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Abstra
t

Re
ent work on semi-stru
tured data has revitalized the interest in path queries, i.e., queries

that ask for all pairs of obje
ts in the database that are 
onne
ted by a path 
onforming to

a 
ertain spe
i�
ation, in parti
ular to a regular expression. Also, in semi-stru
tured data, as

well as in data integration, data warehousing, and query optimization, the problem of query

rewriting using views is re
eiving mu
h attention: Given a query and a 
olle
tion of views,

generate a new query whi
h uses the views and provides the answer to the original one.

In this paper we address the problem of query rewriting using views in the 
ontext of semi-

stru
tured data. We present a method for 
omputing the rewriting of a regular expression E

in terms of other regular expressions. The method 
omputes the exa
t rewriting (the one that

de�nes the same regular language as E) if it exists, or the rewriting that de�nes the maximal

language 
ontained in the one de�ned by E, otherwise. We present a 
omplexity analysis of both

the problem and the method, showing that the latter is essentially optimal. Finally, we illustrate

how to exploit the method to rewrite regular path queries using views in semi-stru
tured data.

The 
omplexity results established for the rewriting of regular expressions apply also to the 
ase

of regular path queries.

1 Introdu
tion

Database resear
h has often shown strong interest in path queries, i.e., queries that ask for all pairs

of obje
ts in the database that are 
onne
ted by a spe
i�ed path (see for example [CMW87, CM90℄).

Re
ent work on semi-stru
tured data has revitalized su
h interest. Semi-stru
tured data are data

whose stru
ture is irregular, partially known, or subje
t to frequent 
hanges [Abi97℄. They are

usually formalized in terms of labeled graphs, and 
apture data as found in many appli
ation

areas, su
h as web information systems, digital libraries, and data integration [BDFS97, CACS94,

MMM97, QRS

+

95℄.

The basi
 querying me
hanism over su
h graphs is the one that retrieves all pairs of nodes


onne
ted by a path 
onforming to a given pattern. Sin
e a user may ignore the pre
ise stru
ture
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of the graph, the me
hanism for spe
ifying path patterns should be 
exible enough to allow for

expressing regular path queries, i.e., queries that provide the spe
i�
ation of the requested paths

through a regular language [AQM

+

97, BDHS96, FFK

+

98℄. For example, the regular path query

(

�

� (rome + jerusalem) �

�

� restaurant ) spe
i�es all the paths having at some point an edge labeled

rome or jerusalem , followed by any number of other edges and by an edge labeled with a restaurant.

Methods for reasoning about regular path queries have been re
ently proposed in the literature.

In parti
ular, [AV97, BFW98℄ investigate the de
idability of the impli
ation problem for path


onstraints, whi
h are integrity 
onstraints that are exploited in the optimization of regular path

queries. Also, 
ontainment of 
onjun
tions of regular path queries has been addressed and proved

de
idable in [CDGL98, FLS98℄.

In semi-stru
tured data, as well as in data integration, data warehousing, and query optimiza-

tion, the problem of query rewriting using views is re
eiving mu
h attention [Ull97, AD98℄: Given

a query Q and k queries Q

1

; : : : ; Q

k

asso
iated to the symbols q

1

; : : : ; q

k

, respe
tively, generate a

new query Q

0

over the alphabet q

1

; : : : ; q

k

su
h that, �rst interpreting ea
h q

i

as the result of Q

i

,

and then evaluating Q

0

on the basis of su
h interpretation, provides the answer to Q.

Several papers investigate this problem for the 
ase of 
onjun
tive queries (with or with-

out arithmeti
 
omparisons) [LMSS95, RSU95℄, queries with aggregates [SDJL96, CNS99℄, re-


ursive queries [DG97℄, disjun
tive views [DG98, AGK99℄, non-re
ursive queries and views for

semi-stru
tured data [PV99℄, and queries expressed in Des
ription Logi
s [BLR97℄. Rewriting

te
hniques for query optimization are des
ribed, for example, in [CKPS95, ACPS96, TSI96℄, and

in [FS98, MS99℄ for the 
ase of path queries in semi-stru
tured data.

None of the above papers provides a method for rewriting regular path queries. Observe that

su
h a method requires a te
hnique for the rewriting of regular expressions, i.e., the problem that,

given a regular expression E

0

, and other k regular expressions E

1

; : : : ; E

k

, 
he
ks whether we 
an

re-express E

0

by a suitable 
ombination of E

1

; : : : ; E

k

. As noted in [MS99℄, su
h a problem is still

open.

In this paper we present the following 
ontributions:

� We des
ribe a method for 
omputing the rewriting of a regular expression E

0

in terms of

other regular expressions. The method 
omputes the exa
t rewriting (the one that de�nes

the same regular language as E

0

) if it exists, or the rewriting that de�nes the maximal

language 
ontained in the one de�ned by E

0

, otherwise.

� We provide a 
omplexity analysis of the problem of rewriting regular expressions. We show

that our method 
omputes the rewriting in 2EXPTIME, and is able to 
he
k whether the


omputed rewriting is exa
t in 2EXPSPACE. We also show that the problem of 
he
king

whether there is a nonempty rewriting is EXPSPACE-
omplete, and demonstrate that our

method for 
omputing the rewriting is essentially optimal. Finally, we show that the problem

of verifying the existen
e of an exa
t rewriting is 2EXPSPACE-
omplete.

� We illustrate how to exploit the above mentioned method in order to devise an algorithm for

the rewriting of regular path queries for semi-stru
tured databases. The 
omplexity results

established for the rewriting of regular expressions apply to the new algorithm as well. Also,

we show how to adapt the method in order to 
ompute rewritings with spe
i�
 properties. In

parti
ular, we 
onsider partial rewritings (whi
h are rewritings that, besides E

1

; : : : ; E

k

, may

use also symbols in E

0

), in the 
ase where an exa
t one does not exist.

We point out that the results established in this work provide the �rst de
idability results for

rewriting re
ursive queries using re
ursive views. Indeed, in our 
ontext, both the query and the
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views may 
ontain a form of re
ursion due to the presen
e of transitive 
losure. Observe that

the 
ase where the query 
ontains unrestri
ted re
ursion has been shown unde
idable, even when

the views are not re
ursive [DG97℄. More pre
isely, the authors in [DG97℄ present a method that


omputes the maximally 
ontained rewriting of a datalog query in terms of a set of 
onjun
tive

queries, and show that it is unde
idable to 
he
k whether the rewriting is equivalent to the original

query.

The paper is organized as follows. Se
tion 2 presents the method for rewriting regular expres-

sions. Se
tion 3 des
ribes the 
omplexity analysis of both the method and the problem. Se
tion 4

illustrates the use of the te
hnique to rewrite path queries for semi-stru
tured databases. Finally,

Se
tion 5 des
ribes possible developments of our resear
h.

2 Rewriting of regular expressions

In this se
tion, we present a te
hnique for the following problem: Given a regular expression E

0

and a �nite set E = fE

1

; : : : ; E

k

g of regular expressions over an alphabet �, re-express, if possible,

E

0

by a suitable 
ombination of E

1

; : : : ; E

k

.

We assume that asso
iated to E we always have an alphabet �

E


ontaining exa
tly one symbol

for ea
h regular expression in E , and we denote the regular expression asso
iated to the symbol

e 2 �

E

with re(e). Given any language ` over �

E

, we denote by exp

�

(`) the language over � de�ned

as follows

exp

�

(`) =

[

e

1

���e

n

2`

fw

1

� � �w

n

j w

i

2 L(re(e

i

))g

where L(e) is the language de�ned by the regular expression e. Thus, exp

�

(`) denotes all the words

obtained from a word e

1

� � � e

n

2 ` by substituting for ea
h e

i

any word of the regular language

asso
iated to e

i

.

De�nition 1 Let R be any formalism for de�ning a language L(R) over �

E

. We say that R is a

rewriting of E

0

wrt E if exp

�

(L(R)) � L(E

0

).

Note that we do not 
onstrain in any way the form of the rewritings, whi
h, a priori, need not

even be re
ursive. We are interested in maximal rewritings, i.e., rewritings that 
apture in the best

possible way the language de�ned by the original regular expression E

0

.

De�nition 2 A rewriting R of E

0

wrt E is �-maximal if for ea
h rewriting R

0

of E

0

wrt E we have

that exp

�

(L(R

0

)) � exp

�

(L(R)). A rewriting R of E

0

wrt E is �

E

-maximal if for ea
h rewriting R

0

of E

0

wrt E we have that L(R

0

) � L(R).

Intuitively, when 
onsidering �-maximal rewritings we look at the languages obtained after

substituting ea
h symbol in the rewriting by the 
orresponding regular expression over �, whereas

when 
onsidering �

E

-maximal rewritings we look at the languages over �

E

. Observe that by

de�nition all �-maximal rewritings de�ne the same language (similarly for �

E

-maximal rewritings),

and that not all �-maximal rewritings are �

E

-maximal, as shown by the following example.

Example 1 Let E

0

= a

�

, E = fa

�

g, and �

E

= feg, where re(e) = a

�

. Then both R

1

= e

�

and

R

2

= e are �-maximal rewritings of E

0

wrt E , but R

1

is also �

E

-maximal while R

2

is not.

However, it turns out that �

E

-maximality is a suÆ
ient 
ondition for �-maximality.
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Theorem 1 Let R be a rewriting of E

0

wrt E. If R is �

E

-maximal then it is also �-maximal.

Proof. Assume by 
ontradi
tion that R is a �

E

-maximal rewriting of E

0

wrt E that is not

�-maximal. Then there is a rewriting R

0

of E

0

wrt E , a �

E

-word u

0

2 L(R

0

), and a �-word

w 2 L(exp

�

(fu

0

g)) su
h that for no �

E

-word u 2 L(R), it holds that w 2 L(exp

�

(fug)). Hen
e

u

0

62 L(R) and L(R

0

) 6� L(R). Contradi
tion. 2

Given E

0

and E , we are interested in deriving a �-maximal rewriting of E

0

wrt E . We show

that su
h a maximal rewriting always exists (although it may be empty). In fa
t, we provide a

method that, given E

0

and E , 
onstru
ts a �

E

-maximal rewriting of E

0

wrt E . By Theorem 1 the


onstru
ted rewriting is also �-maximal.

The 
onstru
tion takes E

0

and E as input, and returns an automaton R

E ;E

0

built as follows:

1. Constru
t a deterministi
 automaton A

d

= (�; S; s

0

; �; F ) su
h that L(A

d

) = L(E

0

).

2. De�ne the automaton A

0

= (�

E

; S; s

0

; �

0

; S � F ), where s

j

2 �

0

(s

i

; e) if and only if 9w 2

L(re(e)) su
h that s

j

2 �

�

(s

i

; w).

3. R

E ;E

0

= A

0

, i.e., the 
omplement of A

0

.

Observe that, if A

0

a

epts a �

E

-word e

1

� � � e

n

, then there exist n �-words w

1

; : : : ; w

n

su
h that

w

i

2 L(re(e

i

)) for i = 1; : : : ; n and su
h that the �-word w

1

� � �w

n

is reje
ted by A

d

. On the other

hand if there exist n �-words w

1

; : : : ; w

n

su
h that w

i

2 L(re(e

i

)), for i = 1; : : : ; n, and w

1

� � �w

n

is reje
ted by A

d

, then the �

E

-word e

1

� � � e

n

is a

epted by A

0

. That is, A

0

a

epts a �

E

-word

e

1

� � � e

n

if and only if there is a �-word in exp

�

(fe

1

� � � e

n

g) that is reje
ted by A

d

. Hen
e, R

E ;E

0

,

being the 
omplement of A

0

, a

epts a �

E

-word e

1

� � � e

n

if and only if all �-words w

1

� � �w

n

su
h

that w

i

2 L(re(e

i

)) for i = 1; : : : ; n, are a

epted by A

d

. Hen
e we 
an state the following theorem.

Theorem 2 The automaton R

E ;E

0

is a �

E

-maximal rewriting of E

0

wrt E.

Proof. It is easy to see that by 
onstru
tion R

E ;E

0

= A

0

is a rewriting of E

0

wrt E . We prove by


ontradi
tion that it is �

E

-maximal. Let R be a rewriting of E

0

wrt E su
h that L(R) 6� L(A

0

). Let

e

1

� � � e

n

be a �

E

-word su
h that e

1

� � � e

n

2 L(R) but e

1

� � � e

n

62 L(A

0

). By de�nition of rewriting,

all �-words w

1

� � �w

n

su
h that w

i

2 L(re(e

i

)) for i = 1; : : : ; n, are in L(E

0

) = L(A

d

). On the

other hand, sin
e e

1

� � � e

n

62 L(A

0

), the �

E

-word e

1

� � � e

n

is a

epted by A

0

. Thus there is a �-word

w

1

� � �w

n

, su
h that w

i

2 L(re(e

i

)) for i = 1; : : : ; n, that is reje
ted by A

d

. Contradi
tion. 2

Notably, although De�nition 1 does not 
onstrain in any way the form of the rewritings, The-

orem 2 shows that the language over �

E

(and therefore also the language over �) de�ned by the

�

E

-maximal rewritings is in fa
t regular (indeed, A

0

is a �nite automaton).

We illustrate the algorithm that 
omputes a �

E

-maximal rewriting by means of the following

example.

Example 2 Let E

0

= a�(b�a + 
)

�

, and let E and �

E

be su
h that re(e

1

) = a, re(e

2

) = a�


�

�b,

and re(e

3

) = 
. The deterministi
 automaton A

d

shown in Figure 1 a

epts L(E

0

), while A

0

is the


orresponding automaton 
onstru
ted in Step 2 of the rewriting algorithm. Sin
eA

0

is deterministi
,

by simply ex
hanging �nal and non�nal states we obtain its 
omplement A

0

, whi
h is the rewriting

R

E ;E

0

.

Next we address the problem of verifying whether the rewriting R

E ;E

0


aptures exa
tly the

language de�ned by E

0

.
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e

1

; e

2

e

3

e

3

e

1

e

2

e

3

e

1

e

2

e

1

; e

2

; e

3

b a

b; 


a




a; b; 


A

d

A

0

A

0

Figure 1: Constru
tion of the rewriting of a�(b�a+ 
)

�

wrt fa; a�


�

�b; 
g

De�nition 3 A rewriting R of E

0

wrt E is exa
t if exp

�

(L(R)) = L(E

0

).

To verify whether R

E ;E

0

is an exa
t rewriting of E

0

wrt E we pro
eed as follows:

1. We 
onstru
t an automaton B over � that a

epts exp

�

(L(R

E ;E

0

)) as follows. We �rst


onstru
t an automaton A

i

su
h that L(A

i

) = L(re(e

i

)) for i = 1; : : : ; k. We assume, without

loss of generality, that A

i

has unique start state and a

epting state, and that the start state

has no in
oming edges and the a

epting state no outgoing edges. We then obtain B by

repla
ing ea
h edge labeled by e

i

in R

E ;E

0

by a fresh 
opy of A

i

, identifying the start state

of the fresh 
opy with the sour
e of the edge, and the a

epting state with the target of the

edge. Observe that, sin
e R

E ;E

0

is a rewriting of E

0

, L(B) � L(A

d

).

2. We 
he
k whether L(A

d

) � L(B), that is, we 
he
k whether L(A

d

\B) = ;.

Theorem 3 The automaton R

E ;E

0

is an exa
t rewriting of E

0

wrt E if and only if L(A

d

\B) = ;.

Proof. By Theorem 2 the automaton R

E ;E

0

is a rewriting of E

0

wrt E . Suppose L(A

d

\ B) = ;.

Then any �-word w 2 L(E

0

) = L(A

d

) is also a

epted by B. Hen
e by 
onstru
tion of B there is a

�

E

-word e

1

� � � e

n

2 L(A

0

) su
h that w = w

1

� � �w

n

and w

i

2 L(re(e

i

)) for i = 1; : : : ; n. Suppose that

L(A

d

\ B) 6= ;. Then there exists a �-word w 2 L(E

0

) = L(A

d

) that is reje
ted by B. Hen
e by


onstru
tion of B there is no �

E

-word e

1

� � � e

n

2 L(A

0

) su
h that w = w

1

� � �w

n

and w

i

2 L(re(e

i

))

for i = 1; : : : ; n. 2

Corollary 4 An exa
t rewriting of E

0

wrt E exists if and only if L(A

d

\B) = ;.

Example 2 (
ont.) One 
an easily verify that R

E ;E

0

= e

�

2

�e

1

�e

�

3

is exa
t. Observe that, if E did

not in
lude 
, the rewriting algorithm would give us e

�

2

�e

1

as the �

E

-maximal rewriting of E

0

wrt

fa; a�


�

�bg, whi
h however is not exa
t.

3 Complexity analysis

In this se
tion we analyze the 
omputational 
omplexity of both the problem of rewriting regular

expressions, and the method des
ribed in Se
tion 2.
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3.1 Upper bounds

Let us analyze the 
omplexity of the algorithms presented above for 
omputing the maximal rewrit-

ing of a regular expression. By 
onsidering the 
ost of the various steps in 
omputing R

E ;E

0

, we

immediately derive the following theorem.

Theorem 5 The problem of generating the �

E

-maximal rewriting of a regular expression E

0

wrt

a set E of regular expressions is in 2EXPTIME.

Proof. We refer to the algorithm that 
omputes R

E ;E

0

, and we observe that: (i) Generating the

deterministi
 automaton A

d

from E

0

is exponential. (ii) Building A

0

from A

d

and the expressions

E

1

; : : : ; E

k

is polynomial. (iii) Complementing A

0

is again exponential. 2

With regard to the 
ost of verifying the existen
e of an exa
t rewriting, Corollary 4 ensures us

that we 
an solve the problem by 
he
king L(A

d

\B) = ;. Observe that, if we 
onstru
t L(A

d

\B),

we get a 
ost of 3EXPTIME, sin
e B is of triply exponential size with respe
t to the size of the

input. However, we 
an avoid the expli
it 
onstru
tion of B, thus getting the following result.

Theorem 6 The problem of verifying the existen
e of an exa
t rewriting of a regular expression

E

0

wrt a set E of regular expressions is in 2EXPSPACE.

Proof. We refer to the algorithm that veri�es whether the automaton R

E ;E

0

is an exa
t rewriting

of E

0

wrt E , and we observe that: (i) By Theorem 5, the automaton R

E ;E

0

is of doubly exponential

size. (ii) Building the automaton B from R

E ;E

0

is polynomial. (iii) Complementing B to get

B is exponential. (iv) Verifying the emptiness of the interse
tion of A

d

and B 
an be done in

nondeterministi
 logarithmi
 spa
e [RS59, Jon75℄. Combining (i){(iv), we get a nondeterministi


2EXPSPACE bound, and using Savit
h's Theorem [Sav70℄, we get a deterministi
 2EXPSPACE

bound.

Some 
are, however, is needed to getting the 
laimed spa
e bound. We 
annot simply 
on-

stru
t B, sin
e it is of triply exponential size. Instead, we 
onstru
t B \on-the-
y"; whenever the

nonemptiness algorithm wants to move from a state s

1

of the interse
tion of A

d

and B to a state s

2

,

the algorithm guesses s

2

and 
he
ks that it is dire
tly 
onne
ted to s

1

. On
e this has been veri�ed,

the algorithm 
an dis
ard s

1

. Thus, at ea
h step the algorithm needs to keep in memory at most

two states and there is no need to generate all of B at any single step of the algorithm. 2

3.2 Lower bounds

We show that the upper bounds established in Se
tion 3.1 are essentially optimal. To prove the

mat
hing lower bounds we exploit variants of tiling problems (see e.g., [vEB82, vEB97, Ber66℄).

A tile is a unit square of one of several types and a tiling system is spe
i�ed by means of a �nite

set � of tile types and two binary relations H and V over �, representing horizontal and verti
al

adja
en
y relations, respe
tively. A generi
 tiling problem 
onsists in determining whether there

exists a mapping � (
alled tiling) from a given region R of the integer plane to � whi
h is 
onsistent

with H and V . That is, if (i; j); (i; j+1) 2 R then (�(i; j); �(i; j+1)) 2 H and if (i; j); (i+1; j) 2 R

then (�(i; j); �(i + 1; j)) 2 V . We get a spe
i�
 tiling problem by imposing additional 
onditions

on the region to be tiled and on the tile types that 
an be pla
ed in 
ertain positions of the region,

su
h as the �rst/last row/
olumn, or the borders.

Di�erent tiling problems have been shown to be 
omplete for various 
omplexity 
lasses [vEB82,

vEB97℄. We will use EXPSPACE and 2EXPSPACE-
omplete tiling problems.
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3.2.1 Existen
e of a nonempty rewriting

We say that a rewriting R is �

E

-empty if L(R) = ;. We say that it is �-empty if exp

�

(L(R)) = ;.

Clearly �

E

-emptiness implies �-emptiness. The 
onverse also holds ex
ept for the non-interesting


ase where E 
ontains one or more expressions E su
h that L(E) = ;. Therefore, we will talk about

the emptiness of a rewriting R without distinguishing between the two de�nitions.

We 
onsider the tiling problem T = (�;H; V; t

S

; t

F

; C

ES

), where t

S

and t

F

are two distinguished

tile types in �, and for a given number n in unary, C

ES

requires to tile a region of size O(2

n

)�k, for

some 
onstant 
 and some number k, in su
h a way that the left bottom tile of the region (i.e., the

one in position (0; 0)) is of type t

S

and the right upper tile (i.e., the one in position (
2

n

� 1; k� 1),

for some 
onstant 
) is of type t

F

. Using a redu
tion from a

eptan
e of EXPSPACE Turing

ma
hines analogous to the one in [vEB97℄, it 
an be shown that this variant of tiling problem is

EXPSPACE-
omplete.

We exploit su
h a tiling problem to prove the EXPSPACE lower bound of the problem of

verifying the existen
e of a nonempty rewriting. That is, given an instan
e T of the above tiling

problem and a number n, we 
onstru
t a regular expression E

0

and a set E of regular expressions

su
h that a tiling 
orresponding to T (a T -tiling) exists if and only if there is a nonempty rewriting

of E

0

wrt E .

Let m = 
n for some 
onstant 
. A tiling of a region of size 2

m

� k 
an be des
ribed as a word

over � of length k2

m

, where every blo
k of 2

m

symbols des
ribes a row of the tiling. We take �

E

to be �. We will de�ne E

0

and re(e) for ea
h letter e 2 � su
h that a �-word e

1

� � � e

`

des
ribes

a T -tiling if and only if exp

�

(e

1

� � � e

`

) � L(E

0

). E

0

will be de�ned as the sum E

bad

+E

good

of two

regular expressions E

bad

and E

good

, whi
h are in turn de�ned as sums of regular expressions.

The 
onstru
tion of re(e) for e 2 � is uniform: we take the alphabet � to be � [ f0; 1; $g (so

�

E

� �), and de�ne re(e) = $�(0 + 1)

3m+1

�e; that is, the language asso
iated with e 
onsists of e

pre�xed with a $ sign and all binary words of length 3m + 1. Intuitively, the $ sign is a marker,

the �rst m bits en
ode the 
olumn of a tile (m bits are needed to des
ribe the 
olumn in a row of

length 2

m

), and the next 2m bits en
ode bookkeeping information. The 3m+1-st bit is a highlight.

As will be
ome 
lear shortly, highlights are used to identify either a tile not in the last 
olumn or

a pair of verti
ally adja
ent tiles. Given a word w 2 L(re(e)), we use

� position(w) to denote the �rst m bits after the $ marker,

� 
arry(w) to denote the se
ond m bits after the $ marker, and

� next(w) to denote the third m bits after the $ marker.

Also, we use position(w; i), 
arry(w; i) and next(w; i), for 0 � i < m to denote the i + 1-st bit in

position(w), 
arry(w), and next(w), respe
tively. This means that we 
ount bits starting from 0

and 
onsider the least signi�
ant bit to be the one in position 0.

Consider now a word e

0

� � � e

`

over �, and let w = w

0

� � �w

`

be a word in exp

�

(e

0

� � � e

`

). We


all ea
h w

j

, whi
h is a word of length 3m + 3, a blo
k. We 
lassify su
h words w into two


lasses. Our intention is that position(w

j

) des
ribes an m-bit 
ounter, and that pre
isely one or

two highlight bits be on. When only one highlight bit is on it is lo
ated in a blo
k w

h

su
h that

position(w

h

) 6= 1

m

, and when two highlight bits are on, they are lo
ated in blo
ks w

h

and w

k

su
h

that position(w

h

) = position(w

k

) and for at most one j, h < j < k, we have position(w

j

) = 0

m

.

Requiring position(w

j

) to be an m-bit 
ounter means that we expe
t position(w

0

) = 0

m

and

position(w

`

) = 1

m

, and we expe
t 
arry(w

j

) to be the sequen
e of m 
arry bits when position(w

j

)

is in
remented to yield next(w

j

), whi
h is equal to position(w

j+1

). If the intended 
onditions do

7



not hold, then w is a bad word. More pre
isely, a word w = w

0

� � �w

`

is bad if one of the following

holds:

1. position(w

0

; i) = 1, for some i, 0 � i < m;

2. position(w

`

; i) = 0, for some i, 0 � i < m;

3. 
arry(w

j

; 0) = 0, for some j, 0 � j � `;

4. 
arry(w

j

; i) 6= 
arry(w

j

; i� 1)and position(w

j

; i� 1), for some j and i, 0 � j � `, 1 � i < m;

5. next(w

j

; i) 6= position(w

j

; i)xor 
arry(w

j

; i), for some j and i, 0 � j � `, 0 � i < m;

6. position(w

j

; i) 6= next(w

j�1

; i), for some j and i, 1 � j � `, 0 � i < m;

7. 
onditions on the highlight bits, whi
h are:

(a) no highlight bit in w is 1;

(b) only one highlight bit inw is 1 and it is lo
ated in a blo
k w

h

su
h that position(w

h

) = 1

m

;

(
) at least three highlight bits in w are 1;

(d) the two highlight bits that are 1 are lo
ated in two blo
ks w

h

and w

k

and there are at least

two blo
ks w

j

1

and w

j

2

between w

h

and w

k

su
h that position(w

j

1

) = position(w

j

2

) = 0

m

;

(e) the two highlight bits that are 1 are lo
ated in two blo
ks w

h

and w

k

and position(w

h

; i) 6=

position(w

k

; i) for some i, 0 � i < m.

We de�ne E

bad

in su
h a way that all bad words belong to L(E

bad

). Ea
h of the above 
onditions


an be \dete
ted" by a regular expression of size O(m), whi
h 
ontributes to E

bad

(and hen
e to

E

0

). To illustrate the idea, we provide the regular expressions for some of the 
onditions above.

Condition (1) is dete
ted by the regular expression

(

m�1

X

i=0

$�(0 + 1)

i

�1�(0 + 1)

3m�i

��) � B

�

where B stands for the regular expression $�(0 + 1)

3m+1

��.

Condition (4) is dete
ted by the sum of four regular expressions

B

�

� (

m�1

X

i=1

$�(0 + 1)

i�1

�p�(0 + 1)

m�i

�

(0 + 1)

i�1

�
�


0

(0 + 1)

m�1�i

�(0 + 1)

m+1

��) �B

�

one for ea
h 
hoi
e of 0 or 1 for p, 
, and 


0

su
h that 


0

6= 
and p.

Condition (6) is dete
ted by the sum of two regular expressions

B

�

� (

m�1

X

i=0

$�(0 + 1)

2m

�(0 + 1)

i

�b�(0 + 1)

m�1�i

�(0 + 1)�� �

$�(0 + 1)

i

�

�

b�(0 + 1)

m�1�i

�(0 + 1)

2m

�(0 + 1)��) �B

�

one for b = 0 and

�

b = 1, and one for b = 1 and

�

b = 0.

Condition (7b) is dete
ted by the regular expression

($�(0 + 1)

3m

�0��)

�

� $�1

m

�(0 + 1)

2m

�1�� � ($�(0 + 1)

3m

�0��)

�

8



Condition (7e) is dete
ted by the sum of two regular expressions

B

�

� (

m�1

X

i=0

$�(0 + 1)

i

�b�(0 + 1)

3m�1�i

�1�� �B

�

�

$�(0 + 1)

i

�

�

b�(0 + 1)

3m�1�i

�1��) �B

�

one for b = 0 and

�

b = 1, and one for b = 1 and

�

b = 0.

Words that satisfy none of the above 
onditions are good words, and will be handled di�erently.

In su
h words either one or two highlight bits are on. When one highlight bit is on, it is lo
ated at

a blo
k that 
orresponds to a tile not in the last row in a tiling of the region. The types of this tile

and of the one immediately to the right have to be related in a way that depends on the horizontal

adja
en
y relation H of T . When two highlight bits are on, they are lo
ated at two positions that

are pre
isely 2

m

blo
ks apart, and these blo
ks 
orrespond to verti
ally adja
ent tiles. The types

of these tiles have to be related in a way that depends on the verti
al adja
en
y relation V of T .

We 
an use regular expressions of size O(m) to for
e su
h blo
ks to be related in the right way,

and also to for
e the tiling to satisfy the additional 
onditions on the left bottom and right upper

tiles. E

good

is the sum of all su
h regular expressions.

For example, the following regular expression ensures that the horizontal adja
en
y relation is

respe
ted in the 
ase where the highlight bit is on at a blo
k that is neither the �rst nor the last

one:

$�(0 + 1)

3m

�0�t

S

� ($�(0 + 1)

3m

�0��)

�

�

(

P

(t

1

;t

2

)2H

$�(0 + 1)

3m

�1�t

1

� $�(0 + 1)

3m

�0�t

2

) �

($�(0 + 1)

3m

�0��)

�

� $�(0 + 1)

3m

�0�t

F

The following regular expression ensures that the verti
al adja
en
y relation is respe
ted in the


ase where the two highlight bits are on at blo
ks that are neither the �rst nor the last one:

$�(0 + 1)

3m

�0�t

S

� ($�(0 + 1)

3m

�0��)

�

�

(

P

(t

1

;t

2

)2V

$�(0 + 1)

3m

�1�t

1

� ($�(0 + 1)

3m

�0��)

�

� $�(0 + 1)

3m

�1�t

2

) �

($�(0 + 1)

3m

�0��)

�

� $�(0 + 1)

3m

�0�t

F

Similar regular expressions 
an be provided for the 
ases where the highlight bits are on at the �rst

or last blo
k.

Thus, all the good words w = w

0

� � �w

`

in exp

�

(e

0

� � � e

`

) are in L(E

good

) if and only if e

0

� � � e

`

des
ribes a T -tiling. If no T -tiling exists then for every e

0

� � � e

`

we 
an �nd a good word w =

w

0

� � �w

`

in exp

�

(e

0

� � � e

`

) that is not in L(E

good

) and hen
e not in L(E

0

). Thus, E

0

has a nonempty

rewriting wrt E if and only if a T -tiling exists.

Theorem 7 The problem of verifying the existen
e of a nonempty rewriting of a regular expression

E

0

wrt a set E of regular expressions is EXPSPACE-
omplete.

Proof. By Theorem 5, we generate the �

E

-maximal rewriting of a regular expression E

0

wrt a

set E of regular expressions in 2EXPTIME. Che
king whether a given �nite-state automaton in

non-empty 
an be done in NLOGSPACE. The upper bound follows (see 
omments in the proof of

Theorem 6). The lower bound follows from the redu
tion from the EXPSPACE 
omplete tiling

problem des
ribed above, by observing that E

0

and all regular expressions in E are of size polynomial

in T and n. 2
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Note that Theorem 7 implies that the upper bound established in Theorem 5 is essentially

optimal. If we 
an generate maximal rewritings in, say, EXPTIME, then we 
ould test emptiness

in PSPACE, whi
h is impossible by Theorem 7. We 
an get, however, an even sharper lower bound

on the size of rewritings.

Theorem 8 For ea
h n > 0 there is a regular expression E

n

and a set E

n

of regular expressions

su
h that the 
ombined size of E

n

and E

n

is polynomial in n, but the shortest nonempty rewriting

(expressed either as a regular expression or as an automaton) of E

n

wrt E

n

is of length 2

2

n

.

Proof. We use the en
oding te
hnique of Theorem 7. Instead, however, of en
oding tiling problems,

we dire
tly en
ode a 2

n

-bit 
ounter using an alphabet �

E

= fb

n

000

; b

n

001

; : : : ; b

n

111

g of 8 symbols

representing the 8 possible 
ombinations of a position, a 
arry, and a next bit. For a symbol b

n

p
x

,

where p; 
; x 2 f0; 1g, we say that p is the position-
omponent, 
 the 
arry-
omponent, and x the

next-
omponent of b

n

p
x

. In a word over �

E

representing the evolution of the 2

n

-bit 
ounter, the

three 
omponents of symbols that are exa
tly 2

n

positions apart will represent the position, 
arry,

and next bits in the same position of two su

essive 
on�gurations of the 
ounter. By using the

highlight bits of the en
oding te
hnique of Theorem 7 we 
an enfor
e the 
orre
t relationships

between su
h symbols. Hen
e, we 
an de�ne E

n

= fB

n

000

; : : : ; B

n

111

g and E

n

0

in su
h a way that

a word w = b

n

p

0




0

x

0

� � � b

n

p

m




m

x

m

is a rewriting of E

n

0

wrt E

n

if and only if the bit ve
tor p

0

� � � p

m

represented by the position-
omponents of w is of the form w

0

� � �w

2

2

n

�1

, where w

j

is the 2

n

-bit

representation of j.

Using pumping arguments it is easy to see that any regular expression or automaton des
ribing

su
h a rewriting has to be of length at least 2

2

n

. Indeed, assume there is a regular expression

or automaton R of size less than 2

2

n

des
ribing the rewriting. Then, sin
e any nonempty regular

expression or automaton a

epts at least one word of length less than or equal to its size, R a

epts

also a word w

0

of length less than 2

2

n

, 
ontradi
ting the hypothesis that R is a 
orre
t rewriting of

E

n

0

wrt E

n

. 2

3.2.2 Existen
e of an exa
t rewriting

The te
hnique used in Theorem 7 turns out to be an important building blo
k in the proof that

Theorem 6 is also tight.

We 
onsider the tiling problem T = (�;H; V; t

S

; t

F

; t

L

; t

R

; C

2ES

), where t

S

, t

F

, t

L

, and t

R

are

distinguished tile types in � su
h that (t

R

; t

L

) 2 H, and for a given number n in unary, C

2ES

requires to tile a region of size O(2

2

n

) � k, for some number k, in su
h a way that: (i) the left

bottom tile of the region is of type t

S

, (ii) all other tiles on the left border are of type t

L

, (iii) the

right upper tile is of type t

F

, and (iv) all other tiles on the right border are of type t

R

. Using a

redu
tion from a

eptan
e of 2EXPSPACE Turing ma
hines analogous to the one in [vEB97℄, it


an be shown that this tiling problem is 2EXPSPACE-
omplete.

We exploit su
h a tiling problem to prove the 2EXPSPACE lower bound of the problem of

verifying the existen
e of an exa
t rewriting. That is, given an instan
e T of the above tiling

problem and a number n, we 
onstru
t a regular expression E

0

and a set E of regular expressions

su
h that a T -tiling exists if and only if there is an exa
t rewriting of E

0

wrt E . Ea
h row of a

T -tiling is of doubly exponential length in n. We des
ribe su
h a tiling as a word over �, and to

\
he
k" the verti
al adja
en
y 
onditions we need to 
ompare the types of tiles that are a doubly

exponential distan
e apart, whi
h requires \yardsti
ks" of su
h length. Fortunately, we have seen

in the proofs of Theorems 7 and 8 how to 
onstru
t su
h yardsti
ks.
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We dire
tly exploit the 
onstru
tion des
ribed in Theorem 8 to en
ode a 2

n

bit 
ounter, and

obtain a regular expression E

C

0

and a set E

C

of regular expressions, all over an alphabet �

C

=

f0; 1; $g [ �

C

. Let re

C

(�) be the mapping that asso
iates to ea
h symbol in a suitable alphabet

�

C

E

a regular expression in E

C

. Then for a word w over �

C

E

we have that exp

�

(w) � L(E

C

0

)

pre
isely when w = w

C

, where w

C

is the word that des
ribes the 2

2

n

su

essive bit 
on�gurations

(for the position, the 
arry and the next bits) of the 2

n

bit 
ounter. In parti
ular, sin
e ea
h bit


on�guration is of length 2

n

, we have that w

C

is of length 2

n

� 2

2

n

, whi
h is pre
isely what we need.

We will use E

C

0

and E

C

to 
onstru
t regular expressions that dete
t errors in T -tilings with rows

of length exa
tly 1 + 2

n

� 2

2

n

.

Let

~

� = f

~

t j t 2 �g, where � is the set of tile types of T . We take � to be �

C

[

~

� [� and

�

E

to be �

C

E

[

~

�. The set E of regular expressions used for the rewriting is obtained by taking

re(e) = re

C

(e) + �, for ea
h e 2 �

C

E

, and re(

~

t) =

~

t + t, for ea
h

~

t 2

~

�. Thus ea
h symbol in �

C

E

generates also all possible tile types in �, while ea
h symbol in

~

� generates itself and only the


orresponding tile type.

We 
onstru
t regular expressions E

V

0

, E

H

0

, E

S

0

, E

F

0

, E

L

0

, and E

R

0

, whi
h are used to dete
t errors

in 
andidate tilings. E

V

0

is used to dete
t 
on
i
ts with respe
t to the verti
al adja
en
y relation

V , whi
h arise between tiles that are 1+2

n

� 2

2

n

symbols apart. E

H

0

is used to dete
t 
on
i
ts with

respe
t to the horizontal adja
en
y relation H, whi
h arise between tiles that are dire
tly adja
ent.

Note that sin
e (t

R

; t

L

) 2 H, also the last tile of a row and the �rst tile of the next row have to

respe
t the horizontal adja
en
y 
ondition. E

S

0

, E

F

0

, E

L

0

, and E

R

0

are used to dete
t tiles of the

wrong type at the beginning and end, and on the left and right border respe
tively. All su
h tiles

are at a known distan
e from the left bottom tile. The regular expressions are 
onstru
ted in su
h

a way that for a word w over �

E

we have that:

� exp

�

(w) � L(E

V

0

) pre
isely when w is in the form

�

C

E

�

� (

X

(t

1

;t

2

)2V

~

t

1

��

C

E

�w

C

�

~

t

2

) � �

C

E

�

where V is the set of pairs of tiles that are not in V .

� exp

�

(w) � L(E

H

0

) pre
isely when w is in the form

�

C

E

�

� (

X

(t

1

;t

2

)2H

~

t

1

�

~

t

2

) � �

C

E

�

where H is the set of pairs of tiles that are not in H.

� exp

�

(w) � L(E

S

0

) pre
isely when w is in the form

(

X

t2�nft

S

g

~

t) � �

C

E

�

� exp

�

(w) � L(E

F

0

) pre
isely when w is in the form

(�

C

E

�w

C

)

�

�w

C

� (

X

t2�nft

F

g

~

t)

� exp

�

(w) � L(E

L

0

) pre
isely when w is in the form

(�

C

E

�w

C

)

�

��

C

E

�w

C

� (

X

t2�nft

L

g

~

t) � �

C

E

�
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� exp

�

(w) � L(E

R

0

) pre
isely when w is in the form

(�

C

E

�w

C

)

�

�w

C

� (

X

t2�nft

R

g

~

t) � �

C

E

��

C

E

�

The 
onstru
tion of E

H

0

andE

S

0

is immediate. For the other regular expressions we need to 
onstru
t

a regular expression E

C�

0

, of size polynomial in n, whose rewriting is w

C

. We make use of E

C

0

and

E

C

, but need to take into a

ount that, wrt the 
onstru
tion in Theorem 8, now a symbol e in �

C

E

generates not only all possible sequen
es of type $�(0 + 1)

3n+1

�e (and hen
e of length 3n+ 3) but

also all symbols in �. We 
an however exploit the fa
t that E

C

0

is 
omposed of subexpressions that

generate words of length 3n+3 and thus obtain E

C�

0

from E

C

0

by simply adding the expression �

to ea
h su
h subexpression. Then we have for example that

E

V

0

= (B

C

+�)

�

� (

X

(t

1

;t

2

)2V

(

~

t

1

+ t

1

)�(B

C

+�)�E

C�

0

�(

~

t

2

+ t

2

)) � (B

C

+�)

�

where B

C

stands for the regular expression $�(0 + 1)

3n+1

��

C

. The regular expressions E

F

0

, E

L

0

,

and E

R

0

are 
onstru
ted in a similar way.

The regular expression E

1

0

= E

V

0

+ E

H

0

+ E

S

0

+ E

F

0

+ E

L

0

+ E

R

0

is su
h that a rewriting of E

1

0

generates only 
andidate tilings with some error (in addition to words 
ontaining also $, 0, 1, the

symbols in �

C

, and at most two symbols in

~

�).

To en
ode the problem of the existen
e of an exa
t rewriting, we take E

0

to be E

1

0

+�

�

, i.e.,

E

0

expresses also all \
andidate" tilings using the tile types in �. If no T -tiling exists, then every


andidate tiling will have an error, and thus will already be generated by a rewriting of E

1

0

. If, on

the other hand, a T -tiling exists, su
h a tiling does not have an error and will not be generated by

the rewriting of E

1

0

, resulting in a non-exa
t rewriting. Noti
e that we 
annot attempt to 
onstru
t

a rewriting of �

�

separately, and the only way to get one is via the rewriting of E

1

0

. This is due

to the fa
t that, from the symbols in �

E

= �

C

E

[

~

�, ea
h symbol e in �

C

E

generates not only all

symbols in �, but also sequen
es of type $�(0+1)

3n+1

�e, while ea
h symbol

~

t in

~

� generates besides

t also

~

t.

Theorem 9 The problem of verifying the existen
e of an exa
t rewriting of a regular expression

E

0

wrt a set E of regular expressions is 2EXPSPACE-
omplete.

Proof. The upper bound proof is given in Theorem 6. The lower bound follows from the redu
tion

from the 2EXPSPACE 
omplete tiling problem des
ribed above, by observing that E

0

and all

regular expressions in E are of size polynomial in T and n. 2

4 Query rewriting in semi-stru
tured data

In this se
tion we show how to apply the results presented above to query rewriting in semi-

stru
tured data.

All semi-stru
tured data models share the 
hara
teristi
 that data are organized in a labeled

graph [Bun97, Abi97℄. Following this idea two di�erent approa
hes have been proposed:

1. The �rst approa
h asso
iates data both to the nodes and to the edges. Spe
i�
ally, nodes

represent obje
ts, and edges represent relations between obje
ts [Abi97, QRS

+

95, FFLS97,

FFK

+

98℄.
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2. The se
ond approa
h asso
iates data to the edges only [BDFS97, BDHS96, FS98℄, but queries

are not expressed dire
tly over the 
onstants labeling the edges of databases, but over formulae

des
ribing the properties of su
h edges.

An answer to a regular path query is a set of pairs of nodes 
onne
ted in the database through a

path 
onforming to the query. In the �rst approa
h the rewriting te
hniques proposed in Se
tion 2


an be dire
tly applied to rewrite regular path queries. It is suÆ
ient to show that R is a rewriting

of a query Q if and only if R (
onsidered as a me
hanism to de�ne a language) is a rewriting of the

regular expression Q

1

. In the se
ond approa
h more 
are is required. In the rest of the se
tion we


on
entrate on this 
ase.

4.1 Semi-stru
tured data models and queries

From a formal point of view we 
an 
onsider a (semi-stru
tured) database as a graph DB whose

edges are labeled by elements from a given domain D whi
h we assume �nite. We denote an edge

from node x to node y labeled by a with x

a

! y. Typi
ally, a database will be a rooted 
onne
ted

graph, however in this paper we do not need to make this assumption.

In order to de�ne queries over a semi-stru
tured database we start from a de
idable, 
omplete

2

�rst-order theory T over the domain D. We assume that the language of T in
ludes one distin
t


onstant for ea
h element of D (in the following we do not distinguish between 
onstants and

elements of D). We further assume that among the predi
ates of T we have one unary predi
ate of

the form �z:z = a, for ea
h 
onstant a in D. We use simply a as an abbreviation for su
h predi
ate.

Finally, we follow [BDFS97℄ and 
onsider both the size of T , and the time needed to 
he
k validity

of any formula in T to be 
onstant.

In this paper we 
onsider regular path queries (whi
h we 
all simply queries) i.e., queries that

denote all the paths 
orresponding to words of a spe
i�ed regular language. The regular language

is de�ned over a (�nite) set F of formulae of T with one free variable. Su
h formulae are used to

des
ribe properties that the labels of the edges of the database must satisfy. Regular path queries

are the basi
 
onstituents of queries in semi-stru
tured data, and are typi
ally expressed by means

of regular expressions [BDHS96, Abi97, FS98, MS99℄. Another possibility to express regular path

queries is to use �nite automata.

When evaluated over a database, a query Q returns the set of pairs of nodes 
onne
ted by a path

that 
onforms to the regular language L(Q) de�ned by Q, a

ording to the following de�nitions.

De�nition 4 Given an F -word '

1

� � �'

n

, a D-word a

1

� � � a

n

mat
hes '

1

� � �'

n

(wrt T ) if and only

if T j= '

i

(a

i

), for i = 1; : : : ; n.

We denote the set of D-words that mat
h an F -word w by mat
h(w), and given a language ` over

F , we denote

S

w2`

mat
h(w) by mat
h(`).

De�nition 5 The answer to a query Q over a database DB is the set ans(L(Q);DB), where for a

language ` over F

ans(`;DB) = f(x; y) j there is a path x

a

1

! � � �

a

n

! y in DB s.t. a

1

� � � a

n

2 mat
h(`)g

1

The proof is similar to the one for Theorem 10.

2

The theory is 
omplete in the sense that for every 
losed formula ', either T entails ', or T entails :' [BDFS97℄.
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4.2 Rewriting regular path queries

In order to apply the results on rewriting of regular expressions to query rewriting in semi-stru
tured

data we need to take into a

ount that the alphabet over whi
h queries (the one we want to rewrite

and the views to use in the rewriting) are expressed, is the set F of formulae of the underlying

theory T , and not the set of 
onstants that appear as edge labels in graph databases.

Let Q

0

be a regular path query and Q = fQ

1

; : : : ; Q

k

g be a �nite set of views, also expressed

as regular path queries, in terms of whi
h we want to rewrite Q

0

. Let F be the set of formulae of

T appearing in Q

0

; Q

1

; : : : ; Q

k

, and let Q have an asso
iated alphabet �

Q


ontaining exa
tly one

symbol for ea
h view in Q. We denote the view asso
iated to the symbol q 2 �

Q

with rpq(q).

Given any language ` over �

Q

, we denote by exp

F

(`) the language over F de�ned as follows

exp

F

(`) =

[

q

1

���q

n

2`

fw

1

� � �w

n

j w

i

2 L(rpq(q

i

))g

De�nition 6 Let R be any formalism for de�ning a language L(R) over �

Q

. R is a rewriting of

Q

0

wrt Q if for every database DB , ans(exp

F

(L(R));DB ) � ans(L(Q

0

);DB), and is said to be

� maximal if for ea
h rewriting R

0

of Q

0

wrt Q we have that ans(exp

F

(L(R

0

));DB) �

ans(exp

F

(L(R));DB ),

� exa
t if ans(exp

F

(L(R));DB) = ans(L(Q

0

);DB).

Theorem 10 R is a rewriting of Q

0

wrt Q if and only if mat
h(exp

F

(L(R))) � mat
h(L(Q

0

)).

Moreover, it is maximal if and only if for ea
h rewriting R

0

of Q

0

wrt Q we have that

mat
h(exp

F

(L(R

0

))) � mat
h(exp

F

(L(R))), and it is exa
t if and only if mat
h(exp

F

(L(R))) =

mat
h(L(Q

0

)).

Proof. We prove only that R is a rewriting of Q

0

wrt Q i� mat
h(exp

F

(L(R))) � mat
h(L(Q

0

)).

The other assertions follow immediately.

\=)" By 
ontradi
tion. Assume there exists a D-word a

1

� � � a

n

2 mat
h(exp

F

(L(R))) su
h

that a

1

� � � a

n

62 mat
h(L(Q

0

)). Then for the database DB 
onsisting of a single path x

a

1

! � � �

a

n

! y

it holds that (x; y) 2 ans(exp

F

(L(R));DB) but (x; y) 62 ans(L(Q

0

);DB). Contradi
tion.

\(=" Again by 
ontradi
tion. Assume there exists a database DB and two nodes x and y in DB

su
h that (x; y) 2 ans(exp

F

(L(R));DB) and (x; y) 62 ans(L(Q

0

);DB). Then there exists a path

x

a

1

! � � �

a

n

! y in DB su
h that a

1

� � � a

n

2 mat
h(exp

F

(L(R))). Hen
e a

1

� � � a

n

2 mat
h(L(Q

0

)) and

thus (x; y) 2 ans(L(Q

0

);DB). Contradi
tion. 2

We say that R is �

Q

-maximal if for ea
h rewriting R

0

of Q

0

wrt Q we have that L(R

0

) � L(R).

By arguing as in Theorem 1, and exploiting Theorem 10, it is easy to show that a �

Q

-maximal

rewriting is also maximal.

Next we show how to 
ompute a �

Q

-maximal rewriting, by exploiting the 
onstru
tion presented

in Se
tion 2. Applying the 
onstru
tion literally, 
onsidering F as the base alphabet �, we would

not take into a

ount the theory T , and hen
e the 
onstru
tion would not give us the maximal

rewriting in general. As an example, suppose that T j= 8x:A(x) � B(x), Q

0

= B, and Q = fAg.

Then the maximal rewriting of Q

0

wrt Q is A, but the algorithm would give us the empty language.

In order to take the theory into a

ount, we 
an pro
eed as follows: For ea
h query Q 2 fQ

0

g[Q

we 
onstru
t an automaton Q

g

a

epting the language mat
h(L(Q)). This 
an be done by viewing
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the query Q as a (possibly nondeterministi
) automaton Q = (F ; S; s

0

; �; F ) and 
onstru
t Q

g

as

(D; S; s

0

; �

g

; F ), where s

j

2 �

g

(s

i

; a) if and only if s

j

2 �(s

i

; ') and T j= '(a). Observe that the set

of states of Q and Q

g

is the same. We denote fQ

g

1

; : : : ; Q

g

k

g with Q

g

. Then we pro
eed as before:

1. Constru
t a deterministi
 automaton A

d

= (D; S

d

; s

0

; �

g

d

; F

d

) su
h that L(A

d

) = L(Q

g

0

).

2. De�ne the automaton A

0

= (�

Q

; S

d

; s

0

; �

0

; S

d

� F

d

), where s

j

2 �

0

(s

i

; q) if and only if 9w 2

mat
h(L(rpq(q))) su
h that s

j

2 �

g

d

�

(s

i

; w).

3. Return R

Q;Q

0

= R

Q

g

;Q

g

0

= A

0

.

Theorem 11 The automaton R

Q;Q

0

is a �

Q

-maximal rewriting of Q

0

wrt Q.

Proof. First we show that every rewriting R of Q

g

0

wrt Q

g

is also a rewriting of Q

0

wrt Q, and

vi
e-versa. If R is a rewriting of Q

g

0

wrt Q

g

, then by de�nition exp

D

(L(R) � L(Q

g

0

), whi
h implies

that mat
h(exp

F

(L(R))) � mat
h(L(Q

0

)), i.e., R is a rewriting of Q

0

wrt Q. On the 
onverse, if R

is a rewriting of Q

0

wrt Q, then by de�nition mat
h(exp

F

(L(R))) � mat
h(L(Q

0

)) whi
h implies

that exp

D

(L(R) � L(Q

g

0

), i.e., R is a rewriting of Q

g

0

wrt Q

g

.

Now, by Theorem 2 we know that R

Q

g

;Q

g

0

= R

Q;Q

0

is a �

Q

-maximal rewriting of Q

g

0

wrt Q

g

.

Hen
e it is a rewriting of Q

0

wrt Q.

As R

Q

g

;Q

g

0

is a �

Q

-maximal rewriting of Q

g

0

wrt Q

g

, we have that, for ea
h rewriting R of Q

g

0

wrt Q

g

, and hen
e for ea
h rewriting R of Q

0

wrt Q, L(R) � L(R

Q

g

;Q

g

0

) = L(R

Q;Q

0

), whi
h implies

that R

Q;Q

0

a �

Q

-maximal rewriting of Q

0

wrt Q. 2

To 
he
k that R

Q;Q

0

is an exa
t rewriting of Q

0

wrt Q we 
an pro
eed as in Se
tion 2, by


onstru
ting an automaton B that a

epts exp

D

(L(R

Q

g

;Q

g

0

)), and 
he
king for the emptiness of

L(A

d

\B).

Observe that both the size of Q

g

0

and Q

g

and the time needed to 
onstru
t them from Q

0

and Q

are linearly related to the size of Q

0

and Q. It follows that the same upper bounds as established

in Se
tion 3.1 hold for the 
ase of regular path queries.

In fa
t, the 
onstru
tion of Q

g


an be avoided in building R

Q;Q

0

, sin
e we 
an verify whether

there exists a D-word w 2 mat
h(L(rpq(q))) su
h that s

j

2 �

g

d

�

(s

i

; w) (required in Step 2 of the

algorithm above) as follows. We 
onsider dire
tly the automaton Q = rpq(q) (whi
h is over the

alphabet F) and the automaton A

i;j

d

= (D; S

d

; s

i

; �

g

d

; fs

j

g) obtained from A

d

by suitably 
hanging

the initial and �nal states. Then we 
onstru
t from Q and A

i;j

d

the produ
t automaton K, with the

proviso that K has a transition from (s

1

; s

2

) to (s

0

1

; s

0

2

) (whose label is irrelevant) if and only if (i)

there is a transition from s

1

to s

0

1

labeled a in Q

i;j

, (ii) there is a transition from s

2

to s

0

2

labeled '

in Q, and (iii) T j= '(a). Finally, we 
he
k whether K a

epts a non-empty language. This allows

us to instantiate the formulae in Q only to those 
onstants that are a
tually ne
essary to generate

the transition fun
tion of A

0

.

With regard to Q

0

, instead of 
onstru
ting Q

g

0

, we 
an build an automaton based on the idea of

separating 
onstants into suitable equivalen
e 
lasses a

ording to the formulae in the query they

satisfy. The resulting automaton still des
ribes the query Q

0

, and its alphabet is generally mu
h

smaller than that of Q

g

0

.

4.3 Properties of rewritings

In the 
ase where the rewriting R

Q;Q

0

is not exa
t, the only thing we know is that su
h rewriting

is the best one we 
an obtain by using only the views in Q. However, one may want to know how

to get an exa
t rewriting by adding to Q suitable views.
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Example 3 Let Q

0

= a�(b+
), Q = fa; bg, and �

Q

= fq

1

; q

2

g, where rpq(q

1

) = a, and rpq(q

2

) = b.

Then R

Q;Q

0

= q

1

� q

2

, whi
h is not exa
t. On the other hand, by adding 
 to Q and q

3

to �

Q

, with

rpq(q

3

) = 
, we obtain q

1

� (q

2

+ q

3

) as an exa
t rewriting of Q

0

.

Here we 
onsider the 
ase where the views added to Q are atomi
, i.e., have the form �z:P (z),

where P is a predi
ate of T . Noti
e that atomi
 views in
lude views of the form �z:z = a,

(abbreviated by a), whi
h we 
all elementary. The intuitive idea is to 
hoose a subset P

0

of the set

P of predi
ates of T , and to 
onstru
t an exa
t rewriting of Q

0

wrt Q

+

, where Q

+

is obtained by

adding to Q an atomi
 view for ea
h symbol in P

0

. An exa
t rewriting R of Q

0

wrt Q

+

is 
alled a

partial rewriting of Q

0

wrt Q, provided that Q

+

6= Q.

The method we have presented 
an be easily adapted to 
ompute partial rewritings. Indeed, if

we 
ompute R

Q

+

;Q

0

, we obtain a partial rewriting of Q

0

wrt Q, provided that R

Q+;Q

0

is an exa
t

rewriting of Q

0

wrt Q

+

. Observe that it is always possible to 
hoose a subset P

0

of P in su
h a

way that R

Q

+

;Q

0

is exa
t (e.g., by 
hoosing the set of all elementary views).

Typi
ally, one is interested in using as few symbols of P as possible to form Q

+

, and this


orresponds to 
hoose the minimal subsets P

0

su
h that R

Q

+

;Q

0

is exa
t. More generally, one


an establish various preferen
e 
riteria for 
hoosing rewritings. For instan
e, we may say that a

(partial) rewriting R is preferable to a (partial) rewriting R

0

if one of the following holds:

1. mat
h(exp

F

(L(R

0

))) � mat
h(exp

F

(L(R))),

2. mat
h(L(R)) = mat
h(L(R

0

)) and R uses less additional elementary views than R

0

,

3. mat
h(L(R)) = mat
h(L(R

0

)), R uses the same number of additional elementary views as R

0

,

and less additional atomi
 nonelementary views.

4. mat
h(L(R)) = mat
h(L(R

0

)), R uses the same number of additional atomi
 views as R

0

, and

less views than R

0

.

Under this de�nition an exa
t rewriting is preferable to a nonexa
t one. Moreover, the de�nition

re
e
ts the fa
t that the 
ost of materializing additional atomi
 views (in parti
ular the elementary

ones) is higher than the 
ost of using the available ones. Finally, sin
e a 
ertain 
ost is asso
iated

to the use of ea
h view, when 
omparing two rewritings de�ning the same language and using (if

any) the same number of additional atomi
 views, then the one that uses less views is preferable.

The rewriting algorithm presented above 
an be immediately exploited to 
ompute the most

preferable rewritings a

ording to the above 
riteria. It easy to see that the problem of 
omputing

the most preferable rewritings remains in the same 
omplexity 
lass.

5 Con
lusions

In this paper we have studied the problem of query rewriting using views in the 
ase where both

the query and the views are expressed as regular path queries. We have shown the de
idability

of the problem of 
omputing the maximal rewriting and 
he
king whether it is exa
t. We have


hara
terized the 
omputational 
omplexity of the problem and have provided algorithms that are

essentially optimal. We envision several dire
tions for extending the present work.

First, in this paper we fo
used on the problem of 
omputing the maximal 
ontained rewriting,

i.e., the best rewriting that is guaranteed to provide only answers 
ontained in those of the original

query. Also of interest is the dual approa
h, i.e., 
omputing the minimal 
ontaining rewritings (in
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general not unique), whi
h guarantee to provide all the answers of the original query, and possibly

more.

Se
ond, we are interested in extending regular path queries to the so-
alled generalized

path queries, i.e., queries of the form x

1

Q

1

x

2

� � � x

n�1

Q

n�1

x

n

, where ea
h Q

i

is a regular path

query [FS98℄. Su
h queries ask for all n-tuples o

1

; : : : ; o

n

of nodes su
h that, for ea
h i, there is a

path from o

i

to o

i+1

that satis�es Q

i

. Computing the rewriting of a generalized path query requires

to take into a

ount that ea
h rewritten subpath appears in a given 
ontext formed by a suitable

pre�x and a suitable suÆx. A further generalization would be to 
onsider 
onjun
tions of regular

path queries, where the 
ontext in whi
h a 
ertain subpath appears is even more 
omplex.

Third, one 
an investigate possible interesting sub
ases where the rewriting of regular (and

generalized) path queries 
an be done more eÆ
iently. Additionally, 
ost models for path queries

and preferen
e 
riteria that take into a

ount su
h 
ost models 
an be de�ned, leading to the

development of te
hniques for 
hoosing the best rewriting with respe
t to the new 
riteria.

Finally, it is interesting to investigate the relationships to query answering using views in semi-

stru
tured data, i.e., the problem of answering a regular path query on the basis of a set of ma-

terialized views. One relevant aspe
t is to verify whether the te
hnique we have developed for

query rewriting 
an be exploited for query answering using views. First results in this dire
tion are

reported in [CDGLV99b, CDGLV99a℄.
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