
Rewriting of Regular Expressions and Regular Path Queries

Diego Calvanese

1

, Giuseppe De Giaomo

1

, Maurizio Lenzerini

1

, Moshe Y. Vardi

2

1

Dipartimento di Informatia e Sistemistia

Universit�a di Roma \La Sapienza"

Via Salaria 113, I-00198 Roma, Italy

lastname�dis.uniroma1.it

http://www.dis.uniroma1.it/

~

lastname

2

Department of Computer Siene

Rie University, P.O. Box 1892

Houston, TX 77251-1892, U.S.A.

vardi�s.rie.edu

http://www.s.rie.edu/

~

vardi

Abstrat

Reent work on semi-strutured data has revitalized the interest in path queries, i.e., queries

that ask for all pairs of objets in the database that are onneted by a path onforming to

a ertain spei�ation, in partiular to a regular expression. Also, in semi-strutured data, as

well as in data integration, data warehousing, and query optimization, the problem of query

rewriting using views is reeiving muh attention: Given a query and a olletion of views,

generate a new query whih uses the views and provides the answer to the original one.

In this paper we address the problem of query rewriting using views in the ontext of semi-

strutured data. We present a method for omputing the rewriting of a regular expression E

in terms of other regular expressions. The method omputes the exat rewriting (the one that

de�nes the same regular language as E) if it exists, or the rewriting that de�nes the maximal

language ontained in the one de�ned by E, otherwise. We present a omplexity analysis of both

the problem and the method, showing that the latter is essentially optimal. Finally, we illustrate

how to exploit the method to rewrite regular path queries using views in semi-strutured data.

The omplexity results established for the rewriting of regular expressions apply also to the ase

of regular path queries.

1 Introdution

Database researh has often shown strong interest in path queries, i.e., queries that ask for all pairs

of objets in the database that are onneted by a spei�ed path (see for example [CMW87, CM90℄).

Reent work on semi-strutured data has revitalized suh interest. Semi-strutured data are data

whose struture is irregular, partially known, or subjet to frequent hanges [Abi97℄. They are

usually formalized in terms of labeled graphs, and apture data as found in many appliation

areas, suh as web information systems, digital libraries, and data integration [BDFS97, CACS94,

MMM97, QRS

+

95℄.

The basi querying mehanism over suh graphs is the one that retrieves all pairs of nodes

onneted by a path onforming to a given pattern. Sine a user may ignore the preise struture

1

of the graph, the mehanism for speifying path patterns should be exible enough to allow for

expressing regular path queries, i.e., queries that provide the spei�ation of the requested paths

through a regular language [AQM

+

97, BDHS96, FFK

+

98℄. For example, the regular path query

(

�

� (rome + jerusalem) �

�

� restaurant) spei�es all the paths having at some point an edge labeled

rome or jerusalem , followed by any number of other edges and by an edge labeled with a restaurant.

Methods for reasoning about regular path queries have been reently proposed in the literature.

In partiular, [AV97, BFW98℄ investigate the deidability of the impliation problem for path

onstraints, whih are integrity onstraints that are exploited in the optimization of regular path

queries. Also, ontainment of onjuntions of regular path queries has been addressed and proved

deidable in [CDGL98, FLS98℄.

In semi-strutured data, as well as in data integration, data warehousing, and query optimiza-

tion, the problem of query rewriting using views is reeiving muh attention [Ull97, AD98℄: Given

a query Q and k queries Q

1

; : : : ; Q

k

assoiated to the symbols q

1

; : : : ; q

k

, respetively, generate a

new query Q

0

over the alphabet q

1

; : : : ; q

k

suh that, �rst interpreting eah q

i

as the result of Q

i

,

and then evaluating Q

0

on the basis of suh interpretation, provides the answer to Q.

Several papers investigate this problem for the ase of onjuntive queries (with or with-

out arithmeti omparisons) [LMSS95, RSU95℄, queries with aggregates [SDJL96, CNS99℄, re-

ursive queries [DG97℄, disjuntive views [DG98, AGK99℄, non-reursive queries and views for

semi-strutured data [PV99℄, and queries expressed in Desription Logis [BLR97℄. Rewriting

tehniques for query optimization are desribed, for example, in [CKPS95, ACPS96, TSI96℄, and

in [FS98, MS99℄ for the ase of path queries in semi-strutured data.

None of the above papers provides a method for rewriting regular path queries. Observe that

suh a method requires a tehnique for the rewriting of regular expressions, i.e., the problem that,

given a regular expression E

0

, and other k regular expressions E

1

; : : : ; E

k

, heks whether we an

re-express E

0

by a suitable ombination of E

1

; : : : ; E

k

. As noted in [MS99℄, suh a problem is still

open.

In this paper we present the following ontributions:

� We desribe a method for omputing the rewriting of a regular expression E

0

in terms of

other regular expressions. The method omputes the exat rewriting (the one that de�nes

the same regular language as E

0

) if it exists, or the rewriting that de�nes the maximal

language ontained in the one de�ned by E

0

, otherwise.

� We provide a omplexity analysis of the problem of rewriting regular expressions. We show

that our method omputes the rewriting in 2EXPTIME, and is able to hek whether the

omputed rewriting is exat in 2EXPSPACE. We also show that the problem of heking

whether there is a nonempty rewriting is EXPSPACE-omplete, and demonstrate that our

method for omputing the rewriting is essentially optimal. Finally, we show that the problem

of verifying the existene of an exat rewriting is 2EXPSPACE-omplete.

� We illustrate how to exploit the above mentioned method in order to devise an algorithm for

the rewriting of regular path queries for semi-strutured databases. The omplexity results

established for the rewriting of regular expressions apply to the new algorithm as well. Also,

we show how to adapt the method in order to ompute rewritings with spei� properties. In

partiular, we onsider partial rewritings (whih are rewritings that, besides E

1

; : : : ; E

k

, may

use also symbols in E

0

), in the ase where an exat one does not exist.

We point out that the results established in this work provide the �rst deidability results for

rewriting reursive queries using reursive views. Indeed, in our ontext, both the query and the

2

views may ontain a form of reursion due to the presene of transitive losure. Observe that

the ase where the query ontains unrestrited reursion has been shown undeidable, even when

the views are not reursive [DG97℄. More preisely, the authors in [DG97℄ present a method that

omputes the maximally ontained rewriting of a datalog query in terms of a set of onjuntive

queries, and show that it is undeidable to hek whether the rewriting is equivalent to the original

query.

The paper is organized as follows. Setion 2 presents the method for rewriting regular expres-

sions. Setion 3 desribes the omplexity analysis of both the method and the problem. Setion 4

illustrates the use of the tehnique to rewrite path queries for semi-strutured databases. Finally,

Setion 5 desribes possible developments of our researh.

2 Rewriting of regular expressions

In this setion, we present a tehnique for the following problem: Given a regular expression E

0

and a �nite set E = fE

1

; : : : ; E

k

g of regular expressions over an alphabet �, re-express, if possible,

E

0

by a suitable ombination of E

1

; : : : ; E

k

.

We assume that assoiated to E we always have an alphabet �

E

ontaining exatly one symbol

for eah regular expression in E , and we denote the regular expression assoiated to the symbol

e 2 �

E

with re(e). Given any language ` over �

E

, we denote by exp

�

(`) the language over � de�ned

as follows

exp

�

(`) =

[

e

1

���e

n

2`

fw

1

� � �w

n

j w

i

2 L(re(e

i

))g

where L(e) is the language de�ned by the regular expression e. Thus, exp

�

(`) denotes all the words

obtained from a word e

1

� � � e

n

2 ` by substituting for eah e

i

any word of the regular language

assoiated to e

i

.

De�nition 1 Let R be any formalism for de�ning a language L(R) over �

E

. We say that R is a

rewriting of E

0

wrt E if exp

�

(L(R)) � L(E

0

).

Note that we do not onstrain in any way the form of the rewritings, whih, a priori, need not

even be reursive. We are interested in maximal rewritings, i.e., rewritings that apture in the best

possible way the language de�ned by the original regular expression E

0

.

De�nition 2 A rewriting R of E

0

wrt E is �-maximal if for eah rewriting R

0

of E

0

wrt E we have

that exp

�

(L(R

0

)) � exp

�

(L(R)). A rewriting R of E

0

wrt E is �

E

-maximal if for eah rewriting R

0

of E

0

wrt E we have that L(R

0

) � L(R).

Intuitively, when onsidering �-maximal rewritings we look at the languages obtained after

substituting eah symbol in the rewriting by the orresponding regular expression over �, whereas

when onsidering �

E

-maximal rewritings we look at the languages over �

E

. Observe that by

de�nition all �-maximal rewritings de�ne the same language (similarly for �

E

-maximal rewritings),

and that not all �-maximal rewritings are �

E

-maximal, as shown by the following example.

Example 1 Let E

0

= a

�

, E = fa

�

g, and �

E

= feg, where re(e) = a

�

. Then both R

1

= e

�

and

R

2

= e are �-maximal rewritings of E

0

wrt E , but R

1

is also �

E

-maximal while R

2

is not.

However, it turns out that �

E

-maximality is a suÆient ondition for �-maximality.

3

Theorem 1 Let R be a rewriting of E

0

wrt E. If R is �

E

-maximal then it is also �-maximal.

Proof. Assume by ontradition that R is a �

E

-maximal rewriting of E

0

wrt E that is not

�-maximal. Then there is a rewriting R

0

of E

0

wrt E , a �

E

-word u

0

2 L(R

0

), and a �-word

w 2 L(exp

�

(fu

0

g)) suh that for no �

E

-word u 2 L(R), it holds that w 2 L(exp

�

(fug)). Hene

u

0

62 L(R) and L(R

0

) 6� L(R). Contradition. 2

Given E

0

and E , we are interested in deriving a �-maximal rewriting of E

0

wrt E . We show

that suh a maximal rewriting always exists (although it may be empty). In fat, we provide a

method that, given E

0

and E , onstruts a �

E

-maximal rewriting of E

0

wrt E . By Theorem 1 the

onstruted rewriting is also �-maximal.

The onstrution takes E

0

and E as input, and returns an automaton R

E ;E

0

built as follows:

1. Construt a deterministi automaton A

d

= (�; S; s

0

; �; F) suh that L(A

d

) = L(E

0

).

2. De�ne the automaton A

0

= (�

E

; S; s

0

; �

0

; S � F), where s

j

2 �

0

(s

i

; e) if and only if 9w 2

L(re(e)) suh that s

j

2 �

�

(s

i

; w).

3. R

E ;E

0

= A

0

, i.e., the omplement of A

0

.

Observe that, if A

0

aepts a �

E

-word e

1

� � � e

n

, then there exist n �-words w

1

; : : : ; w

n

suh that

w

i

2 L(re(e

i

)) for i = 1; : : : ; n and suh that the �-word w

1

� � �w

n

is rejeted by A

d

. On the other

hand if there exist n �-words w

1

; : : : ; w

n

suh that w

i

2 L(re(e

i

)), for i = 1; : : : ; n, and w

1

� � �w

n

is rejeted by A

d

, then the �

E

-word e

1

� � � e

n

is aepted by A

0

. That is, A

0

aepts a �

E

-word

e

1

� � � e

n

if and only if there is a �-word in exp

�

(fe

1

� � � e

n

g) that is rejeted by A

d

. Hene, R

E ;E

0

,

being the omplement of A

0

, aepts a �

E

-word e

1

� � � e

n

if and only if all �-words w

1

� � �w

n

suh

that w

i

2 L(re(e

i

)) for i = 1; : : : ; n, are aepted by A

d

. Hene we an state the following theorem.

Theorem 2 The automaton R

E ;E

0

is a �

E

-maximal rewriting of E

0

wrt E.

Proof. It is easy to see that by onstrution R

E ;E

0

= A

0

is a rewriting of E

0

wrt E . We prove by

ontradition that it is �

E

-maximal. Let R be a rewriting of E

0

wrt E suh that L(R) 6� L(A

0

). Let

e

1

� � � e

n

be a �

E

-word suh that e

1

� � � e

n

2 L(R) but e

1

� � � e

n

62 L(A

0

). By de�nition of rewriting,

all �-words w

1

� � �w

n

suh that w

i

2 L(re(e

i

)) for i = 1; : : : ; n, are in L(E

0

) = L(A

d

). On the

other hand, sine e

1

� � � e

n

62 L(A

0

), the �

E

-word e

1

� � � e

n

is aepted by A

0

. Thus there is a �-word

w

1

� � �w

n

, suh that w

i

2 L(re(e

i

)) for i = 1; : : : ; n, that is rejeted by A

d

. Contradition. 2

Notably, although De�nition 1 does not onstrain in any way the form of the rewritings, The-

orem 2 shows that the language over �

E

(and therefore also the language over �) de�ned by the

�

E

-maximal rewritings is in fat regular (indeed, A

0

is a �nite automaton).

We illustrate the algorithm that omputes a �

E

-maximal rewriting by means of the following

example.

Example 2 Let E

0

= a�(b�a +)

�

, and let E and �

E

be suh that re(e

1

) = a, re(e

2

) = a�

�

�b,

and re(e

3

) = . The deterministi automaton A

d

shown in Figure 1 aepts L(E

0

), while A

0

is the

orresponding automaton onstruted in Step 2 of the rewriting algorithm. SineA

0

is deterministi,

by simply exhanging �nal and non�nal states we obtain its omplement A

0

, whih is the rewriting

R

E ;E

0

.

Next we address the problem of verifying whether the rewriting R

E ;E

0

aptures exatly the

language de�ned by E

0

.

4

e

1

; e

2

e

3

e

3

e

1

e

2

e

3

e

1

e

2

e

1

; e

2

; e

3

b a

b;

a

a; b;

A

d

A

0

A

0

Figure 1: Constrution of the rewriting of a�(b�a+)

�

wrt fa; a�

�

�b; g

De�nition 3 A rewriting R of E

0

wrt E is exat if exp

�

(L(R)) = L(E

0

).

To verify whether R

E ;E

0

is an exat rewriting of E

0

wrt E we proeed as follows:

1. We onstrut an automaton B over � that aepts exp

�

(L(R

E ;E

0

)) as follows. We �rst

onstrut an automaton A

i

suh that L(A

i

) = L(re(e

i

)) for i = 1; : : : ; k. We assume, without

loss of generality, that A

i

has unique start state and aepting state, and that the start state

has no inoming edges and the aepting state no outgoing edges. We then obtain B by

replaing eah edge labeled by e

i

in R

E ;E

0

by a fresh opy of A

i

, identifying the start state

of the fresh opy with the soure of the edge, and the aepting state with the target of the

edge. Observe that, sine R

E ;E

0

is a rewriting of E

0

, L(B) � L(A

d

).

2. We hek whether L(A

d

) � L(B), that is, we hek whether L(A

d

\B) = ;.

Theorem 3 The automaton R

E ;E

0

is an exat rewriting of E

0

wrt E if and only if L(A

d

\B) = ;.

Proof. By Theorem 2 the automaton R

E ;E

0

is a rewriting of E

0

wrt E . Suppose L(A

d

\ B) = ;.

Then any �-word w 2 L(E

0

) = L(A

d

) is also aepted by B. Hene by onstrution of B there is a

�

E

-word e

1

� � � e

n

2 L(A

0

) suh that w = w

1

� � �w

n

and w

i

2 L(re(e

i

)) for i = 1; : : : ; n. Suppose that

L(A

d

\ B) 6= ;. Then there exists a �-word w 2 L(E

0

) = L(A

d

) that is rejeted by B. Hene by

onstrution of B there is no �

E

-word e

1

� � � e

n

2 L(A

0

) suh that w = w

1

� � �w

n

and w

i

2 L(re(e

i

))

for i = 1; : : : ; n. 2

Corollary 4 An exat rewriting of E

0

wrt E exists if and only if L(A

d

\B) = ;.

Example 2 (ont.) One an easily verify that R

E ;E

0

= e

�

2

�e

1

�e

�

3

is exat. Observe that, if E did

not inlude , the rewriting algorithm would give us e

�

2

�e

1

as the �

E

-maximal rewriting of E

0

wrt

fa; a�

�

�bg, whih however is not exat.

3 Complexity analysis

In this setion we analyze the omputational omplexity of both the problem of rewriting regular

expressions, and the method desribed in Setion 2.

5

3.1 Upper bounds

Let us analyze the omplexity of the algorithms presented above for omputing the maximal rewrit-

ing of a regular expression. By onsidering the ost of the various steps in omputing R

E ;E

0

, we

immediately derive the following theorem.

Theorem 5 The problem of generating the �

E

-maximal rewriting of a regular expression E

0

wrt

a set E of regular expressions is in 2EXPTIME.

Proof. We refer to the algorithm that omputes R

E ;E

0

, and we observe that: (i) Generating the

deterministi automaton A

d

from E

0

is exponential. (ii) Building A

0

from A

d

and the expressions

E

1

; : : : ; E

k

is polynomial. (iii) Complementing A

0

is again exponential. 2

With regard to the ost of verifying the existene of an exat rewriting, Corollary 4 ensures us

that we an solve the problem by heking L(A

d

\B) = ;. Observe that, if we onstrut L(A

d

\B),

we get a ost of 3EXPTIME, sine B is of triply exponential size with respet to the size of the

input. However, we an avoid the expliit onstrution of B, thus getting the following result.

Theorem 6 The problem of verifying the existene of an exat rewriting of a regular expression

E

0

wrt a set E of regular expressions is in 2EXPSPACE.

Proof. We refer to the algorithm that veri�es whether the automaton R

E ;E

0

is an exat rewriting

of E

0

wrt E , and we observe that: (i) By Theorem 5, the automaton R

E ;E

0

is of doubly exponential

size. (ii) Building the automaton B from R

E ;E

0

is polynomial. (iii) Complementing B to get

B is exponential. (iv) Verifying the emptiness of the intersetion of A

d

and B an be done in

nondeterministi logarithmi spae [RS59, Jon75℄. Combining (i){(iv), we get a nondeterministi

2EXPSPACE bound, and using Savith's Theorem [Sav70℄, we get a deterministi 2EXPSPACE

bound.

Some are, however, is needed to getting the laimed spae bound. We annot simply on-

strut B, sine it is of triply exponential size. Instead, we onstrut B \on-the-y"; whenever the

nonemptiness algorithm wants to move from a state s

1

of the intersetion of A

d

and B to a state s

2

,

the algorithm guesses s

2

and heks that it is diretly onneted to s

1

. One this has been veri�ed,

the algorithm an disard s

1

. Thus, at eah step the algorithm needs to keep in memory at most

two states and there is no need to generate all of B at any single step of the algorithm. 2

3.2 Lower bounds

We show that the upper bounds established in Setion 3.1 are essentially optimal. To prove the

mathing lower bounds we exploit variants of tiling problems (see e.g., [vEB82, vEB97, Ber66℄).

A tile is a unit square of one of several types and a tiling system is spei�ed by means of a �nite

set � of tile types and two binary relations H and V over �, representing horizontal and vertial

adjaeny relations, respetively. A generi tiling problem onsists in determining whether there

exists a mapping � (alled tiling) from a given region R of the integer plane to � whih is onsistent

with H and V . That is, if (i; j); (i; j+1) 2 R then (�(i; j); �(i; j+1)) 2 H and if (i; j); (i+1; j) 2 R

then (�(i; j); �(i + 1; j)) 2 V . We get a spei� tiling problem by imposing additional onditions

on the region to be tiled and on the tile types that an be plaed in ertain positions of the region,

suh as the �rst/last row/olumn, or the borders.

Di�erent tiling problems have been shown to be omplete for various omplexity lasses [vEB82,

vEB97℄. We will use EXPSPACE and 2EXPSPACE-omplete tiling problems.

6

3.2.1 Existene of a nonempty rewriting

We say that a rewriting R is �

E

-empty if L(R) = ;. We say that it is �-empty if exp

�

(L(R)) = ;.

Clearly �

E

-emptiness implies �-emptiness. The onverse also holds exept for the non-interesting

ase where E ontains one or more expressions E suh that L(E) = ;. Therefore, we will talk about

the emptiness of a rewriting R without distinguishing between the two de�nitions.

We onsider the tiling problem T = (�;H; V; t

S

; t

F

; C

ES

), where t

S

and t

F

are two distinguished

tile types in �, and for a given number n in unary, C

ES

requires to tile a region of size O(2

n

)�k, for

some onstant and some number k, in suh a way that the left bottom tile of the region (i.e., the

one in position (0; 0)) is of type t

S

and the right upper tile (i.e., the one in position (2

n

� 1; k� 1),

for some onstant) is of type t

F

. Using a redution from aeptane of EXPSPACE Turing

mahines analogous to the one in [vEB97℄, it an be shown that this variant of tiling problem is

EXPSPACE-omplete.

We exploit suh a tiling problem to prove the EXPSPACE lower bound of the problem of

verifying the existene of a nonempty rewriting. That is, given an instane T of the above tiling

problem and a number n, we onstrut a regular expression E

0

and a set E of regular expressions

suh that a tiling orresponding to T (a T -tiling) exists if and only if there is a nonempty rewriting

of E

0

wrt E .

Let m = n for some onstant . A tiling of a region of size 2

m

� k an be desribed as a word

over � of length k2

m

, where every blok of 2

m

symbols desribes a row of the tiling. We take �

E

to be �. We will de�ne E

0

and re(e) for eah letter e 2 � suh that a �-word e

1

� � � e

`

desribes

a T -tiling if and only if exp

�

(e

1

� � � e

`

) � L(E

0

). E

0

will be de�ned as the sum E

bad

+E

good

of two

regular expressions E

bad

and E

good

, whih are in turn de�ned as sums of regular expressions.

The onstrution of re(e) for e 2 � is uniform: we take the alphabet � to be � [f0; 1; $g (so

�

E

� �), and de�ne re(e) = $�(0 + 1)

3m+1

�e; that is, the language assoiated with e onsists of e

pre�xed with a $ sign and all binary words of length 3m + 1. Intuitively, the $ sign is a marker,

the �rst m bits enode the olumn of a tile (m bits are needed to desribe the olumn in a row of

length 2

m

), and the next 2m bits enode bookkeeping information. The 3m+1-st bit is a highlight.

As will beome lear shortly, highlights are used to identify either a tile not in the last olumn or

a pair of vertially adjaent tiles. Given a word w 2 L(re(e)), we use

� position(w) to denote the �rst m bits after the $ marker,

� arry(w) to denote the seond m bits after the $ marker, and

� next(w) to denote the third m bits after the $ marker.

Also, we use position(w; i), arry(w; i) and next(w; i), for 0 � i < m to denote the i + 1-st bit in

position(w), arry(w), and next(w), respetively. This means that we ount bits starting from 0

and onsider the least signi�ant bit to be the one in position 0.

Consider now a word e

0

� � � e

`

over �, and let w = w

0

� � �w

`

be a word in exp

�

(e

0

� � � e

`

). We

all eah w

j

, whih is a word of length 3m + 3, a blok. We lassify suh words w into two

lasses. Our intention is that position(w

j

) desribes an m-bit ounter, and that preisely one or

two highlight bits be on. When only one highlight bit is on it is loated in a blok w

h

suh that

position(w

h

) 6= 1

m

, and when two highlight bits are on, they are loated in bloks w

h

and w

k

suh

that position(w

h

) = position(w

k

) and for at most one j, h < j < k, we have position(w

j

) = 0

m

.

Requiring position(w

j

) to be an m-bit ounter means that we expet position(w

0

) = 0

m

and

position(w

`

) = 1

m

, and we expet arry(w

j

) to be the sequene of m arry bits when position(w

j

)

is inremented to yield next(w

j

), whih is equal to position(w

j+1

). If the intended onditions do

7

not hold, then w is a bad word. More preisely, a word w = w

0

� � �w

`

is bad if one of the following

holds:

1. position(w

0

; i) = 1, for some i, 0 � i < m;

2. position(w

`

; i) = 0, for some i, 0 � i < m;

3. arry(w

j

; 0) = 0, for some j, 0 � j � `;

4. arry(w

j

; i) 6= arry(w

j

; i� 1)and position(w

j

; i� 1), for some j and i, 0 � j � `, 1 � i < m;

5. next(w

j

; i) 6= position(w

j

; i)xor arry(w

j

; i), for some j and i, 0 � j � `, 0 � i < m;

6. position(w

j

; i) 6= next(w

j�1

; i), for some j and i, 1 � j � `, 0 � i < m;

7. onditions on the highlight bits, whih are:

(a) no highlight bit in w is 1;

(b) only one highlight bit inw is 1 and it is loated in a blok w

h

suh that position(w

h

) = 1

m

;

() at least three highlight bits in w are 1;

(d) the two highlight bits that are 1 are loated in two bloks w

h

and w

k

and there are at least

two bloks w

j

1

and w

j

2

between w

h

and w

k

suh that position(w

j

1

) = position(w

j

2

) = 0

m

;

(e) the two highlight bits that are 1 are loated in two bloks w

h

and w

k

and position(w

h

; i) 6=

position(w

k

; i) for some i, 0 � i < m.

We de�ne E

bad

in suh a way that all bad words belong to L(E

bad

). Eah of the above onditions

an be \deteted" by a regular expression of size O(m), whih ontributes to E

bad

(and hene to

E

0

). To illustrate the idea, we provide the regular expressions for some of the onditions above.

Condition (1) is deteted by the regular expression

(

m�1

X

i=0

$�(0 + 1)

i

�1�(0 + 1)

3m�i

��) � B

�

where B stands for the regular expression $�(0 + 1)

3m+1

��.

Condition (4) is deteted by the sum of four regular expressions

B

�

� (

m�1

X

i=1

$�(0 + 1)

i�1

�p�(0 + 1)

m�i

�

(0 + 1)

i�1

��

0

(0 + 1)

m�1�i

�(0 + 1)

m+1

��) �B

�

one for eah hoie of 0 or 1 for p, , and

0

suh that

0

6= and p.

Condition (6) is deteted by the sum of two regular expressions

B

�

� (

m�1

X

i=0

$�(0 + 1)

2m

�(0 + 1)

i

�b�(0 + 1)

m�1�i

�(0 + 1)�� �

$�(0 + 1)

i

�

�

b�(0 + 1)

m�1�i

�(0 + 1)

2m

�(0 + 1)��) �B

�

one for b = 0 and

�

b = 1, and one for b = 1 and

�

b = 0.

Condition (7b) is deteted by the regular expression

($�(0 + 1)

3m

�0��)

�

� $�1

m

�(0 + 1)

2m

�1�� � ($�(0 + 1)

3m

�0��)

�

8

Condition (7e) is deteted by the sum of two regular expressions

B

�

� (

m�1

X

i=0

$�(0 + 1)

i

�b�(0 + 1)

3m�1�i

�1�� �B

�

�

$�(0 + 1)

i

�

�

b�(0 + 1)

3m�1�i

�1��) �B

�

one for b = 0 and

�

b = 1, and one for b = 1 and

�

b = 0.

Words that satisfy none of the above onditions are good words, and will be handled di�erently.

In suh words either one or two highlight bits are on. When one highlight bit is on, it is loated at

a blok that orresponds to a tile not in the last row in a tiling of the region. The types of this tile

and of the one immediately to the right have to be related in a way that depends on the horizontal

adjaeny relation H of T . When two highlight bits are on, they are loated at two positions that

are preisely 2

m

bloks apart, and these bloks orrespond to vertially adjaent tiles. The types

of these tiles have to be related in a way that depends on the vertial adjaeny relation V of T .

We an use regular expressions of size O(m) to fore suh bloks to be related in the right way,

and also to fore the tiling to satisfy the additional onditions on the left bottom and right upper

tiles. E

good

is the sum of all suh regular expressions.

For example, the following regular expression ensures that the horizontal adjaeny relation is

respeted in the ase where the highlight bit is on at a blok that is neither the �rst nor the last

one:

$�(0 + 1)

3m

�0�t

S

� ($�(0 + 1)

3m

�0��)

�

�

(

P

(t

1

;t

2

)2H

$�(0 + 1)

3m

�1�t

1

� $�(0 + 1)

3m

�0�t

2

) �

($�(0 + 1)

3m

�0��)

�

� $�(0 + 1)

3m

�0�t

F

The following regular expression ensures that the vertial adjaeny relation is respeted in the

ase where the two highlight bits are on at bloks that are neither the �rst nor the last one:

$�(0 + 1)

3m

�0�t

S

� ($�(0 + 1)

3m

�0��)

�

�

(

P

(t

1

;t

2

)2V

$�(0 + 1)

3m

�1�t

1

� ($�(0 + 1)

3m

�0��)

�

� $�(0 + 1)

3m

�1�t

2

) �

($�(0 + 1)

3m

�0��)

�

� $�(0 + 1)

3m

�0�t

F

Similar regular expressions an be provided for the ases where the highlight bits are on at the �rst

or last blok.

Thus, all the good words w = w

0

� � �w

`

in exp

�

(e

0

� � � e

`

) are in L(E

good

) if and only if e

0

� � � e

`

desribes a T -tiling. If no T -tiling exists then for every e

0

� � � e

`

we an �nd a good word w =

w

0

� � �w

`

in exp

�

(e

0

� � � e

`

) that is not in L(E

good

) and hene not in L(E

0

). Thus, E

0

has a nonempty

rewriting wrt E if and only if a T -tiling exists.

Theorem 7 The problem of verifying the existene of a nonempty rewriting of a regular expression

E

0

wrt a set E of regular expressions is EXPSPACE-omplete.

Proof. By Theorem 5, we generate the �

E

-maximal rewriting of a regular expression E

0

wrt a

set E of regular expressions in 2EXPTIME. Cheking whether a given �nite-state automaton in

non-empty an be done in NLOGSPACE. The upper bound follows (see omments in the proof of

Theorem 6). The lower bound follows from the redution from the EXPSPACE omplete tiling

problem desribed above, by observing that E

0

and all regular expressions in E are of size polynomial

in T and n. 2

9

Note that Theorem 7 implies that the upper bound established in Theorem 5 is essentially

optimal. If we an generate maximal rewritings in, say, EXPTIME, then we ould test emptiness

in PSPACE, whih is impossible by Theorem 7. We an get, however, an even sharper lower bound

on the size of rewritings.

Theorem 8 For eah n > 0 there is a regular expression E

n

and a set E

n

of regular expressions

suh that the ombined size of E

n

and E

n

is polynomial in n, but the shortest nonempty rewriting

(expressed either as a regular expression or as an automaton) of E

n

wrt E

n

is of length 2

2

n

.

Proof. We use the enoding tehnique of Theorem 7. Instead, however, of enoding tiling problems,

we diretly enode a 2

n

-bit ounter using an alphabet �

E

= fb

n

000

; b

n

001

; : : : ; b

n

111

g of 8 symbols

representing the 8 possible ombinations of a position, a arry, and a next bit. For a symbol b

n

px

,

where p; ; x 2 f0; 1g, we say that p is the position-omponent, the arry-omponent, and x the

next-omponent of b

n

px

. In a word over �

E

representing the evolution of the 2

n

-bit ounter, the

three omponents of symbols that are exatly 2

n

positions apart will represent the position, arry,

and next bits in the same position of two suessive on�gurations of the ounter. By using the

highlight bits of the enoding tehnique of Theorem 7 we an enfore the orret relationships

between suh symbols. Hene, we an de�ne E

n

= fB

n

000

; : : : ; B

n

111

g and E

n

0

in suh a way that

a word w = b

n

p

0

0

x

0

� � � b

n

p

m

m

x

m

is a rewriting of E

n

0

wrt E

n

if and only if the bit vetor p

0

� � � p

m

represented by the position-omponents of w is of the form w

0

� � �w

2

2

n

�1

, where w

j

is the 2

n

-bit

representation of j.

Using pumping arguments it is easy to see that any regular expression or automaton desribing

suh a rewriting has to be of length at least 2

2

n

. Indeed, assume there is a regular expression

or automaton R of size less than 2

2

n

desribing the rewriting. Then, sine any nonempty regular

expression or automaton aepts at least one word of length less than or equal to its size, R aepts

also a word w

0

of length less than 2

2

n

, ontraditing the hypothesis that R is a orret rewriting of

E

n

0

wrt E

n

. 2

3.2.2 Existene of an exat rewriting

The tehnique used in Theorem 7 turns out to be an important building blok in the proof that

Theorem 6 is also tight.

We onsider the tiling problem T = (�;H; V; t

S

; t

F

; t

L

; t

R

; C

2ES

), where t

S

, t

F

, t

L

, and t

R

are

distinguished tile types in � suh that (t

R

; t

L

) 2 H, and for a given number n in unary, C

2ES

requires to tile a region of size O(2

2

n

) � k, for some number k, in suh a way that: (i) the left

bottom tile of the region is of type t

S

, (ii) all other tiles on the left border are of type t

L

, (iii) the

right upper tile is of type t

F

, and (iv) all other tiles on the right border are of type t

R

. Using a

redution from aeptane of 2EXPSPACE Turing mahines analogous to the one in [vEB97℄, it

an be shown that this tiling problem is 2EXPSPACE-omplete.

We exploit suh a tiling problem to prove the 2EXPSPACE lower bound of the problem of

verifying the existene of an exat rewriting. That is, given an instane T of the above tiling

problem and a number n, we onstrut a regular expression E

0

and a set E of regular expressions

suh that a T -tiling exists if and only if there is an exat rewriting of E

0

wrt E . Eah row of a

T -tiling is of doubly exponential length in n. We desribe suh a tiling as a word over �, and to

\hek" the vertial adjaeny onditions we need to ompare the types of tiles that are a doubly

exponential distane apart, whih requires \yardstiks" of suh length. Fortunately, we have seen

in the proofs of Theorems 7 and 8 how to onstrut suh yardstiks.

10

We diretly exploit the onstrution desribed in Theorem 8 to enode a 2

n

bit ounter, and

obtain a regular expression E

C

0

and a set E

C

of regular expressions, all over an alphabet �

C

=

f0; 1; $g [�

C

. Let re

C

(�) be the mapping that assoiates to eah symbol in a suitable alphabet

�

C

E

a regular expression in E

C

. Then for a word w over �

C

E

we have that exp

�

(w) � L(E

C

0

)

preisely when w = w

C

, where w

C

is the word that desribes the 2

2

n

suessive bit on�gurations

(for the position, the arry and the next bits) of the 2

n

bit ounter. In partiular, sine eah bit

on�guration is of length 2

n

, we have that w

C

is of length 2

n

� 2

2

n

, whih is preisely what we need.

We will use E

C

0

and E

C

to onstrut regular expressions that detet errors in T -tilings with rows

of length exatly 1 + 2

n

� 2

2

n

.

Let

~

� = f

~

t j t 2 �g, where � is the set of tile types of T . We take � to be �

C

[

~

� [� and

�

E

to be �

C

E

[

~

�. The set E of regular expressions used for the rewriting is obtained by taking

re(e) = re

C

(e) + �, for eah e 2 �

C

E

, and re(

~

t) =

~

t + t, for eah

~

t 2

~

�. Thus eah symbol in �

C

E

generates also all possible tile types in �, while eah symbol in

~

� generates itself and only the

orresponding tile type.

We onstrut regular expressions E

V

0

, E

H

0

, E

S

0

, E

F

0

, E

L

0

, and E

R

0

, whih are used to detet errors

in andidate tilings. E

V

0

is used to detet onits with respet to the vertial adjaeny relation

V , whih arise between tiles that are 1+2

n

� 2

2

n

symbols apart. E

H

0

is used to detet onits with

respet to the horizontal adjaeny relation H, whih arise between tiles that are diretly adjaent.

Note that sine (t

R

; t

L

) 2 H, also the last tile of a row and the �rst tile of the next row have to

respet the horizontal adjaeny ondition. E

S

0

, E

F

0

, E

L

0

, and E

R

0

are used to detet tiles of the

wrong type at the beginning and end, and on the left and right border respetively. All suh tiles

are at a known distane from the left bottom tile. The regular expressions are onstruted in suh

a way that for a word w over �

E

we have that:

� exp

�

(w) � L(E

V

0

) preisely when w is in the form

�

C

E

�

� (

X

(t

1

;t

2

)2V

~

t

1

��

C

E

�w

C

�

~

t

2

) � �

C

E

�

where V is the set of pairs of tiles that are not in V .

� exp

�

(w) � L(E

H

0

) preisely when w is in the form

�

C

E

�

� (

X

(t

1

;t

2

)2H

~

t

1

�

~

t

2

) � �

C

E

�

where H is the set of pairs of tiles that are not in H.

� exp

�

(w) � L(E

S

0

) preisely when w is in the form

(

X

t2�nft

S

g

~

t) � �

C

E

�

� exp

�

(w) � L(E

F

0

) preisely when w is in the form

(�

C

E

�w

C

)

�

�w

C

� (

X

t2�nft

F

g

~

t)

� exp

�

(w) � L(E

L

0

) preisely when w is in the form

(�

C

E

�w

C

)

�

��

C

E

�w

C

� (

X

t2�nft

L

g

~

t) � �

C

E

�

11

� exp

�

(w) � L(E

R

0

) preisely when w is in the form

(�

C

E

�w

C

)

�

�w

C

� (

X

t2�nft

R

g

~

t) � �

C

E

��

C

E

�

The onstrution of E

H

0

andE

S

0

is immediate. For the other regular expressions we need to onstrut

a regular expression E

C�

0

, of size polynomial in n, whose rewriting is w

C

. We make use of E

C

0

and

E

C

, but need to take into aount that, wrt the onstrution in Theorem 8, now a symbol e in �

C

E

generates not only all possible sequenes of type $�(0 + 1)

3n+1

�e (and hene of length 3n+ 3) but

also all symbols in �. We an however exploit the fat that E

C

0

is omposed of subexpressions that

generate words of length 3n+3 and thus obtain E

C�

0

from E

C

0

by simply adding the expression �

to eah suh subexpression. Then we have for example that

E

V

0

= (B

C

+�)

�

� (

X

(t

1

;t

2

)2V

(

~

t

1

+ t

1

)�(B

C

+�)�E

C�

0

�(

~

t

2

+ t

2

)) � (B

C

+�)

�

where B

C

stands for the regular expression $�(0 + 1)

3n+1

��

C

. The regular expressions E

F

0

, E

L

0

,

and E

R

0

are onstruted in a similar way.

The regular expression E

1

0

= E

V

0

+ E

H

0

+ E

S

0

+ E

F

0

+ E

L

0

+ E

R

0

is suh that a rewriting of E

1

0

generates only andidate tilings with some error (in addition to words ontaining also $, 0, 1, the

symbols in �

C

, and at most two symbols in

~

�).

To enode the problem of the existene of an exat rewriting, we take E

0

to be E

1

0

+�

�

, i.e.,

E

0

expresses also all \andidate" tilings using the tile types in �. If no T -tiling exists, then every

andidate tiling will have an error, and thus will already be generated by a rewriting of E

1

0

. If, on

the other hand, a T -tiling exists, suh a tiling does not have an error and will not be generated by

the rewriting of E

1

0

, resulting in a non-exat rewriting. Notie that we annot attempt to onstrut

a rewriting of �

�

separately, and the only way to get one is via the rewriting of E

1

0

. This is due

to the fat that, from the symbols in �

E

= �

C

E

[

~

�, eah symbol e in �

C

E

generates not only all

symbols in �, but also sequenes of type $�(0+1)

3n+1

�e, while eah symbol

~

t in

~

� generates besides

t also

~

t.

Theorem 9 The problem of verifying the existene of an exat rewriting of a regular expression

E

0

wrt a set E of regular expressions is 2EXPSPACE-omplete.

Proof. The upper bound proof is given in Theorem 6. The lower bound follows from the redution

from the 2EXPSPACE omplete tiling problem desribed above, by observing that E

0

and all

regular expressions in E are of size polynomial in T and n. 2

4 Query rewriting in semi-strutured data

In this setion we show how to apply the results presented above to query rewriting in semi-

strutured data.

All semi-strutured data models share the harateristi that data are organized in a labeled

graph [Bun97, Abi97℄. Following this idea two di�erent approahes have been proposed:

1. The �rst approah assoiates data both to the nodes and to the edges. Spei�ally, nodes

represent objets, and edges represent relations between objets [Abi97, QRS

+

95, FFLS97,

FFK

+

98℄.

12

2. The seond approah assoiates data to the edges only [BDFS97, BDHS96, FS98℄, but queries

are not expressed diretly over the onstants labeling the edges of databases, but over formulae

desribing the properties of suh edges.

An answer to a regular path query is a set of pairs of nodes onneted in the database through a

path onforming to the query. In the �rst approah the rewriting tehniques proposed in Setion 2

an be diretly applied to rewrite regular path queries. It is suÆient to show that R is a rewriting

of a query Q if and only if R (onsidered as a mehanism to de�ne a language) is a rewriting of the

regular expression Q

1

. In the seond approah more are is required. In the rest of the setion we

onentrate on this ase.

4.1 Semi-strutured data models and queries

From a formal point of view we an onsider a (semi-strutured) database as a graph DB whose

edges are labeled by elements from a given domain D whih we assume �nite. We denote an edge

from node x to node y labeled by a with x

a

! y. Typially, a database will be a rooted onneted

graph, however in this paper we do not need to make this assumption.

In order to de�ne queries over a semi-strutured database we start from a deidable, omplete

2

�rst-order theory T over the domain D. We assume that the language of T inludes one distint

onstant for eah element of D (in the following we do not distinguish between onstants and

elements of D). We further assume that among the prediates of T we have one unary prediate of

the form �z:z = a, for eah onstant a in D. We use simply a as an abbreviation for suh prediate.

Finally, we follow [BDFS97℄ and onsider both the size of T , and the time needed to hek validity

of any formula in T to be onstant.

In this paper we onsider regular path queries (whih we all simply queries) i.e., queries that

denote all the paths orresponding to words of a spei�ed regular language. The regular language

is de�ned over a (�nite) set F of formulae of T with one free variable. Suh formulae are used to

desribe properties that the labels of the edges of the database must satisfy. Regular path queries

are the basi onstituents of queries in semi-strutured data, and are typially expressed by means

of regular expressions [BDHS96, Abi97, FS98, MS99℄. Another possibility to express regular path

queries is to use �nite automata.

When evaluated over a database, a query Q returns the set of pairs of nodes onneted by a path

that onforms to the regular language L(Q) de�ned by Q, aording to the following de�nitions.

De�nition 4 Given an F -word '

1

� � �'

n

, a D-word a

1

� � � a

n

mathes '

1

� � �'

n

(wrt T) if and only

if T j= '

i

(a

i

), for i = 1; : : : ; n.

We denote the set of D-words that math an F -word w by math(w), and given a language ` over

F , we denote

S

w2`

math(w) by math(`).

De�nition 5 The answer to a query Q over a database DB is the set ans(L(Q);DB), where for a

language ` over F

ans(`;DB) = f(x; y) j there is a path x

a

1

! � � �

a

n

! y in DB s.t. a

1

� � � a

n

2 math(`)g

1

The proof is similar to the one for Theorem 10.

2

The theory is omplete in the sense that for every losed formula ', either T entails ', or T entails :' [BDFS97℄.

13

4.2 Rewriting regular path queries

In order to apply the results on rewriting of regular expressions to query rewriting in semi-strutured

data we need to take into aount that the alphabet over whih queries (the one we want to rewrite

and the views to use in the rewriting) are expressed, is the set F of formulae of the underlying

theory T , and not the set of onstants that appear as edge labels in graph databases.

Let Q

0

be a regular path query and Q = fQ

1

; : : : ; Q

k

g be a �nite set of views, also expressed

as regular path queries, in terms of whih we want to rewrite Q

0

. Let F be the set of formulae of

T appearing in Q

0

; Q

1

; : : : ; Q

k

, and let Q have an assoiated alphabet �

Q

ontaining exatly one

symbol for eah view in Q. We denote the view assoiated to the symbol q 2 �

Q

with rpq(q).

Given any language ` over �

Q

, we denote by exp

F

(`) the language over F de�ned as follows

exp

F

(`) =

[

q

1

���q

n

2`

fw

1

� � �w

n

j w

i

2 L(rpq(q

i

))g

De�nition 6 Let R be any formalism for de�ning a language L(R) over �

Q

. R is a rewriting of

Q

0

wrt Q if for every database DB , ans(exp

F

(L(R));DB) � ans(L(Q

0

);DB), and is said to be

� maximal if for eah rewriting R

0

of Q

0

wrt Q we have that ans(exp

F

(L(R

0

));DB) �

ans(exp

F

(L(R));DB),

� exat if ans(exp

F

(L(R));DB) = ans(L(Q

0

);DB).

Theorem 10 R is a rewriting of Q

0

wrt Q if and only if math(exp

F

(L(R))) � math(L(Q

0

)).

Moreover, it is maximal if and only if for eah rewriting R

0

of Q

0

wrt Q we have that

math(exp

F

(L(R

0

))) � math(exp

F

(L(R))), and it is exat if and only if math(exp

F

(L(R))) =

math(L(Q

0

)).

Proof. We prove only that R is a rewriting of Q

0

wrt Q i� math(exp

F

(L(R))) � math(L(Q

0

)).

The other assertions follow immediately.

\=)" By ontradition. Assume there exists a D-word a

1

� � � a

n

2 math(exp

F

(L(R))) suh

that a

1

� � � a

n

62 math(L(Q

0

)). Then for the database DB onsisting of a single path x

a

1

! � � �

a

n

! y

it holds that (x; y) 2 ans(exp

F

(L(R));DB) but (x; y) 62 ans(L(Q

0

);DB). Contradition.

\(=" Again by ontradition. Assume there exists a database DB and two nodes x and y in DB

suh that (x; y) 2 ans(exp

F

(L(R));DB) and (x; y) 62 ans(L(Q

0

);DB). Then there exists a path

x

a

1

! � � �

a

n

! y in DB suh that a

1

� � � a

n

2 math(exp

F

(L(R))). Hene a

1

� � � a

n

2 math(L(Q

0

)) and

thus (x; y) 2 ans(L(Q

0

);DB). Contradition. 2

We say that R is �

Q

-maximal if for eah rewriting R

0

of Q

0

wrt Q we have that L(R

0

) � L(R).

By arguing as in Theorem 1, and exploiting Theorem 10, it is easy to show that a �

Q

-maximal

rewriting is also maximal.

Next we show how to ompute a �

Q

-maximal rewriting, by exploiting the onstrution presented

in Setion 2. Applying the onstrution literally, onsidering F as the base alphabet �, we would

not take into aount the theory T , and hene the onstrution would not give us the maximal

rewriting in general. As an example, suppose that T j= 8x:A(x) � B(x), Q

0

= B, and Q = fAg.

Then the maximal rewriting of Q

0

wrt Q is A, but the algorithm would give us the empty language.

In order to take the theory into aount, we an proeed as follows: For eah query Q 2 fQ

0

g[Q

we onstrut an automaton Q

g

aepting the language math(L(Q)). This an be done by viewing

14

the query Q as a (possibly nondeterministi) automaton Q = (F ; S; s

0

; �; F) and onstrut Q

g

as

(D; S; s

0

; �

g

; F), where s

j

2 �

g

(s

i

; a) if and only if s

j

2 �(s

i

; ') and T j= '(a). Observe that the set

of states of Q and Q

g

is the same. We denote fQ

g

1

; : : : ; Q

g

k

g with Q

g

. Then we proeed as before:

1. Construt a deterministi automaton A

d

= (D; S

d

; s

0

; �

g

d

; F

d

) suh that L(A

d

) = L(Q

g

0

).

2. De�ne the automaton A

0

= (�

Q

; S

d

; s

0

; �

0

; S

d

� F

d

), where s

j

2 �

0

(s

i

; q) if and only if 9w 2

math(L(rpq(q))) suh that s

j

2 �

g

d

�

(s

i

; w).

3. Return R

Q;Q

0

= R

Q

g

;Q

g

0

= A

0

.

Theorem 11 The automaton R

Q;Q

0

is a �

Q

-maximal rewriting of Q

0

wrt Q.

Proof. First we show that every rewriting R of Q

g

0

wrt Q

g

is also a rewriting of Q

0

wrt Q, and

vie-versa. If R is a rewriting of Q

g

0

wrt Q

g

, then by de�nition exp

D

(L(R) � L(Q

g

0

), whih implies

that math(exp

F

(L(R))) � math(L(Q

0

)), i.e., R is a rewriting of Q

0

wrt Q. On the onverse, if R

is a rewriting of Q

0

wrt Q, then by de�nition math(exp

F

(L(R))) � math(L(Q

0

)) whih implies

that exp

D

(L(R) � L(Q

g

0

), i.e., R is a rewriting of Q

g

0

wrt Q

g

.

Now, by Theorem 2 we know that R

Q

g

;Q

g

0

= R

Q;Q

0

is a �

Q

-maximal rewriting of Q

g

0

wrt Q

g

.

Hene it is a rewriting of Q

0

wrt Q.

As R

Q

g

;Q

g

0

is a �

Q

-maximal rewriting of Q

g

0

wrt Q

g

, we have that, for eah rewriting R of Q

g

0

wrt Q

g

, and hene for eah rewriting R of Q

0

wrt Q, L(R) � L(R

Q

g

;Q

g

0

) = L(R

Q;Q

0

), whih implies

that R

Q;Q

0

a �

Q

-maximal rewriting of Q

0

wrt Q. 2

To hek that R

Q;Q

0

is an exat rewriting of Q

0

wrt Q we an proeed as in Setion 2, by

onstruting an automaton B that aepts exp

D

(L(R

Q

g

;Q

g

0

)), and heking for the emptiness of

L(A

d

\B).

Observe that both the size of Q

g

0

and Q

g

and the time needed to onstrut them from Q

0

and Q

are linearly related to the size of Q

0

and Q. It follows that the same upper bounds as established

in Setion 3.1 hold for the ase of regular path queries.

In fat, the onstrution of Q

g

an be avoided in building R

Q;Q

0

, sine we an verify whether

there exists a D-word w 2 math(L(rpq(q))) suh that s

j

2 �

g

d

�

(s

i

; w) (required in Step 2 of the

algorithm above) as follows. We onsider diretly the automaton Q = rpq(q) (whih is over the

alphabet F) and the automaton A

i;j

d

= (D; S

d

; s

i

; �

g

d

; fs

j

g) obtained from A

d

by suitably hanging

the initial and �nal states. Then we onstrut from Q and A

i;j

d

the produt automaton K, with the

proviso that K has a transition from (s

1

; s

2

) to (s

0

1

; s

0

2

) (whose label is irrelevant) if and only if (i)

there is a transition from s

1

to s

0

1

labeled a in Q

i;j

, (ii) there is a transition from s

2

to s

0

2

labeled '

in Q, and (iii) T j= '(a). Finally, we hek whether K aepts a non-empty language. This allows

us to instantiate the formulae in Q only to those onstants that are atually neessary to generate

the transition funtion of A

0

.

With regard to Q

0

, instead of onstruting Q

g

0

, we an build an automaton based on the idea of

separating onstants into suitable equivalene lasses aording to the formulae in the query they

satisfy. The resulting automaton still desribes the query Q

0

, and its alphabet is generally muh

smaller than that of Q

g

0

.

4.3 Properties of rewritings

In the ase where the rewriting R

Q;Q

0

is not exat, the only thing we know is that suh rewriting

is the best one we an obtain by using only the views in Q. However, one may want to know how

to get an exat rewriting by adding to Q suitable views.

15

Example 3 Let Q

0

= a�(b+), Q = fa; bg, and �

Q

= fq

1

; q

2

g, where rpq(q

1

) = a, and rpq(q

2

) = b.

Then R

Q;Q

0

= q

1

� q

2

, whih is not exat. On the other hand, by adding to Q and q

3

to �

Q

, with

rpq(q

3

) = , we obtain q

1

� (q

2

+ q

3

) as an exat rewriting of Q

0

.

Here we onsider the ase where the views added to Q are atomi, i.e., have the form �z:P (z),

where P is a prediate of T . Notie that atomi views inlude views of the form �z:z = a,

(abbreviated by a), whih we all elementary. The intuitive idea is to hoose a subset P

0

of the set

P of prediates of T , and to onstrut an exat rewriting of Q

0

wrt Q

+

, where Q

+

is obtained by

adding to Q an atomi view for eah symbol in P

0

. An exat rewriting R of Q

0

wrt Q

+

is alled a

partial rewriting of Q

0

wrt Q, provided that Q

+

6= Q.

The method we have presented an be easily adapted to ompute partial rewritings. Indeed, if

we ompute R

Q

+

;Q

0

, we obtain a partial rewriting of Q

0

wrt Q, provided that R

Q+;Q

0

is an exat

rewriting of Q

0

wrt Q

+

. Observe that it is always possible to hoose a subset P

0

of P in suh a

way that R

Q

+

;Q

0

is exat (e.g., by hoosing the set of all elementary views).

Typially, one is interested in using as few symbols of P as possible to form Q

+

, and this

orresponds to hoose the minimal subsets P

0

suh that R

Q

+

;Q

0

is exat. More generally, one

an establish various preferene riteria for hoosing rewritings. For instane, we may say that a

(partial) rewriting R is preferable to a (partial) rewriting R

0

if one of the following holds:

1. math(exp

F

(L(R

0

))) � math(exp

F

(L(R))),

2. math(L(R)) = math(L(R

0

)) and R uses less additional elementary views than R

0

,

3. math(L(R)) = math(L(R

0

)), R uses the same number of additional elementary views as R

0

,

and less additional atomi nonelementary views.

4. math(L(R)) = math(L(R

0

)), R uses the same number of additional atomi views as R

0

, and

less views than R

0

.

Under this de�nition an exat rewriting is preferable to a nonexat one. Moreover, the de�nition

reets the fat that the ost of materializing additional atomi views (in partiular the elementary

ones) is higher than the ost of using the available ones. Finally, sine a ertain ost is assoiated

to the use of eah view, when omparing two rewritings de�ning the same language and using (if

any) the same number of additional atomi views, then the one that uses less views is preferable.

The rewriting algorithm presented above an be immediately exploited to ompute the most

preferable rewritings aording to the above riteria. It easy to see that the problem of omputing

the most preferable rewritings remains in the same omplexity lass.

5 Conlusions

In this paper we have studied the problem of query rewriting using views in the ase where both

the query and the views are expressed as regular path queries. We have shown the deidability

of the problem of omputing the maximal rewriting and heking whether it is exat. We have

haraterized the omputational omplexity of the problem and have provided algorithms that are

essentially optimal. We envision several diretions for extending the present work.

First, in this paper we foused on the problem of omputing the maximal ontained rewriting,

i.e., the best rewriting that is guaranteed to provide only answers ontained in those of the original

query. Also of interest is the dual approah, i.e., omputing the minimal ontaining rewritings (in

16

general not unique), whih guarantee to provide all the answers of the original query, and possibly

more.

Seond, we are interested in extending regular path queries to the so-alled generalized

path queries, i.e., queries of the form x

1

Q

1

x

2

� � � x

n�1

Q

n�1

x

n

, where eah Q

i

is a regular path

query [FS98℄. Suh queries ask for all n-tuples o

1

; : : : ; o

n

of nodes suh that, for eah i, there is a

path from o

i

to o

i+1

that satis�es Q

i

. Computing the rewriting of a generalized path query requires

to take into aount that eah rewritten subpath appears in a given ontext formed by a suitable

pre�x and a suitable suÆx. A further generalization would be to onsider onjuntions of regular

path queries, where the ontext in whih a ertain subpath appears is even more omplex.

Third, one an investigate possible interesting subases where the rewriting of regular (and

generalized) path queries an be done more eÆiently. Additionally, ost models for path queries

and preferene riteria that take into aount suh ost models an be de�ned, leading to the

development of tehniques for hoosing the best rewriting with respet to the new riteria.

Finally, it is interesting to investigate the relationships to query answering using views in semi-

strutured data, i.e., the problem of answering a regular path query on the basis of a set of ma-

terialized views. One relevant aspet is to verify whether the tehnique we have developed for

query rewriting an be exploited for query answering using views. First results in this diretion are

reported in [CDGLV99b, CDGLV99a℄.

Aknowledgments

This work was supported in part by the NSF grants CCR-9628400 and CCR-9700061, by MURST,

by ESPRIT LTR Projet No. 22469 DWQ (Foundations of Data Warehouse Quality), and by the

Italian Spae Ageny (ASI) under projet \Integrazione ed Aesso a Basi di Dati Eterogenee".

Part of this work was done when the last author was a Varon Visiting Professor at the Weizmann

Institute of Siene.

Referenes

[Abi97℄ Serge Abiteboul. Querying semi-strutured data. In Pro. of the 6th Int. Conf. on

Database Theory (ICDT'97), pages 1{18, 1997.

[ACPS96℄ S. Adali, K. S. Candan, Y. Papakonstantinou, and V. S. Subrahmanian. Query

ahing and optimization in distributed mediator systems. In Pro. of the ACM

SIGMOD Int. Conf. on Management of Data, pages 137{148, 1996.

[AD98℄ Serge Abiteboul and Oliver Dushka. Complexity of answering queries using ma-

terialized views. In Pro. of the 17th ACM SIGACT SIGMOD SIGART Sym. on

Priniples of Database Systems (PODS'98), pages 254{265, 1998.

[AGK99℄ Foto N. Afrati, Manolis Gergatsoulis, and Theodoros Kavalieros. Answering queries

using materialized views with disjuntion. In Pro. of the 7th Int. Conf. on Database

Theory (ICDT'99), volume 1540 of Leture Notes in Computer Siene, pages 435{

452. Springer-Verlag, 1999.

[AQM

+

97℄ Serge Abiteboul, Dallan Quass, Jason MHugh, Jennifer Widom, and Janet L.

Wiener. The Lorel query language for semistrutured data. Int. J. on Digital Li-

braries, 1(1):68{88, 1997.

17

[AV97℄ Serge Abiteboul and Vitor Vianu. Regular path queries with onstraints. In Pro. of

the 16th ACM SIGACT SIGMOD SIGART Sym. on Priniples of Database Systems

(PODS'97), pages 122{133, 1997.

[BDFS97℄ Peter Buneman, Susan Davidson, Mary Fernandez, and Dan Suiu. Adding struture

to unstrutured data. In Pro. of the 6th Int. Conf. on Database Theory (ICDT'97),

pages 336{350, 1997.

[BDHS96℄ Peter Buneman, Susan Davidson, Gerd Hillebrand, and Dan Suiu. A query language

and optimization tehnique for unstrutured data. In Pro. of the ACM SIGMOD

Int. Conf. on Management of Data, pages 505{516, 1996.

[Ber66℄ R. Berger. The undeidability of the dominoe problem. Mem. Amer. Math. So.,

66:1{72, 1966.

[BFW98℄ Peter Buneman, Wenfei Fan, and Sott Weinstein. Path onstraints on semistru-

tured and strutured data. In Pro. of the 17th ACM SIGACT SIGMOD SIGART

Sym. on Priniples of Database Systems (PODS'98), pages 129{138, 1998.

[BLR97℄ Catriel Beeri, Alon Y. Levy, and Marie-Christine Rousset. Rewriting queries using

views in desription logis. In Pro. of the 16th ACM SIGACT SIGMOD SIGART

Sym. on Priniples of Database Systems (PODS'97), pages 99{108, 1997.

[Bun97℄ Peter Buneman. Semistrutured data. In Pro. of the 16th ACM SIGACT SIGMOD

SIGART Sym. on Priniples of Database Systems (PODS'97), pages 117{121, 1997.

[CACS94℄ V. Christophides, S. Abiteboul, S. Cluet, and M. Sholl. From strutured douments

to novel query failities. In R. T. Snodgrass and M. Winslett, editors, Pro. of the

ACM SIGMOD Int. Conf. on Management of Data, pages 313{324, Minneapolis

(Minnesota, USA), 1994.

[CDGL98℄ Diego Calvanese, Giuseppe De Giaomo, and Maurizio Lenzerini. On the deidability

of query ontainment under onstraints. In Pro. of the 17th ACM SIGACT SIGMOD

SIGART Sym. on Priniples of Database Systems (PODS'98), pages 149{158, 1998.

[CDGLV99a℄ Diego Calvanese, Giuseppe De Giaomo, Maurizio Lenzerini, and Moshe Vardi. An-

swering regular path queries using views. Tehnial Report 20-99, Dipartimento di

Informatia e Sistemistia, Universit�a di Roma \La Sapienza", 1999.

[CDGLV99b℄ Diego Calvanese, Giuseppe De Giaomo, Maurizio Lenzerini, and Moshe Vardi. Query

answering using views for data integration over the web. In 2nd Int. Workshop on

the Web and Databases (WebDB'99), pages 73{78, 1999.

[CKPS95℄ S. Chaudhuri, S. Krishnamurthy, S. Potarnianos, and K. Shim. Optimizing queries

with materialized views. In Pro. of the 11th IEEE Int. Conf. on Data Engineering

(ICDE'95), Taipei, Taiwan, 1995.

[CM90℄ M. P. Consens and A. O. Mendelzon. Graphlog: a visual formalism for real life

reursion. In Pro. of the 9th ACM SIGACT SIGMOD SIGART Sym. on Priniples

of Database Systems (PODS'90), pages 404{416, Atlanti City (NJ, USA), 1990.

18

[CMW87℄ I. F. Cruz, A. O. Mendelzon, and P. T. Wood. A graphial query language supporting

reursion. In Pro. of the ACM SIGMOD Int. Conf. on Management of Data, pages

323{330, San Franiso (CA, USA), 1987.

[CNS99℄ Sara Cohen, Werner Nutt, and Alexander Serebrenik. Rewriting aggregate queries us-

ing views. In Pro. of the 18th ACM SIGACT SIGMOD SIGART Sym. on Priniples

of Database Systems (PODS'99), 1999.

[DG97℄ Oliver M. Dushka and Mihael R. Genesereth. Answering reursive queries using

views. In Pro. of the 16th ACM SIGACT SIGMOD SIGART Sym. on Priniples of

Database Systems (PODS'97), pages 109{116, 1997.

[DG98℄ Oliver M. Dushka and Mihael R. Genesereth. Query planning with disjuntive

soures. In Pro. of the AAAI-98 Workshop on AI and Information Integration,

1998.

[FFK

+

98℄ Mary F. Fernandez, Daniela Floresu, Jaewoo Kang, Alon Y. Levy, and Dan Suiu.

Cathing the boat with strudel: Experienes with a web-site management system.

In Pro. of the ACM SIGMOD Int. Conf. on Management of Data, pages 414{425,

1998.

[FFLS97℄ Mary F. Fernandez, Daniela Floresu, Alon Y. Levy, and Dan Suiu. A query lan-

guage for a web-site management system. SIGMOD Reord, 26(3):4{11, 1997.

[FLS98℄ Daniela Floresu, Alon Levy, and Dan Suiu. Query ontainment for onjuntive

queries with regular expressions. In Pro. of the 17th ACM SIGACT SIGMOD

SIGART Sym. on Priniples of Database Systems (PODS'98), pages 139{148, 1998.

[FS98℄ Mary F. Fernandez and Dan Suiu. Optimizing regular path expressions using graph

shemas. In Pro. of the 14th IEEE Int. Conf. on Data Engineering (ICDE'98), pages

14{23, 1998.

[Jon75℄ N. D. Jones. Spae-bounded reduibility among ombinatorial problems. J. of Com-

puter and System Sienes, 11:68{75, 1975.

[LMSS95℄ Alon Y. Levy, Alberto O. Mendelzon, Yehoshua Sagiv, and Divesh Srivastava. An-

swering queries using views. In Pro. of the 14th ACM SIGACT SIGMOD SIGART

Sym. on Priniples of Database Systems (PODS'95), pages 95{104, 1995.

[MMM97℄ Alberto Mendelzon, George A. Mihaila, and Tova Milo. Querying the World Wide

Web. Int. J. on Digital Libraries, 1(1):54{67, 1997.

[MS99℄ Tova Milo and Dan Suiu. Index strutures for path expressions. In Pro. of the 7th

Int. Conf. on Database Theory (ICDT'99), volume 1540 of Leture Notes in Computer

Siene, pages 277{295. Springer-Verlag, 1999.

[PV99℄ Yannis Papakonstantinou and Vasilis Vassalos. Query rewriting using semistrutured

views. In Pro. of the ACM SIGMOD Int. Conf. on Management of Data, 1999.

[QRS

+

95℄ D. Quass, A. Rajaraman, I. Sagiv, J. Ullman, and J. Widom. Querying semistru-

tured heterogeneous information. In Pro. of the 4th Int. Conf. on Dedutive and

Objet-Oriented Databases (DOOD'95), pages 319{344. Springer-Verlag, 1995.

19

[RS59℄ M. O. Rabin and D. Sott. Finite automata and their deision problems. IBM Journal

of Researh and Development, 3:115{125, 1959.

[RSU95℄ Anand Rajaraman, Yehoshua Sagiv, and Je�rey D. Ullman. Answering queries using

templates with binding patterns. In Pro. of the 14th ACM SIGACT SIGMOD

SIGART Sym. on Priniples of Database Systems (PODS'95), 1995.

[Sav70℄ W. J. Savith. Relationship between nondeterministi and deterministi tape om-

plexities. J. of Computer and System Sienes, 4:177{192, 1970.

[SDJL96℄ D. Srivastava, S. Dar, H. V. Jagadish, and A. Levy. Answering queries with ag-

gregation using views. In Pro. of the 22nd Int. Conf. on Very Large Data Bases

(VLDB'96), pages 318{329, 1996.

[TSI96℄ O. G. Tsatalos, M. H. Solomon, and Y. E. Ioannidis. The GMAP: A versatile tool

for phyisial data independene. Very Large Database J., 5(2):101{118, 1996.

[Ull97℄ Je�rey D. Ullman. Information integration using logial views. In Pro. of the 6th Int.

Conf. on Database Theory (ICDT'97), volume 1186 of Leture Notes in Computer

Siene, pages 19{40. Springer-Verlag, 1997.

[vEB82℄ Peter van Emde Boas. Dominoes are forever. In Pro. of 1st GTI Workshop, Rheie

Theoretishe Informatik UGH Paderborn, pages 75{95, Paderborn (Germany), 1982.

[vEB97℄ Peter van Emde Boas. The onveniene of tilings. In A. Sorbi, editor, Complex-

ity, Logi, and Reursion Theory, volume 187 of Leture notes in pure and applied

mathematis, pages 331{363. Marel Dekker In., 1997.

20

