union): X-Y, Z+W | XZ-YW.

Theorem 3.2.1. [Arm] The system #@ is sound and complete for implica-
tion of FDs, [

(In fact, Armstrong proved a somewhat stronger result, which we shall not
discuss here. See [Fa3].)

Armstrong did not consider the algorithmic aspects of his axiom
system. This was done by Beeri and Bernstein {BB)], who were motivated
by the fact that one of the steps in Bernstein's synthesis algorithm [Ber] is
a test for implication. They were the first to phrase the implication prob-
lem. (Beeri and Bernstein called it the membership problem. In some papers
it is also called the inference problem.)

Let T be a set of dependencies, and let X be a set of attributes. The
closure of X with respect to Z is the set of all attributes functionally deter-
mined by X, that is, {4: Z FX=4}. Clearly, once we know the closure of X
with respect to Z, we can find out easily whether ZkX~4. Beeri and
Bernstein showed that the system #@ can be used to construct closures
very fast.

0157053

04/04/2011 15:06 IFAX canon730i@rice.edu > Arnetta Jones 1016/053
’ ' Lo I e = = a0 . L R WS e ST - IR

B

34 " Ronald Fagin and Moshe Y. Vardi .
-Theorem 3.2 2 [BB] 'I'he lmphcatlon probiem for FDs can be solved m
time O(n), where n is the length of the input. E]::m_ L
*A large part-of dependency theory since 1976 was devoted to studying
- ‘these‘twoaspects-of implication, i.e,, axiomatization and. complexity of the
" implication preblem: For exampls; shiortly alter the introduction of MVDs
" in 1976, they were axiomatized:by Beeri ¢t.al-[BFH], and .Beeri proved
- that implicatioen problem is sélvable [Bee).::Both: works tned to.get results
analogtvus to the results for FDs.. -
The axiom system Jt‘lfg comnsts ol‘ ‘one axiom- zmd thrw mi#rence
’ 'rules P S e :
MVYDG0 (reflexivity axibm): FX==VY, il YcX.
MVD1 (transitivity): XY, Y-+—Z | XZ-Y.
MYVD2 (augmentation): X-—Y |- XW-»YZ it ZcW:
MVD3 (complementatlon) X -H»Y IS X--»Z 1[XYZ = U and Fn’ZEX
Theorem 3.2.3. [BFH] The system #¥'® is sbuﬁcf and bémpleté'foff’immi’ca-
tion'of MVDs. 0 -

- We. note,.that Beeri et al. [BFH] also present a sound and compiete
axiomatization for FDs and MVDs taken together, Th,ls amomatlm‘tmn
contains all of the axiom schemes and inference rules for FDs and MVDs

- -separately that we have already -seen, along with two “‘mixed” rules, that
“ account for the interaction-of FRPs'and MVDsg.« ... S

The: arialogue of closure of am attribute set X is.now.not an __a.ttq"ipute
" set ‘but rdther a ‘collectioh™ of attribute -sets:- rhsy(X). = {¥: Z X~ T}.
Now rhsg(X) can contain exponentially many-sets; ard ‘hence is not very
useful algorithmically. However, using the system #%@ it is not hard to
. 4 venfy that rhsz(}'{) is a Bodlean algebra, ‘Furthermore, since.it is.a field of
flmte sets, it is an ‘atomic Boolean algebira, and every every ‘clement-is the
- umon of the atoms it ‘contains. * The sét of atoms of ‘this Boolean algebra is

" called the d’ependency ‘basis of X wnth tespect to-Z; denoted dépg€X). Thus
' depz(X) = {Y: Y40, ZpX—>+Y, and if T RX++Z, ZSY; and" z:;sw. then

Z =Y. -

i

s s ki e W e L

THEORY OF DATA DEPENDENCIES 35

Lemma 3.2.4. [BFH] depz(X) is a partition of U. Furthermore, Z B XY if
and only if there are sets Wl-"--Wm in deps(X) such that ¥ = Wlu...UWm.

Beeri [Bee] has shown how depy(X) can be constructed efficiently
using the system MYD,

Theorem 3.2.5. {Bee] The implication problem for MVDs can be solved in
time 0(n4). where n is the length of the input. O3

Beeri's algorithm was improved by Hagihara et al. [HITK), Sagiv [Sagl],
and finally by Galil [{Gal. Galil's algorithm runs in time O(n log n). These
papers and [Bee,BFH] discuss also the interaction of FDs and MVDs.

It is easy to see that Lemma 3.2.4 does not depend on X being a set of
MVDs. Thus, testing whether an MVD X-—7Y is implied by a set X of
dependencies can be done efficiently as long as deps(X) can be constructed
efficiently. This was shown in [MSY,Vad] to be the case when Z is a set of
JDs and FDs, and in [Val] for the case when = is a set of typed full depen-
dencies.

Theorem 3.2.6. [Val] Testing whether an MVD or an FD is implied by a set
of typed full dependencies can be done in time O(nz), where n is the length
of the input.

Let us refer now to implication of JDs. Aho et al. [ABU] described an
algorithm, called later the chase, to test implication of JDs by FDs.

Theorem 3.2.7. [ABU] Testing whether a JD is implied by a set of FDs can
be done in time O(n‘), where n is the length of the input. [

More efficient implementations of the chase were described by Liu and
Demers [LD)] and by Downey et al. [DST]. The latter algorithm runs in
time O(n? log *n).

The ideas in [ABU] were generalized by Maier et al. [MMS] to deal
with arbitrary implication of FDs and JDs.

Theorem 3.2.8. [MMS] The implication problem for FDs and JDs is solvable
in time O(n"), where n is the length of the input. O

> Ar’netta Jones

017/053

Ry W54 xwﬂxmyfaﬂmawxm_ —

04/04/2011 15:06 IFAX canon730i@rice.edu » Arnetta Jones 1018/053

36 ' ‘Ronald Fagin and Moshe Y. Vardl

"'The question then ‘arose whether the exponential upper bound of the
above theorem can be improved. UnIoztunately, Theorems %26 and 3.2.7
.probably describe the most general case for which an “efficient “deeision
procedure exists; Recall that a problem is NP-hard if it is as hard as any
problem that can be solved in nondeterministic pqunomial time. A prob-
lem is NP-complete if it is NP-hard and it can be solved in ‘nondeterriinis-
tic polynomiadl time. It is: belisved _that. NP- hard problems can not be
solved efficiently, i.e., in polyncmial time, ([GJ] is. a good fextbodk ‘6 -the
. theory of NP-completeness.) Thus, proving that a problem is NP-hara is
strong indlcatlor(that the problemls oompmunnally lntractable

Theorem 3.2.9. : '
1) [FT] Testing whether a set of MVDs implles a JD is NP hard
2) [BVS] Testmg whethdr a JD and an FD imply a JD is NP-complete (m]

- Thus, we know how to test. lmplmtlan of FDs aml JDS in expouenual

' time, and we know that:the problem-is NP-hard We do not Ko, howev-
er, how to pinpoint the. complexity of. thls problem " We do ‘not'knbw for
example whether testing implication of a JD by a set of MVDs cin be'done
in nondeterministic polynomial time. One approach to the probiem ‘wds to
try to ‘find 4 axiom system-for FDs and JDs. Surprisingly, even for JDs
alone finding a axiomt syﬁom is extremely chff:cult (seé fBVI BVS §c3])

NP-completeness strongly suggests, rather than proves' ‘thdt s 'problem

" is intractable (i.e., it proves: dntractability, under the assumption that there

are problems that can be selved in- nondetermlmstic polynomial time but

_mot in deterministic polynomial time). ‘In contrast, EXPTIME-

completeness is’' d -proof - that-a' problem is intractable. A problem is

EXPTIME-cormplete¢ if it can be solved in exponent:al time aﬁd it'is"also as

_ ‘hard as any problem that can be solved in exponentlal time. Sifice it is

known that there aré problems that can be solved in exponential time and

in fact do require exponential time, it follows that EXPT‘fME‘cbmplete
problems require exponential time.

i, e g SRR b

" Theorem 3.2.10; [CEM2] The implication problem for typed full dependen-
cies is EXPTIME-complete. :[3-- - o

'Intere:tmgly, Beeri and Vardi-presented an eisgant axiom system for typed
full dependencies. [BV4]. This: domonotratu that thero‘“is no ole@r relation-

. “4__()"42()1_1 15: 06 IFAX canon730i@rice.edu » Arnetta Jones €1019/053

o= —_

#
&

THEORY OF DATA DEPENDENCIES a7

ship between having an axiom system for a class of dependencies and the
complexity of the implication problem for that class.

In conclusion of this section, the reader should keep in mind that the
above lower bounds describe a worst-case behavior of the problems. It is
not clear at all that this worst-case behavior indeed arise in practice. We
shall return to this point in Section 5.

3.3. The implication problem for embedded dependencies

While for full dependencies the implication problem is clearly solvable
and the questions to answer involve upper and lower bounds, this is not so
with embedded dependencies, since satisfiability and finite satisfiability do
not coincide for the class of 3*V*3* sentences, and the corresponding
problems are both unsolvable [DG]. Thus, we have to deal here with both
implication and finite implication and their corresponding decision prob-
lem. Since the class of dependencies is a L. 5per subset of the class of V*3*
sentences, one may hope that the (finite) implication problem for embed-
ded dependencies is solvable.

-
7

The first disappointing observation is that implication and finite
implication do not coincide for embedded dependencies.

Theorem 3.3.1. [CFP,JK] There is a set = of FDs and INDs and a single
IND r such that Z =7, but Z E 7.

Proof: (a) Let = be {4-+B, AcB}, and let v be BSA4. We first show that
= k7. Let I be z finite relation satisfying 2. We now show that I satisfies
r, that is, /[B1cI[4]. Since I satisfies A+ B it follows that | I[B]| < 714]].
Since I[d]s/[B], it follows that |I[4]]| s |f[B]|. Thus, |7[4}| = |1[B]].
But since I[4]</[B] and since both I[4] and IB] are finite, we than have
I[B] = I[4], so I[B]cH[A]. This was to be shown.

To show that = ¥ 7, we need only exhibit a relation {necessarily infi-
nite) that satisfies = but not 7. Let [be the relation with tuples f(i+1,i):
i>0}. It is obvious that I satisfies Z but not . (O

One may think that this behavior is the result of the interaction between
tuple-generating dependencies and equality-generating dependencies, but

04/()4/2()11 15:06 IFAX canon7301@rlce edu > Arnetta Jones €1020/053

- ,M.‘J m’;u‘!) m&&wwﬁ‘-c“ ¥ -""‘ ; o .] - "'.‘.._;.“.-;»I;:.; R :

U L

T | Ronald Fagin and Moshe ¥. Vaidi W,

an exainple in (BV7] shows that even for tuphzgﬂneratmgdeggndeacles the
two notions of implication‘and finite-implication differ... - i

' The snmpleaﬂnstance of- embedded-dependenecies are the EMVDs. The
~ (finite) implication ‘problein for EMVDs:. has- resisted efforts. of many
researchers, and is oné ‘of the mest:outstanding open: probh:ms in depen-
dency theory. A significant part ‘of-the- research in. this area has been
motivated by this problem. For example. underlying the search for blgger
and bigger classes of dependericics was the hope.that for. the larger class a
~_ decision procedure would be apparent, while the specialization of the
- a[gonthm Yo BMVDs was too murky: to-be-visible: “Also, underlying the
‘work on axicfiatization was the hope that an-axiom system, may lead to a
rdems:on procedure ‘just as the axiom systems:for. EDs: and MVDs. led to
decmon procedures for these classes of dependbnelas

A

" ‘Maier et. il [MMS] saggeawdan extension of the ch:ase to deal wnth 1
J’Ds and this wasfurther generalized by Beeri and. Var(h [BV2] to arbl- ;
'-trary dependerncies.’ -Unfortunately, - ‘the -chase may not termmate for
embedded dependencies. It was shown, however, that the chase is a. pmof

_ pmcedure for implication. That is, given Z and 7, the chase will give a
" positive answer if T =% but will not- terminate if-3 ¥ r. Furthermore, Beeri ,
and Vardi [BVA] al§6 preserted: a sound :and .complete axiom. system for i
typed dependencies. Nevertheless, all these did not seem to lead to a |
decision procedure for implication. In- 1980 researchers started. suspecting]
that the (finite) implication problemr- for. -embedded dependencles was '
unsolvable, and the first result in this direction were announced in June
1980 by two mtfepéndent teams.. .. . - F

" Theorem' 3.3.2. [BVGCLMJ] ‘The: mphesman and -the: fnnte 1mphcat10n
' ‘problem for tuplei-gemi'atmg depmdmeies munsolvable, ‘_,_E]L.;

This result is disappointing - ospecnlly wlth regard to ftmte 1mphcatlon
which is the more interesting notion. As we recall, béf is recursively
' -@nuoimerable. Thus, if kg is not-recursive, then it is:-not_even. recursively
" ‘enurnerable, - That means:that there is .no. sound and complete axiom
system for finite implication.

* Both proofs of Theorem 3.3.2 seem to use untypedness in a very strong
"way, and do fiot carry ever:to tho-typed case. Shortly later, however, both

04/04/2011 15:06 IFAX canon730i@rice.edu -+ Arnetta Jones

T T ..)

0217053

R S S P SR DRI SR PR —

THEORY OF DATA DEPENDENCIES 39

; teams succeeded in ingeniously encoding untyped dependencies by typed
! dependencies.

|_ Theorem 3.3.3. [BV7,CLM2] The implication and the finite implication
problem for typed tuple-generating dependencies are unsolvable. [J

As dependencies, EMVDs have four important properties (see for
example (2.3)):

(1) they are tuple-generating,
(2) they are typed,
(3) they have a single atomic formula on the right-hand side
of the implication, and
(4) they have two atomic formulas on the left-hand side of
the implication,

Dependencies that satisfy properties (1), (2), and (3) above are called
rempl}.ite dependencies, or TDs [SU]. Thus, EMVDs and EJDs are in particu-
lar TDs. Since Theorem 3.3.2 covers properties (1) and (2), the next step
was to extend unsclvability to TDs.

Theorem 3.3.4. [GL,Va2] The implication and finite implication problems
for TDs are unsolvable. [J]

In fact, Vardi [Va2] proved a stronger result: the unsolvability for the class
of projected join dependencies. A projected join dependency (PJD) is of the
form M[X,,...X,]x, where XsX v...vX, sU. It is obeyed by a relation I if
nNxl1= W™ {x]..... /(X]}[X]. For an application of PIDs see [MUV].
PJDs extend slightly JDs, since if X = X v...uX;, then the PJD
M [X;,...,Xz]x is equivalent to the JD P4 [X{.....X;]. Thus the class of PJDs
‘jes strictly between the classes of EJDs and TDs. The implication and
finite implication problems for EJDs are, however, still wide open.

Even though the existence of an axiom system for a certain class of
dependencies does not guarantee solvability of the implication problem,
finding such a system seems to be a valuable goal. In particular attention
was given to k-ary systems. In a k-ary axiom systems, all inference rules
are of the form 7,,...,1, I 7, where n<k. It is easy to verify, for example,
that the systems #2 and .#¥% @ in Section 3.3 are 2-ary.

0470472011 15:06 IFAX canon7301@rlce edu

» Arnetta Jones 1022/053

RIEEES J(rbf.ﬂfnuaﬁ‘ﬁ;ﬂ.%&ﬁ“'

a0 ‘Rouald Fagit and Moshie:Y: Virdl - ~

Theorem 3.3.5. [PP,SW] For all K50, there is- no sound and complete k-ary
axiom system for implication and finite implication of EMVDs. [] " - ..

" Weé'teter the reader to {BV4,Va2]: for a-discussien regardmg the existence
of a non-k-ary axiom system for EMVDs.

== Liet"us refer now to what some. pepple belicve are the only “practical”
dependencies, FDs and INDs.) ‘

Recall that FDs are full dependencles. 50 lmplieatlon and finite impli-
cation coincide and both are solvable (and by Theorem 3.2.1, quite effi-
ciently). INDs, on the other hand a.re embedded dependencles, 50 a
straightforward application of the chase does not yxeld a decision proce-
dure. A more careful analysls. however, shows that’ the chase can be
forced to terminate.

Theorem 3 3 .6. [CFP] The |mphcatmn and " finite lmplieatlon problem for
. INDs. are equwalent and'are PSPACE-comp}ete El R -

(PSPACE-complete problems are prol;ﬂems that can. be solved usmg cmly
pelynomial space and are hard as any problem that can be solved using
polyniomial space. "It is believed:that this' probloms can, not be. solved in
polynomial time {GJ].) : -

- Let us consider -now implication. of arbitrary dependencles by IND-.

Sinte ‘containmerit of tableaux. [ASU] can be. expressed by dependencxes

[YPl, a test for implication :of dependencies by INDs is also a test for

- -containment of conjunctive. quenea under-INDs. . We do not know ‘whether

" “jmplication-and finite implication coincide in this case.’ We have, however,
Sla posﬁave result-for unphcatton. -

a1

Theorom 3.3.'[K] Testmg impheatlon of dependenmes by Il'st is
PSPACE-complete O

,The flmte 1mpl|catlon p’roblem for tlﬂs case is* stlll open

‘ " Casanova et al. [CFP] mVestigated -the mtmehon of FDs and INDs
__and they discovered that things: get mote complicated when. both kinds of
dependenc:es are put ‘together. - t, they: showed. that - implication and
" finite implication’ are different: (&hmﬂ‘r 3.3.1). In addition they showed

15:06 TFAX canon730i@rice.edu

» Arnetta Jones 1023/053

THEORY OF DATA DEPENDENCIES 41

that there is no sound and complete k-ary axiom system for implication-
and finite implication of FDs and INDs. (Mitchell [Mil], however, has
shown that in a more general sense there is a k-ary axiom system for
implication of FDs and INDs.) In view of their results, it did not come as a
surprise when Chandra and vardi and, independently, Mitchell proved
unsolvability.

Theorem 3.3.8. [CV,Mi2] The implication and the finite implication prob-
lems for FDs and INDs are unsolvable. O

Some people claim is that in practice we encounter only INDs that
have a single attribute on each side of the containment, e€.g.,
MANAGERCSEMPLOYEE. Such INDs are called unary INDs (UINDs).
Reviewing the proof of Theorem 3.3.1, we realize that even for FDs and
UINDs implication and Ffinite implication differ. Considering our experi-
ence with dependencies, this looks like a sure sign that the problems are
unsolvable. The next result by Kannelakis et al. comes therefore as a
refreshing surprise.

Theorem 3.3.9. [KCV] The implication and the finite implication problem
for FDs and UINDs are both solvable in poiynomial time. []

For other positive results for INDs see [KCV,JK,LMG].

In conclusion to this topic, we would like to meltion an argument
against the relevance of all the above unsolvability results. The assumption
underlying these results is that the input is an arbitrary set 3 of dependen-
cies and a dependency 7. The argument is that the given set X is supposed
to describe some “‘real life” application, and in practice it is not going to be
arbitrary. Thus, even if we concede that TDs arise in practice, still not
every set of TDs arises in practice. The emphasis of this argument is on
“real world sets of dependencies”, rather than on “real world
dependencies”. For further study of this argument see [Sc1,5c2]. While
we agree with the essence of this argument, we believe that the results
described above are useful in delineating the boundaries between the
computationally feasible and infeasible. This is especially important, since
we do not yet have robust definitions of real world sets of dependencies.

4. The Universal Relation Model

et

0470472011 15:07 IFAX canon7301@rlce edu

ir «FEY

~» Arnetta Jones 1024/053

— .«-‘-.',-. -‘--—*f-

iz . . * “Ronald Fagin and Moshe Y. Yardi N

4 l fMotwatwn

A primary]ustlfwatlon gwen by Codd for the ‘iritroduction of the
rélational modél was his view that earller models were not adequate‘to the
task of boosting the productivity of programmers [Col Co3).” Oné of his

stated motivations was to free the application programmer and ‘the end
user from the need to specify access paths (the so-called” “nnwgatmn

‘" problem™).; A second motivation was to. eliminate the need for program
modification to accommodate changes in the dntabﬁse structure 1e to
ehmmate access path dependence in programs.

- After a few-years. of expenenee w:th relational datab‘ase management

" systems, it was realized [CK] that, though hemg a mgm‘ﬁeant step forward,
the relational. model by itself . t'a.;ls to achieve eomplete freedomi from
- “ysarssupplied navigation and from- access pa.th dependence “The' refational
- fiodel was successful in.removing the need for phys:cal navigmion. 0 ‘access
* pathis need to be specified. within the stornge structure ‘of & smgle ‘relation. ;
Nevertheless, the relational model has not yet provnded independenee from
logical navigation, since access paths among several relations Tiust still be

- gatisfied.

For example, consider a database that has relations” EB(Employee,
Department) and:DM{Department,. Manager). If we are interested in the
relationship between employees and managers through departments, then
we have to tell the system to take the ,am of the ED and DM relations and

" to project it on the-gitributes EM. . Thm is. of course an access path specifi-
* cation, and if the database were to be reorgamzed to ﬁave a sfngie relation
: EDM, then any programs using. this. aeeees pnth wouIﬂ have to be modif;ed
' -ﬁaeeordlngly

- The umverml retatxan model alms at ac]uevmg complete’ ‘detess path
independence by letting us ask the system in an appropnate language “tell
us about employees and their managers) expectmg the system’to figure
out the intended-access path for itself, Of course, we cannot -expect the
system to always select. the mtended relatnonshnp bétweeh' emp}oyees and
‘managers autgmatteally, because the user rmght have something other than

- the simplest relationship, the one through departmefits; in'inind, e.g., the
manager of the manager of the ernployee We shall, ifi'a universal relation
_ gystem, have to settle for eliminating the need for logicn.l navngatlon along

15:07 IFAX canon730i@rice.edu

» Arnetta Jones 1025/053

THEORY OF DATA DEPENDENCIES 43

certain paths, those selected by the designer, while allowing the user to
navigate explicitly in more convoluted ways.

Unlike the relational model, the universal relation model was not
introduced as a single clearly defined model, but rather evolved during the
1970's through the work of several researchers. As a result, there have
been a significant confusion with regard to the assumptions underlying the
model, the so-called “yniversal relation assumptions”. We refer the reader
to [MUV], where an attempt is made to clarify the situation.

In this and the next section we restrict ourselves to finite databases.
4.2. Decomposition

The simplest way to implement the universal relation model is to have

the database consist a universal relation, i.e., a single relation over the set U

of all attributes. There are two problems with this approach. First, it

) assumes that for each tuple in the database we always can supply values

§ for all the attributes, €.5., it assumes that we have full biographic informa-

tion on all employees. Secondly, storing all the information in one univer-

sal relation causes problems when this information needs to be updated.

These problems, called update anomalies, were identified by Codd [Co2].

The solution to these problems is to have a conceptual database that

consists of the universal relation, while the actual database consists of

relations over smaller Jets of attributes. That is, the database schems

consists of a collection R = {Rl.....R k! of attributes sets whose union is U,
and the database consists of relations Il.....I x» over R 1,....JR K respectively.

A principal activity in relational database design is the decomposition
of the universal relation scheme into a database scheme that has certain
nice properties, traditionally called normal forms. (We shall not go here
into normalization theory, which is the study of these normal forms, and the
interested reader is referred to [Ma,Ul].) More precisely, starting with the
universal scheme U and a set of dependencies s, we wish to replace the
universal scheme by a database scheme R = {Rl,....Rk]. The idea is to
replace the universal relation by its projection on RyseeniRg- That is, instead
of storing a relation I over U, we decompose it into I; = IRy, oo I
= I[R.], and store the result of this decomposition. The map Ag defined
by Ag(l) = $ITR 1],...,I[JR k11 is calted the decomposition map.

T Ll

04/04/2011 15:07 IFAX canon?S()i@r'ice._edu » Arnetta Jones 1026/053

“ " Ronald Fagin and:Moshe ¥. Vardi . N

Clearly, a decomposit'ioﬁ’ cannbt bé useful unless no logs of informa-

tion is incurred by decomposing thié universal relationr. (This. is. called in

" [BBG] the representation prmc:p!e) That is, we must be able to reconstruct I
‘from Iy,....J;. Mere preclsely, the decompasltitm ‘itap-tias-to be injective.
For our purposes it sufflces that the detontposition: map is injective for
relations that satisfy the. gwen set 2 ‘of dependeﬁmes ‘In thiy; case we say

~ that it is injective. with. re:.pect ‘to Z. Wheen the decompesition. map is
injective it has a left mverse called the réconstrisction -map. : The basic
problems of decomposition theory are to formiifate necessary: and. sufficient R
‘conditions for-injectiveness and to find out about the reconstruction map.

[

The natural candidate for the reconstruction map is the join, i.e.,

I=I; M. .. M I, The naturalness of the join led many:tesearchers to the
‘belief f‘t‘hat if the: reconstruction map exists then it is necessarily the join. i
* This*belief ‘was refuted by Vardl [Va3] who consti‘umd ‘gn exdinple where L
~ the decomposition map is. mJectlve but ‘the tecotstructi :

ction map is not the
" join. Itis also shewn in [Va3]._, how 'to express ‘injectivenéss as a-statement ’ i
"“about implication of. dependenmes Unfor%ﬁna’tel?‘, eéven when -3 censists of ot

full dependencies, that statement mvolves also inclasion ‘dependencies. It is
‘-not known whether there is an effectwe test for mjectwenéss —-

G

If we insist that the 19m be the reconstruﬁian mup; themwp can get a
stronge’r result, , . QRN . e

- Theorem 4.2.1. [BR MMSU] Let 2 be a set of*dép‘mdvenc:es &nd let Rbea
- ‘database scheme. Ap is m}ect:ve with' respéct to~Z with the join as the
reconstructmn map if and only if S MR]1T- :

*Thus,:if eonsmts of full dependenci’"es then “We can: eﬂeetweiy test wheth-

Another deslrable property of detﬁompa@itlms s mdependence [Ril].
Intuitively, mdependence means that the relations of the.database can be
updated mdependently from each other. For' further -investigation of the
relationship between m]ectweness am:l mdepbndenoe see [BH, BR, MMSU,

© Va3 . - o

A point ‘that should be" brought up s that. deeomposmon may have
some dlsadvantages. Essentlally, decomposmon may - make it easier to

[
ot
R

.,..,04/0.42,%1 15:07 TFAX canon730i@rice.edu

gt

-+ Arnetta Jones

S T R L

THEORY OF DATA DEPENDENCIES %

update the database, but it clearly makes it harder to query it. Since the
join operation can be quite expensive computationally, reconstructing the
universal relation may not be easy even when the reconstruction map is
the join. In fact, even testing whether the relations of the database can be
joined without losing tuples is NP-complete, and hence, probably computa-
tionally intractable. Let the database consists of relations I....I, over
attribute sets Rl....,R k. We say that the database is join consistent if there is
a universal relation I such that I ;= IR i]' for 1gj<k. (Rissanén [Ri1] calls
a join consistent set of relations joinable. A join consistent database is also
called globally consistent [BEMYY), joir compatible [BR], valid [Ri3], consistent
[Fa6), or decomposed [Va3].) It is easy to verify that the database is join
consistent if ;= M {Il....,Ik}[R}-], for 1gj<k.

Theorem 4.2.2. [HLY] Testing whether a database is join consistent is
NP-complete. U]

Thus there is a trade-off between the ease of up:ating the database
and the ease of querying it. The smaller the relation schemes, the easier it
is to update the database and the harder it is to query it. Recognizing this
trade-off, Schkolnick and Sorenson investigated what they called denormali-
zation [SS). The idea is to decompose the universal scheme with both the
ease of updating and the ease of querying in mind, The result of the
decomposition depends in this approach on the predicted use of the data-
base.

4.3, The Universal Relation Interface

Suppose now that decomposition has been achieved. That is, assume
that, starting with the universal scheme U and a set 2 of dependencies, we
have designed a database scheme R = {Rl.....Rk}. and we now have a
database I = {I,.,/;} over R. Two questions have now to be resolved: how
to determine whether the database is semantically meaningful, i.e., satisfies
the given dependencies, and how to respond to the users’ queries that refer
to the universal relation. If the database is join consistent, then we can
construct the universal relation such that Ag(f) =L But if the database
is not join consistent, then there is no corresponding universal relation.

We outline here one approach to the problem, called the weak univer-
sal relation approach. (This approach was suggested by Honeyman [Ho]

lg]027/053

04/04/2011 15:07 IFAX canon730i@rice.edu > Arnetta Jones I028/053

BT AL 5 & P 5 i s

16 'Ronald Fagin and Moshe V. Vardi

“dnd further developed in [GM,GMYV MUV']; For other apprdaches and
" their relationship. to the weak . universal relatlon ‘approdch see
[GM,GMVMRW MUV}.) According to, thls approach a “universal relation
“exists at lTeast in-principle, even though lt may not ‘be known. The data-

- base is seen, from this;»iewpoint, as a partlal speclftcahon of the universal

~ relation. More precisely; the: relations II....,I,C are part!al descriptions of
the projection. of the universal relatlon I on the relauon schemes' Rl, Ry-
“Thus-a universal relation: / is con51dered to be a weak umversa! relation for 1

" with respect to Z-if it satisfies Z and g .SI[R }] t'or 151<k T'is consistent
with T ie., semantically meamngful it 1t has a weak umversal relation

with respect to Z.

The above definition is existential in nature and does not lend itself to

an effective test. The consistency problem is to decide, for a gwen set T of
_dependencnes and a database I over a database schemie R, whether I is i
consistent with-Z. -

"Theorem 4.3,1.. :
1) [GMV} The conswtem:y problem for embedded depend’enmes is unsolva-
ble. :
2) [GMV] The consnsmncy probiem for fuﬂ dependenéres 5 BEXPTIME-
- complete. | -
3) [Ho] The consnstency problem for FDs is solvable in polynomlal time.
O o

Thus, for embedded dependencies‘ there is no effective test for consistency,
‘for full dependencies there is an effective though intractable test, and the
*'good news is that.fer FDs there isa polynorma] time tESt for consistency.
" We -note’ that .the presence of the mdependence property, mentioned is
Section’ 4.2, may make it easier to test for conststoncy We refer the
reader to fC€M ;Gr2,6G%;Sa] for the study of lﬁdependence in the context of
the weak universal relation approach .

- We now -refer to the issue of cp.leryr answen‘ng “-For simplicity we
restrict - ourselves to .queries of the form “gwe mie the refationship between
employees and managers™. More preclsely,::tiie”qnery isia-set- X of attrib-
utes, and the desired apswer is the so-called basic relationship on X. 1f we

" had’a unigue-universal relation I, then answer would’ nndoubtedly be I X].
But in our case we have only weak umversal relations; ‘4hd we ‘clearly have

04/04/2011 15:07 IFAX canon730i@rice.edu o » Arnetta Jones 029/0'53

THEORY OF DATA DEPENDENCIES 47

infinitely many of those. Since we cannot know which of the possible
universal relations actually represent the “real world* at a given moment,
we assume that the only facts that can be deduced about the ynjversal
relation from the database are those that hold is all weak universal rela-
tions. This motivated researchers {IMUV,Ya] following [Sa]) to adopt the
following definition. Let weak(I,Z) be the set of all weak universal rela-
tions of I with respect to Z. We can see this set as the embodijment of the
i information represented by the database [Me). The answer to the query X,
denoted I[X], is therefore taken to be N {[X] : Jeweak(I,=)}. Note that the
answer is with respect to =,

The above definition does not seem to lead to an effective procedure
for computing I[X].

Theorem 4.3.2.
1) [GMV] Computing answers with respect to embedded dependencies is

unsolvable.
2) [GMV] Computing answers with respect to full dependencies is
- 3 EXPTIME-complete.
3) [Ho} Computing answers with respect to FDs can be done in polynomial
time, [J

We refer the reader to [Gr3,MRW,MUV,Sag2,Sag3,Ya] for further study of
query answering.

We conclude this section by considering again the questions raised in
the previous section. There we started with a universal relation 7 and
applied the decomposition map Ay, to get the database
Ag(l) = {I[R!],...,I[Rk]}. Suppose now that we pose the query U to this
database. In this case we would expect our query answering mechanism to
be the desired reconstruction map, i.e., we would expect I = Ap(DIU].

Theorem 4.3.3. [MUV] The following two conditions are equivalent:
1) Z = M [R].
2) I = Ap(N[U], for every universal relation J that satisfies =. (]

In other words, if our query answering mechanism happens to be the
reconstruction map, then for join consistent databases it is actually the
join.

04/04/2011 15:07 IFAX canon730i@rice.edu » Arnetta Jones I030/053
v e et g Mk Sl glintrias g St} SATEIE s

48 7o RodaldFagininé Moshe ¥. Vardi

-1 Aeycih: ﬂambasesehemts

- In the:last few yea;rs. ﬂcychc d&tabase sehemes I'nwe bﬂsn mtseduced
- and studied JBEMMUY]. - The idea is:to view database schemes as-hyper-
~graphs. . A hypergraph is @ pair (¥, 8); -where ¥ is a finite set-of nedes, and
- &g a set of edges:(or hyperedges), which-are arbitrary nonempty-subsets of
- . +An-ordinary . undirected -graph - (without self-loops).is, of .course, a
- -hypergraph: where. every- edge: has -exactly two nodes.. We shall -identify a

- . hypergraph by caly mentioning its edges; and tacitly assume:that the nodes

are precisely those that appear in some edge. - We can then-view a database
scheme as a hypergraph where the relation schemes are the edges. The

- hypergraph’ of Figure. 5.2 corresponds to.the database seheme of Figure 5.1.

The correspondence should be clear: for éexwmple, there. is a
[SUPPLIER,PART,COST} edge in the hypergraph of Figure 5.2 because.of
the {SUPPLIER PART COST} relatmn scheme in thure‘ 5.5 and SOYON.

Unlike the situation for ordmary undnrected graph;, uie.re .are a
~-pumber. of inequivalent, natural definitions of -aeyclicity for hypergraphs.
The type of acyclicity (due to [BFMMUY]) which -we.shall fecus-on:in this
section ican e defined by a-generalization. of-ene-of -the usual definitions of
acyclicity for ordinary undirected graphs. In particular, an..etdinary
undirected graph is acyclic in the usuval sense if and only if, when consid-

-+ gred-as a hypergraph, it is acyclic.tndeor-our definitien. . - B

A number of basic, desirable properties of relatlonal database

.. schemes turn-cut to be-equivalent-to acyslicity. These properties were

: defined and studied by a-number of researchers; in.quite different con-

texts. Itis somewhat remarkable-that alt of these properties.are equiva-

‘lent. - We describe -here only a.few .of these properties. -For a more com-

- -plete- survey; see-[BEMY;. Fas; Fa6k: .Furthermore, there are: _;fg&lments

that the .class: of acyclic: databese -schemes are. natural from .a semantic
point of view [Lx Scl]

There is a sunple efflclent algonthm for determmmg aeyclm:ty For
this paper, ‘we shail simply:take this-algorithm.as defining acyclicity. The
algorithm is called Graham’s algorithm, in honor of Marc Graham, who

_ showed [Gr1] that if a hypergraph was aggepted by his algorithm, then this
- was sufficient to'imply. a certain niee database property. : Grahams algor-
ithm was also defined, independently, by Yu and Ozsoyogh [YO).. .

b

@

04/()4/2()11 15:08 TFAX canon730i@rice.edu -+ Arnetta Jones

)

S e s o i b g b e i s oD A A mam e om0 L

THEORY OF DATA DEPENDENCIES 49

‘The algorithm proceeds by applying the following operations repeat-
edly, in any order, until none can be applied:

(a) if a node is isolated (that is, if it belongs to precisely one
edge), then delete that node; :

(b) if an edge is a subset of another edge, then delete the first
edge.

The algorithm clearly terminates. If the end result is the empty set, then
the original hypergraph is acyclic; otherwise, it is cyclic.

As an example, let us apply this algorithm to the hypergraph of Figure 5.3.
Somewhat surprisingly, it turns out that this hypergraph is acyclic, even
though it seems to contain a “cycle’”; we shall come back to this point

later.

We begin the algorithm by writing the edges, one underneath the
other:

A B C

C b E
A E F
A c E

(For convenience, we have put common vertices in the same columa.)

We begin by deleting the isolated nodes B, D, and F. We are left with:

A C

c E
A E
A C E

Since the first (AC) row is contained in the last (4CE) row, we now delete
the first row:

0317053

04/04/2011 15:08 IFAX canon730i@rice.edu

1032/053

o T et
B R R o SRR B LA

50 " Ronald Fagin and Moshe Y. Vardi

We now delete the new fmtandsgcondrowa,smoe eachxscontamed in
the new third row. We are left with a single row: - S

We now delete the isolated nodes. 4, C, and E. We 4re.then left with the
empty set. Since the algorithm terminates with the empty set, the hyper-
graph of Figure 5.3 is acyclic. .

It is instructive to see an éxample in’ which thie hpergraph is eyclic.
"I:‘h.ils;,_ti;ng, we apply the a!g‘qrithm‘to the hypergraph of Figure 5.4. This
hy';';g_;'ggaph,l.contaiipg three of the four edges ‘of the hypeérgraph-of Figure

5.3. T'hera‘lgdri}l‘fnﬁiﬁgihé with

-A B C
C D E
A - BF

After deleting the isolated nodes B, D, and F, we are left with:

A N 44
' c E
A - o E 5

“Fhe algorithm now- halts, since no node is isolated and no row is a subset
of another row. Since what is left is not the empty set, the hypergraph is
‘eyelic. : o : o

Note that the acyclic hypergraph of Figure 5.3 has a cyclic subhyper-
graph, namely, the hypergraph of Figure 5.4. (A subhypergraph of a hyper-
graph is simply the hypergraph consisting of a subset of the edges.) This
counterintuitive phenomenon does not happen with ordinary graphs: that
ig, it is not possible for a subgraph of an ‘ordinary acyclic graph to be

" eyelic. Later, we shall.mention another type of acyclicity for hypergraphs,
where this counterintuitive phenomenon does not occur. o

A simple analysis of a natural implementation of Graham's algorithm
shows that it can made to run in cubic time. We remark that Tarjen and
Yannakakis [TY] have recently obtained 3 a lincar time algorithm for
determining acyclicity. ‘7

0470472011 15:08 TFAX canon730i@rice.edu -+ Arnetta J
4 T e e sl e e me ok - Aarnetta Jones 40337053
St faid s binas A P .

- e

LE

THEORY OF DATA DEPENDENCIES 51

We now discuss a particular desirable property of database schemes
that is equivalent to acyclicity. Recall that a database is join consistent if
there is a single universal relation such that each relation in the database is
the appropriate projection of U.

We say that a pair of relations is join consistent il the database
consisting only of these two relations is join consistent. Let ‘us say that the
two relations are f;, with attributes R, and I,, with attributes R,. Let
X=R,nR,. Thus, X is the set of attributes that 7, and I, have in common.
It is easy to see that I} and I, are join consistent precisely if 7;[X] = L[X],
that is if they agree on their common part. Let us say that a database is

pairwise consisient if each pair of relations is join consistent. It is clear
every join consistent database is pairwise consistent. It would be very nice
if the converse were true, since then there would be a simple test for join
consistency, namely, pairwise consistency. Unfortunately, however, the
converse does not hold. For, it is easy to verify that the database of Figure
5.5 is pairwise consistent; however, it is not hard to see that it is not join
: i:? consistent. In fact, we already knew that there could be no simple test for
o join consistency, since, as we noted earlier, determining join consistency is
an NP-complete problem [HLY].

However, in the acyclic case our desired converse holds, that is,
pairwise consistency and join consistency are equivalent.

Theorem 5.1. [BEMY] If the scneme is acyclic, then a database is join
consistent if and only if it is pairwise consistent. (m|

Can there be any cyclic schemes for which join consistency and
pairwise consistency are equivalent? The answer is no,

Theorem 5.2. [BFMY] If the scheme is cyclic, then there is a database that
is pairwise consistent but not join consistent.]

Putting Theorems 5.1 and 5.2 together, we see that a scheme is
acyclic if and only if every pairwise consistent database is join consistent.
Thorefore (using also the fact that join consistency implies pairwise con-
sistency), it follows that a scheme is acyclic if and only if checking pair-
wise consistency is an algorithm for testing join consistency. This is an
example of a desirable database property that is equivalent to acyclicity.

04/()4/2()11 15 08 IFAX canon7301@rlce edu

..{.«.

3t

P L]

-+ Arnetta Jones

T
:.P“u aEa ! e

52 Ronald Fagin and Moshe Y. Van:ii

There is one viewpoint on what we have just discussed that should be

" emphasized. In the unresiricied case {where we do- not assume acyclicity),
"'testing join consistency “is’ an - ‘NP-complete problem.. However, in the
" aeyelic case, there'is a* ‘polynomial-time algorithit fer testing: jein consisten-

cy (namely, testing pairwise consistency). ‘This gives us an example of an
NP- hard problem that has a polynomial-time algonthm if the scheme is

;aeYchc We shaﬂ mentwn ancrther such ex&rﬁple soon.

We now consider another condition 'which is equiv&bent to ‘acyclicity
of a hypergraph The ’]om dependent:y N[X’l, ..., Xi] is said to: be acyclic

- precxsely if the hypergraph wnth edgefs XI, o X, 1&"&%‘:?%1@.‘ :

'Theorem 53. [FMUT A Join dependency is acycllc 1f md on}y if it is*equiva-
lent to a set of multtvalued dependencles o T —

It is known [BFMY] thér’an acy¢lic join &eﬁeﬁdency MRy, ..., R,]

'hls in fact equwalent to a set “of at most nif multiviliied - dependencles
‘__,‘(where n is the number of R;'s). Furmer the constructiting in {BFMY)
_ show that there is a polynonual tlme aIgonthm for ﬁh&ing such a set of n-1

multivalued dependencles As an example “the- aéyﬁﬂc join* dependency
M [4BC, CDE, EFA, ACE], which corresp‘onds to the acyélie’ hypérgraph of
Figure 5.3, is equivalent to the set {AC‘---DEF CE---ABF AE-=»BCD?} of
multivalued dc:pendencles

Beeri et al, [BFMY] and Goodman and Tay [GT] conslder the con-
verse question, of when a given set of MVD; 1s equ:valent to some JD. In
particular, Goodman and Tay give a polynomnal-ume algorithm for an-

--gwering this question, -

We can now give another exampie of an NP-hard probléin which
acyclicity rends tractable. . The problem of. deciding. whether a set of typed
full dependencies implies a - JD is NP-hard; in fact, as noted in Theorem
3.2.9 above, this is even true if all of the typed full dependencles are

" MVDs. However, if the join dapendency is acychc then there is a

polfy’nommi time alger:thm

" ‘Theorem 5.4. Tesung whather a.set of tywd full dependencws u:nphes an
. ‘acychc J‘D cafn: beféone §1:3 pnlynomanl time,

. T EE P K P ek A AT WD
o oo M 3l GO T AN ik Bk T ol il s

0347053

Ry

04/04/2011 15:08 IFAX canon730i@rice.edu

E RSV T U Tl

THEORY OF DATA DEPENDENCIES 53

Proof: As noted above, there is a polynomial-time procedure for finding a
set of n-1 MVDs which are equivalent to the given JD -M [R,, ..., R,]. By
Theorem 3.2.8, there is a polynomial-time algorithm for deciding whether
the set % of typed full dependencies implies each of the multivalued depen-
dencies. Clearly, £ implies the acyclic JD if and only if it implies all of
these MVDs.

We note that Yannakakis [Ya] has found other problems involving
JDs that are NP-hard in general, but which have polynomial-time algor-
ithms if the JDs are acyclic.

Qur final example for the desirability of acyclicity involves the
property of injectiveness discussed in Section 42. We noted there that
injectiveness of a decomposition map does not guarantee that the recon-
struction map is the join. The situation is different if the decomposition is
acyclic.

Theorem 5.5. [BVS8] Let = be a set of full dependencies, and let R be an
acyclic database scheme. If Ap is injective with respect to Z, then the
reconstruction map is the join. O

Note that combining Theorems 4.2.1, 5.4, and 5.5, we get a polynomial
time test for the injectiveness of an acyclic decomposition with respect to
typed full dependencies.

The idea of acyclicity has turned out to be a powerful unifying
concept. We refer the reader to [BC, BG, GS] for applications to query
processing, which we do not discuss here. We note that Sacca [Sa] and
Laver et al. [LMG] deal with the effect of FDs on acyclicity. Further,
Biskup and Briiggemann [BiBr] study the effect of FDs on the design
process of acyclic database schemes,

Fagin [Fa6] has introduced even more restrictive types of acyclicity,
which correspond to database schemes that enjoy even nicer properties.
We now focus on one such type of acyclicity, called vy-acyclicity. For
convenience, let us refer (as Fagin does in [Fa6]) to the type of acyclicity
we have been discussing as a-acyclicity. As we noted earlier, the definition
of a-acyclicity has the counterintuitive property that a subhypergraph of
an a-acyclic hypergraph may bé a-cyclic. As an example, the a-acyclic

-+ Arnetta Jones

0357053

04/04/2011 15:08 IFAX canon730i@rice.edu » Arnetta Jones I036/053

l ‘ .' ey P - T B ar J;.(EF ot
£ - ,-,..dat...._.u;,_.n‘f S0 L VL S SNPIENE I S T

K
}
i

54 - "= .. -~ Roniald Fagin -and Meoshe ¥, Vardi

" 'hypergraph of. Figure '5.3-has the: a<cycli¢- subhypetgraph of Figure 5.4. It
* turns ‘out that for y-acyclicity, this counterintuitive plienomenon: does not
R owur ~thias,; every subhypergraph ofa 7-acychcr hypergraph is- -paeycllc

There ‘dre various greph-them-etw defmat:ens of . T-aeyclwtty (Fa6].

For the purposes of this paper, we simply give an algorithin-for- determining

y-acyclicity. This algorithm is due to D’Atri and Moscarini [DM], and was

proven correct ‘by Fagin [Fa6]. It-is -very similar in: spirit to Graham's

“algorithni for atacyclicity, which we presented: earlier;= Wethen .apply the
following operations repeatedly, in any ordet, until none ¢an be:applied:

(@) ifa node ‘is ‘fsolated (’Ehat is, ifit belengs to precmely one
: edge), ‘then defete that node; © - :
(b)Y ifan edge is a singletori(that is, if it contains-exactly one
- node), then deéléte that'edge (but do not: delete the ‘node from
other edges that might contain it); h
(c) if an edge is empty, then delete it; !
(d)‘u if two edges contam preclsely the same nodes then ’delete one

of these edges o \-,-’}
(e) if two nodes are edge equwalent “then dblete ore of them !
from every edge that contams it. (We say that two nodes are
e_(ig, -equt_valem if they are m preclsely the same edges)
The algorithm clearly terminates. If the"eﬁi'l"i?e;':uitris theempty set of
-edges, then the origi‘nal hypergraph is y-acyclic: otherwise, it is y-cyclic.
As.an example, le; us apply tl'ns algonthm to the hypergraph of Flgure 5.6.
.- Asin the previous: example, we beg;n by by wntmg the edges one under-
. ‘neath the other. The edges.are: s
B C D E F
A B C D .
c
c D. ..
E_F
0 _+Node 4 is |solated &ﬂd edge {C}.is a smgleggn 0. both are deleted by
- . rules€a) and (b). This leavesus with - .
AN

e

04/04/2011

T “"“’W

15:08 TFAX canon730i@rice.edu

-+ Arnetta Jones

THEORY OF DATA DEPENDENCIES 55
B C D E F
B C D
c D
E F

Nodes E and F are edge-equivalent, and so, by rule (e), we delete F from
both edges that contain it. Similarly, nodes C and D are edge-equivalent,
and so we delete D from all three edges that contain it. We are left with

B E
B

a0 n

E

The third and fourth edges above are singletons, and so they are eliminat-
ed, This leaves
B C
B C
Node E is isolated; after it is deleted, we are left with

B C
B C

These edges are identical, so we delete one by rule (d). We are left with
B C

Both nodes are now isolated, and so they are deleted. We are left with a
single empty edge, which is deieted by rule (c). The end result is the
empty set of edges, and so the original hypergraph is y-acyclic,

Fagin [Fa6] presents a number of desirable database properties, each
which is equivalent to the scheme being y-acyclic. We mention only one
property, which involves dependencies. We first need to define the con-
cept of connectedness for hypergraphs; it is the obvious generalization of
the definition of connectedness for graphs. A path from node s to node 1 is
a sequence of k21 edges Ey,....Ex such that

1037/053

04/04/2011 15:08 IFAX canon730i@rice.edu 7 o . » Arnetta Jones _

56 " Ronald Fagin aud Moshe Y. Viirdi

() sisinE,,

(ii) risin E;, and

(iii) E;nE;,; is nonempty i 1<i<k.
A hypergraph is connected if Tor each pair of nodes, there is a path from one
to the other.

" Theorem 5.5. [FaG] ‘Let R -be a database scheme. T_henthefollowmg are
equivalent:

(1) R is y-acyclic.
(2) For every connected subset SCR, we have MRl M[S].

Note that M [S] can be an embedded JD. Thus statement (2) of
‘Theorem 5.5 above ‘says that for every conmected subset S of R, and for
every join consistent database I over R, if J&I is the subdatahnse over s,
ther M Jis a projection of MI

As an example, consider the database scheme of Figure 5.1, which is
y-cyclic. The join of the {SUPPLIER,PROJECT,DATE} relation with the
{PROJECT ,PART,COUNT}- relation-might lntl:oduce a SUPPLIE_IF{ PART,

PROJECT triple that does not appear in the SUPPLIER, PART, ?ROJECT
relation (the “connection trap* [Coil.)-

We note also that the various notions of acyclicity turn out to be very
ussful for the ‘designi of universal:relation: m&etfaces We refer the reader
to [Fa6, MU, Ya]).

[ABU] A. V. Aho, C. Beeri, and JDUHl'nan'. “The theory of joins in
" ‘relational data bages. -ACM Tmns .on Database Systems 4(1979), 297-314,

[ASU] AV, Aho, Y Saglv, ‘and 1. D! Ullmm“Eqﬁwéﬂmmong rela-
‘tional expressions. SIAM J Compuﬁng 8(19‘79") ﬁsim REURpE

[Ar] W W Armstrong, ﬁependency‘ struetures iof dntabam wlehonships
Proc. IFIP 74, North Holiand, 1974, 580-583." S

‘0_38/053

LT

St

04/04/2011 15:p§_ IFAX canon730i@rice.edu -+ Arnetta Jones

THEORY OF DATA DEPENDENCIES 57

[Bee] C. Beeri, On the membership problem for functional and multivalued
dependencies in relational databases. ACM Trans. on Database Systems
5(1980), 241-259. '

[BB] C. Beeri and P. A. Bernstein, Computational problems related to the
design of normal form relational schemas. ACM Trans. on Database
Systems 4(1979), 30-59.

[BBG] C. Beeri, P. A. Bernstein, and N. Goodman, A sophisticate’s intro-
duction to database normalization theory, Proc. Int. Conf. on Very Large
Data Bases, 1978, Berlin, 113-124,

{BFH] C. Beeri, R. Fagin, and J.H. Howard, A complete axiomatization for -

functional and multivalued dependencies in database relations. Proc. ACM
SIGMOD Conf. on Management of Data, 1977, Toronto, 47-61.

[BFMMUY] C. Beeri, R. Fagin, D. Maier, A. O. Mendelzon, J. D. Ullman,
and M. Yannakakis, Properties of acyclic database schemes. Proc. 13th
ACM SIGACT Symp. on Theory of Computing, 1981, Milwaukee, 355-362,

[BEMY] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis, On the desira-
bility of acyclic database schemes. J. ACM 30(1983), 479-513.

[BH] C. Beeri and P. Honeyman, Preserving functional dependencies.
SIAM J. Computing 10(1981), 647-656.

[BK] C. Beeri and H. F. Korth, Compatible attributes in a universal rela-
tion. Proc. 1st ACM SIGACT-SIGMOD Symp. on Principles of Database
Systems, 1982, Los Angeles, 51-62.

[BMSU] C. Beeri, A. O. Mendelzon, Y. Sagiv, and J. D. Ullman, Equiva-
lence of relational database schemes, SIAM J. Computing 10(1981), 352-
370.

[BR]} C. Beeri and J. Rissanen, Faithful representation of relational data-
base schemes. IBM Research Report, San Jose, California, 1980.

[BV1] C. Beeri and M. Y. Vardi, On the properties of join dependencies.
In Advances in Database Theory (H. Gallaire, J. Minker, and J. M. Nico-
las, Eds.), Plenum Press, 1981, 25-72.

0397053

04/04/2011 15:08 IFAX canon730i@rice.edu » Arnetta Jones 1040/053

58 .- . Ronald Fagin and Moshe Y. Vardi | s

[(BV2] C. Beeri and M., Y. Vardi, A proof proeedure for data dependencles
J. ACM 31(1984), 718-141

[BV3] C. Beeri and M. Y. Vardi, On the complexity-of testing implications
. of data dependencies, Hebrew University of Jerusalem Technical Report,
“Dec. 1980. ST R

[BV4] C. Beeri and M. Y. Vardi, Formal systems for tuplé and ‘equality-
gemranng depeﬁdmeies SIAM. J. Computmg 13(1984) 16-98

[’BVS] C. Beeri and M Y. Varda. Formal systems for]om dépeudencn&s

Hebrew Univ. of Jerusalem Techmcal Report '1981. To appear in Theoret-
“ical Computer Science. - S
[BV&] C. Beeri- am:l M Y. Varch The,imghcauon problem for data depen-
dencies. Proc. XP1 Workshop on Relational Database Theoery, Stony
Brook NY Jane 1980.

{BV?] € Beeri- a:nd. M. Y. Varda, Thc ;mphca.tlon problem for “data depen-
dencies. Proc. 8th Int. Colloq. on Languages Automata and Programmmg,

" 1981, Acre Israel. Appeared-in: Letture Notes mCempu%err Science - Vol.
115, Springer-Verlag, 1981, 73-85. S e

-'J;""[B"VSI C. Beeri and 'M:"Y. Vaﬂh On a&yqiiﬁ databrse deqernposmons
Information and Control 6(1984), 75-84."

[Ber] P. A. Bernstein,’ S’yntheslziug ‘thitd : normal ferm relations from
" functional dependencies; “ACM Trans. on. Database Systems 1(1976),
277-298. T e T

.,;:;.::[BC] P.A. Bernstem and D. 'W. Chiu, Using semiaioms lo Solve relatumal
'quenes 1. ACM 28(1981). 25:40, s

.. [BG]} P. A. Bernstein and N. Goodman, The power of natural semijoins,
SIAMJ Computmg 10(1981).751—‘111 ' ST T :

[BiBr] .J. Biskup and H, H. Briiggemann, Towards desxgmng acychc data-
-, base schemas, Proc. ONERA-CEﬁ'E‘ Workshop on’ Log:cai Bases for Data
Bases, Toulouse, 1982, :

04/04/2011 15:09 IFAX canon730i@rice.edu

B
#
e

e it b S Sl e B e 8 e o S

THEORY OF DATA DEPENDENCIES 59

[CFP] M. A. Casanova, R. Fagin, and C. Papadimitriou, Inclusion depen-
dencies and their interaction with functional dependencies. J. Computer
and System Sciences 28(1984), 29-59.

[CM] E. P. F. Chan and A. O. Mendelzon, Independent and separable
database schemes. Proc. 2nd ACM SIGACT-SIGMOD Symp. on Principles
of Database Systems, 1983, Atlanta, 288-296.

[CLM1] A. K. Chandra, H. R. Lewis, and J. A. Makowsky, Embedded
implicational dependencies and their inference problem, Proc. XP1 Work-
shop on Relational Database Theoery, Stony Brook, NY, June 1980.

[CLM2] A. K. Chandra, H. R. Lewis, and J. A. Makowsky, Embedded
implicational dependencies and their inference problem. Proc. 13th ACM
Symp. on Theory of Computing, 1981, Milwaukee, 342-354.

[CV] A. K. Chandra and M. Y. Vardi, The implication problem for func-
tional and inclusion dependencies is undecidable. IBM Research Report
RC 9980, May 1983. To appear in SIAM J. Computing.

[Col] E. F. Codd, A relational model of data for large shared data banks.
Comm. ACM 13(1970), 377-387.

[Co2] E. F. Codd, Further normalizatior of the data base relational model.
Courant Computer Science Symposia 6: Data Base Systems, 1972, Prentice
Hall, 33-64.

[Co3] E. F. Codd, Relational databases: a practical foundation for prod-
uctivity. Comm. ACM 25(1982), 109-117.

[DM] A. D'Atri and M. Moscarini, Acyclic hypergraphs: their recognition
and top-down vs bottom-up generation. Consiglio Nazionale Delle Ri-
cerche, Istituto di Analisi dei Sistemi ed Informatica, R.29, 1982.

[DP] P. De Bra and J. Paredaens, Conditional dependencies for horizontal
decompositions. Proc. 10th Int. Collog. on Languages Automata and
Programming, 1981, Barcelona. Appeared in: Lecture Notes in Computer
Science - Vol. 154, Springer-Verlag, 1983, 67-82.

-+ Arnetta Jones

0417053

. A

e ' Ronaid Fagia and Moshe'Y: Vardt'

[DST} P. J. Downey, R. Sethi, and R. B. Tarjan, Varistions on the comimon

subexpression problem. J. ACM 21(1980)-758‘-171 -

[DG) B. S. Dreben.and W. D. Goldfarb, The Decision Problem: Solvable
Classes of-Quantificational Formulas. Addison Wesley,” 1979, o

[Fal] R. Fagin, Mull:i\.vah.let;i= ﬂepeﬁdehéies' dnd ‘&’ new normal - fort for

. relational databaseg: ACM Trans. on Database Systems _2(1977), 262-278.

(Fa2] R. Fagin, A normal form for relationl - databates thatis: based: on

domains and keys. ACM Trans. on Database Systeriis 6(1981), 387-415..

[Fa3}R. Fagim, Arug;astrongﬁdgt_abaéés, Proc 1¢th- IBM ‘Symp: on Mathemrati-

cal Poundations. of Cpm{;ut,er_Sqigﬁgb,:\l'{aﬁ"aga"w‘a, "Jépa-ﬁ.?‘Mayf 1982.:Also

appeared as IBM Research Report RJ3440 (April 1982), San Jose, Califor-

- Ma. -

[Fa4] R. Fagin,. Horn clauses am:l &itﬁﬁﬁséﬁieﬁéhéewz@:ﬁ T -A!E-JM

29(1982), 952-985. S

[Fas] R. Fﬁgin, Ac'yciié databaseschemesofm:ﬁusdegredsa[mtniess

introduction. Proc. CAAP83 8th Colloquiuth - on “Trees in- Algebra and

- Prograsmming.. Appeared in: Springer-Verlag Lecture Notes in Computer
‘Seience - vol..159, 1983, d. G. Ausielio and M. Protasi; 65-8%

[Fa6] R. Fagin, Degrees of acyeclicity for hypergraphs and retational data-

... -base schemes. J. ACM 30(1983), 514-550. _

[FMU] R. Fagin, A. O. Mendslzon, and T. D. Utlman, A simplified: univer-

" sal. relation. assumption and its prop_ert—ies__. ACM Trans. on Database

Systems 7(1982), 343:360. o SR

[TF] P. C. Fischer and D.-M. Tsou, WhicthieF"a sot of mrultivalued. depen-

.- dencies implies a join dependency is _NP-hard. SIAM J. Computing
12(1983), 259-266. . . .

basis in a relational database. 'y, ACM 29(1982); 96:102i+ 7 - = -

(Ga] Z. Galil, An almost lincar-tirhe algotithi for computing deperdency

» Arnetta Jones 7043/053

0_@_/()4/2()11 15:09 TFAX canon730i@rice.edu

I wﬁ N o

THEORY OF DATA DEPENDENCIES 61

[GJ] M. R. Garey and D. S. Johnson, Computers and Intractibility: A
Guide to the Theory of NP-Completeness. Freeman, 1979,

[GZ] S. Ginsburg and S. M. Zaiddan, Properties of functional dependency
families. J. ACM 29(1982), 678-698.

[GS] N. Goodman and O. Shmueli, Tree queries: a simple class of queries.
ACM Trans. on Database Systems 7(1982), 653-677.

[GT] N. Goodman and Y. C. Tay, A characterization of multivalued
dependencies equivalent to a join dependency. Infornation Processing
Letters 18(1984), 261-266.

[Grt] M. H. Graham, On the universal relation. Technical Report, Univ.
of Toronto, Sept. 1979.

[Gr2] M. H. Graham, Path expressions in databases. Proc. 2nd ACM
SIGACT-SIGMOD Symp. on Principles of Database Systems, 1983, Atlan-
ta, 366-378.

%

} [{Gr3] M. H. Graham, Functions in databases. ACM Trans. on Database
Systems 8(1983), 81-109,

[GM] M. H. Graham and A. Q. Mendelzon, Notions of dependency satis-
faction. Proc. 1st ACM SIGACT-SIGMOD Symp. on Principles of Data-
base Systems, 1983, Los Angeles, 177-188,

[GMV] M. H. Graham, A. O. Mendelzon, and M. Y. Vardi, Notions of
dependency satisfaction. Stanford University Technicai Report STAN-CS-
83-979, Aug. 1983. To appear in J. ACM.

[GY] M. H. Graham and M. Yannakakis, Independent database schemes.
J. Computer and System Sciences 28(1984), 121-141.

[GJ] J. Grant and B. E. Jacobs, On the family of generalized dependency
consiraints, J. ACM 29(1982).

[GL] Y. Gurevich and H. R. Lewis, The inference problem for template
dependencies. Proc. First ACM SIGACT-SIGMOD Principies of Database
Systems (1982), Los Angeles, 221-229,

04/()4/2()11 15: 09 IFAX canon7301@rlce edu _ 7 » Arnetta Jones 10447053

ekl e MR e R R

62 Y Rohidld Faghe wid Méshe:Y. Vardi , . AN

= o imbosse iR

O HITK] K Hagihara, M. Ito; K Tanigwhi ‘and T." Kasami; Décigion prob-
lems for muoltivalired depetidéricies in’ relativnal: &a&abﬁes ‘SEAM J. Com-
] pp(xxl_g 8(1?19). 2477264.)

L i

T N S

[He] 1. J. Heath, Unaccepta'i;lé"ﬁfé: opefﬁtmns ‘in a relafional ‘data base.
Proc. 1971 ACM- SIGF]DET Workshop on Data Descrlptmn, Access, and
Control, 1971, San Dlegq '

[Ho] P. Honeyman, Testing satisfaction of functional dependencies. J.
ACM 29(1982), 668:671. . = o

[HLY] P. Honeyman, R. E, Ladner,‘ andr M Yannakakls 'T;sting the-
universal instance. assumption. .. Information. Pmmsmg Letters 10(1980).
14-19.

-[Hul R. Hull;,-Finitely spemhakle :mpﬁcnt:ml depmdency ratmhes J.
ACM 31(1984),210-226. - - W AT

[JK] D. S. Johnson and A. Klug, Testing containment of conjunetive quer-
jes under functional and inclusion depeﬁdenms .‘I Garriputer and System
Sciences 28(1984), 167-189. ‘ e .

R

[KCV] P C Kannelakts S S. Cosmadalim and M. Y "Vardis Urlary inclu-
sion dependenmes have polynoﬁﬂal -time uil’ei'ence probfems Proc 15th
ACM SIGACT Symp. on Theory of Computfng, 1985, ‘Boston; 764-277.

" [LMGI K. Laver A. O. Mendelzon, and M. H. Graham, Functional depen-
dencies on cyclic databasq schemes Proc.’ ACM SIGMOD Symp. on
Management of Data, 1983, San Jose, 79.91, '

[Le] H. LBWIS. Complaxaty rasults for cl&as&s af quant,lﬁgatlonal formulas.
J. Computer and Systems Sciences 21(1980) 317 353.

[Ll] Y. E. L:en On the equwalence of: da;tabase modelsf J. ACM 29(1932).
333 363

[LB] L.’Eit and- A, Derners; ‘An a:lgoﬂﬂlm for *tektmg Msiess jm property
in relational databases, Information Provessing Letters 11(1980), 73-76.

04/04/2011 15:09 IFAX canon?S()i@r'ice.e_du

e

> Ar'nettar Jones

i e Fr ST it i i s

0457053

5 _—

THEORY OF DATA DEPENDENCIES 63

[Ma] D. Maier, The Theory of Relational Databases, Computer Science
Press, Rockville, Maryland, 1983,

[MMSU] D. Maier, A. O. Mendelzon, F. Sadri, and J. D. Ullman, Adequacy
of decompositions of relational databases. J. Computer and Systems
Sciences 21(1980), 368-379.

[MMS] D. Maier, A. Mendelzon, and Y. Sagiv, Testing implications of data
dependencies. ACM Trans. on Database Systems 4(1979), 455-469.

[MRW] D. Maier, D. Rozenshtein, and D. §. Warren, Windows on the
world. Proc. ACM SIGMOD Symp. on Management of Data, 1983, San
Jose, 68-78.

[MSY] D. Maier, Y. Sagiv, and M. Yannakakis, On the complexity of
testing implications of functional and join dependencies. J. ACM 28(1981),
680-695.

3 [MU] D. Maier and J. D. Ullman, Connections in acyclic hypergraphs.
Proc. 1st ACM SIGACT-SIGMOD Symp. on Principles of Database Sys-
terns (1982), Los Angeles, 34-39,

[MUV] D. Maier, J. D. Ullman, and M. Y. Vardi, On the foundations of the
universal relation model. ACM Trans. on Database Systems 9(1984),
283-308.

[Me] A. Mendelzon, Database states and their tablueax. ACM Trans. on
Database Systems 9(1984), 264-282,

[MM] Mendelzon, A. O. and D. Maier, Generalized mutual dependencies
and the decomposition of database relations. Proc. Int. Conf, on Very
Large Data Bases, (A. L. Furtado and H. L. Morgan, eds.), 1979, 75-82.

[{Mi1] J. C. Mitchell, Inference rules for functional and inclusion dependen-
cies, Proc. 2nd ACM SIGACT-SIGMOD Symp. on Principles of Database
Systems, 1983, Atlanta, 58-69.

[Mi2] J. C. Mitchell, The implication problem for functional and inclusion
dependencies. Information and Control 56(1983), 154-173.

04/04/2011 15:09 IFAX canon7301@rlce edu » Arnetta Jones I046/053
o e B e e e A — L &ﬁ 4)

64 Ronald Fagin and Moshe Y. Vardl

[Ni] J-M. Nicolas, First order logic formalization for functional, multiva-
lued, and mutval dependenciés: Proc:: ACM SIGMOD. Symp on Manage
ment of Data, 1978, 40-46.

" [Pa] 7. Paredaens, Transitive dependenwiés in-a database scheme, MBLE
Research Report'R387, 1979, - .- , \

[PJ] J Paredaens and D. Janssens, Decomposiﬁons c;f r;iatilc-n;.';:i cdrhbre-

J. Minker, and J—M N*icdlas, eds.),-Plenuim Prws, _1981_ 7.3 109.

- [PP} D. 8. Parker and“K.' Parsaye-Ghomi, Inference involving embedded
" ‘multivalued dependencies:and’ transitive-dependencies. - Proc. ACM SIG-
MOD Symp. on Management of Data, 1980, 52-57. EE

[Rit]). Rissanen, Independent components of relations, ACM Trans..on
- Datdbase Systems 2(1977); 317-325:

‘[Ri2] J. Rissanen, Theory of relations for databases - a tutorial survey
““Proe. Tth' Symp. on Math. Found. of Comp. Science,. 1978, Lecture: Motes _
"in Computer Science~ Vol 64, Sprihger=Verlag, 537-551. . . ~

[Ri3] J. Rissanen, On equivalence of dafabase scl;ernes Proc lst‘ACM_
SIGACTa-SIGMOB Syanpwﬂﬁ Prmmplss of Database Systems, 1982, Los
Angeles, 23-26. :

[Ro] H. Rogers, Theory of Recursive Functions and Effective Cdﬁipﬂtﬁbili—
" ty.” McGraw-Hill,-1967. - —

)
135

[Sac] D. Sacca, On the recognition of coverinés of acychc database hyper-
“-graph§.” Proc. 2nd- ACM- *SEGAC’I’-&]GMOD Symp. on Pringiples of .Data-
base" Syﬁsfems 1933 Atlanta, 29%-304:

e

[SU] F. Sadn and J D UlIman Template dependencles- A large class of
" dependeéncies in relational databases the;r eampieta ag;mmanzatmn. J.
" ACM 29(1981), 363-372. : = e

{Sagl] Y. Sagiv, An algorithm for inferring multivalued dependencles with
- an' applieation-té: propositiendl logic.. L .ACM 27(1980), 250-262.

R T N R . R e

04/04/2011 15:09 IFAX canon730i@rice.edu > Ar’netta Jones 1047/053

-

THEORY OF DATA DEPENDENCIES 65

[Sag2] Y. Sagiv, Can we use the universal instance assumption without
using nulls? Proc. ACM SIGMOD Symp. on Management of Data, 1981,
108-120.

[Sag3] Y. Sagiv, A characterization of globally consistent databases and
their correct access paths. ACM Trans. on Database Systems 8(1983),
266-286.

[SW] Y. Sagiv and S. Walecka, Subset dependencies and a completeness
result for a subclass of embedded multivalued dependencies. J, ACM
29(1982), 103-117.

[SS] M. Schkolnick and P. Sorenson, The effects of denormalization on
database performance. The Australian Computer Journal 14(1982), 12-18,

[Scl] E. Sciore, Real-world MVDs. Proc. ACM SIGMOD Symp. on Man-
ag:-ment of Data, 1981, 121-132.

Y
L3
R [Sc2]} E. Sciore, Inclusion dependencies and the vniversal instance. Proc.

2nd ACM SIGACT-SIGMOD Symp. on Principles of Database Systems,
1983, Atlanta, 48-57.

[Sc3] E. Sciore, A complete axiomatization of full join dependencies. J.
ACM 29(1982), 373-393.

[TY] R. E. Tarjan and Yannakakis, M., Simple linear-time algorithms to
test chordality of graphs, test acyclicity of hypergraphs, and selectively
reduce acyclic hypergraphs, SIAM J, Computing 13(1984), 566-579.

[U1] J. D. Ullman, Principles of Database Systems. Computer Science
Press, Rockville, Maryland (1982)

[Val] M. Y. Vardi, The implication problem for data dependencies in
relational databases. Ph.D. Dissertation (in Hebrew), The Hebrew Univer-
sity in Jerusalem, Sept. 1981,

[Va2] M. Y. Vardi, The implication and finite implication problems for
typed tempiate dependencies. J. Computer and System Sciences 28(1984),
3.28.

L

0470472011 15:09 TFAX canon?S()i@_r'rice.edu

o

» Arnetta Jones 1048/053

66 Ronald Fagin and Moshe Y. Vardi _

[Va3] M. Y. Vardi, On decomposition of relational databases Proc. 23rd
IEEE Symp o medatmn of Compﬁter Smeﬂce, Chi" "‘b 1982, 176-185.

[Va4] M Y. Vard: Infemng multlvalued dependenmes ‘frém functional and
join dependencies. Acta Informanca 19(1983) 305 324

[VnS] M. Y Varch. A note on loss:leas»datnbasedecompoﬁtmns Informa-
tion Processing Letters 18(1984), 257-260. ;

. [Ya] M, Yannakakis, Algorithms for acyclic. database schiemnes. Proc Int,
. Conf. on Very Large Data Bases, 1981, 82.94, .

[YP] M. Yannakakis and C. Papad:mitriou. Algebralc dependencws J.

‘ Computer and System Sciences 25(1982), 3-41,

" [¥O] C. T.Yiand M. 2. 'Ozsoyoglu, An algorithin for tree- -query member-

Shlp of a dlstnbuted query. Proc IEEE COMPSAG 1979. 306 312.

[Za] C. Zaniolo, Analysis and design’ of relational séheriata for database
systems, Ph.D. Dusertatxon. Tech Rep UCLA-ENG-‘I6§9. UCLA, July

T 1976.

IBM Research Laboratory, San Jose, California 95193

B T

Sy

e

04/()42()11 15:09 TFAX canon730i@rice.edu

» Arnetta Jones

'THE(HTY(ﬁ?DAJM.DEﬂWﬂ“DEhKﬂES

Turing

Computer Science

EMP DEPT MGR
Hilbert Math Gauss
Pythagoras| Math Gauss

von Neumann

Figure 2.1
DEPT MGR
Hilbert Math Gauss
Pythagoras | Math Gauss

yon Neumann

67

Turing Computer Science
Cauchy Math Euler
Figure 2.2
EMP DEPT DEPT MGR
Hilbert Math Math Gauss
Pythagoras Math Computer Science von Neumagn
Turing Computer Science
Figure 2.3

1049/053

04/04/2011 15:10 IFAX canon730i@rice.edu

Ronald Fagin and Moil’:e' Y Vudl

 STORE

CITEM

* 'PRICE -

7 Macy's
Sears

Macy's

Toastéf' :
Toasféf)
Pencil' ‘

' $20:00
“$15:00
$0.10

;Figu;e 2.4

>

L R T A

A

rnetta Jo

| STORE

ITEM

| ITEM

“PRICE

Macy's

Sears

Macy 's

Toaster
‘1 Toaster

Pencil -

Toaster
Toaster

Pencil

Figuré 2.5

" EMP.

SALARY

| chitEp

Hilbert

i Pﬁhagoras

Pythagoras

Turing

" Figure 2.6

$80K
$§30K

$70K

$30K

Peter,

Tom

Hilda

$20.00
$15.00
13 o.10

nes

LA s

04/04/2011 15:10 IFAX canon730i@rice.edu e

4.
BN

%

-+ Arnetta Jones

0517053

THEORY OF DATA DEPENDENCIES 69

EMP CHILD SKILL
Hilbert Hilda Math
Hilbert Hilda Physics
Pythagoras Peter Math
Pythagoras Paul Math
Pythagoras Peter Philosophy
Pythagoras Paul Philosophy
Turing Tom Computer Science

Figure 2.7
SUPPLIER PROJECT’ DATE SUPPLIER [PART [cosT

SUPPLIER [PART ’PROJECT

Figure 5,1

04/04/2011 15:10 IFAX canon730i@rice.edu

(T - ’ P P . -
. . . -7t s e
- . P L e . T g ket w3 LA

~

Figure 5.2

wli,

e

04/04/2011 15:10 IFAX canon730i@rice.edu -+ Arnetta Jones

&h) THEORY OF DATA DEPENDENCIES 71

oYy

Flpure 5.4
A C AlC
010 0 01
111 111 110
p—
Flgure 5.5

Figure 5.6

0537053

