A Theory of Regular Queries

Moshe Y. Vardi

Rice University
Codd’s Two Fundamental Ideas:

- **Tables are relations**: a row in a table is just a tuple; order of rows/tuples does not matter!

- **Formulas are queries**: they specified the what rather then the how – declarative programming!

Codd, 1970: A first-order formula $\varphi(x_1, \ldots, x_k)$ defines a query:

$$\varphi(B) = \{ \langle \alpha(x_1), \ldots, \alpha(x_k) \rangle : G \models_\alpha \varphi(x_1, \ldots, x_k) \}$$

Example: $(\exists y)(\exists z)(\neg(y = z) \land E(x, y) \land E(x, z))$ – “List all graph nodes that have at least two distinct neighbors”

Codd, 1971: FOL is “relationally complete”.
Evolution of Database Query Languages

• Standard database query languages (e.g., SQL 2.0) are essentially 1st-order (modulo aggregation)

• Zloof, 1976: add transitive closure (QBE).

• Gallaire&Minker, 1978: add recursion via logic programs

• Aho&Ullman, 1979: 1st-order languages are weak – add recursion

• SQL 3.0, 1999: recursion added (“common table expressions”)

Expressiveness/complexity trade-off:

• 1st-order queries: Data complexity – LOGSPACE

• Recursive queries: Data complexity – PTIME
Datalog [Chandra&Harel, 1985, Maier&Warren, 1988]:

- Function-free logic programs
- Existential, positive fixpoint logic

Example: Transitive Closure

\[
\text{Path}(x, y) : \neg \text{Edge}(x, y) \\
\text{Path}(x, y) : \neg \text{Path}(x, z), \text{Path}(z, y)
\]
Query Containment, I

Query Optimization: Given Q, find Q' such that:

- $Q \equiv Q'$
- Q' is “easier” than Q

Query Containment: $Q_1 \sqsubseteq Q_2$ if $Q_1(B) \subseteq Q_2(B)$ for all databases B.

Fact: $Q \equiv Q'$ iff $Q \sqsubseteq Q'$ and $Q' \sqsubseteq Q$

Consequence: Query containment is a key database problem.
Query Containment, II

Other applications:

- query reuse
- query reformulation
- information integration
- cooperative query answering
- integrity checking
- ...

Consequence: Query containment is the fundamental database-reasoning problem.
Decidability of Query Containment:

- **SQL**: undecidable
 - Folk Theorem (unsolvability of FO)
 - Poor theory and practice of optimization

- **UCQ (aka, SPJU Queries)**: decidable
 - Chandra & Merlin, 1977 – CQ
 - Sagiv & Yannakakis, 1982 – UCQ
 - Rich theory and practice of optimization

UCQ:

- *Existential positive FO*: conjunction, disjunction, existential quantification
- Nonrecursive Datalog
- Covers a very large fraction of real-life database queries

Example: CQ – (conjunction + ∃ quantification)

\[\text{Triangle}(x, y) : \neg \text{Edge}(x, y), \text{Edge}(y, z), \text{Edge}(z, x) \]
Query Containment, IV

Datalog Containment:

- **Complexity**: undecidable
 - Shmueli–1987 - easy reduction from CFG containment

- **Difficult theory and practice of optimization**

Observation: most decision problems involving Datalog are undecidable.

Reminder: Datalog = UCQ + Recursion

Question: Can we limit recursion to recover decidability?
Monadic Datalog

Monadic Datalog (MDL): Datalog where recursive predicates are *monadic* [Cosmadakis et al., 1988]

Example:
\[
\begin{align*}
\text{Retrieve}(X) & : - \text{Paper}(X), \text{Author}(X, \text{Moshe}) \\
\text{Coauthor}(A) & : - \text{Retrieve}(X), \text{Author}(X, A) \\
\text{Retrieve}(Y) & : - \text{Paper}(Y), \text{Author}(Y, A), \text{Coauthor}(A)
\end{align*}
\]

Major Application: web data extraction [Gottlob et al., 2002–]

Theorem: Query Containment for MDL is 2EXPTIME-Complete [Cosmadakis et al., 1988, Benedikt et al., 2012]
Network Datalog

Declarative Networking: declarative specification of network protocols – an instance of *software-defined networking*

Network Datalog (NDlog): a variant of Datalog adapted to declarative networking [Loo at al., 2006]

\[
\text{path}(\@S, D, P, C) :- \text{link}(\@S, D, C), P = f_init(S, D).
\]

\[
\text{path}(\@S, D, P, C) :- \text{link}(\@S, Z, C_1), \text{path}(\@Z, D, P_2, C_2), C = C_1 + C_2, P = f_concat(S, P_2), f_inPath(P_2, S) = false.
\]

Key Feature: reasoning about transitive reachability

Corollary: MDL is too weak for declarative networking.

Major Open Question: Find an expressive fragment of Datalog with a decidable query-containment problem.
1990s: Graph Databases

WWW:

- Nodes
- Edges
- Labels

Semistructured Data: WWW, SGML documents, library catalogs, XML documents, Meta data, ...

Graph Databases: (D, E, λ)

- D - nodes
- $E \subseteq D^2$ - edges
- $\lambda: E \to \Lambda$ – labels (alt., also node labels)
Figure 1: Graph Database
Path Queries

Active Research Topic: What is the right query language for graph databases? (“NoSQL”)

Basic element of all proposals: path queries

- $Q(x, y) : - x \ L \ y$
- L: formal language over labels
- $a \cdot \underbrace{l_1 \cdots l_k}_{} \cdot b$
- $Q(a, b)$ holds if $l_1 \cdots l_k \in L$

Example: *Regular Path Query (RPQ)*

$Q(x, y) : - x \ (Wing \cdot Part^+ \cdot Nut) \ y$
Observation:

- A fragment of Dyadic Datalog

 - **Concatenation**: \(E(x, y) : - E_1(x, z), E_2(z, y) \)

 - **Union**: \(E(x, y) : - E_1(x, y) \)
 \[E(x, y) : - E_2(x, y) \]

 - **Transitive Closure**: \(P(x, y) : - E(x, y) \)
 \[P(x, y) : - P(x, z), P(z, y) \)
Path-Query Containment

\[Q_1(x, y) : = x \ L_1 \ y \]
\[Q_2(x, y) : = x \ L_2 \ y \]

Language-Theoretic Lemma 1:

\[Q_1 \sqsubseteq Q_2 \ \text{iff} \ L_1 \subseteq L_2 \]

Proof: Consider a database

\[a \cdot \underbrace{l_1 \cdots l_k}_b \ \text{with} \ l_1 \cdots l_k \in L_1 \]

Corollary: Path-Query Containment is essentially language containment.

Corollary: Path-Query Containment is *undecidable* for context-free path queries

RPQ Containment: What is known about containment of regular languages?
Theory of Regular Languages, I

Regular Languages - Robust Definability:

- Regular expressions
- DFA
- NFA
- 2NFA
- AFA
- 2AFA
- Regular grammar
- MSO
- ...

But: Succinctness Gaps: E.g., NFA<RE, NFA<DFA, AFA<NFA, MSO<AFA, ...
NFA

\[A = (\Sigma, S, S_0, \rho, F) \]

- **Alphabet:** \(\Sigma \)
- **States:** \(S \)
- **Initial states:** \(S_0 \subseteq S \)
- **Nondeterministic transition function:**
 \[\rho : S \times \Sigma \rightarrow 2^S \]
- **Accepting states:** \(F \subseteq S \)

Input word: \(a_0, a_1, \ldots, a_{n-1} \)

Run: \(s_0, s_1, \ldots, s_n \)

- \(s_0 \in S_0 \)
- \(s_{i+1} \in \rho(s_i, a_i) \) for \(i \geq 0 \)

Acceptance: \(s_n \in F \)

Recognition: \(L(A) \) – words accepted by \(A \).

Example:

\[\begin{array}{c}
1 \\
0 \\
\hline
0 \\
1
\end{array} \]

– ends with 1’s
Theory of Regular Languages, II

Regular Languages - Robust Closure:

- Union
- Intersection
- Complement
- Concatenation
- Kleene star
- Reverse
- Homomorphism
- Inverse homomorphism

...
NFA Intersection

Given:

• $A^1 = (\Sigma, S_1^1, S_0^1, \rho^1, F_1^1)$

• $A^2 = (\Sigma, S_2^2, S_0^2, \rho^2, F_2^2)$

Define: $A^1 \cap A^2 = (\Sigma, S_1^1 \times S_2^2, S_0^1 \times S_0^2, \rho, F_1^1 \times F_2^2)$, where:

• $\rho((s, t), a) =$

 $$\{(s', t') : s \in \rho^1(s, a) \text{ and } t' \in \rho^2(t, a)\}$$
NFA Complementation

Run Forest of automaton A on word w:

- Roots: elements of S_0.
- Children of s at level i: elements of $\rho(s, a_i)$.
- Rejection: no leaf is accepting.

Key Observation: collapse forest into a DAG – at most one copy of a state at a level; width of DAG is at most $|S|$.

Subset Construction Rabin-Scott, 1959:

- $A^c = (\Sigma, 2^S, \{S_0\}, \rho^c, F^c)$
- $F^c = \{T : T \cap F = \emptyset\}$
- $\rho^c(T, a) = \bigcup_{t \in T} \rho(t, a)$
- $L(A^c) = \Sigma^* - L(A)$
Complementation Blow-Up

\[A = (\Sigma, S, S_0, \rho, F), \; |S| = n \]
\[A^c = (\Sigma, 2^S, \{S_0\}, \rho^c, F^c) \]

Blow-Up: \(2^n\) upper bound

Can we do better?

Lower Bound: \(2^n\)
Sakoda-Sipser 1978, Birget 1993

\[L_n = (0 + 1)^*1(0 + 1)^{n-1}0(0 + 1)^* \]
- \(L_n\) is easy for NFA
- \(\overline{L_n}\) is hard for NFA
Regular Languages - Robust Decidability:

Emptiness: \(L(A) = \emptyset \)

Nonemptiness Problem: Decide if given \(A \) is nonempty.

NFA Nonemptiness:

Directed Graph \(G_A = (S, E) \) of NFA \(A = (\Sigma, S, S_0, \rho, F) \):
- **Nodes**: \(S \)
- **Edges**:
 \[E = \{(s, t) : t \in \rho(s, a) \text{ for some } a \in \Sigma\} \]

Lemma: \(A \) is nonempty iff there is a path in \(G_A \) from \(S_0 \) to \(F \).

- Decidable in time linear in size of \(A \), using breadth-first search or depth-first search.
- **Complexity**: NLOGSPACE-complete.
NFA Containment

Containment: \(L(A_1) \subseteq L(A_2) \)

Lemma: \(L(A_1) \subseteq L(A_2) \) iff \(A_1 \cap A_2^c \) is empty.

- Decidable in exponential time.

- **Complexity:** PSPACE-complete [Stockmeyer&Meyer, 1973]

- Result holds also for RE containment.
 - Linear translation from RE to NFA
Path-Query Containment

\[Q_1(x, y) : \neg x \cdot L_1 y \]
\[Q_2(x, y) : \neg x \cdot L_2 y \]

Language-Theoretic Lemma 1:

\[Q_1 \subseteq Q_2 \iff L_1 \subseteq L_2 \]

Corollary: Path-Query Containment is

- PSPACE-complete for regular path queries, via RE containment.

Comment: Current NFA containment tools can handle, in practice, automata with *thousands* of states [Bonchi&Pous, 2015].
Two-Way RPQs

Extended Alphabet: \(\Lambda^- = \{ a^- : a \in \Lambda \} \)
\(\Lambda^\pm = \Lambda \cup \Lambda^- \)

Inverse Roles:

\(Part(x, y) \): \(y \) part of \(x \)
\(Part^-(x, y) \): \(x \) part of \(y \)

Example: \((1/2)^* \) Siblings

\(Q(x, y) : - \)
\(x \ [((father^- \cdot father) + (mother^- \cdot mother))^+ \ y \)

Containment: Use 2NFA?

- Hopcroft&Ullman, 1979: 2DFA
- Hopcroft&Motwani&Ullman, 2000: ???
2NFA

\[A = (\Sigma, S, S_0, \rho, F) \]

- \(\Sigma \) – finite alphabet
- \(S \) – finite state set
- \(S_0 \subseteq S \) – initial states
- \(F \subseteq S \) – final states
- \(\rho : S \times \Sigma \rightarrow 2^{S \times \{-1,0,+1\}} \) – transition function

Theorem: [Rabin&Scott, Shepherdson, 1959]
2NFA \(\equiv \) 1NFA
2RPQ Containment

Difficulties:

• **2NFA → 1NFA**: exponential blow-up

 – **Consequence**: Doubly exponential complementation

• Difference between query and language containment

 – \(Q_1(x, y) : \neg x \text{ Parent } y \)
 \(Q_2(x, y) : \neg x \text{ Parent} \cdot \text{Parent}^- \cdot \text{Parent } y \)

 – \(Q_1 \sqsubseteq Q_2 \) but
 \(L(\text{Parent}) \not\subseteq L(\text{Parent} \cdot \text{Parent}^- \cdot \text{Parent}) \)
Back to Basics: 2NFA→1NFA

Theorem: Vardi, 1988

Let $A = (\Sigma, S, S_0, \rho, F)$ be a 2NFA. There is a 1NFA A^c such that

- $L(A^c) = \Sigma^* - L(A)$
- $||A^c|| \in 2^O(||A||)$

Corollary: 2NFA containment is PSPACE-complete.

But: Recall that the Language-Theoretic Lemma fails for 2RPQ!
Foldings

Definition: Let $u, v \in \Lambda^{\pm*}$. We say that u *folds* onto v, denoted $u \rightsquigarrow v$, if u can be “folded” onto v, e.g.,

$$abb^{-}bc \rightsquigarrow abc.$$

Pictorially, \[
\begin{array}{ccccccccc}
 & a & \rightarrow & . & b & \rightarrow & . & b & \leftarrow & . & b & \rightarrow & . & c & \rightsquigarrow & a & \rightarrow & . & b & \rightarrow & . & c
\end{array}
\]

Definition: Let E be an RE over Λ^{\pm}. Then $fold(E) = \{ v : u \rightsquigarrow v, u \in L(E) \}$.

Language-Theoretic Lemma 2:

Let $Q_1(x, y) : = x \ E_1 \ y$
$Q_2(x, y) : = x \ E_2 \ y$

be 2RPQs. Then $Q_1 \sqsubseteq Q_2$ iff $L(E_1) \subseteq fold(E_2)$.

2RPQ containment

Theorem: Let E be an RE over Λ^\pm. There is a 2NFA \tilde{A}_E such that

- $L(\tilde{A}_E) = fold(E)$
- $|\tilde{A}_E| \in O(|E|)$

Containment

$Q_1(x, y) : \neg x \ E_1 y$
$Q_2(x, y) : \neg x \ E_2 y$

TFAE

- $Q_1 \sqsubseteq Q_2$
- $L(E_1) \subseteq fold(E_2)$.
- $L(E_1) \subseteq L(\tilde{A}_E)$.
- $L(E_1) \cap L(\tilde{A}_E^c) = \emptyset$
- $L(A_{E_1} \cap \tilde{A}_{E_2}^c) = \emptyset$

Bottom-line: 2RPQ containment is PSPACE-complete.

Closing 2RPQs under \(\cap \) and \(\cup \)

Intersection:

- Regular languages are closed under intersection and union.
- Intersection adds succinctness: \(\text{RE}(\cap) < \text{RE} \)

Intersection vs. Conjunction:

\[Q_1(x, y) : - (xE_1 \cap E_2 y) \]
\[Q_2(x, y) : - (xE_1 y) \land (xE_2 y) \]

Conclusion: Intersection \(\neq \) Conjunction for graph databases!

UC2RPQ: Closure of 2RPQs under disjunction (union) and conjunction

Example:

\[Q(x, y) : -(xEy) \]

\[Q(x, y) : -(xE_1 z) \land (zE_2^* y) \land (xE_3 y) \]
UC2RPQ

UC2RPQ: Core of all graph query languages

\[Q(x_1, \ldots, x_n) : - y_1E_1z_1, \ldots, y_mE_mz_m \]

- \(E_i \) – 2RPQ
- No recursion (other than 2RPQs)

Intuition:

- UC2RPQs are obtained from UCQ by replacing atoms with REs over \(\Lambda^{\pm} \).
- UC2RPQs are Select-Project-Union-“Regular Join” queries.

Example:

\[Q(x, y) : - z \ (Wing \cdot Part^+ \cdot Nut) \ x, \]
\[z \ (Wing \cdot Part^+ \cdot Nut) \ y \]
UC2RPQ Containment

Difficulty: Earlier techniques do not apply

- Database techniques cannot handle transitive closure.
- No language-theoretic lemma to reduce to automata (even with folding).

Solution: combine database-theoretic and automata-theoretic techniques:

- Search for a counterexample database, e.g., $Q_1(B) \not\subseteq Q_2(B)$
- Represent database B as a word w over a richer alphabet.
- Use 2NFA to evaluate Q_1 and Q_2 over w.

Bottom-line: UC2RPQ containment is EXPSPACE-complete. [Calvanese et al., 2000]
Regular Queries

UC2RPQs:

- **Elements:** disjunction, conjunction, and transitive closure
- **Closed Under:** disjunction, conjunction
- **Not closed Under:** transitive closure!

Example: Not in UC2RPQ!

\[
Q(x, y) : -(xE_1z) \& (zE_2y) \& (xE_3y)
\]

\[
Answer(x, y) : -(xQ^*y)
\]

RQ: closure under disjunction, conjunction, and transitive closure (TC).

- **Essentially:** Non-recursive Datalog + TC

RQ Containment

- Decidable - *Nonelementary* (via MSO) [Jugé+V., 2009]

- 2EXPSPACE-complete [Reutter&Romero&V., 2015]
Back to Datalog

\[RQ \rightarrow \text{Datalog:} \]

- Every construct of RQ can be expressed in Datalog.
- Recursion is used only to express transitive closure.
 - If \(Q(x, y) \) is a binary predicate, then use the rules
 \[
 Q^+(x, y) : \neg Q(x, y)
 \]
 \[
 Q^+(x, z) : \neg Q^+(x, y), Q^+(y, z)
 \]

In fact: Over graph databases, RQ is precisely *Dyadic Datalog*, where (1) rule heads are dyadic, and (2) recursion is used only to express transitive closure.
Generalized Regular Queries

2EXPSPACE Upper Bound:

- Automata-theoretic techniques developed over almost 30 years. (“Automata Theory for Database Theoreticians”, PODS’89)

- **Crux**: Limited recursion on the right

 E.g., Containment of Datalog in UCQ is 2EXPTIME-complete [Chaudhuri+V., 1992]

 – E.g., containment of Datalog in UC2RPQ is 2EXPTIME-complete [Calvanese et al., 2003]

Beyond Graph Databases: Define **GRQ** to be Datalog where *recursion is used only to express transitive closure*.

Theorem: **GRQ** containment is 2EXPSPACE-complete [Reutter&Romero&V., 2016]

Bottom Line: Full recursion in Datalog is too powerful. Replace in by TC, and you get an expressive but “tractable” fragment – *open question answered!*
From Theory to Practice

Question: Any relevance to practice?

Objections:

- Isn’t 2EXPSPACE too hard?
 - Do not confuse worst-case complexity with real-life complexity, e.g.: Boolean satisfiability solving, RE containment

- Is query containment really useful for query optimization?
 - The jury is out!
 - Cost-based optimization is dominant!
 - Huge gap between theory and practice!
 - *An inviting research opportunity, especially for declarative networking!*