Rewriting of Regular Expressions and Regular Path Queries

Diego Calvanese', Giuseppe De Giacomo', Maurizio Lenzerini', Moshe Y. Vardi?
)))

! Dipartimento di Informatica e Sistemistica
Universita di Roma “La Sapienza”
Via Salaria 113, I-00198 Roma, Italy
lastname@dis.uniromal.it
http://www.dis.uniromal.it/~lastname

2 Department of Computer Science
Rice University, P.O. Box 1892
Houston, TX 77251-1892, U.S.A.
vardi@cs.rice.edu
http://www.cs.rice.edu/~vardi

Abstract

Recent work on semi-structured data has revitalized the interest in path queries, i.e., queries
that ask for all pairs of objects in the database that are connected by a path conforming to
a certain specification, in particular to a regular expression. Also, in semi-structured data, as
well as in data integration, data warehousing, and query optimization, the problem of query
rewriting using views is receiving much attention: Given a query and a collection of views,
generate a new query which uses the views and provides the answer to the original one.

In this paper we address the problem of query rewriting using views in the context of semi-
structured data. We present a method for computing the rewriting of a regular expression F
in terms of other regular expressions. The method computes the exact rewriting (the one that
defines the same regular language as E) if it exists, or the rewriting that defines the maximal
language contained in the one defined by E, otherwise. We present a complexity analysis of both
the problem and the method, showing that the latter is essentially optimal. Finally, we illustrate
how to exploit the method to rewrite regular path queries using views in semi-structured data.
The complexity results established for the rewriting of regular expressions apply also to the case
of regular path queries.

1 Introduction

Database research has often shown strong interest in path queries, i.e., queries that ask for all pairs
of objects in the database that are connected by a specified path (see for example [CMW87, CM90]).
Recent work on semi-structured data has revitalized such interest. Semi-structured data are data
whose structure is irregular, partially known, or subject to frequent changes [Abi97]. They are
usually formalized in terms of labeled graphs, and capture data as found in many application
areas, such as web information systems, digital libraries, and data integration [BDFS97, CACS94,
MMM97, QRS195].

The basic querying mechanism over such graphs is the one that retrieves all pairs of nodes
connected by a path conforming to a given pattern. Since a user may ignore the precise structure

of the graph, the mechanism for specifying path patterns should be flexible enough to allow for
expressing regular path queries, i.e., queries that provide the specification of the requested paths
through a regular language [AQM'97, BDHS96, FFK"98]. For example, the regular path query
(=* - (rome + jerusalem) - ~* - restaurant) specifies all the paths having at some point an edge labeled
rome or jerusalem, followed by any number of other edges and by an edge labeled with a restaurant.

Methods for reasoning about regular path queries have been recently proposed in the literature.
In particular, [AV97, BFW98] investigate the decidability of the implication problem for path
constraints, which are integrity constraints that are exploited in the optimization of regular path
queries. Also, containment of conjunctions of regular path queries has been addressed and proved
decidable in [CDGL98, FLS98].

In semi-structured data, as well as in data integration, data warehousing, and query optimiza-
tion, the problem of query rewriting using views is receiving much attention [U1197, AD98]: Given
a query @ and k queries Q1,...,Q associated to the symbols ¢1,...,qr, respectively, generate a
new query @' over the alphabet gy, ..., g, such that, first interpreting each ¢; as the result of Q;,
and then evaluating @' on the basis of such interpretation, provides the answer to Q.

Several papers investigate this problem for the case of conjunctive queries (with or with-
out arithmetic comparisons) [LMSS95, RSU95], queries with aggregates [SDJL96, CNS99]|, re-
cursive queries [DG97], disjunctive views [DG98, AGK99], non-recursive queries and views for
semi-structured data [PV99], and queries expressed in Description Logics [BLR97]. Rewriting
techniques for query optimization are described, for example, in [CKPS95, ACPS96, TSI96], and
in [FS98, MS99] for the case of path queries in semi-structured data.

None of the above papers provides a method for rewriting regular path queries. Observe that
such a method requires a technique for the rewriting of regular expressions, i.e., the problem that,
given a regular expression Fy, and other k£ regular expressions Fi, ..., E, checks whether we can
re-express Ej by a suitable combination of Ey,..., Ex. As noted in [MS99], such a problem is still
open.

In this paper we present the following contributions:

e We describe a method for computing the rewriting of a regular expression Fj in terms of
other regular expressions. The method computes the exact rewriting (the one that defines
the same regular language as Ejy) if it exists, or the rewriting that defines the maximal
language contained in the one defined by Ej, otherwise.

e We provide a complexity analysis of the problem of rewriting regular expressions. We show
that our method computes the rewriting in 2EXPTIME, and is able to check whether the
computed rewriting is exact in 2EXPSPACE. We also show that the problem of checking
whether there is a nonempty rewriting is EXPSPACE-complete, and demonstrate that our
method for computing the rewriting is essentially optimal. Finally, we show that the problem
of verifying the existence of an exact rewriting is 2EXPSPACE-complete.

o We illustrate how to exploit the above mentioned method in order to devise an algorithm for
the rewriting of regular path queries for semi-structured databases. The complexity results
established for the rewriting of regular expressions apply to the new algorithm as well. Also,
we show how to adapt the method in order to compute rewritings with specific properties. In
particular, we consider partial rewritings (which are rewritings that, besides E, ..., Ej, may
use also symbols in Ej), in the case where an exact one does not exist.

We point out that the results established in this work provide the first decidability results for
rewriting recursive queries using recursive views. Indeed, in our context, both the query and the

views may contain a form of recursion due to the presence of transitive closure. Observe that
the case where the query contains unrestricted recursion has been shown undecidable, even when
the views are not recursive [DG97]. More precisely, the authors in [DG97] present a method that
computes the maximally contained rewriting of a datalog query in terms of a set of conjunctive
queries, and show that it is undecidable to check whether the rewriting is equivalent to the original
query.

The paper is organized as follows. Section 2 presents the method for rewriting regular expres-
sions. Section 3 describes the complexity analysis of both the method and the problem. Section 4
illustrates the use of the technique to rewrite path queries for semi-structured databases. Finally,
Section 5 describes possible developments of our research.

2 Rewriting of regular expressions

In this section, we present a technique for the following problem: Given a regular expression Ej
and a finite set £ = {F1,..., E} of regular expressions over an alphabet ¥, re-express, if possible,
FEy by a suitable combination of F,..., Ej.

We assume that associated to £ we always have an alphabet ¥¢ containing exactly one symbol
for each regular expression in £, and we denote the regular expression associated to the symbol
e € Y¢ with re(e). Given any language £ over X¢, we denote by ezpy(£) the language over ¥ defined
as follows

eps() = | {wr - -wn | w; € L(re(e:)))
e1-en€l
where L(e) is the language defined by the regular expression e. Thus, ezpy(£) denotes all the words
obtained from a word e ---e, € £ by substituting for each e; any word of the regular language
associated to e;.

Definition 1 Let R be any formalism for defining a language L(R) over Yg. We say that R is a
rewriting of Eqo wrt £ if exps,(L(R)) C L(Ejp). n

Note that we do not constrain in any way the form of the rewritings, which, a priori, need not
even be recursive. We are interested in maximal rewritings, i.e., rewritings that capture in the best
possible way the language defined by the original regular expression Fj.

Definition 2 A rewriting R of Ey wrt £ is ¥-mazimal if for each rewriting R’ of Ey wrt £ we have
that ezpy,(L(R')) C exps(L(R)). A rewriting R of Ey wrt £ is Xg-mazimal if for each rewriting R’
of Ey wrt £ we have that L(R') C L(R). .

Intuitively, when considering »-maximal rewritings we look at the languages obtained after
substituting each symbol in the rewriting by the corresponding regular expression over ., whereas
when considering Yg-maximal rewritings we look at the languages over Yg. Observe that by
definition all ¥-maximal rewritings define the same language (similarly for ¥ g-maximal rewritings),
and that not all ¥-maximal rewritings are Y¢-maximal, as shown by the following example.

Example 1 Let Ey = o*, £ = {a*}, and ¢ = {e}, where re(e) = a*. Then both R; = e¢* and
Ry = e are Y-maximal rewritings of Ey wrt £, but R; is also Y¢g-maximal while Ry is not. n

However, it turns out that ¥¢-maximality is a sufficient condition for ¥-maximality.

Theorem 1 Let R be a rewriting of Eq wrt €. If R is Yg-mazimal then it is also X-mazimal.

Proof. Assume by contradiction that R is a Yg-maximal rewriting of Ey wrt £ that is not
Y-maximal. Then there is a rewriting R’ of Ey wrt &, a Yg-word v € L(R'), and a ¥-word
w € L(exps,({u'})) such that for no Yg-word u € L(R), it holds that w € L(expx({u})). Hence
v’ € L(R) and L(R') € L(R). Contradiction. O

Given Ey and &, we are interested in deriving a Y-maximal rewriting of Ey wrt £. We show
that such a maximal rewriting always exists (although it may be empty). In fact, we provide a
method that, given Fy and £, constructs a Yg-maximal rewriting of Ey wrt £. By Theorem 1 the
constructed rewriting is also Y-maximal.

The construction takes Fy and £ as input, and returns an automaton Rg g, built as follows:

1. Construct a deterministic automaton Az = (3, S, so, p, F') such that L(Ay) = L(Ep).

2. Define the automaton A" = (X¢, S, 50,0, S — F), where s; € p/(s;,e) if and only if Jw €
L(re(e)) such that s; € p*(s4, w).

3. Re g, = A, i.e., the complement of A’.

Observe that, if A’ accepts a g-word e - - e, then there exist n 3-words wy,...,w, such that
w; € L(re(e;)) for i =1,...,n and such that the X-word wy - - - w, is rejected by A4. On the other
hand if there exist n ¥-words wy, ..., w, such that w; € L(re(e;)), for i = 1,...,n, and wy -+ - wy,

is rejected by Ay, then the Xg-word eq ---e, is accepted by A’. That is, A" accepts a Xg-word
e1--- ey if and only if there is a ¥-word in expy({e; ---e,}) that is rejected by A,. Hence, R¢ g,
being the complement of A’, accepts a Ye-word e; --- e, if and only if all ¥-words wy - - - w, such
that w; € L(re(e;)) fori =1,...,n, are accepted by A;. Hence we can state the following theorem.

Theorem 2 The automaton Rg i, is a Yg-mazimal rewriting of Eq wrt £.

Proof. Tt is easy to see that by construction Rg g, = A’ is a rewriting of Ey wrt £. We prove by
contradiction that it is ¥e-maximal. Let R be a rewriting of Ey wrt &£ such that L(R) € L(A’). Let
e1---e, be a Yg-word such that ey ---e, € L(R) but ey ---e, & L(A’"). By definition of rewriting,
all ¥-words wy - --wy, such that w; € L(re(e;)) for i = 1,...,n, are in L(Ey) = L(Aq). On the
other hand, since e; - - - e, & L(A’), the Y¢-word ey - - - e, is accepted by A’. Thus there is a X-word
wy -+ - wy, such that w; € L(re(e;)) for i = 1,...,n, that is rejected by A;. Contradiction. O

Notably, although Definition 1 does not constrain in any way the form of the rewritings, The-
orem 2 shows that the language over ¥¢ (and therefore also the language over ¥.) defined by the
Ye-maximal rewritings is in fact regular (indeed, A’ is a finite automaton).

We illustrate the algorithm that computes a ¥¢-maximal rewriting by means of the following
example.

Example 2 Let Ey = a-(b-a + ¢)*, and let £ and X¢ be such that re(e;) = a, re(e2) = a-c*b,
and re(e3) = c. The deterministic automaton A, shown in Figure 1 accepts L(Ejp), while A’ is the
corresponding automaton constructed in Step 2 of the rewriting algorithm. Since A’ is deterministic,
by simply exchanging final and nonfinal states we obtain its complement A’, which is the rewriting
Rg, Eo- [

Next we address the problem of verifying whether the rewriting Rg g, captures exactly the
language defined by Fj.

€2

€1

Figure 1: Construction of the rewriting of a-(b-a + ¢)* wrt {a, a-c*-b, ¢}
Definition 3 A rewriting R of Ey wrt £ is ezact if expy,(L(R)) = L(Ey). n

To verify whether R¢ g, is an exact rewriting of Ey wrt £ we proceed as follows:

1. We construct an automaton B over 3 that accepts ezps,(L(Rg r,)) as follows. We first
construct an automaton A; such that L(A4;) = L(re(e;)) for i =1,..., k. We assume, without
loss of generality, that A; has unique start state and accepting state, and that the start state
has no incoming edges and the accepting state no outgoing edges. We then obtain B by
replacing each edge labeled by e; in Rg g, by a fresh copy of A;, identifying the start state
of the fresh copy with the source of the edge, and the accepting state with the target of the
edge. Observe that, since Rg g, is a rewriting of Ey, L(B) C L(Ag).

2. We check whether L(Ay) C L(B), that is, we check whether L(A;N B) = 0.
Theorem 3 The automaton Re g, is an ezact rewriting of Ey wrt € if and only if L(AqN B) = 0.

Proof. By Theorem 2 the automaton Rg g, is a rewriting of Ey wrt £. Suppose L(A4 N B) = 0.
Then any Y-word w € L(Ey) = L(Ay) is also accepted by B. Hence by construction of B there is a
Ye-word ey - - - e, € L(A’) such that w = wy - - - wy, and w; € L(re(e;)) fori =1,...,n. Suppose that
L(A4N B) # 0. Then there exists a X-word w € L(Ey) = L(A4) that is rejected by B. Hence by
construction of B there is no Sg-word e; - -- e, € L(A’) such that w = wy - - - w, and w; € L(re(e;))
fori=1,...,n. O

Corollary 4 An exact rewriting of Eq wrt £ ezists if and only if L(Ag N B) = 0.

Example 2 (cont.) One can easily verify that Re g, = €5-e;-€3 is exact. Observe that, if £ did
not include ¢, the rewriting algorithm would give us e3-e; as the Yg-maximal rewriting of Ey wrt
{a, a-c*-b}, which however is not exact. .

3 Complexity analysis

In this section we analyze the computational complexity of both the problem of rewriting regular
expressions, and the method described in Section 2.

3.1 Upper bounds

Let us analyze the complexity of the algorithms presented above for computing the maximal rewrit-
ing of a regular expression. By considering the cost of the various steps in computing Rg f,, we
immediately derive the following theorem.

Theorem 5 The problem of generating the Yg-maximal rewriting of a reqular expression Ey wrt
a set £ of reqular expressions is in 2EXPTIME.

Proof. We refer to the algorithm that computes Rg ,, and we observe that: (i) Generating the
deterministic automaton Ay from Fj is exponential. (ii) Building A’ from A, and the expressions
Ei,..., E is polynomial. (iii) Complementing A’ is again exponential. O

With regard to the cost of verifying the existence of an exact rewriting, Corollary 4 ensures us
that we can solve the problem by checking L(A4N B) = (). Observe that, if we construct L(A;NB),
we get a cost of 3SEXPTIME, since B is of triply exponential size with respect to the size of the
input. However, we can avoid the explicit construction of B, thus getting the following result.

Theorem 6 The problem of verifying the existence of an exact rewriting of a reqular expression
Ey wrt a set € of regular expressions is in 2EXPSPACE.

Proof. We refer to the algorithm that verifies whether the automaton Rg¢ g, is an exact rewriting
of Ey wrt £, and we observe that: (i) By Theorem 5, the automaton Rg g, is of doubly exponential
size. (ii) Building the automaton B from Rg g, is polynomial. (iii) Complementing B to get
B is exponential. (iv) Verifying the emptiness of the intersection of A; and B can be done in
nondeterministic logarithmic space [RS59, Jon75]. Combining (i)-(iv), we get a nondeterministic
2EXPSPACE bound, and using Savitch’s Theorem [Sav70], we get a deterministic 2EXPSPACE
bound.

Some care, however, is needed to getting the claimed space bound. We cannot simply con-
struct B, since it is of triply exponential size. Instead, we construct B “on-the-fly”; whenever the
nonemptiness algorithm wants to move from a state s; of the intersection of A; and B to a state so,
the algorithm guesses s2 and checks that it is directly connected to s;. Once this has been verified,
the algorithm can discard s;. Thus, at each step the algorithm needs to keep in memory at most
two states and there is no need to generate all of B at any single step of the algorithm. O

3.2 Lower bounds

We show that the upper bounds established in Section 3.1 are essentially optimal. To prove the
matching lower bounds we exploit variants of tiling problems (see e.g., [vEB82, vEB97, Ber66]).
A tile is a unit square of one of several types and a tiling system is specified by means of a finite
set A of tile types and two binary relations H and V over A, representing horizontal and vertical
adjacency relations, respectively. A generic tiling problem consists in determining whether there
exists a mapping 7 (called tiling) from a given region R of the integer plane to A which is consistent
with H and V. That is, if (4,7), (i,7+1) € R then (7(4,5),7(i,j+1)) € H and if (4,5), (i+1,7) € R
then (7(4,7),7(1 + 1,7)) € V. We get a specific tiling problem by imposing additional conditions
on the region to be tiled and on the tile types that can be placed in certain positions of the region,
such as the first/last row/column, or the borders.

Different tiling problems have been shown to be complete for various complexity classes [vEB82,
vEB97]. We will use EXPSPACE and 2EXPSPACE-complete tiling problems.

3.2.1 Existence of a nonempty rewriting

We say that a rewriting R is Xg-empty if L(R) = (. We say that it is X-empty if ezps(L(R)) = 0.
Clearly Yg-emptiness implies Y-emptiness. The converse also holds except for the non-interesting
case where € contains one or more expressions E such that L(E) = (). Therefore, we will talk about
the emptiness of a rewriting R without distinguishing between the two definitions.

We consider the tiling problem T' = (A, H,V, ts,tr, Cgs), where tg and ¢t are two distinguished
tile types in A, and for a given number n in unary, Cgg requires to tile a region of size O(2") x k, for
some constant ¢ and some number k, in such a way that the left bottom tile of the region (i.e., the
one in position (0,0)) is of type tg and the right upper tile (i.e., the one in position (2™ — 1,k — 1),
for some constant c¢) is of type tp. Using a reduction from acceptance of EXPSPACE Turing
machines analogous to the one in [vVEB97], it can be shown that this variant of tiling problem is
EXPSPACE-complete.

We exploit such a tiling problem to prove the EXPSPACE lower bound of the problem of
verifying the existence of a nonempty rewriting. That is, given an instance T of the above tiling
problem and a number n, we construct a regular expression Fy and a set £ of regular expressions
such that a tiling corresponding to T' (a T-tiling) exists if and only if there is a nonempty rewriting
of Ey wrt .

Let m = ¢n for some constant c¢. A tiling of a region of size 2™ x k can be described as a word
over A of length k2™, where every block of 2 symbols describes a row of the tiling. We take ¢
to be A. We will define Ey and re(e) for each letter e € A such that a A-word e; -- - e; describes
a T-tiling if and only if ezpy(er ---e;) C L(Ey). Ey will be defined as the sum Ey,q + Egooq of two
regular expressions Ep,q and Eg,04, which are in turn defined as sums of regular expressions.

The construction of re(e) for e € A is uniform: we take the alphabet ¥ to be A U{0,1,$} (so
Ye C X)), and define re(e) = $-(0 + 1)>™+1.e; that is, the language associated with e consists of e
prefixed with a $ sign and all binary words of length 3m + 1. Intuitively, the $ sign is a marker,
the first m bits encode the column of a tile (m bits are needed to describe the column in a row of
length 2), and the next 2m bits encode bookkeeping information. The 3m + 1-st bit is a highlight.
As will become clear shortly, highlights are used to identify either a tile not in the last column or
a pair of vertically adjacent tiles. Given a word w € L(re(e)), we use

e position(w) to denote the first m bits after the § marker,
e carry(w) to denote the second m bits after the $§ marker, and
e next(w) to denote the third m bits after the $ marker.

Also, we use position(w,1), carry(w,i) and next(w,7), for 0 < i < m to denote the 7 + 1-st bit in
position(w), carry(w), and nezt(w), respectively. This means that we count bits starting from 0
and consider the least significant bit to be the one in position 0.

Consider now a word eg---e; over A, and let w = wyg---wy be a word in ezps(eg---ep). We
call each wj, which is a word of length 3m 4 3, a block. We classify such words w into two
classes. Our intention is that position(w;) describes an m-bit counter, and that precisely one or
two highlight bits be on. When only one highlight bit is on it is located in a block wy, such that
position(wy) # 1™, and when two highlight bits are on, they are located in blocks w;, and wy such
that position(wy,) = position(wy) and for at most one j, h < j < k, we have position(w;) = 0™.
Requiring position(w;) to be an m-bit counter means that we expect position(wy) = 0™ and
position(wp) = 1™, and we expect carry(w;) to be the sequence of m carry bits when position (w;)
is incremented to yield nezt(w;), which is equal to position(w;y1). If the intended conditions do

not hold, then w is a bad word. More precisely, a word w = wyq - - - wy is bad if one of the following
holds:

1. position(wg,i) = 1, for some i, 0 < i < m;

2. position(wg,1) = 0, for some 7, 0 < i < m;

3. carry(w;,0) = 0, for some j, 0 < j </

4. carry(wj,i) # carry(wj,i— 1) and position(w;,i— 1), for some j and i, 0 < j < £, 1 <i < m;
5. next(wj,1) # position(w;, 1) xor carry(wj, i), for some j and i, 0 <j < /4,0 <i <m;

6. position(wj,i) # next(w;_y,1), for some j and i, 1 <j <2, 0 <i < m;

7. conditions on the highlight bits, which are:

(a
(b
(c
(d

no highlight bit in w is 1;
only one highlight bit in w is 1 and it is located in a block wy, such that position (wp) = 1™;

)
)
) at least three highlight bits in w are 1;

) the two highlight bits that are 1 are located in two blocks wy, and wy, and there are at least
two blocks w;, and w;, between wy, and wy, such that position(w;,) = position(w;,) = 0™;
(e) the two highlight bits that are 1 are located in two blocks wy, and wy and position (wy,,) #
position (wy, 1) for some i, 0 <7 < m.

We define Ey,q in such a way that all bad words belong to L(FEy.q). Each of the above conditions

can be “detected” by a regular expression of size O(m), which contributes to Fj,q (and hence to

Ep). To illustrate the idea, we provide the regular expressions for some of the conditions above.
Condition (1) is detected by the regular expression

m—1

$ 0_|_1)3m) A)
z:O

where B stands for the regular expression $-(0 + 1)>+1.A.
Condition (4) is detected by the sum of four regular expressions

m—1
§:(0+ 1) Lop (0 + 1)
= (0+1)""ed(0+1)" (04 1)™A) - B

one for each choice of 0 or 1 for p, ¢, and ¢’ such that ¢’ # cand p.
Condition (6) is detected by the sum of two regular expressions

m—1
$-(0 (0 4+ 1)5b-(0 4+ 1)1 (04 1)-A -
$-

z:O (0 + 1) b0+ 1)™=1=0.(0 + 1)?™.(0 + 1)-A) - B*

one for b =0 and b= 1, and one for b =1 and b = 0.
Condition (7b) is detected by the regular expression

($-(0 + 1)>™.0-A)* - $-1™-(0 4 1)*™-1-A - ($:(0 + 1)>™.0-A)*

Condition (7e) is detected by the sum of two regular expressions

b-(0+ 1)L LA - B
(0 +1)1b-(0 + 1)>~1=0.1.A) . B*

one for b =0 and b= 1, and one for b =1 and b = 0.

Words that satisfy none of the above conditions are good words, and will be handled differently.
In such words either one or two highlight bits are on. When one highlight bit is on, it is located at
a block that corresponds to a tile not in the last row in a tiling of the region. The types of this tile
and of the one immediately to the right have to be related in a way that depends on the horizontal
adjacency relation H of T. When two highlight bits are on, they are located at two positions that
are precisely 2™ blocks apart, and these blocks correspond to vertically adjacent tiles. The types
of these tiles have to be related in a way that depends on the vertical adjacency relation V' of T.
We can use regular expressions of size O(m) to force such blocks to be related in the right way,
and also to force the tiling to satisfy the additional conditions on the left bottom and right upper
tiles. Egq0q is the sum of all such regular expressions.

For example, the following regular expression ensures that the horizontal adjacency relation is
respected in the case where the highlight bit is on at a block that is neither the first nor the last
one:

$-(0 4 1)3™.0-t5 - ($-(0 + 1)>™.0-A)* -
(Z(tl,tQ)gH $-(0 4+ 1)3m-1-t1 - $-(0+ 1)3m-0-t2) .
($-(0 4 1)3™.0-A)* - $-(0 + 1)>™-0-tp

The following regular expression ensures that the vertical adjacency relation is respected in the
case where the two highlight bits are on at blocks that are neither the first nor the last one:

$-(0+1)3™.0-t5 - ($:(0 + 1)3™.0-A)* -
(Z(t1,t2)€v $(0 +1 3m_1.t1 . ($(0 + 1)3mOA)* . $(0 + 1)3m1t2) i
($-(0 + 1)3™.0-A)* - $-(0 + 1)3>™-0-tp

Similar regular expressions can be provided for the cases where the highlight bits are on at the first
or last block.

Thus, all the good words w = wq - - wy in expy(eg---e) are in L(Eg,q) if and only if eq--- e
describes a T-tiling. If no T-tiling exists then for every ep---e;, we can find a good word w =
wo -+ wp in ezps(eg - - - e7) that is not in L(Ey4eq) and hence not in L(Ey). Thus, Ey has a nonempty
rewriting wrt £ if and only if a T-tiling exists.

Theorem 7 The problem of verifying the existence of a nonempty rewriting of a reqular expression
Ey wrt a set € of regular expressions is EXPSPACE-complete.

Proof. By Theorem 5, we generate the Yg¢-maximal rewriting of a regular expression Fy wrt a
set £ of regular expressions in 2EXPTIME. Checking whether a given finite-state automaton in
non-empty can be done in NLOGSPACE. The upper bound follows (see comments in the proof of
Theorem 6). The lower bound follows from the reduction from the EXPSPACE complete tiling
problem described above, by observing that Ey and all regular expressions in £ are of size polynomial
in T and n. O

Note that Theorem 7 implies that the upper bound established in Theorem 5 is essentially
optimal. If we can generate maximal rewritings in, say, EXPTIME, then we could test emptiness
in PSPACE, which is impossible by Theorem 7. We can get, however, an even sharper lower bound
on the size of rewritings.

Theorem 8 For each n > 0 there is a regqular expression E™ and a set E™ of reqular expressions
such that the combined size of E™ and E" is polynomial in n, but the shortest nonempty rewriting
(expressed either as a regular expression or as an automaton) of E™ wrt E™ is of length 22".

Proof. We use the encoding technique of Theorem 7. Instead, however, of encoding tiling problems,

we directly encode a 2"-bit counter using an alphabet ¢ = {b{y, 0001, - -, 0111} of 8 symbols
representing the 8 possible combinations of a position, a carry, and a next bit. For a symbol b,

where p,c,z € {0,1}, we say that p is the position-component, ¢ the carry-component, and z the
next-component of b7 .. In a word over ¢ representing the evolution of the 2"-bit counter, the
three components of symbols that are exactly 2™ positions apart will represent the position, carry,
and next bits in the same position of two successive configurations of the counter. By using the
highlight bits of the encoding technique of Theorem 7 we can enforce the correct relationships
between such symbols. Hence, we can define " = {B{,...,B},;} and E§ in such a way that
a word w = by ..o+ by oo is a rewriting of Ey wrt £" if and only if the bit vector po - - pm
represented by the position-components of w is of the form wyq - - - wy2n _;, where w; is the 2"-bit
representation of 7.

Using pumping arguments it is easy to see that any regular expression or automaton describing
such a rewriting has to be of length at least 22". Indeed, assume there is a regular expression
or automaton R of size less than 22" describing the rewriting. Then, since any nonempty regular
expression or automaton accepts at least one word of length less than or equal to its size, R accepts
also a word w' of length less than 22", contradicting the hypothesis that R is a correct rewriting of

Ef wrt 7. O

3.2.2 Existence of an exact rewriting

The technique used in Theorem 7 turns out to be an important building block in the proof that
Theorem 6 is also tight.

We consider the tiling problem T' = (A, H,V,tg,tp,tr,tgr, Cops), where tg, tg, tr,, and tp are
distinguished tile types in A such that (tr,tr) € H, and for a given number n in unary, Copg
requires to tile a region of size O(22") x k, for some number k, in such a way that: (i) the left
bottom tile of the region is of type tg, (ii) all other tiles on the left border are of type tr, (iii) the
right upper tile is of type tr, and (iv) all other tiles on the right border are of type tg. Using a
reduction from acceptance of 2EXPSPACE Turing machines analogous to the one in [vEB97], it
can be shown that this tiling problem is 2EXPSPACE-complete.

We exploit such a tiling problem to prove the 2EXPSPACE lower bound of the problem of
verifying the existence of an exact rewriting. That is, given an instance T of the above tiling
problem and a number n, we construct a regular expression Fy and a set £ of regular expressions
such that a T-tiling exists if and only if there is an exact rewriting of Ey wrt £. Each row of a
T-tiling is of doubly exponential length in n. We describe such a tiling as a word over A, and to
“check” the vertical adjacency conditions we need to compare the types of tiles that are a doubly
exponential distance apart, which requires “yardsticks” of such length. Fortunately, we have seen
in the proofs of Theorems 7 and 8 how to construct such yardsticks.

10

We directly exploit the construction described in Theorem 8 to encode a 2™ bit counter, and
obtain a regular expression E§ and a set £° of regular expressions, all over an alphabet ¢ =
{0,1,8} U A®. Let re(-) be the mapping that associates to each symbol in a suitable alphabet
2§ a regular expression in €Y. Then for a word w over B¢ we have that ezpy,(w) C L(E§)
precisely when w = w¢, where w¢ is the word that describes the 22" successive bit configurations
(for the position, the carry and the next bits) of the 2" bit counter. In particular, since each bit
configuration is of length 2", we have that w¢ is of length 2" - 22" which is precisely what we need.
We will use ES and £ to construct regular expressions that detect errors in T-tilings with rows
of length exactly 1 4 2" - 22",

Let A = {i |t € A}, where A is the set of tile types of T. We take ¥ to be ©¢ UA U A and
Y¢ to be Zg UA. The set £ of regular expressions used for the rewriting is obtained by taking
re(e) = reC(e) + A, for each e € B¢, and re(f) = 7 + t, for each # € A. Thus each symbol in B¢
generates also all possible tile types in A, while each symbol in A generates itself and only the
corresponding tile type.

We construct regular expressions E(Y , Eéq , Eg , Eg , E[’]: , and Eé"', which are used to detect errors
in candidate tilings. E} is used to detect conflicts with respect to the vertical adjacency relation
V, which arise between tiles that are 142" 22" symbols apart. ng is used to detect conflicts with
respect to the horizontal adjacency relation H, which arise between tiles that are directly adjacent.
Note that since (tg,t1,) € H, also the last tile of a row and the first tile of the next row have to
respect the horizontal adjacency condition. EOS , B, EE, and E[t are used to detect tiles of the
wrong type at the beginning and end, and on the left and right border respectively. All such tiles
are at a known distance from the left bottom tile. The regular expressions are constructed in such
a way that for a word w over g we have that:

e exps,(w) C L(EY) precisely when w is in the form

2T Y 65E wety) - B
(t1,t2)EV

%

where V is the set of pairs of tiles that are not in V.

o expy(w) C L(EL) precisely when w is in the form

28T fi) BT
(t1,t2)EH

where H is the set of pairs of tiles that are not in H.

e erpy(w) C L(ES) precisely when w is in the form

(> Bz

teA\{ts}

o erpy(w) C L(EL) precisely when w is in the form

(B¢ we) we- (> 1)

teA\{tr}

o erpy(w) C L(EY) precisely when w is in the form

(S we) Sfwe- (Y. §-5¢
teA\{tr}

11

o erpy(w) C L(EE) precisely when w is in the form

(S we)we- (Y., 1) B¢
teA\{tr}

The construction of Eg{ and Eg is immediate. For the other regular expressions we need to construct
a regular expression EOC A of size polynomial in 7, whose rewriting is wc. We make use of EOC and
£, but need to take into account that, wrt the construction in Theorem 8, now a symbol e in Eg
generates not only all possible sequences of type $-(0 + 1)>"*!.e (and hence of length 3n + 3) but
also all symbols in A. We can however exploit the fact that EUC is composed of subexpressions that
generate words of length 3n + 3 and thus obtain EOC A from EOC by simply adding the expression A
to each such subexpression. Then we have for example that

EY = (BC+A) (> (fi+t)(BY+A)EF? (£ +t2)) - (BY + A)*
(t1,t2)EV

where B¢ stands for the regular expression $-(0 + 1)>"*1.AY. The regular expressions E!, E},
and Ef' are constructed in a similar way.

The regular expression E} = EY + E{l + ES + El' + Ef + EF is such that a rewriting of E}
generates only candidate tilings with some error (in addition to words containing also $, 0, 1, the
symbols in AC, and at most two symbols in A).

To encode the problem of the existence of an ezact rewriting, we take Ey to be E} + A% i.e.,
Ey expresses also all “candidate” tilings using the tile types in A. If no T-tiling exists, then every
candidate tiling will have an error, and thus will already be generated by a rewriting of E{. If, on
the other hand, a T-tiling exists, such a tiling does not have an error and will not be generated by
the rewriting of EJ, resulting in a non-exact rewriting. Notice that we cannot attempt to construct
a rewriting of A* separately, and the only way to get one is via the rewriting of E}. This is due
to the fact that, from the symbols in ¥¢ = Eg U A, each symbol e in Zg generates not only all
symbols in A, but also sequences of type $-(0+1)3"*!.¢, while each symbol # in A generates besides
t also t.

Theorem 9 The problem of verifying the existence of an exact rewriting of a reqular expression
Ey wrt a set € of regular expressions is 2EXPSPACE-complete.

Proof. The upper bound proof is given in Theorem 6. The lower bound follows from the reduction
from the 2EXPSPACE complete tiling problem described above, by observing that Ey and all
regular expressions in £ are of size polynomial in T and n. O

4 Query rewriting in semi-structured data

In this section we show how to apply the results presented above to query rewriting in semi-
structured data.

All semi-structured data models share the characteristic that data are organized in a labeled
graph [Bun97, Abi97]. Following this idea two different approaches have been proposed:

1. The first approach associates data both to the nodes and to the edges. Specifically, nodes
represent objects, and edges represent relations between objects [Abi97, QRST95, FFLS97,
FFK'98].

12

2. The second approach associates data to the edges only [BDFS97, BDHS96, FS98], but queries
are not expressed directly over the constants labeling the edges of databases, but over formulae
describing the properties of such edges.

An answer to a regular path query is a set of pairs of nodes connected in the database through a
path conforming to the query. In the first approach the rewriting techniques proposed in Section 2
can be directly applied to rewrite regular path queries. It is sufficient to show that R is a rewriting
of a query @ if and only if R (considered as a mechanism to define a language) is a rewriting of the
regular expression Q'. In the second approach more care is required. In the rest of the section we
concentrate on this case.

4.1 Semi-structured data models and queries

From a formal point of view we can consider a (semi-structured) database as a graph DB whose
edges are labeled by elements from a given domain D which we assume finite. We denote an edge
from node z to node y labeled by a with z = y. Typically, a database will be a rooted connected
graph, however in this paper we do not need to make this assumption.

In order to define queries over a semi-structured database we start from a decidable, complete?
first-order theory 7 over the domain D. We assume that the language of 7 includes one distinct
constant for each element of D (in the following we do not distinguish between constants and
elements of D). We further assume that among the predicates of 7 we have one unary predicate of
the form Az.z = a, for each constant a in D. We use simply a as an abbreviation for such predicate.
Finally, we follow [BDFS97] and consider both the size of 7, and the time needed to check validity
of any formula in T to be constant.

In this paper we consider regular path queries (which we call simply queries) i.e., queries that
denote all the paths corresponding to words of a specified regular language. The regular language
is defined over a (finite) set F of formulae of 7 with one free variable. Such formulae are used to
describe properties that the labels of the edges of the database must satisfy. Regular path queries
are the basic constituents of queries in semi-structured data, and are typically expressed by means
of regular expressions [BDHS96, Abi97, FS98, MS99]. Another possibility to express regular path
queries is to use finite automata.

When evaluated over a database, a query) returns the set of pairs of nodes connected by a path
that conforms to the regular language L(Q) defined by @, according to the following definitions.

Definition 4 Given an F-word @ - - - ¢, a D-word ay - - - a, matches @1 - -, (wrt T) if and only
if T E pi(a;), fori=1,...,n. .

We denote the set of D-words that match an F-word w by match(w), and given a language ¢ over
F, we denote |J,,c, match(w) by match(£).

Definition 5 The answer to a query QQ over a database DB is the set ans(L(Q), DB), where for a
language £ over F

ans({,DB) = {(z,y) | thereisapath z % ...% yin DB s.t. a;---a, € match(f)}

!The proof is similar to the one for Theorem 10.
“The theory is complete in the sense that for every closed formula ¢, either 7 entails ¢, or 7 entails = [BDFS97).

13

4.2 Rewriting regular path queries

In order to apply the results on rewriting of regular expressions to query rewriting in semi-structured
data we need to take into account that the alphabet over which queries (the one we want to rewrite
and the views to use in the rewriting) are expressed, is the set F of formulae of the underlying
theory 7, and not the set of constants that appear as edge labels in graph databases.

Let Qo be a regular path query and Q = {Q1,...,Qr} be a finite set of views, also expressed
as regular path queries, in terms of which we want to rewrite Q9. Let F be the set of formulae of
T appearing in Q, Q1,...,Qk, and let Q have an associated alphabet Yo containing exactly one
symbol for each view in Q. We denote the view associated to the symbol ¢ € ¥ o with rpq(q).

Given any language £ over ¥, we denote by ezp r(¢) the language over F defined as follows

exp r(¢) = U {wr - wn | w; € L(rpq(q:))}
q1--qn€l

Definition 6 Let R be any formalism for defining a language L(R) over ¥o. R is a rewriting of
Qo wrt Q if for every database DB, ans(ezxpr(L(R)), DB) C ans(L(Qp), DB), and is said to be

e mazimal if for each rewriting R’ of Qo wrt Q we have that ans(ezpr(L(R')), DB) C
ans(exp -(L(R)), DB),

e czact if ans(exp r(L(R)), DB) = ans(L(Qo), DB).

Theorem 10 R is a rewriting of Qo wrt Q if and only if match(exzp z(L(R))) C match(L(Qyp)).
Moreover, it is mazimal if and only if for each rewriting R’ of Qo wrt Q we have that
match(exp £(L(R'))) C match(exp£(L(R))), and it is exact if and only if match(exp r(L(R))) =
match(L(Qp)).

Proof. We prove only that R is a rewriting of Qo wrt Q iff match(exzp z(L(R))) C match(L(Qop)).
The other assertions follow immediately.

“—" By contradiction. Assume there exists a D-word a; ---a, € match(exp r(L(R))) such
that a; - - - a, & match(L(Qo)). Then for the database DB consisting of a single path z % ... %3
it holds that (z,y) € ans(ezp £(L(R)), DB) but (z,y) & ans(L(Qo), DB). Contradiction.

“«=" Again by contradiction. Assume there exists a database DB and two nodes x and y in DB
such that (z,y) € ans(ezpz(L(R)), DB) and (z,y) € ans(L(Qp), DB). Then there exists a path
% ... 2 yin DB such that a; - --a, € match(expz(L(R))). Hence a; - - - a, € match(L(Qq)) and
thus (z,y) € ans(L(Qop), DB). Contradiction. O

We say that R is X g-mazimal if for each rewriting R’ of Qo wrt Q we have that L(R') C L(R).
By arguing as in Theorem 1, and exploiting Theorem 10, it is easy to show that a Xg-maximal
rewriting is also maximal.

Next we show how to compute a ¥ g-maximal rewriting, by exploiting the construction presented
in Section 2. Applying the construction literally, considering F as the base alphabet 3, we would
not take into account the theory 7, and hence the construction would not give us the maximal
rewriting in general. As an example, suppose that 7 = Vz.A(z) D B(z), Qo = B, and Q = {A}.
Then the maximal rewriting of Qg wrt Q is A, but the algorithm would give us the empty language.

In order to take the theory into account, we can proceed as follows: For each query Q € {Qo}UQ
we construct an automaton Q9 accepting the language match(L(Q)). This can be done by viewing

14

the query @ as a (possibly nondeterministic) automaton @ = (F, S, so, p, F') and construct @9 as
(D, S, s0,p9, F), where sj € p9(s;,a) if and only if s; € p(s;,) and T |= p(a). Observe that the set
of states of @ and QY is the same. We denote {Q7,...,Q7} with Q9. Then we proceed as before:

1. Construct a deterministic automaton Aq = (D, Sq, so, pJ, Fa) such that L(Ag4) = L(QY).

2. Define the automaton A’ = (Xg, Sq, S0, ', Sa — Fa), where s; € p'(si,q) if and only if Jw €
match(L(rpq(q))) such that s; € pJ"(s;,w).

3. Return Rg g, = RngQg = A
Theorem 11 The automaton Rg g, s a ¥ o-mazimal rewriting of Qo wrt Q.

Proof. First we show that every rewriting R of QY wrt QY is also a rewriting of Qp wrt Q, and
vice-versa. If R is a rewriting of Qf wrt Q9, then by definition ezpp(L(R) C L(Qj), which implies
that match(exp £(L(R))) C match(L(Qo)), i-e., R is a rewriting of Qo wrt Q. On the converse, if R
is a rewriting of Qo wrt Q, then by definition match(exp r(L(R))) C match(L(Qp)) which implies
that ezpp(L(R) C L(Q)), i.e., R is a rewriting of Qf wrt 09.

Now, by Theorem 2 we know that RQQ’Qg = Rg g, is a ¥g-maximal rewriting of Qf wrt Q9.
Hence it is a rewriting of Qg wrt Q.

As RQQ’Qg is a Yo-maximal rewriting of Q) wrt Q9, we have that, for each rewriting R of Q}
wrt @9, and hence for each rewriting R of Qo wrt Q, L(R) C L(RQg’Qg) = L(Ro,qQ,), which implies
that Rg g, a X o-maximal rewriting of Qg wrt Q. O

To check that Rg g, is an exact rewriting of Qg wrt Q we can proceed as in Section 2, by
constructing an automaton B that accepts ezpD(L(RQg’Qg)), and checking for the emptiness of
L(AgN F)

Observe that both the size of Q@ and Q9 and the time needed to construct them from Qg and Q
are linearly related to the size of Qy and Q. It follows that the same upper bounds as established
in Section 3.1 hold for the case of regular path queries.

In fact, the construction of Q9 can be avoided in building Rg ¢,, since we can verify whether
there exists a D-word w € match(L(rpg(q))) such that s; € pJ"(s;,w) (required in Step 2 of the
algorithm above) as follows. We consider directly the automaton @@ = rpg(q) (which is over the
alphabet F) and the automaton A}’ = (D, Sy, s;, p%, {s;}) obtained from A, by suitably changing
the initial and final states. Then we construct from) and Afi’j the product automaton K, with the
proviso that K has a transition from (s1,s2) to (s}, s5) (whose label is irrelevant) if and only if (i)
there is a transition from s; to s} labeled a in Q; ;, (ii) there is a transition from s; to s5 labeled ¢
in @, and (iii) 7 | ¢(a). Finally, we check whether K accepts a non-empty language. This allows
us to instantiate the formulae in Q only to those constants that are actually necessary to generate
the transition function of A’.

With regard to Qo, instead of constructing Qf, we can build an automaton based on the idea of
separating constants into suitable equivalence classes according to the formulae in the query they
satisfy. The resulting automaton still describes the query @)y, and its alphabet is generally much
smaller than that of Q.

4.3 Properties of rewritings

In the case where the rewriting Rg g, is not exact, the only thing we know is that such rewriting
is the best one we can obtain by using only the views in Q. However, one may want to know how
to get an exact rewriting by adding to Q suitable views.

15

Example 3 Let Qo = a-(b+c), Q = {a,b}, and Xg = {q1, g2}, where rpg(q1) = a, and rpg(q2) = b.
Then Rg g, = q1 - 2, which is not exact. On the other hand, by adding c to Q and g3 to Xg, with
rpg(g3) = ¢, we obtain ¢; - (¢2 + ¢3) as an exact rewriting of Q. "

Here we consider the case where the views added to Q are atomic, i.e., have the form Az.P(z),
where P is a predicate of 7. Notice that atomic views include views of the form Az.z = a,
(abbreviated by a), which we call elementary. The intuitive idea is to choose a subset P’ of the set
P of predicates of T, and to construct an exact rewriting of Qo wrt Qy, where Q. is obtained by
adding to @ an atomic view for each symbol in P’. An exact rewriting R of Qp wrt Q4 is called a
partial rewriting of Qo wrt Q, provided that Q. # Q.

The method we have presented can be easily adapted to compute partial rewritings. Indeed, if
we compute Rg, o,, we obtain a partial rewriting of ()9 wrt Q, provided that Rg, g, is an exact
rewriting of Qg wrt Q.. Observe that it is always possible to choose a subset P’ of P in such a
way that Ro, g, is exact (e.g., by choosing the set of all elementary views).

Typically, one is interested in using as few symbols of P as possible to form Q,, and this
corresponds to choose the minimal subsets P’ such that Ro, g, is exact. More generally, one
can establish various preference criteria for choosing rewritings. For instance, we may say that a
(partial) rewriting R is preferable to a (partial) rewriting R’ if one of the following holds:

1. match(exp 7(L(R'))) C match(ezp z(L(R))),
2. match(L(R)) = match(L(R')) and R uses less additional elementary views than R',

3. match(L(R)) = match(L(R')), R uses the same number of additional elementary views as R/,
and less additional atomic nonelementary views.

4. match(L(R)) = match(L(R')), R uses the same number of additional atomic views as R', and
less views than R'.

Under this definition an exact rewriting is preferable to a nonexact one. Moreover, the definition
reflects the fact that the cost of materializing additional atomic views (in particular the elementary
ones) is higher than the cost of using the available ones. Finally, since a certain cost is associated
to the use of each view, when comparing two rewritings defining the same language and using (if
any) the same number of additional atomic views, then the one that uses less views is preferable.

The rewriting algorithm presented above can be immediately exploited to compute the most
preferable rewritings according to the above criteria. It easy to see that the problem of computing
the most preferable rewritings remains in the same complexity class.

5 Conclusions

In this paper we have studied the problem of query rewriting using views in the case where both
the query and the views are expressed as regular path queries. We have shown the decidability
of the problem of computing the maximal rewriting and checking whether it is exact. We have
characterized the computational complexity of the problem and have provided algorithms that are
essentially optimal. We envision several directions for extending the present work.

First, in this paper we focused on the problem of computing the maximal contained rewriting,
i.e., the best rewriting that is guaranteed to provide only answers contained in those of the original
query. Also of interest is the dual approach, i.e., computing the minimal containing rewritings (in

16

general not unique), which guarantee to provide all the answers of the original query, and possibly
more.

Second, we are interested in extending regular path queries to the so-called generalized
path queries, i.e., queries of the form x1Qix2- - T,_1Qn_12Z,, where each (Q; is a regular path
query [FS98]. Such queries ask for all n-tuples o1, ..., 0, of nodes such that, for each i, there is a
path from o; to 0;41 that satisfies ;. Computing the rewriting of a generalized path query requires
to take into account that each rewritten subpath appears in a given context formed by a suitable
prefix and a suitable suffix. A further generalization would be to consider conjunctions of regular
path queries, where the context in which a certain subpath appears is even more complex.

Third, one can investigate possible interesting subcases where the rewriting of regular (and
generalized) path queries can be done more efficiently. Additionally, cost models for path queries
and preference criteria that take into account such cost models can be defined, leading to the
development of techniques for choosing the best rewriting with respect to the new criteria.

Finally, it is interesting to investigate the relationships to query answering using views in semi-
structured data, i.e., the problem of answering a regular path query on the basis of a set of ma-
terialized views. One relevant aspect is to verify whether the technique we have developed for
query rewriting can be exploited for query answering using views. First results in this direction are
reported in [CDGLV99b, CDGLV99a).

Acknowledgments

This work was supported in part by the NSF grants CCR-9628400 and CCR-9700061, by MURST,
by ESPRIT LTR Project No. 22469 DWQ (Foundations of Data Warehouse Quality), and by the
Italian Space Agency (ASI) under project “Integrazione ed Accesso a Basi di Dati Eterogenee”.
Part of this work was done when the last author was a Varon Visiting Professor at the Weizmann
Institute of Science.

References

[Abi97] Serge Abiteboul. Querying semi-structured data. In Proc. of the 6th Int. Conf. on
Database Theory (ICDT’97), pages 1-18, 1997.

[ACPS96] S. Adali, K. S. Candan, Y. Papakonstantinou, and V. S. Subrahmanian. Query
caching and optimization in distributed mediator systems. In Proc. of the ACM
SIGMOD Int. Conf. on Management of Data, pages 137-148, 1996.

[AD9S8] Serge Abiteboul and Oliver Duschka. Complexity of answering queries using ma-
terialized views. In Proc. of the 17th ACM SIGACT SIGMOD SIGART Sym. on
Principles of Database Systems (PODS’98), pages 254-265, 1998.

[AGK99] Foto N. Afrati, Manolis Gergatsoulis, and Theodoros Kavalieros. Answering queries
using materialized views with disjunction. In Proc. of the 7th Int. Conf. on Database
Theory (ICDT’99), volume 1540 of Lecture Notes in Computer Science, pages 435—
452. Springer-Verlag, 1999.

[AQM™97] Serge Abiteboul, Dallan Quass, Jason McHugh, Jennifer Widom, and Janet L.
Wiener. The Lorel query language for semistructured data. Int. J. on Digital Li-
braries, 1(1):68-88, 1997.

17

[AV97]

[BDFS97]

[BDHSY6]

[Ber66]

[BEWOS]

[BLR97]

[Bun97]

[CACS94]

[CDGLYS]

[CDGLV99a]

[CDGLV99b)]

[CKPS95]

[CMO0]

Serge Abiteboul and Victor Vianu. Regular path queries with constraints. In Proc. of
the 16th ACM SIGACT SIGMOD SIGART Sym. on Principles of Database Systems
(PODS’97), pages 122-133, 1997.

Peter Buneman, Susan Davidson, Mary Fernandez, and Dan Suciu. Adding structure
to unstructured data. In Proc. of the 6th Int. Conf. on Database Theory (ICDT’97),
pages 336-350, 1997.

Peter Buneman, Susan Davidson, Gerd Hillebrand, and Dan Suciu. A query language
and optimization technique for unstructured data. In Proc. of the ACM SIGMOD
Int. Conf. on Management of Data, pages 505516, 1996.

R. Berger. The undecidability of the dominoe problem. Mem. Amer. Math. Soc.,
66:1-72, 1966.

Peter Buneman, Wenfei Fan, and Scott Weinstein. Path constraints on semistruc-
tured and structured data. In Proc. of the 17th ACM SIGACT SIGMOD SIGART
Sym. on Principles of Database Systems (PODS’98), pages 129-138, 1998.

Catriel Beeri, Alon Y. Levy, and Marie-Christine Rousset. Rewriting queries using
views in description logics. In Proc. of the 16th ACM SIGACT SIGMOD SIGART
Sym. on Principles of Database Systems (PODS’97), pages 99-108, 1997.

Peter Buneman. Semistructured data. In Proc. of the 16th ACM SIGACT SIGMOD
SIGART Sym. on Principles of Database Systems (PODS’97), pages 117-121, 1997.

V. Christophides, S. Abiteboul, S. Cluet, and M. Scholl. From structured documents
to novel query facilities. In R. T. Snodgrass and M. Winslett, editors, Proc. of the
ACM SIGMOD Int. Conf. on Management of Data, pages 313-324, Minneapolis
(Minnesota, USA), 1994.

Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. On the decidability
of query containment under constraints. In Proc. of the 17th ACM SIGACT SIGMOD
SIGART Sym. on Principles of Database Systems (PODS’98), pages 149-158, 1998.

Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Vardi. An-
swering regular path queries using views. Technical Report 20-99, Dipartimento di
Informatica e Sistemistica, Universitd di Roma “La Sapienza”, 1999.

Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Vardi. Query
answering using views for data integration over the web. In 2nd Int. Workshop on
the Web and Databases (WebDB’99), pages 73-78, 1999.

S. Chaudhuri, S. Krishnamurthy, S. Potarnianos, and K. Shim. Optimizing queries
with materialized views. In Proc. of the 11th IEEE Int. Conf. on Data Engineering
(ICDE’95), Taipei, Taiwan, 1995.

M. P. Consens and A. O. Mendelzon. Graphlog: a visual formalism for real life
recursion. In Proc. of the 9th ACM SIGACT SIGMOD SIGART Sym. on Principles
of Database Systems (PODS’90), pages 404-416, Atlantic City (NJ, USA), 1990.

18

[CMW37]

[CNS99]

[DGY7]

[DGYS]

[FFK*98]

[FFLS97]

[FLS98]

[FS98]

[Jon75]

[LMSS95]

[MMM97]

[MS99]

[PV99]

[QRS*95]

I. F. Cruz, A. O. Mendelzon, and P. T. Wood. A graphical query language supporting
recursion. In Proc. of the ACM SIGMOD Int. Conf. on Management of Data, pages
323-330, San Francisco (CA, USA), 1987.

Sara Cohen, Werner Nutt, and Alexander Serebrenik. Rewriting aggregate queries us-
ing views. In Proc. of the 18th ACM SIGACT SIGMOD SIGART Sym. on Principles
of Database Systems (PODS’99), 1999.

Oliver M. Duschka and Michael R. Genesereth. Answering recursive queries using
views. In Proc. of the 16th ACM SIGACT SIGMOD SIGART Sym. on Principles of
Database Systems (PODS’97), pages 109-116, 1997.

Oliver M. Duschka and Michael R. Genesereth. Query planning with disjunctive
sources. In Proc. of the AAAI-98 Workshop on Al and Information Integration,
1998.

Mary F. Fernandez, Daniela Florescu, Jaewoo Kang, Alon Y. Levy, and Dan Suciu.
Catching the boat with strudel: Experiences with a web-site management system.
In Proc. of the ACM SIGMOD Int. Conf. on Management of Data, pages 414-425,
1998.

Mary F. Fernandez, Daniela Florescu, Alon Y. Levy, and Dan Suciu. A query lan-
guage for a web-site management system. SIGMOD Record, 26(3):4-11, 1997.

Daniela Florescu, Alon Levy, and Dan Suciu. Query containment for conjunctive
queries with regular expressions. In Proc. of the 17th ACM SIGACT SIGMOD
SIGART Sym. on Principles of Database Systems (PODS’98), pages 139-148, 1998.

Mary F. Fernandez and Dan Suciu. Optimizing regular path expressions using graph
schemas. In Proc. of the 14th IEEE Int. Conf. on Data Engineering (ICDE’98), pages
14-23, 1998.

N. D. Jones. Space-bounded reducibility among combinatorial problems. J. of Com-
puter and System Sciences, 11:68-75, 1975.

Alon Y. Levy, Alberto O. Mendelzon, Yehoshua Sagiv, and Divesh Srivastava. An-
swering queries using views. In Proc. of the 14th ACM SIGACT SIGMOD SIGART
Sym. on Principles of Database Systems (PODS’95), pages 95-104, 1995.

Alberto Mendelzon, George A. Mihaila, and Tova Milo. Querying the World Wide
Web. Int. J. on Digital Libraries, 1(1):54-67, 1997.

Tova Milo and Dan Suciu. Index structures for path expressions. In Proc. of the 7th
Int. Conf. on Database Theory (ICDT’99), volume 1540 of Lecture Notes in Computer
Science, pages 277-295. Springer-Verlag, 1999.

Yannis Papakonstantinou and Vasilis Vassalos. Query rewriting using semistructured
views. In Proc. of the ACM SIGMOD Int. Conf. on Management of Data, 1999.

D. Quass, A. Rajaraman, . Sagiv, J. Ullman, and J. Widom. Querying semistruc-
tured heterogeneous information. In Proc. of the 4th Int. Conf. on Deductive and
Object-Oriented Databases (DOOD’95), pages 319-344. Springer-Verlag, 1995.

19

[RS59]

[RSU95]

[Sav70]

[SDJL96]

[TSI96]

[U197]

[VEBS2]

[VEB97]

M. O. Rabin and D. Scott. Finite automata and their decision problems. IBM Journal
of Research and Development, 3:115-125, 1959.

Anand Rajaraman, Yehoshua Sagiv, and Jeffrey D. Ullman. Answering queries using
templates with binding patterns. In Proc. of the 14th ACM SIGACT SIGMOD
SIGART Sym. on Principles of Database Systems (PODS’95), 1995.

W. J. Savitch. Relationship between nondeterministic and deterministic tape com-
plexities. J. of Computer and System Sciences, 4:177-192, 1970.

D. Srivastava, S. Dar, H. V. Jagadish, and A. Levy. Answering queries with ag-
gregation using views. In Proc. of the 22nd Int. Conf. on Very Large Data Bases
(VLDB’96), pages 318-329, 1996.

O. G. Tsatalos, M. H. Solomon, and Y. E. Ioannidis. The GMAP: A versatile tool
for phyisical data independence. Very Large Database J., 5(2):101-118, 1996.

Jeffrey D. Ullman. Information integration using logical views. In Proc. of the 6th Int.
Conf. on Database Theory (ICDT’97), volume 1186 of Lecture Notes in Computer
Science, pages 19—40. Springer-Verlag, 1997.

Peter van Emde Boas. Dominoes are forever. In Proc. of 1st GTI Workshop, Rheie
Theoretische Informatik UGH Paderborn, pages 75-95, Paderborn (Germany), 1982.

Peter van Emde Boas. The convenience of tilings. In A. Sorbi, editor, Complex-
ity, Logic, and Recursion Theory, volume 187 of Lecture notes in pure and applied
mathematics, pages 331-363. Marcel Dekker Inc., 1997.

20

