
COMPLETE AXIOMATIZATIONS FOR REASONING ABOUT
KNOWLEDGE AND TIME∗

JOSEPH Y. HALPERN† , RON VAN DER MEYDEN‡ , AND MOSHE Y. VARDI§

Abstract. Sound and complete axiomatizations are provided for a number of different logics
involving modalities for knowledge and time. These logics arise from different choices for various
parameters regarding the regarding the interaction of knowledge with time and regarding the language
used. All the logics considered involve the discrete time linear temporal logic operators ‘next’ and
‘until’ and an operator for the knowledge of each of a number of agents. Both the single agent
and multiple agent cases are studied: in some instances of the latter there is also an operator for
the common knowledge of the group of all agents. Four different semantic properties of agents are
considered: whether they have a unique initial state, whether they operate synchronously, whether
they have perfect recall, and whether they learn. The property of no learning is essentially dual to
perfect recall. Not all settings of these parameters lead to recursively axiomatizable logics, but sound
and complete axiomatizations are presented for all the ones that do.

Key words. complete axiomatizations, knowledge, common knowledge, temporal logic, epis-
temic logic

AMS subject classifications.

1. Introduction. It has recently been argued that knowledge is a useful tool for
analyzing the behavior and interaction of agents in a distributed system (see [1] and
the references therein). When analyzing a system in terms of knowledge, not only
is the current state of knowledge of the agents in the system relevant, but also how
that state of knowledge changes over time. A formal propositional logic of knowledge
and time was first proposed by Sato [17]; many others have since been proposed
[2, 12, 11, 15, 18]. Unfortunately, while these logics often use similar or identical
notation, they differ in a number of significant respects.

In [8], logics for knowledge and time were categorized along two major dimen-
sions: the language used and the assumptions made on the underlying distributed
system. The properties of knowledge in a system turn out to depend in subtle ways
on these assumptions. The assumptions considered in [8] concern whether agents
have unique initial states, operate synchronously or asynchronously, have perfect re-
call, and whether they satisfy a condition called no learning. There are 16 possible
combinations of these assumptions on the underlying system. Together with 6 choices
of language, this gives us 96 logics in all. All the logics considered in the papers
mentioned above fit into the framework. In [6, 7, 8], the computational complexity
of these logics is completely characterized; the results of these papers show how the
subtle interplay of the parameters can have a tremendous impact on complexity. The
complexity results show that some of these logics cannot be given a recursive axioma-
tization, since the set of valid formulas for these logics is not recursively enumerable.

∗This paper incorporates results from [5], [7], and [14].
†Computer Science Dept., Cornell University, Ithaca, NY 14853 (halpern@cs.cornell.edu;

http://www.cs.cornell.edu/home/halpern). Much of the work on this paper was carried out while
this author was at the IBM Almaden Research Center. IBM’s support is gratefully acknowledged.
The work was also supported in part by the NSF, under grants IRI-95-03109 and IRI-96-25901, and
the Air Force Office of Scientific Research (AFSC), under grant F94620-96-1-0323.

‡School of Computer Science and Engineering, University of New South Wales, Sydney 2052,
Australia (meyden@cse.unsw.edu.au; http://www.cse.unsw.edu.au/∼meyden).

§Computer Science Department, Rice University, Houston, TX 77005-1892 (vardi@cs.rice.edu;
http://www.cs.rice.edu/∼vardi).

1

Of these 96 logics, 48 involve linear time and 48 involve branching time. (The dis-
tinction between linear and branching time essentially amounts to whether or not we
can quantify over the possible executions of a program [16].) To keep this paper to
manageable length, we focus here on the linear time logics, and provide axiomatic
characterizations of all the linear time logics for which an axiomatization is possible
at all (i.e., for those logics for which the set of valid formulas is r.e.).

The rest of this paper is organized as follows. In the next section, we provide
formal definitions for the logics we consider. In Section 2, we review the syntax and
semantics of all the logics of knowledge and time that we consider here. In particular,
we review the four assumptions on the underlying system that we axiomatize in this
paper. In Section 3, we state the axioms for all the systems. In Section 4, we introduce
the notion of enriched systems, which form the basis for all our completeness proofs.
In Section 5, we prove soundness and completeness for the axiom systems described
in Section 3. The definition of no learning that we use here is slightly different from
that used in [1, 5], although they agree in many cases of interest. We discuss the
motivation for our change in Section 6. We conclude with some further discussion in
Section 7.

2. The Formal Model: Language and Systems. The material in this section
is largely taken from [8], and is repeated here to make this paper self-contained. The
reader is encouraged to consult [8] for further details and motivation.

The logics we are considering are all propositional. Thus, we start out with
primitive propositions p, q, . . . and we close the logics under negation and conjunction,
so that if ϕ and ψ are formulas, so are ¬ϕ and ϕ ∧ ψ. In addition, we close off under
modalities for knowledge and time, as discussed below. As usual, we view true as an
abbreviation for ¬(p ∧ ¬p), ϕ ∨ ψ as an abbreviation for ¬(¬ϕ ∧ ¬ψ), and ϕ⇒ ψ as
an abbreviation for ¬ϕ ∨ ψ.

If we have m agents (in distributed systems applications, this would mean a
system with m processors), we add the modalities K1, . . . , Km. Thus, if ϕ is a
formula, so is Kiϕ (read “agent i knows ϕ”). We take Liϕ to be an abbreviation for
¬Ki¬ϕ. In some cases we also want to talk about common knowledge, so we add the
modalities E and C into the language; Eϕ says that everyone knows ϕ, while Cϕ says
ϕ is common knowledge.

There are two basic linear temporal modalities (sometimes called operators or
connectives): a unary operator © and a binary operator U . Thus, if ϕ and ψ are
formulas, then so are ©ϕ (read “next time ϕ”) and ϕU ψ (read “ϕ until ψ”). 3ϕ
is an abbreviation for trueU ϕ, while 2ϕ is an abbreviation for ¬3¬ϕ. Intuitively,
©ϕ says that ϕ is true at the next point (one time unit later), ϕU ψ says that ϕ
holds until ψ does, 3ϕ says that ϕ is eventually true (either in the present or at some
point in the future), and 2ϕ says that ϕ is always true (in the present and at all
points in the future). In [8], branching time operators are also considered, which have
quantifiers over runs. For example, ∀© is a branching time operator such that ∀©ϕ
is true when ©ϕ is true for all possible futures. Since we do not consider branching
time operators in this paper, we omit the formal definition here. We take CKLm to
be the language for m agents with all the modal operators for knowledge and linear
time discussed above; KLm is the restricted version without the E and C operators.

A system for m agents consists of a set R of runs, where each run r ∈ R is
a function from IN to Lm+1, where L is some set of local states. There is a local
state for each agent, together with a local state for the environment; intuitively, the
environment keeps track of all the relevant features of the system not described by

2

the agents’ local states, such as messages in transit but not yet delivered. Thus, r(n)
has the form 〈le, l1, . . . , lm〉, where le is the state of the environment, and li is the
local state of agent i, for i = 1, . . . ,m; such a tuple is called a global state. (Formally,
we could view a system as a tuple (R,L,m), making the L and m explicit. We have
chosen not to do so in order to simplify notation. The L and m should always be
clear from context.) An interpreted system I for m agents is a tuple (R, π) where
R is a system for m agents, and π maps every point (r, n) ∈ R × IN to a truth
assignment π(r, n) to the primitive propositions (so that π(r, n)(p) ∈ {true, false}
for each primitive proposition p).1

We now give semantics to CKLm and KLm. Given an interpreted system I =
(R, π), we write (I, r, n) |= ϕ if the formula ϕ is true at (or satisfied by) the point (r, n)
of interpreted system I. We define |= inductively for formulas of CKLm (for KLm we
just omit the clauses involving C and E). In order to give the semantics for formulas of
the form Kiϕ, we need to introduce one new notion. If r(n) = 〈le, l1, . . . , lm〉, r′(n′) =
〈l′e, l′1, . . . , l′m〉, and li = l′i, then we say that r(n) and r′(n′) are indistinguishable to
agent i and write (r, n) ∼i (r′, n′). Of course, ∼i is an equivalence relation on global
states (inducing an equivalence relations on points). Kiϕ is defined to be true at (r, n)
exactly if ϕ is true at all the points whose associated global state is indistinguishable
to i from that of (r, n). We proceed as follows:

• (I, r, n) |= p for a primitive proposition p iff π(r, n)(p) = true
• (I, r, n) |= ϕ ∧ ψ iff (I, r, n) |= ϕ and (I, r, n) |= ψ
• (I, r, n) |= ¬ϕ iff (I, r, n) 6|= ϕ
• (I, r, n) |= Kiϕ iff (I, r′, n′) |= ϕ for all (r′, n′) such that (r, n) ∼i (r′, n′)
• (I, r, n) |= Eϕ iff (I, r′, n′) |= Kiϕ for i = 1, . . . ,m
• (I, r, n) |= Cϕ iff (I, r′, n′) |= Ekϕ, for k = 1, 2, . . . (where E1ϕ = Eϕ and
Ek+1ϕ = EEkϕ)

• (I, r, n) |=©ϕ iff (I, r, n+ 1) |= ϕ
• (I, r, n) |= ϕU ψ iff there is some n′ ≥ n such that (I, r, n′) |= ψ, and for all
n′′ with n ≤ n′′ < n′, we have (I, r, n′′) |= ϕ.

There is a graphical interpretation of the semantics of C which we shall find useful
in the sequel. Fix an interpreted system I. A point (r′, n′) in I is reachable from
a point (r, n) if there exist points (r0, n0), . . . , (rk, nk) such that (r, n) = (r0, n0),
(r′, n′) = (rk, nk), and for all j = 0, . . . , k − 1 there exists i such that (rj , nj) ∼i
(rj+1, nj+1). The following result is well known (and easy to check).

Lemma 2.1. [4] (I, r, n) |= Cϕ iff (I, r′, n′) |= ϕ for all points (r′, n′) reachable
from (r, n).

As usual, we define a formula ϕ to be valid with respect to a class C of interpreted
systems iff (I, r, n) |= ϕ for all interpreted systems I ∈ C and points (r, n) in I. A
formula ϕ is satisfiable with respect to C iff for some I ∈ C and some point (r, n) in I,
we have (I, r, n) |= ϕ.

We now turn our attention to formally defining the classes of interpreted systems
of interest. For some of these definitions, it will be useful to give a number of equivalent

1Note that while we are being consistent with [8] here, in [1], π is taken to be a function from
global states (not points) to truth values. Essentially, this means that in [1] a more restricted class of
structures is considered, where π is forced to be the same at any two points associated with the same
global state. Clearly our soundness results hold in the more restricted class of structures. It is also
easy to see that our completeness results hold in the more restricted class too. All our completeness
proofs have (or can be easily modified to have) the property that a structure is constructed where
each point is associated with a different global state, and thus is an instance of the more restrictive
structures used in [1].

3

presentations.
Perfect recall means, intuitively, that an agent’s local state encodes everything

that has happened (for that agent’s point of view) thus far in the run. To make this
precise, we need to define “what has happened so far from the agent’s point of view”.
Let agent i’s local-state sequence at the point (r, n) be the sequence l0, . . . , lk of states
that agent i takes on in run r up to and including time n, with consecutive repetitions
omitted. For example, if from time 0 through 4 in run r agent i goes through the
sequence l, l, l′, l, l of states, its history at (r, 4) is just l, l′, l. Agent i’s local-state
sequence at a point (r,m) essentially describes what has happened in the run up to
time m, from i’s point of view. Omitting consecutive repetitions from the local-state
is intended to model asynchrony; “stuttering” is ignored.

Roughly speaking, agent i has perfect recall if i’s current state encodes its history,
i.e., i’s whole local-state sequence. More formally, we say that agent i has perfect recall
(alternatively, agent i does not forget) in system R if at all points (r, n) and (r′, n′)
in R, if (r, n) ∼i (r′, n′), then r has the same local-state sequence at both (r, n) and
(r′, n′).

There are a number of equivalent characterizations of perfect recall. One charac-
terization that will prove particularly useful in the comparison with the concept of no
learning, which we are about to define, is the following. Let S = (s0, s1, s2, . . .) and
T = (t0, t1, t2, . . .) be two (finite or infinite) sequences and let ∼ be a relation on the
elements of S and T . Then we say that S and T are ∼-concordant if there is some k
(k may be ∞) and nonempty consecutive intervals S1, . . . , Sk of S and T1, . . . , Tk of
T such that for all s ∈ Sj and t ∈ Tj , we have s ∼ t, for j = 1, . . . , k.

Lemma 2.2. [5, 14] The following are equivalent.
(a) Agent i has perfect recall in system R.
(b) For all points (r, n) ∼i (r′, n′) in R, ((r, 0), . . . , (r, n)) is ∼i-concordant with

((r′, 0), . . . , (r′, n′)).
(c) For all points (r, n) ∼i (r′, n′) in R, if n > 0, then either (r, n− 1) ∼i (r′, n′)

or there exists a number l < n′ such that (r, n−1) ∼i (r′, l) and for all k with
l < k ≤ n′ we have (r, n) ∼i (r′, k).

(d) For all points (r, n) ∼i (r′, n′) in R, if k ≤ n, then there exists k′ ≤ n′ such
that (r, k) ∼i (r′, k′).

Proof. The implications from (a) to (b), from (b) to (c) and from (c) to (d) are
straightforward. The implication from (d) to (a) can be proved by a straightforward
induction on n+ n′.

Lemma 2.2 shows that perfect recall requires an unbounded number of local states
in general, since agent i may have an infinite number of distinct histories in a given
system. A system where agent i has perfect recall is shown in Figure 2.1, where
the vertical lines denote runs (with time 0 at the top) and all points that i cannot
distinguish are enclosed in the same region.

We remark that the official definition of perfect recall given here is taken from
[1]. In [5], part (d) of Lemma 2.2 was taken as the definition of perfect recall (which
was called no forgetting in that paper).

Roughly speaking, no learning is the dual notion to perfect recall. Perfect recall
says that if the agent considers run r′ possible at the point (r, n), in that there is a
point (r′, n′) that the agent cannot distinguish from (r, n), then the agent must have
considered r′ possible at all times in the past (i.e., at all points (r, k) with k ≤ n);
it is not possible that the agent once considered r′ impossible and then forgot this
fact. No learning says that if the agent considers r′ possible at (r, n), then the agent

4

Fig. 2.1. A system where agent i has perfect recall

will consider r′ possible at all times in the future; the agent will not learn anything
that will allow him to distinguish r from r′. More formally, we define an agent’s
future local-state sequence at (r, n) to be the sequence of local states l0, l1, . . . that
the agent takes on in run r, starting at (r, n), with consecutive repetitions omitted.
We say agent i does not learn in system R if at all points (r, n) and (r′, n′) in R, if
(r, n) ∼i (r′, n′), then r has the same future local-state sequence at both (r, n) and
(r′, n′).

Just as with perfect recall, there are a number of equivalent formulations of no
learning.

Lemma 2.3. The following are equivalent.
(a) Agent i does not learn in system R.
(b) For all points (r, n) ∼i (r′, n′) in R, ((r, n), (r, n + 1), . . .) is ∼i-concordant

with ((r′, n′), (r′, n′ + 1), . . .).
(c) For all points (r, n) ∼i (r′, n′) in R, either (r, n+1) ∼i (r′, n′) or there exists

a number l > n′ such that (r, n + 1) ∼i (r′, l) and for all k with l > k ≥ n′

we have (r, n) ∼i (r′, k).
Notice that we have no analogue to part (d) of Lemma 2.2 in Lemma 2.3 (where

≤ is replaced by ≥). The analogue of (d) is strictly weaker than (a), (b), and (c),
although they are equivalent in synchronous systems (which we are about to define
formally). It was just this analogue of (d) that was used to define no learning in
[5, 8]. We examine the differences between the notions carefully in Section 6, where
we provide more motivation for the definition chosen here.

In a synchronous system, we assume that every agent has access to a global clock
that ticks at every instant of time, and the clock reading is part of its state. Thus,
in a synchronous system, each agent always “knows” the time. More formally, we say
that a system R is synchronous if for all agents i and all points (r, n) and (r′, n′),

5

if (r, n) ∼i (r′, n′), then n = n′.2 Observe that in a synchronous system where
(r, n) ∼i (r′, n), an easy induction on n shows that if i has perfect recall and n > 0,
then (r, n− 1) ∼i (r′, n− 1), while if i does not learn, then (r, n+ 1) ∼i (r′, n+ 1).

Finally, we say that a system R has a unique initial state if for all runs r, r′ ∈ R,
we have r(0) = r′(0). Thus, if R is a system with a unique initial state, then we have
(r, 0) ∼i (r′, 0) for all runs r, r′ in R and all agents i.

We say that I = (R, π) is an interpreted system where agents have perfect re-
call (resp., agents do not learn, time is synchronous, there is a unique initial state)
exactly if R is a system with that property. We use Cm to denote the class of all
interpreted systems for m agents, and add the superscripts nl , pr , sync, and uis to
denote particular subclasses of Cm. Thus, for example, we use Cnl,pr

m to denote the
set of all interpreted systems with m agents that have perfect recall and do not learn.
We omit the subscript m when it is clear from context.

The results of [6, 7, 8] (some of which are based on earlier results of Ladner
and Reif [11]) are summarized in Table 2.1. Each entry states a complexity class for
which the corresponding problem is complete. For ϕ ∈ KLm, we define ad(ϕ) to be
the greatest number of alternations of distinct Ki’s along any branch in ϕ’s parse
tree. For example, ad(K1¬K2K1p) = 3; temporal operators are not considered, so
that ad(K12K1p) = 1. (In Table 2.1, we do not consider the language CKL1. This
is because if m = 1, then Cϕ is equivalent to K1ϕ. Thus, CKL1 is equivalent to
KL1.) We omit the definitions of complexity classes such as Π1

1 and nonelementary
time (ex (ad(ϕ) + 1, c|ϕ|) here. (Note that c is a constant in the latter expression.)
All that matters for our purposes is that for the cases where the complexity is Π1

1

or co-r.e., there can be no recursive axiomatization; the validity problem is too hard.
We provide complete axiomatizations here for the remaining cases.

CKLm, m ≥ 2 KLm, m ≥ 2 KL1

Cpr
m , Cpr ,sync

m , Cpr ,uis
m , Π1

1 nonelementary time double-exponential
Cpr ,sync,uis
m ex (ad(ϕ) + 1, c|ϕ|)) time
Cnl
m , Cnl,pr

m , Cnl,pr ,sync
m , Π1

1 nonelementary space EXPSPACE
Cnl,sync
m ex (ad(ϕ), c|ϕ|))
Cnl,pr ,uis
m Π1

1 Π1
1 EXPSPACE

Cnl,uism co-r.e. co-r.e. EXPSPACE
Cnl,sync,uis
m , Cnl,pr ,sync,uis

m EXPSPACE EXPSPACE EXPSPACE
Cm, Csync

m , Csync,uis
m , Cuis

m EXPTIME PSPACE PSPACE

Table 2.1
The complexity of the validity problem for logics of knowledge and time

3. Axiom Systems. In this section, we describe the axioms and inference rules
that we need for reasoning about knowledge and time for various classes of systems,
and state the completeness results. The proofs of these results are deferred to Sec-
tion 5.

For reasoning about knowledge alone, the following system, with axioms K1–K5
and rules of inference R1–R2, is well known to be sound and complete [1, 9]:

2We remark that in [5], a slightly weaker definition is given: There, a system is said to be
synchronous if for all runs r, if (r, n) ∼i (r, n′) then n = n′. It is easy to show (by induction on
n) that the two definitions are equivalent for systems where agents have perfect recall. In general,
however, they are different. The definition given here is the one used in [1, 8].

6

K1. All tautologies of propositional logic
K2. Kiϕ ∧Ki(ϕ⇒ ψ) ⇒ Kiψ, i = 1, . . . ,m
K3. Kiϕ⇒ ϕ, i = 1, . . . , n
K4. Kiϕ⇒ KiKiϕ, i = 1, . . . ,m
K5. ¬Kiϕ⇒ Ki¬Kiϕ, i = 1, . . . ,m
R1. From ϕ and ϕ⇒ ψ infer ψ
R2. From ϕ infer Kiϕ, i = 1, . . . ,m

This axiom system is known as S5m.
For reasoning about the temporal operators individually, the following system

(together with K1 and R1), is well known to be sound and complete [3]:
T1. ©ϕ ∧©(ϕ⇒ ψ) ⇒ ©ψ
T2. ©(¬ϕ) ⇔ ¬©ϕ
T3. ϕU ψ ⇔ ψ ∨ (ϕ ∧©(ϕU ψ))
RT1. From ϕ infer ©ϕ
RT2. From ϕ′ ⇒ ¬ψ ∧©ϕ′ infer ϕ′ ⇒ ¬(ϕU ψ)

The system containing the above axioms and inference rules for both knowledge
and time is called S5Um. S5Um is easily seen to be sound for Cm, the class of all systems
for m agents. Given that there is no necessary connection between knowledge and
time in Cm, it is perhaps not surprising that S5Um should be complete with respect
to Cm as well. Interestingly, even if we impose the requirements of synchrony or uis,
S5Um remains complete; our language is not rich enough to capture these conditions.

Theorem 3.1. S5Um is a sound and complete axiomatization for the language
KLm with respect to Cm, Csync

m , Cuis
m , and Csync,uis

m .
We get the same lack of interaction between knowledge in the classes Cm, Csync

m ,
Cuis
m , and Csync,uis

m even when we add common knowledge. It is well known that the
following two axioms and inference rule characterize common knowledge [1, 4]:

C1. Eϕ⇔
∧m
i=1Kiϕ

C2. Cϕ⇒ E(ϕ ∧ Cϕ)
RC1. From ϕ⇒ E(ψ ∧ ϕ) infer ϕ⇒ Cψ

Let S5CUm be the result of adding C1, C2, and RC1 to S5Um. We then have the following
extension of Theorem 3.1.

Theorem 3.2. S5CUm is a sound and complete axiomatization for the language
CKLm with respect to Cm, Csync

m , Cuis
m , and Csync,uis

m .
If we restrict attention to systems with perfect recall or no learning, then knowl-

edge and time do interact. We start by stating five axioms of interest, and then discuss
them.

KT1. Ki2ϕ⇒ 2Kiϕ, i = 1, . . . ,m
KT2. Ki©ϕ⇒ ©Kiϕ, i = 1, . . . ,m.
KT3. Kiϕ1∧©(Kiϕ2∧¬Kiϕ3) ⇒ Li((Kiϕ1)U [(Kiϕ2)U ¬ϕ3]), i = 1, . . . ,m
KT4. Kiϕ1 U Kiϕ2 ⇒ Ki(Kiϕ1 U Kiϕ2), i = 1, . . . ,m.
KT5. ©Kiϕ⇒ Ki©ϕ, i = 1, . . . ,m.

Axiom KT1 was first discussed by Ladner and Reif [11]. Informally, this axiom
states that if a proposition is known to be always true, then it is always known to be
true. It is not hard to show, using Lemma 2.2, that axiom KT1 holds with perfect
recall, that is, KT1 is valid in Cpr

m . It was conjectured in an early draft of [1] that the
system S5Um + KT1 would be complete for Cpr

m . However, it was shown in [14] that
this conjecture was false. To get completeness we need a stronger axiom: KT3.

It is not hard to see that KT3 is valid in systems with perfect recall. A formal
proof is provided in Section 5, but we can give some intuition here. Suppose (I, r, n) |=

7

Kiϕ1 ∧©(Kiϕ2 ∧ ¬Kiϕ3). That means that (I, r, n + 1) |= ¬Kiϕ3, so there must
be some point (r′, n′) ∼i (r, n + 1) such that (I, r′, n′) |= ¬ϕ3. Because agent i has
perfect recall, there must exist some k′ ≤ n′ such that (r′, k′) ∼i (r, n). It is not hard
to show, using Lemma 2.2(c), that (I, r′, k′) |= Kiϕ1 U (Kiϕ2 U ¬ϕ3). It follows that
(I, r, n) |= Li(Kiϕ1 U (Kiϕ2 U ¬ϕ3)).

In the presence of the other axioms, KT3 implies KT1. The following general
lemma, which applies to all the proof systems we consider, is useful for the proof.

Lemma 3.3. Suppose that ` ϕ1 ⇔ ϕ2 and let ψ′ be the result of replacing some
of the occurrences of ϕ1 in ψ by ϕ2. Then ` ψ ⇔ ψ′.

Proof. By induction, it suffices to assume that ψ′ is the result of replacing one
occurrence of ϕ1 in ψ by ϕ2. The proof proceeds by a straightforward induction on
the structure of ψ.

Lemma 3.4. KT1 is provable in S5Um + KT3.
Proof. Note that by purely temporal reasoning, we can show ` 2ϕ ⇔ 22ϕ.

Using R2 and K2, this implies that ` Ki2ϕ ⇔ Ki22ϕ. Now if ϕ1 = ϕ2 = true,
then (using 3.3) KT3 simplifies to ©¬Kiϕ3 ⇒ ¬Ki2ϕ3. In particular, taking the
contrapositive, substituting ϕ3 = 2ϕ, and using T2, we obtain ` Ki22ϕ⇒ ©Ki2ϕ,
which yields ` Ki2ϕ ⇒ ©Ki2ϕ by the equivalence noted above. It is also straight-
forward to show that ` 2ϕ ⇒ ϕ, from which it follows, using K2 and R2, that
` Ki2ϕ⇒ Kiϕ. The axiom KT1 now follows using the rule RT2 (using the fact that
2ϕ is an abbreviation for ¬(trueU ¬ϕ).

KT3 turns out to be strong enough to give us completeness, with or without the
condition uis.

Theorem 3.5. S5Um + KT3 is a sound and complete axiomatization for the lan-
guage KLm with respect to Cpr

m and Cpr ,uis
m .

Theorem 3.1 shows that requiring synchrony or uis does not have an impact when
we consider the class of all systems—Cm, Csync

m , Cuis
m , and Csync,uis

m are all axiomatized
by S5Um—and Theorem 3.5 shows that adding uis does not have an impact in the
presence of perfect recall. However, requiring synchrony does have an impact in the
presence of perfect recall. It is easy to see that KT2 is valid in Cpr ,sync

m , and it clearly
is not valid in Cpr

m . Moreover, KT2 suffices for completeness in Cpr ,sync
m ; we do not

need the complications of KT3.
Theorem 3.6. S5Um + KT2 is a sound and complete axiomatization for the lan-

guage KLm with respect to Cpr ,sync
m and Cpr ,sync,uis

m .
KT4 is the axiom that characterizes no learning. More precisely:
Theorem 3.7. S5Um + KT4 is a sound and complete axiomatization for the lan-

guage KLm with respect to Cnl
m .

Unlike previous cases, the uis assumption is not innocuous in the presence of nl.
For one thing, it is not hard to check that assuming uis leads to extra properties.
Indeed, as Table 2.1 shows, if m ≥ 2, then assuming a unique initial state along
with no learning results in a class of systems that do not have a recursive axiomatic
characterization, since the validity problem is co-r.e.-complete. On the other hand, if
there is only one agent in the picture, things simplify. No learning together with uis
implies perfect recall. Thus, we get

Theorem 3.8. S5Um + KT3 + KT4 is a sound and complete axiomatization for
the language KLm with respect to Cnl,pr

m . Moreover, it is a sound and complete ax-
iomatization for the language KL1 with respect to Cnl,pr ,uis

1 .
In synchronous systems with no learning, things again become simpler. KT5, the

converse of KT2, suffices to characterize such systems.
8

Theorem 3.9. S5Um + KT5 is a sound and complete axiomatization for the lan-
guage KLm with respect to Cnl,sync

m . Of course, it follows from Theorem 3.9 that KT4
can be derived in the system S5Um + KT5 (although this result takes some work to
prove directly).

Not surprisingly, if we combine perfect recall, no learning, and synchrony, then
KT2 and KT5 give us a complete axiomatization.

Theorem 3.10. S5Um + KT2 + KT5 is a sound and complete axiomatization for
the language KLm with respect to Cnl,pr ,sync

m .
Finally, it can be shown that when we combine no learning, synchrony, and uis,

then not only do all agents consider the same worlds possible initially, but they con-
sider the same worlds possible at all times. As a result, the axiom Kiϕ ⇔ Kjϕ is
valid in this case. This allows us to reduce to the single-agent case. Moreover, as
we observed above, in the single-agent case, no learning and uis imply perfect recall.
Thus, we get the following result.

Theorem 3.11. S5Um + KT2 + KT5 + {Kiϕ ⇔ K1ϕ} is a sound and complete
axiomatization for the language KLm with respect to Cnl,sync,uis

m and Cnl,pr ,sync,uis
m .

A glance at Table 2.1 shows that we have now provided axiomatizations for all
the cases where complete axiomatizations exist. (Notice that for the language CKLm,
if m = 1, then common knowledge reduces to knowledge, while if m > 1, then
complete axiomatizations can exist only for Cm, Csync

m , Cuism , Csync,uism , Cnl,sync,uis
m , and

Cnl,pr ,sync,uis
m . The first four cases were dealt with in Theorem 3.2, while in the last

two, as we have observed, common knowledge reduces to the knowledge of agent 1.)

4. A Framework for Completeness Proofs. In this section we develop a
general framework for completeness proofs that reduces the work required in each of
the different completeness results to a single lemma. With respect to the temporal
dimension, our constructions resemble those previously used for completeness of dy-
namic logic [10] and temporal logics, in that we construct a model for a consistent
formula ψ out of consistent subsets of a finite set of formulas, called the closure of ψ.
However, in order to deal with the knowledge modalities, we need a number of distinct
levels of closure, having a tree-like structure. At the leaves of this tree-like structure,
the closure is like the usual closure for temporal logic. As we move towards the root,
we add formulas to the closure that increase the level of nesting of the knowledge
modalities.

A formula ψ is said to be consistent in a logic L if it is not the case that `L ¬ψ.
For each of the pairs (L, C) of logic L and class C of systems we consider, the proof
that L is complete with respect to C proceeds by constructing, for every formula ψ
consistent with respect to L, a system in C containing a point at which ψ is true. All
the results in this section hold for every logic containing S5Um, except for Lemma 4.8,
which mentions common knowledge. This lemma holds for every logic containing
S5CUm. Rather than mentioning the logic L explicitly in each case, we just write `
rather than `L; the intended logic(s) will be clear from context. We also fix the
formula ψ, which is assumed to be consistent with respect to L.

A finite sequence σ = i1i2 . . . ik of agents, possibly equal to the null sequence ε,
is called an index if il 6= il+1 for all l < k. We write |σ| for the length k of such a
sequence; the null sequence has length equal to 0.

If S is a set, and S∗ is the set of all finite sequences over S, we define the absorptive
concatenation function # from S∗×S to S∗ as follows. Given a sequence σ in S∗ and
an element x of S, we take σ#x = σ if the final element of σ is x. If the final element
of σ is not equal to x then we take σ#x to be σx, i.e. the result of concatenating x

9

to σ. We write simply x1#x2#x3 . . .#xn for (. . . ((x1#x2)#x3) . . .)#xn. We shall
have two distinct uses for this function, applying it primarily to sequences of agents,
and sometimes to sequences of “instantaneous states” of agents in the context of
asynchronous systems.

If ψ ∈ CKLm, for each k ≥ 0, we define the k-closure clk(ψ), and for each agent
i, we define the k, i-closure clk,i(ψ). The definition of these sets proceeds by mutual
recursion: First, we let the basic closure cl0(ψ) be the smallest set containing ψ that
is closed under subformulas, contains ¬ϕ if it contains ϕ and ϕ is not of the form ¬ϕ′,
contains ECϕ if it contains Cϕ, and contains K1ϕ, . . . ,Kmϕ if it contains Eϕ. (Of
course, the last two clauses do not apply if ψ is in KLm, and thus does not mention
common knowledge.) If i is an agent, we take clk,i(ψ) to be the union of clk(ψ) with
the set of formulas of the form Ki(ϕ1 ∨ . . .∨ϕn) or ¬Ki(ϕ1 ∨ . . .∨ϕn), where the ϕl
are distinct formulas in clk(ψ). (It is not necessary to close under subformulas here,
since the disjunctions in these formulas are already “decided” in the sense defined
below.) Finally, clk+1(ψ) is defined to be ∪mi=1clk,i(ψ).

If X is a finite set of formulas we write ϕX for the conjunction of the formulas in
X. A finite set X of formulas is said to be consistent if ϕX is consistent. If X is a
finite set of formulas and ϕ is a formula we write X ‖− ϕ when ` ϕX ⇒ ϕ.3 A finite
set Cl of formulas is set to be negation closed if, for all ϕ ∈ Cl, either ¬ϕ ∈ Cl or ϕ
is of the form ¬ϕ′ and ϕ′ ∈ Cl. (Note that the sets clk(ψ) and clk,i(ψ) are negation
closed.) We define an atom of Cl to be a maximal consistent subset of Cl.

The following lemma collects a number of obvious facts that we typically use
without comment.

Lemma 4.1. Suppose that X is a finite set of formulas and Cl is a negation-closed
set of formulas.

(a) If X ‖− ϕ1 and ` ϕ1 ⇒ ϕ2 then X ‖− ϕ2.
(b) If X is an atom of Cl and ϕ ∈ Cl, then either X ‖− ϕ or X ‖− ¬ϕ.
(c) If ` denotes provability in a proof system containing K1 and R1, then

`
∨
X an atom of Cl ϕX .

Proof. All parts of the lemma are quite easy. We remark that (c) follows from the
observation that

∨
X an atom of Cl ϕX is equivalent to true, which can be easily proved

using only propositional reasoning (K1 and R1).
We begin the construction of the model of ψ by first constructing a pre-model,

which is a structure 〈S,→,≈1, . . . ,≈n〉 consisting of a set S of states, a binary relation
→ on S, and for each agent i an equivalence relation ≈i on S. Recall from Section 2
that for a formula ϕ ∈ KLm, the alternation depth ad(ϕ) is the number of alternations
of distinct operators Ki in ϕ. Let d = ad(ψ) if ψ ∈ KLm; otherwise (that is, if ψ
mentions the modal operator C), let d = 0.

The set S consists of all the pairs (σ,X) such that σ is an index, |σ| ≤ d, and
1. if σ = ε then X is an atom of cld(ψ), and
2. if σ = τi then X is an atom of clk,i(ψ), where k = d− |σ|.

We can partition the set S of states into sets Sσ according to the first component;
that is, Sσ = {(σ,X) | (σ,X) ∈ S}. The indices σ put a tree-like structure on this
collection. Note that as |σ| decreases, the size of the closure from which the atoms X
are drawn increases.

The relation → is defined so that (σ,X) → (τ, Y) iff τ = σ and the formula

3Note that X ‖− ϕ is not equivalent to X ` ϕ (under perhaps the most natural definition of
` with sets of formulas on the left-hand side) because of generalization rules like R2 and RT1. For
example, although ϕ ` Kiϕ, it is not the case that ` ϕ ⇒ Kiϕ.

10

ϕX ∧©ϕY is consistent. If X is an atom we write X/Ki for the set of formulas ϕ such
that Kiϕ ∈ X. We say that states (σ,X) and (τ, Y) are i-adjacent if σ#i = τ#i.
The relation ≈i is defined so that (σ,X) ≈i (τ, Y) iff σ and τ are i-adjacent and
X/Ki = Y/Ki. Clearly, i-adjacency is an equivalence relation, as is the relation ≈i.

A σ-state (for ψ) is a pair (σ,X) as above. A state (for ψ) is a σ-state for some
index σ with |σ| ≤ d. Thus (σ,X) is the unique σ-state with atom X. If s = (σ,X)
is a state, we define ϕs to be the formula ϕX , and write s ‖− ϕ for ` ϕs ⇒ ϕ. We
say that the state s directly decides a formula ϕ if either (a) ϕ ∈ X, (b) ¬ϕ ∈ X,
or (c) ϕ = ¬ϕ′ and ϕ′ ∈ X. ϕ = ¬ϕ′ and ϕ′ ∈ X. We say that s decides ϕ if
either s ‖− ϕ or s ‖− ¬ϕ. Clearly, if s directly decides ϕ then s decides ϕ. Note
that if σ = τi then, by Lemma 4.1(b), each σ-state directly decides every formula in
cld−|σ|,i(ψ). Also, every ε-state directly decides every formula in cld(σ).

Lemma 4.2. If s and t are i-adjacent states, then the same formulas of the form
Kiϕ are directly decided by s and t.

Proof. Suppose that s and t are i-adjacent, s = (σ,X) and t = (τ, Y). By
definition, we have that either (i) σ = τ , (ii) σ = τi, or (iii) σi = τ . Clearly if σ = τ ,
then s and t directly decide the same formulas (and, a fortiori, the same formulas
of the form Kiϕ) since they are both maximal consistent subsets of the same set of
formulas. If σ 6= τ , then either σ = τi or τ = σi. By symmetry, it suffices to deal with
the case σ = τi. By definition, s directly decides the Ki-formulas in cld−|σ|,i(ψ), while
t directly decides the Ki-formulas in cld−|τ |,j(ψ) if τ = τ ′j or cld(ψ) if τ = ε. Thus,
it suffices to show that, for all formulas ϕ and agents j, we have that Kiϕ ∈ clk,i(ψ)
iff Kiϕ ∈ clk+1,j if k < d − 1 and that Kiϕ ∈ cld−1,i(ψ) iff Kiϕ ∈ cld(ψ). This is
immediate from the definitions.

If s is a σ-state, we take Φs,i to be the disjunction of the formulas ϕt, where t
ranges over the σ-states satisfying s ≈i t, and we take Φ+

s,i to be the disjunction of
the formulas ϕt, where t ranges over the (σ#i)-states satisfying s ≈i t.4 Observe
that because ≈i is an equivalence relation we have that if s ≈i t then Φs,i = Φt,i and
Φ+
s,i = Φ+

t,i. The following result lists a number of knowledge formulas decided by
states.

Lemma 4.3.

(a) If s is a σ-state and t is a σ-state or (σ#i)-state such that s 6≈i t, then
s ‖− Ki¬ϕt.

(b) For all σ-states s, we have s ‖− KiΦs,i; in addition, if |σ#i| ≤ d, then
s ‖− KiΦ+

s,i.
(c) For all σ-states s and (σ#i)-states t with s ≈i t, we have s ‖− Liϕt.
(d) If s is a σ-state and t is a (σ#i)-state such that s 6≈i t, then t ‖− ¬KiΦ+

s,i.
Proof. For (a), suppose that s 6≈i t, where s = (σ,X) and t = (τ, Y), where τ is

either σ or σ#i. Then X/Ki 6= Y/Ki so either there exists a formula Kiϕ ∈ X such
that Kiϕ 6∈ Y or there exists a formula Kiϕ ∈ Y such that Kiϕ 6∈ X. As the states s
and t are i-adjacent, by Lemma 4.2, in either case the formula Kiϕ is directly decided
by both the states s and t. In the first case, since Kiϕ /∈ Y and Kiϕ is directly
decided by t, it follows that ¬Kiϕ ∈ Y , and hence that that ` ϕt ⇒ ¬Kiϕ. Using
R2, it follows that ` Ki(Kiϕ⇒ ¬ϕt). By K4 we obtain from the fact that Kiϕ ∈ X
that s ‖− KiKiϕ. It now follows using K2 that s ‖− Ki¬ϕt. In the second case,
we have that ` ϕt ⇒ Kiϕ, hence, using R2, that ` Ki(¬Kiϕ ⇒ ¬ϕt). By K4 we

4It can be shown that if |σ#i| ≤ d, then Φs,i is logically equivalent to Φ+
s,i, but we do not need

this fact here.

11

obtain from the fact that ¬Kiϕ ∈ X that s ‖− Ki¬Kiϕ. It now follows using K2
that s ‖− Ki¬ϕt.

For (b), by Lemma 4.1(c), we have that `
∨
X an atom of clk,i(ψ) ϕX . Hence, by

R2 we obtain that ` Ki

∨
σ−states t ϕt. It follows from this using (a) and K2 that

s ‖− KiΦs,i. If |σ#i| ≤ d, then a similar argument shows that s ‖− KiΦ+
s,i.

For (c), suppose that s = (σ,X) ≈i (σ#i, Y) = t and k = d − |σ#i|. We claim
first that if W = Y ∩ clk(ψ), then s ‖− Ki¬ϕt ⇔ Ki¬ϕW . This is because the fact
that Y is a subset of clk,i(ψ) implies that all formulas ϕ in Y \W are of the form
Kiϕ

′ or ¬Kiϕ
′, hence ϕ ∈ X if and only if ϕ ∈ Y . Also, by K4 and K5 we have that

s ‖− KiKiϕ
′ when Kiϕ

′ ∈ X and s ‖− Ki¬Kiϕ
′ when Kiϕ

′ 6∈ X. It follows using
K2 that s ‖− KiϕY \W . Since ϕt is equivalent to ϕW ∧ ϕY \W , we obtain using K2
that s ‖− Ki¬ϕt ⇔ Ki¬ϕW .

Now by K3 we have ` ϕt ⇒ Liϕt. Further, the argument of the previous para-
graph also shows t ‖− Ki¬ϕt ⇔ Ki¬ϕW , so we obtain that t ‖− LiϕW . But ¬ϕW is
equivalent to the disjunction of a subset {ϕ1, . . . , ϕn} of clk(ψ). Let α be the formula
Ki(ϕ1 ∨ . . . ∨ ϕn), which is equivalent to Ki¬ϕW . It follows from the definition of
clk,i(ψ) that α is in clk,i(ψ), hence directly decided by both t and s. Consequently,
α is not in Y , since t ‖− ¬α. Because X/Ki = Y/Ki, the formula α is not in X
either, so s ‖− ¬α. Applying the fact that α is equivalent to Ki¬ϕW , we see that
s ‖− LiϕW . The equivalence of the previous paragraph now yields that s ‖− Liϕt.

For (d), note that if t and v are distinct (σ#i)-states then t ‖− ¬ϕv. Thus,
if s is a σ-state such that s 6≈i t then t ‖− ¬Φ+

s,i, which implies, using K3, that
t ‖− ¬KiΦ+

s,i.
If T is a set of states, then we write ϕT for the disjunction of the formulas ϕt

for t in T . Using RT1, T1, and T2, the following result is immediate from the fact
that s 6→ t implies ` ϕs ⇒ ¬©ϕt, together with the fact that `

∨
s a σ−state ϕs, which

follows from Lemma 4.1(c).
Lemma 4.4. Let s be a state and let T be the set of states t such that s → t.

Then s ‖− ©ϕT
The next result provides a useful way to derive formulas containing the until

operator.
Lemma 4.5. For all formulas α, β and γ, if ` α⇒ (¬γ ∧©(α∨ (¬β ∧¬γ))) then

` α⇒ ¬(β U γ).
Proof. Suppose that ` α ⇒ ¬γ ∧ ©(α ∨ (¬β ∧ ¬γ)). By T3, we obtain that

` α ∧ (β U γ) ⇒ ¬γ ∧©(β U γ) ∧©(α ∨ (¬β ∧ ¬γ)). Since, by T3 again, ` β U γ ⇒
¬(¬β∧¬γ), it follows using T1 and RT1 that ` α∧(β U γ) ⇒ ¬γ∧©(α∧(β U γ)). Now
using RT2 we obtain ` α ∧ (β U γ) ⇒ ¬(β U γ), which implies that ` α ⇒ ¬(β U γ).

The following shows that the pre-model has properties resembling those for the
truth definitions for formulas in the basic closure. Note that every state directly
decides all formulas in the basic closure. Define a →-sequence of states to be a (finite
or infinite) sequence s1, s2, . . . such that s1 → s2 →

Lemma 4.6. For all σ-states s, we have
(a) if ©ϕ ∈ cl0(ψ), then for all states t such that s → t, we have s ‖− ©ϕ iff

t ‖− ϕ,
(b) If Kiϕ ∈ cl0(ψ), then s ‖− ¬Kiϕ iff there is some σ-state t such that s ≈i t

and t ‖− ¬ϕ. Moreover, if |σ#i| ≤ d, then s ‖− ¬Kiϕ iff there is some
(σ#i)-state t such that s ≈i t and t ‖− ¬ϕ.

(c) if ϕ1 U ϕ2 ∈ cl0(ψ) then s ‖− ϕ1 U ϕ2 iff there exists a →-sequence s = s0 →
12

s1 → . . . → sn, where n ≥ 0, such that sn ‖− ϕ2, and sk ‖− ϕ1 for all
k < n.

Proof. For part (a), suppose first that s ‖− ©ϕ and s → t. Since ϕ ∈ cl0(ψ), it
follows that t ‖− ϕ or t ‖− ¬ϕ. But, by T1 and T2, the latter would contradict the
assumption that ϕs ∧©ϕt is consistent. Hence we have t ‖− ϕ. Conversely, suppose
that s→ t and t ‖− ϕ. Using T1, we have ` ©ϕt ⇒ ©ϕ. Since ©ϕ ∈ cl0(ψ) we have
either s ‖− ©ϕ or s ‖− ¬©ϕ. But the latter would contradict s → t, so we obtain
s ‖− ©ϕ.

For the “if” direction of part (b), note that the fact that Kiϕ is in cl0(ψ) im-
plies that if s ≈i t and s ‖− Kiϕ, then t ‖− Kiϕ, hence t ‖− ϕ by K3. For the
converse, suppose that t ‖− ϕ for all σ-states t with s ≈i t. Then ` Φs,i ⇒ ϕ,
hence ` KiΦs,i ⇒ Kiϕ, using K2 and R2. By Lemma 4.3(b), we have s ‖− KiΦs,i.
It follows immediately that s ‖− Kiϕ. If |σ#i| ≤ d, a similar argument shows that
if t ‖− ϕ for all (σ#i)-states t such that s ≈i t, then s ‖− Kiϕ.

For part (c), note that if ϕ1 U ϕ2 is in cl0(ψ), then every state directly decides
each of the formulas ϕ1, ϕ2, and ϕ1 U ϕ2. We first show that if there exists a sequence
of states s = s0 → s1 → . . . → sn such that sn ‖− ϕ2 and sk ‖− ϕ1 for all k < n
then s ‖− ϕ1 U ϕ2. We proceed by induction on n. The case n = 0 is immediate from
T3. For the general case, notice that it follows from the induction hypothesis that
s1 ‖− (ϕ1 U ϕ2). Since s0 → s1, it follows that ϕs0 ∧©(ϕ1 U ϕ2) is consistent. By
assumption, we also have s0 ‖− ϕ1. Using T3, we see that s0 ‖− ¬(ϕ1 U ϕ2) would
be a contradiction. Hence s0 ‖− ϕ1 U ϕ2.

The converse follows immediately from Lemma 4.7 below.
Lemma 4.7. If ϕs ∧ (ϕ1 U ϕ2) is consistent, then there exists a →-sequence

s = s0 → s1 → . . .→ sn, such that ϕsn
∧ ϕ2 is consistent, and ϕsk

∧ ϕ1 is consistent
for all k < n.

Proof. Suppose by way of contradiction that ϕs ∧ (ϕ1 U ϕ2) is consistent and
no appropriate →-sequence exists. Let T be the smallest set S of states such that
(i) s ∈ S, and (ii) if t ∈ S, t → u, and su ∧ ϕ1 is consistent, then u ∈ S. Then
we have that t ‖− ¬ϕ2 for all t ∈ T , so ` ϕT ⇒ ¬ϕ2. In addition, for each t ∈ T
and state u such that t → u, we have either u ∈ T or u ‖− ¬ϕ1 ∧ ¬ϕ2. Thus, using
Lemma 4.4, we obtain ` ϕT ⇒ ©(ϕT ∨ (¬ϕ1∧¬ϕ2)). It now follows using Lemma 4.5
that ` ϕT ⇒ ¬(ϕ1 U ϕ2). In particular, since s ∈ T , we have s ‖− ¬(ϕ1 U ϕ2), which
contradicts the assumption that ϕs ∧ (ϕ1 U ϕ2) is consistent.

For the next result, recall that when the formula ψ contains the common knowl-
edge operator we take d = 0, so that all states are ε-states.

Lemma 4.8. If Cϕ ∈ cl0(ψ), then s ‖− ¬Cϕ iff there is a state t reachable from
s through the relations ≈i such that t ‖− ¬ϕ.

Proof. The implication from right to left is a straightforward consequence of the
fact that if t ‖− ¬ϕ then t ‖− ¬Cϕ, by C1, C2 and K3, together with the fact that
if t ≈i t′, then t ‖− Cϕ if and only if t′ ‖− Cϕ. (Proof of the latter fact: If t ‖− Cϕ
then t ‖− KiCϕ by C1 and C2. Hence, since t ≈i t′ and KiCϕ ∈ cl0(ψ), we must
have t′ ‖− Cϕ. The opposite direction follows symmetrically.) This leaves only the
implication from left to right, for which we prove the contrapositive. Suppose that no
state containing ¬ϕ is reachable from s by means of a sequence of steps through the
relations ≈i. Let T be the set of states reachable from s. By Lemma 4.3(a), if t and
t′ are states with t 6≈i t′ then t ‖− Ki¬ϕt′ . It follows from this that t ‖− KiϕT for
every state t ∈ T and agent i. Thus, because ` ϕT ⇒ ϕ we have ` ϕT ⇒ E(ϕT ∧ ϕ).
By RC1 it follows that ` ϕT ⇒ Cϕ. Since s ∈ T , it is immediate that s ‖− Cϕ.

13

We say that an infinite →-sequence of states (s0, s1, . . .), where sn = (σ,Xn) for
all n, is acceptable if for all n ≥ 0, if ϕ1 U ϕ2 ∈ Xn then there exists an m ≥ n such
that sm ‖− ϕ2 and sk ‖− ϕ1 for all k with n ≤ k < m.

Definition 4.9. An enriched system for ψ is a pair (R,Σ), where R is a set of
runs and Σ is a partial function mapping points in R× IN to states for ψ such that
the following hold, for all runs r ∈ R:

1. If Σ(r, n) is defined then Σ(r, n′) is defined for all n′ > n, and Σ(r, n),Σ(r, n+ 1),
. . . is an acceptable →-sequence.

2. For all points (r, n) ∼i (r′, n′), if Σ(r, n) is defined then Σ(r′, n′) is defined
and Σ(r, n) ≈i Σ(r′, n′).

3. If Σ(r, n) and s are σ-states such that Σ(r, n) ≈i s, then there exists a point
(r′, n′) such that (r, n) ∼i (r′, n′) and Σ(r′, n′) = s.

4. If Cϕ ∈ cl0(ψ) and Σ(r, n) ‖− ¬Cϕ, then there exists a point (r′, n′) reach-
able from (r, n) such that Σ(r′, n′) ‖− ¬ϕ.

An enriched+ system for ψ is a pair (R,Σ) satisfying Conditions 1, 2, and the
following modification of 3:

3′. If Σ(r, n) is a σ-state and s is a (σ#i)-state such that Σ(r, n) ≈i s, then there
exists a point (r′, n′) such that (r, n) ∼i (r′, n′) and Σ(r′, n′) = s.

Intuitively, in an enriched (resp., enriched+) system, the points where Σ is defined
are the points that are “relevant” to the truth of certain formulas at certain points.

Given an enriched (resp., enriched+) system (R,Σ), we obtain an interpreted
system I = (R, π) by defining the valuation π on basic propositions p by π(r, n)(p) =
true just when Σ(r, n) is defined and Σ(r, n) ‖− p.5 The following theorem gives a
sufficient condition for a formula in the basic closure to hold at a point in this standard
system. If σ is the index i1 . . . ik, let Kσϕ be an abbreviation for Ki1 . . .Kikϕ. (If
σ = ε, then we take Kσϕ to be ϕ.)

Theorem 4.10.
(a) If (R,Σ) is an enriched system for ψ, I is the associated interpreted system,

ϕ is in the basic closure cl0(ψ), and Σ(r, n) is defined, then (I, r, n) |= ϕ if
and only if Σ(r, n) ‖− ϕ.

(b) If (R,Σ) is an enriched+ system for ψ ∈ KLm, I is the associated standard
system, ϕ is in the basic closure cl0(ψ), Σ(r, n) is a σ-state, and ad(Kσϕ) ≤ d,
then (I, r, n) |= ϕ if and only if Σ(r, n) ‖− ϕ.

Proof. We first prove part (a). We proceed by induction on the complexity of ϕ.
If ϕ is a propositional constant then the result is immediate from the definition of I.
The cases where ϕ is of the form ¬ϕ1 or ϕ1 ∧ϕ2 are similarly trivial. This leaves five
cases:

Case 1: Suppose that ϕ is of the form ©ϕ1. Then (I, r, n) |= ϕ if and only if
(I, r, n + 1) |= ϕ1. Note that Σ(r, n + 1) must be defined by Condition 1 of Defini-
tion 4.9. Since ϕ1 is a subformula of ϕ it is in cl0(ψ), so it follows by the induction
hypothesis that (I, r, n+ 1) |= ϕ1 holds precisely when Σ(r, n+ 1) ‖− ϕ1. By Condi-
tion 1, Σ(r, n) → Σ(r, n+1), so we obtain from Lemma 4.6(a) that Σ(r, n+1) ‖− ϕ1

if and only if Σ(r, n) ‖− ©ϕ1. Putting the pieces together, we get (I, r, n) |= ϕ if
and only if Σ(r, n) ‖− ϕ.

Case 2: Suppose that ϕ is of the form ϕ1 U ϕ2. Then the subformulas ϕ1 and
ϕ2 are also in cl0(ψ). Note also that by Condition 1 of Definition 4.9, Σ(r, n′) is

5This definition makes p false at points where Σ is undefined. We could just as well have made
p true at such points, without changing our results.

14

defined for all n′ ≥ n, and Σ(r, n),Σ(r, n+1), . . . is an acceptable →-sequence. Thus,
if Σ(r, n) ‖− ϕ1 U ϕ2 then, by the definition of acceptability, there exists some n′ ≥
n such that Σ(r, n′) ‖− ϕ2 and Σ(r, k) ‖− ϕ1 for n ≤ k < n′. By the induction
hypothesis, this implies that (I, r, n′) |= ϕ2 and (I, r, k) |= ϕ1 for n ≤ k < n′. In
other words, we have (I, r, n) |= ϕ1 U ϕ2. Conversely, if (I, r, n) |= ϕ1 U ϕ2, then
by the induction hypothesis and the semantics of U we have that there exists some
n′ ≥ n such that Σ(r, n′) ‖− ϕ2 and Σ(r, k) ‖− ϕ1 for n ≤ k < n′. Since Σ(r, n) →
Σ(r, n+ 1) → . . .→ Σ(r, n′), it follows using Lemma 4.6(c) that Σ(r, n) ‖− ϕ1 U ϕ2.

Case 3: Suppose that ϕ is of the form Kiϕ1. We first show that Σ(r, n) ‖− Kiϕ1

implies (I, r, n) |= Kiϕ1. Assume Σ(r, n) ‖− Kiϕ1 and suppose that (r, n) ∼i (r′, n′).
Then by Condition 2 of Definition 4.9, we have that that Σ(r′, n′) is defined and
Σ(r, n) ≈i Σ(r′, n′). Since Kiϕ ∈ cl0(ψ) we obtain Σ(r, n′) ‖− Kiϕ1. By K3 this
implies Σ(r, n′) ‖− ϕ1. Since ϕ ∈ cl0(ψ), by the induction hypothesis, we obtain that
(I, r′, n′) |= ϕ1. This shows that (I, r′, n′) |= ϕ1 for all points (r′, n′) ∼i (r, n). That
is, we have (I, r, n) |= Kiϕ1.

For the converse, suppose that Σ(r, n) ‖− ¬Kiϕ1 and that Σ(r, n) is a σ-state.
By Lemma 4.6(b), there exists a σ-state t such that Σ(r, n) ≈i t and t ‖− ¬ϕ1. By
Condition 3 of Definition 4.9, there exists a point (r′, n′) such that (r, n) ∼i (r′, n′)
and Σ(r′, n′) = t. Using the induction hypothesis we obtain that (I, r′, n′) |= ¬ϕ1. It
follows that (I, r, n) |= ¬Kiϕ1.

Case 4: If ϕ is of the form Eϕ1, the result follows easily from the induction
hypothesis, using axiom C1.

Case 5: Suppose ϕ is of the form Cϕ1. By Condition 2 of Definition 4.9 we have
that Σ(r′, n′) is defined for all (r′, n′) reachable from (r, n). An easy induction on the
length of the path from (r, n) to (r′, n′), using the fact that KiCϕ1 is in the basic
closure and axioms C1, C2, and K3, can be used to show that Σ(r′, n′) ‖− Cϕ1 for
each point (r′, n′) reachable from (r′, n). Using C1, C2, and K3, it is easy to see
that Σ(r′, n′) ‖− ϕ1. By the induction hypothesis, this implies that (I, r′, n′) |= ϕ1.
Thus, (I, r, n) |= Cϕ1.

For the converse, suppose that Σ(r, n) ‖− ¬Cϕ1. Then by Condition 4 of Defi-
nition 4.9, we have Σ(r′, n′) ‖− ¬ϕ1 for some point (r′, n′) reachable from (r, n). By
the induction hypothesis, we have that (I, r′, n′) |= ¬ϕ1, and hence (I, r, n) |= ¬Cϕ1.

For part (b), since ψ ∈ KLm, we only need to check the analogues of Cases
1, 2, and 3 above. The proofs in cases 1 and 2 are identical to those above. The
proof of Case 3 is also quite similar, but we must be a little careful in applying the
inductive hypothesis. So suppose that ϕ is of the form Kiϕ1, Σ(r, n) is a σ-state, and
ad(Kσϕ) ≤ d. The implication from left to right, showing that if Σ(r, n) ‖− Kiϕ
then (I, r, n) |= Kiϕ is identical to that above. We just need the observation that
if (r, n) ∼i (r′, n′), then Σ(r′, n′) is a τ -state, where τ#i = σ#i. It follows that
ad(Kτϕ) ≤ ad(Kσ#iϕ) ≤ ad(KσKiϕ) ≤ d, so we can apply the inductive hypothesis
to conclude that (I, r′, n′) |= ϕ1. For the converse, the proof is again similar. Note
that if ad(KσKiϕ) ≤ d, then |σ#i| ≤ d, so by Lemma 4.6(b), there exists a (σ#i)-
state t such that Σ(r, n) ≈i t and t ‖− ¬ϕ1. By Condition 3′ of Definition 4.9, there
exists a point (r′, n′) such that (r, n) ∼i (r′, n′) and Σ(r′, n′) = t. Since ad(Kσ#iϕ) =
ad(KσKiϕ) ≤ d, using the induction hypothesis we obtain that (I, r′, n′) |= ¬ϕ1. It
follows that (I, r, n) |= ¬Kiϕ1.

Corollary 4.11. If (R,Σ) is an enriched (resp., enriched+) system for ψ, I
is the associated interpreted system, and (r, n) is a point of I such that Σ(r, n) is an
ε-state and Σ(r, n) ‖− ψ, then (I, r, n) |= ψ.

15

We apply this corollary in all our completeness proofs, constructing an appropriate
enriched or enriched+ system in all cases.

5. Proofs of Soundness and Completeness. We are now in a position to
prove the completeness results claimed in Section 3. Sections 5.1-5.3 will deal with
the cases involving only perfect recall, synchrony and unique initial states. The cases
involving no learning are a little more complex, and are dealt with in Sections 5.4-5.7.

5.1. Dealing with Cm, Csync
m , Cuis

m , and Csync,uis
m (Theorems 3.1 and 3.2).

The fact that S5CUm is sound for Cm, the class of all systems, is straightforward and
left to the reader (see also [1]). To prove completeness of S5Um for the language KLm
and of S5CUm for the language CKLm with respect to Cm, Csync

m , Cuis
m , and Csync,uis

m , we
construct an enriched system, and use Corollary 4.11. The proof proceeds in the same
way whether or not common knowledge is in the language. We assume here that the
language includes common knowledge and that we are dealing with the axiom system
S5CUm when constructing the states in the enriched structure. Recall that in this case
we work with ε-states only.

The following result suffices for the generation of the acceptable sequences re-
quired for the construction of an enriched system in the cases not involving no learn-
ing; a more complex construction will be required in the presence of no learning.

Lemma 5.1. Every finite →-sequence of states can be extended to an infinite
acceptable sequence.

Proof. First note that for every σ-state s there exists a state t with s → t. For
otherwise, s ‖− ¬©ϕt for all σ-states t, which contradicts ` ©

∨
t a σ−state ϕt. (Note

that ` ©
∨
t a σ−state ϕt follows from Lemma 4.1(c) and RT1.) Thus every finite

sequence of states can be extended to an infinite sequence, and it remains to show
that the obligations arising from the until formulas can be satisfied.

Suppose the finite →-sequence is s0 → . . . → sn, where sk = (σ,Xk) for k =
1 . . . n. Now, for any formula ϕ1 U ϕ2 ∈ X0, it follows using T3 and the fact that the
si directly decide each of the formulas ϕ1, ϕ2, and ϕ1 U ϕ2 that either the obligation
imposed by ϕ1 U ϕ2 at s0 is already satisfied in the sequence (s0, . . . , sn), or else
sn ‖− ϕ1 U ϕ2 and sk ‖− ϕ1 for 0 ≤ k ≤ n. In the latter case, by Lemma 4.6(c),
there exists a sequence sn → sn+1 → . . . → sn′ such that sn′ ‖− ϕ2 and sk ‖− ϕ1

for n ≤ k < n′. This gives a finite extension of the original sequence that satisfies
the obligation imposed by ϕ1 U ϕ2 at s0. Applying this argument to the remaining
obligations at s0, we eventually obtain a finite sequence that satisfies all the obligations
at s0. We may then move on to s1 and apply the same procedure. It is clear that in
the limit we obtain an acceptable sequence extending the original sequence.

For each agent i, let Oi be the function that maps the state (σ,U) to the pair
(σ#i, U/Ki). Oi is also used later in our other constructions. Given a state s, we
call Oi(s) agent i’s current information at s. Let x be a new object not equal to any
state. We say that a sequence S = (x, x, . . . , x, sN , sN+1, . . .) is an acceptable sequence
from N if it starts with N copies of x and the suffix (sN , sN+1, . . .) is an acceptable
→-sequence of states for ψ. Given a sequence S acceptable from N , we define a run r
as follows. For each agent i, take ri(n) = (n, S) when n < N and ri(n) = (n,Oi(sn))
otherwise. For the environment component e, take re(n) = Sn (so that re(n) = x if
n < N and re(n) = sn for n ≥ N).

Let Rsync be the set of all runs so obtained, and define the partial function Σ
on points in Rsync × IN so that Σ(r, n) = sn when r is derived from a sequence
(x, x, . . . , x, sN , sN+1, . . .) acceptable from N and n ≥ N , and Σ(r, n) is undefined
otherwise.

16

Lemma 5.2. The pair (Rsync ,Σ) is an enriched system.
Proof. It is immediate from the construction that (Rsync ,Σ) satisfies Conditions

1 and 2 of Definition 4.9. To see that it satisfies Condition 3, suppose that (r, n)
is a point such that Σ(r, n) is defined and Σ(r, n) ≈i s. By Lemma 5.1 there exists
an acceptable sequence (sn, sn+1, . . .) with s = sn. Let r′ be the run obtained from
the sequence (x, . . . , x, sn, sn+1, . . .). Then it is immediate that (r, n) ∼i (r′, n′) and
Σ(r′, n′) = s. Finally, to see that it satisfies Condition 4, suppose that Cϕ ∈ cl0(ψ)
and Σ(r, n) ‖− ¬Cϕ. By Lemma 4.8, there is a state t reachable from Σ(r, n) through
the relations ≈i such that t ‖− ¬ϕ. An easy inductive argument on the length of the
path from Σ(r, n) to t, using Condition 3, shows that there is a point (r′, n′) reachable
from (r, n) through the relations ∼i such that Σ(r′, n′) = t. Thus, the enriched system
satisfies Condition 4.

Clearly the system Rsync is synchronous, so the interpreted system I derived
from (Rsync ,Σ) is also synchronous. Let s be an ε-state such that s ‖− ψ. Such a
state must exist because ψ was assumed consistent. By Lemma 5.1 there exists an
acceptable sequence (s0, s1, . . .) with s = s0. Let r be the corresponding run in Rsync .
Corollary 4.11 implies that (I, r, 0) |= ψ. This establishes the completeness of the
axiomatization S5CUm for the language CKLm (resp., of S5Um for the language KLm)
with respect to the classes of systems Cm and Csync

m . To establish completeness of
these axiomatizations for the corresponding languages with respect to the classes of
systems Cuis

m and Csync,uis
m , we make use of the following result, which shows that sound

and complete axiomatizations for the class of systems satisfying some subset of the
properties of perfect recall and synchrony are also sound and complete axiomatizations
for the class of systems with the same subset of these properties, but with unique initial
states in addition. This completes the proofs of Theorem 3.1 and 3.2.

Lemma 5.3. Suppose x is a subset of {pr , sync}. If ϕ ∈ CKLm is satisfiable with
respect to Cxm, then it is also satisfiable with respect to Cx,uism .

Proof. Suppose I = (R, π) ∈ Cxm. We define a system I ′ by adding a new initial
state to each run in R. Formally, we define the system I ′ = (R′, π′) as follows.
Let l be some local state that does not occur in I and let se be any state of the
environment. For each run r ∈ R, let r+ be the run such that r+(0) = (se, l, . . . , l)
and r+(n + 1) = r(n). Let R′ = {r+ : r ∈ R}. The valuation π′ is given by
π′(r, 0)(p) = false and π′(r, n + 1)(p) = π(r, n)(p), for n ≥ 0 and propositions p. It
is clear that I ′ is a system with unique initial states. Moreover, if I is synchronous,
then so is I ′, and if I is a system with perfect recall then so is I ′. A straightforward
induction on the construction of the formula ϕ ∈ CKLm now shows that, for all points
(r, n) in I, we have (I, r, n) |= ϕ iff (I ′, r+, n+ 1) |= ϕ.

5.2. Dealing with Cpr
m and Cpr ,uis

m (Theorem 3.5). We want to show that
S5Um + KT3 is sound and complete with respect to Cpr

m . We first consider soundness.
As we observed above, all axioms and rules of inference other than KT3 are known
to be sound in all systems, so their soundness in systems Cpr

m is immediate. The next
result establishes soundness of KT3.

Lemma 5.4. All instances of KT3 are valid in Cpr
m .

Proof. To show that KT3 is sound, we assume that (I, r, n) |= Kiϕ1 ∧©(Kiϕ2 ∧
¬Kiϕ3). We show that (I, r, n) |= Li((Kiϕ1)U [(Kiϕ2)U ¬ϕ3]). Now it follows from
the assumption that (I, r, n + 1) |= ¬Kiϕ3, so there exists a point (r′, n′) such that
(r, n + 1) ∼i (r′, n′) and (I, r′, n′) |= ¬ϕ3. Since I ∈ Cpr

m , by Lemma 2.2(d), either
(i) (r, n) ∼i (r′, n′) or (ii) there exists a number l < n′ such that (r, n) ∼i (r′, l)
and (r, n + 1) ∼i (r′, k) for all k with l < k ≤ n′. We claim that in either case

17

(I, r, n) |= Li((Kiϕ1)U [(Kiϕ2)U ¬ϕ3]). In case (i), since (I, r′, n′) |= ¬ϕ3, we have
(I, r′, n′) |= (Kiϕ1)U [(Kiϕ2)U ¬ϕ3]. The desired conclusion is then immediate from
the fact that (r, n) ∼i (r′, n′). In case (ii), since (I, r, n) |= Kiϕ1, and (r, n) ∼i (r′, l),
we have that (I, r′, l) |= Kiϕ1. Similarly, because (I, r, n + 1) |= Kiϕ2, we obtain
that (I, r′, k) |= Kiϕ2 for all k with l < k ≤ n′. Together with (I, r′, n′) |= ¬ϕ3,
this implies that (I, r′, l) |= (Kiϕ1)U [(Kiϕ2)U ¬ϕ3]. Again, since (r, n) ∼i (r′, l), we
obtain that (I, r, n) |= Li((Kiϕ1)U [(Kiϕ2)U ¬ϕ3]).

We now establish a lemma characterizing the interaction of knowledge and time
in the pre-model. This result will enable us to satisfy the perfect-recall requirement in
using the pre-model to construct an interpreted system. It is convenient to introduce
the notation [s]i, where s is a state, for the set of (σ#i)-states t such that s ≈i t. The
reader is encouraged to compare the following result with Lemma 2.2(c).

Lemma 5.5. Suppose that the axiomatization includes KT3. Then for all σ-states
s, t and for all (σ#i)-states t′, if s→ t and t ≈i t′, then either (a) s ≈i t′ or (b) there
exists a (σ#i)-state s′ such that s ≈i s′ and there exists a sequence of (σ#i)-states
u0 → u1 → . . . → un = t′, where n ≥ 0, such that s′ → u0 and ul ≈i ul+1 for all
l = 0 . . . n− 1.

Proof. We derive a contradiction from the assumption that s→ t and t ≈i t′, but
s 6≈i t′ and for all (σ#i)-states s′ such that s ≈i s′ and all sequences of (σ#i)-states
u0 → u1 → . . . → un such that s′ → u0 and ui ≈i ui+1 for i = 0 . . . n − 1, we have
un 6= t′. Let T be the smallest set of (σ#i)-states such that

1. if v ∈ [s]i, v → v′, and v′ ∈ [t]i then v′ ∈ T , and
2. if v ∈ T , v → v′, and v′ ∈ [t]i then v′ ∈ T .

Because s 6≈i t′, it follows from the fact that ≈i is an equivalence relation that the
intersection [s]i ∩ [t]i is empty. Additionally, t′ is not in T , for otherwise we could
find a sequence of the sort presumed not to exist. Thus, for all v ∈ T , we have
` ϕv ⇒ ¬ϕt′ . This implies that ` ϕT ⇒ ¬ϕt′ . Let T ′ be the set of (σ#i)-states v′

such that v → v′ for some v ∈ T . We want to show that

v′ ‖− ϕT ∨ (¬KiΦ+
t,i ∧ ¬ϕt′)(5.1)

for all v′ ∈ T ′. If v′ ∈ T , then clearly we have v′ ‖− ϕT , so (5.1) holds. If v′ /∈ T ,
then the second condition in the definition of T implies that v′ is not in [t]i. It follows
using Lemma 4.3(d) that v′ ‖− ¬KiΦ+

t,i. Further, t 6≈i v′ implies that v′ 6= t′, so
v′ ‖− ¬ϕt′ . Thus, again we have (5.1). Since (5.1) holds for all v′ ∈ T , it follows
that ` ϕT ′ ⇒ (ϕT ∨ (¬KiΦ+

t,i ∧ ¬ϕt′)). Now by Lemma 4.4, we have ` ϕT ⇒ ©ϕT ′ ,
so using T1 and RT1 we obtain that ` ϕT ⇒ ©(ϕT ∨ (¬KiΦ+

t,i ∧ ¬ϕt′)). Combining
this with ` ϕT ⇒ ¬ϕt′ and using Lemma 4.5, we get that ` ϕT ⇒ ¬(KiΦ+

t,i U ϕt′).
In particular, we obtain v ‖− ¬(KiΦ+

t,i U ϕt′) for all states v in T .
We now repeat this argument to obtain a similar conclusion for the elements of

[s]i. Since t′ is not in [s]i we have that v ∈ [s]i implies v ‖− ¬ϕt′ . Further, since
[s]i ∩ [t]i is empty we also have by Lemma 4.3(d) that v ∈ [s]i implies v ‖− ¬KiΦ+

t,i.
Using T3 this yields that ` Φ+

s,i ⇒ ¬(KiΦ+
t,i U ϕt′).

Let P be the set of (σ#i)-states v′ such that v → v′ for some v ∈ [s]i. Let v′ ∈ P .
We want to show that

v′ ‖− Φ+
s,i ∨ (¬KiΦ+

s,i ∧ ¬(KiΦ+
t,i U ϕt′)).(5.2)

If v′ ∈ [s]i then clearly v′ ‖− Φ+
s,i, so (5.2) holds. If v′ /∈ [s]i, then, by Lemma 4.3(d),

we have that v′ ‖− ¬KiΦ+
s,i. We now consider two subcases: (a) v′ ∈ T and

18

(b) v′ 6∈ T . If v′ ∈ T then, as we showed earlier, we have v′ ‖− ¬(KiΦ+
t,i U ϕt′).

If v′ /∈ T , then by the definition of T it follows that t 6≈i v′. By Lemma 4.3(d), this
implies that v′ ‖− ¬KiΦ+

t,i. Further, since t ≈i t′, we also obtain that v′ 6= t′, so
v′ ‖− ¬ϕt′ . Using T3, this yields v′ ‖− ¬(KiΦ+

t,i U ϕt′), and again we have (5.2).
Using Lemma 4.4, we obtain that ` Φ+

s,i ⇒ ©[Φ+
s,i ∨ (¬KiΦ+

s,i ∧ ¬(KiΦ+
t,i U ϕt′))].

Applying Lemma 4.5 to this and the result of the preceding paragraph establishes
that ` Φ+

s,i ⇒ ¬(KiΦ+
s,i U (KiΦ+

t,i U ϕt′)).
It follows using Lemma 4.3(b), R2, and K2 that s ‖− Ki¬(KiΦ+

s,i U (KiΦ+
t,i U ϕt′)).

By KT3, we obtain s ‖− ¬(KiΦ+
s,i ∧©(KiΦ+

t,i ∧ Liϕt′)). Since, by Lemma 4.3(b),
s ‖− KiΦ+

s,i, we obtain using T2 that s ‖− ©¬(KiΦ+
t,i ∧ Liϕt′)). Because s→ t, we

have that ϕs∧©ϕt is consistent, so it follows that ϕt∧¬(KiΦ+
t,i∧Liϕt′) is consistent.

But, by Lemma 4.3, t ‖− KiΦ+
t,i ∧ Liϕt′ , so this is a contradiction.

We are now ready to define, for each consistent ψ, an enriched+ system for ψ
that establishes completeness of S5Um + KT3 with respect to Cpr

m . The runs of this
system are those derived from the acceptable sequences (s0, s1, . . .) (of states for ψ)
by putting re(n) = sn and ri(n) = Oi(s0)# . . .#Oi(sn), for each agent i and n ≥ 0.
Thus, ri(n) is the sequence of current information that agent i has had up to time n.
Let Rpr be the set of runs defined in this way. The function Σ is given by Σ(r, n) = sn
for each n ≥ 0.

Lemma 5.6. Suppose that the axiomatization includes KT3. Then (Rpr ,Σ) is an
enriched+ system.

Proof. It is clear that (Rpr ,Σ) satisfies Conditions 1 and 2 of Definition 4.9.
It remains to show that Condition 3′ holds. So suppose that Σ(r, n) is a σ-state
and Σ(r, n) ≈i s for some (σ#i)-state s. We must find a point (r′, n′) such that
Σ(r′, n′) = s.

The proof proceeds by induction on n. The result for n = 0 is immediate, since
we can take r′ to be an acceptable sequence starting from s (such a sequence exists
by Lemma 5.1), so Σ(r′, 0) = s and clearly (r, 0) ∼i (r′, 0).

Now suppose n > 0 and the result holds for n − 1. Because Σ(r, n − 1) →
Σ(r, n) and Σ(r, n) ≈i s, it follows by Lemma 5.5 that either (a) Σ(r, n − 1) ≈i s
or (b) there exists a (σ#i)-state s′ such that Σ(r, n − 1) ≈i s′ and there exists a
sequence of (σ#i)-states u0 → u1 → . . . → uk such that s′ → u0, ul ≈i ul+1 for
l = 0 . . . k − 1, and uk = s. By the induction hypothesis, there exists for every
(σ#i)-state t with Σ(r, n− 1) ≈i t a point (r′, n′) such that (r, n− 1) ∼i (r′, n′) and
Σ(r′, n′) = t. In case (a), we take t = s, and we then have that Σ(r, n− 1) ≈i Σ(r, n)
and Σ(r′, n′) = s. It follows that (r, n) ∼i (r′, n−1), and by the transitivity of ∼i, we
also have (r, n) ∼i (r′, n′). Hence we are done. In case (b), we take t = s′. Suppose
that r′ is derived from the sequence (v0, v1, . . .). Let r′′ be any run derived from
an acceptable sequence with initial segment (v0, . . . , vn′ , u0, . . . , uk). Again, such a
run exists by Lemma 5.1. By construction, Σ(r′′, n′ + k + 1) = uk = s. Moreover,
since r′′i (n

′) = r′i(n
′) = ri(n − 1) and Oi(ul) = Oi(s) for all l = 0, . . . , k, we have

r′′i (n
′ + k + 1) = r′′i (n

′)#Oi(u0)# . . .#Oi(uk) = ri(n− 1)#Oi(s) = ri(n), and hence
(r, n) ∼i (r′′, n′ + k + 1).

Now take any ε-state s such that s ‖− ψ, and let r be a run derived from an
acceptable sequence starting with s. By construction, the system I obtained from
the enriched+ system is in Cpr

m , and by Corollary 4.11, we have (I, r, 0) |= ψ. Thus, ψ
is satisfiable in Cpr

m . By Lemma 5.3, ψ is also satisfiable in systems in Cpr ,uis
m . Since

this argument applies to an arbitrary formula ψ consistent with respect to S5Um+KT3,
19

this completes the proof of Theorem 3.5.

5.3. Dealing with Cpr ,sync
m and Cpr ,sync,uis

m (Theorem 3.6). We now show
that S5Um+KT2 is sound and complete with respect to KLm for the classes of systems
Cpr ,sync
m and Cpr ,sync,uis

m . For soundness, the following result suffices.
Lemma 5.7. All instances of KT2 are valid in Cpr ,sync

m .
Proof. Let I be a system in Cpr ,sync

m and let r be a run of I. Suppose that
(I, r, n) |= Ki©ϕ. If (r, n+1) ∼i (r′, n′), then by synchrony we must have n′ = n+1.
Thus, by perfect recall and synchrony, we have (r, n) ∼i (r′, n′ − 1). It follows that
(I, r′, n′−1) |=©ϕ, which implies that (I, r′, n′) |= ϕ. This shows that (I, r′, n′) |= ϕ
for all (r′, n′) ∼i (r, n+ 1). Thus, we have (I, r, n+ 1) |= Kiϕ, and hence (I, r, n) |=
©Kiϕ.

Before constructing an enriched+ system for the completeness proof, we first note
a property of the pre-model, analogous to that given in Lemma 5.5.

Lemma 5.8. Suppose that the axiomatization includes KT2. Then for all σ-
states s, t with s → t, we have that for all (σ#i)-states t′ with t ≈i t′ there exists a
(σ#i)-state s′ such that s ≈i s′ and s′ → t′.

Proof. By way of contradiction, suppose that s, t are σ-states with s → t that t′

is a (σ#i)-state such that t ≈i t′, but that for all (σ#i)-states s′ such that s ≈i s′,
we have that s′ ‖− ¬©ϕt′ . By T2, we have that s′ ‖− ©¬ϕt′ for all (σ#i)-states s′

such that s ≈i s′. By Lemma 4.3(b), it follows that s ‖− Ki©¬ϕt′ . By KT2, we have
that s ‖− ©Ki¬ϕt′ . Since s→ t, it follows that ϕt ∧Ki¬ϕt′ is consistent. However,
since t ≈i t′, by Lemma 4.3(c), we have t ‖− Liϕt′ . This is a contradiction.

To construct the enriched+ system, we now take Rpr ,sync to be the set of runs r
derived from acceptable sequences (s0, s1, . . .) of states for the formula ψ by putting
re(n) = sn and ri(n) = Oi(s0) . . . Oi(sn), for each agent i and n ≥ 0. The no-
tation Oi(s0) . . . Oi(sn) is meant to denote the sequence formed by concatenating
Oi(s0), Oi(s1), . . . , Oi(sn). Thus, the length of the sequence is n + 1, which enforces
synchrony. Again, the function Σ is given by Σ(r, n) = sn for each n ≥ 0.

Lemma 5.9. Suppose that the axiomatization includes KT2. Then (Rpr ,sync ,Σ)
is an enriched+ system.

Proof. Conditions 1 and 2 of the definition of an enriched+ system are immediate.
To show that Condition 3′ holds, suppose that Σ(r, n) is a σ-state and that t is a (σ#i)-
state such that Σ(r, n) ≈i t. Suppose that r is derived from the acceptable sequence
(s0, s1, . . .), so Σ(r, n) = sn. It follows from Lemma 5.8 that there exists a →-sequence
t0 → . . . → tn such that tn = t and sj ≈i tj for j = 1 . . . n. By Lemma 5.1, this
sequence may be extended to an infinite acceptable sequence. Taking r′ to be the run
derived from this sequence, we see that (r, n) ∼i (r′, n) and Σ(r′, n) = t.

Take Ipr ,sync to be the system obtained from (Rpr ,sync ,Σ). By construction, this
system is in Cpr ,sync . Now take any ε-state s such that s ‖− ψ, and let r be a run
derived from an acceptable sequence starting with s. By construction, the system I
obtained from the enriched+ system is in Cpr ,sync

m , and by Corollary 4.11, we have
(I, r, 0) |= ψ. Thus, ψ is satisfiable in Cpr ,sync

m . By Lemma 5.3, ψ is also satisfiable in
systems in Cpr ,sync,uis

m . Since this argument applies to any formula ψ consistent with
respect to S5Um +KT2, this completes the proof of Theorem 3.6.

5.4. Dealing with Cnl
m (Theorem 3.7). We want to show that S5Um + KT4 is

sound and complete for KLm with respect to Cnl
m . For soundness, it suffices to show

that KT4 is valid in Cnl
m . This is straightforward.

Lemma 5.10. All instances of KT4 are valid in Cnl
m .

20

Proof. Suppose that I ∈ Cnl
m and (I, r, n) |= KiϕU Kiψ. We want to show that

(I, r, n) |= Ki(KiϕU Kiψ). Thus, if (r′, n′) ∼i (r, n), we must show that (I, r′, n′) |=
KiϕU Kiψ. Since (I, r, n) |= KiϕU Kiψ, there exists l ≥ n such that (I, r, l) |= Kiψ
and (I, r, k) |= Kiϕ ∧ ¬Kiψ for all k with n ≤ k < l. Note that this means that if
n ≤ k < l, then ri(k) 6= ri(l). Since I ∈ Cnl

m and (r, n) ∼i (r′, n′), there must be some
l′ ≥ n′ such that ((r, n), . . . , (r, l)) is ∼i-concordant with ((r, n′), . . . , (r, l′)). Thus,
there exists some h, a partition S1, . . . , Sh of the sequence ((r, n), . . . , (r, l)), and a
partition T1, . . . , Th of the sequence ((r′, n′), . . . , (r, l′)) such that for all j = 1, . . . , h,
we have (r, k) ∼i (r′, k′) for all points (r, k) ∈ Sj and (r′, k′) ∈ Tj . It easily follows
that (I, r′, n′) |= KiϕU Kiψ, as desired.

For completeness, we define an appropriate enriched+ system. As we shall see,
the demands of no learning make this a little more subtle than in the case of no
forgetting.

For the remainder of this section, consistency and provability are with respect to
a logic that includes S5Um + KT4. Fix a consistent formula ψ such that ad(ψ) = d.

Our first step is to prove an analogue of Lemma 5.5.
Lemma 5.11. Suppose that the axiomatization includes KT4. If s is a σ-state, t

is a (σ#i)-state, s ≈i t, and s → s′, then there exists a sequence t0, . . . , tk such that
(a) t = t0, (b) tj ≈i s for j < k, (c) tj → tj+1 for j < k, and (d) s′ ≈i tk.

Proof. If s′ ≈i t, then we can take the sequence to consist only of t, and we
are done. Otherwise, since ϕs ∧ ©ϕs′ is consistent, it follows from Lemma 4.3(b)
that ϕs ∧ KiΦ+

s,i U KiΦ+
s′,i is consistent. Moreover, by Lemma 4.3(c), we have that

ϕs ‖− Liϕt. Thus, ϕs ∧ Liϕt ∧KiΦ+
s,i U KiΦ+

s′,i is consistent. Using KT4, it follows
that ϕt ∧KiΦ+

s,i U KiΦ+
s′,i is consistent. The result now follows from Lemma 4.7.

Unfortunately, Lemma 5.11 does not suffice to construct an enriched+ system.
Roughly speaking, the problem is the following. In the case of perfect recall, we used
Lemma 5.5 to show that, given a →-sequence S = (s0, . . . , sn) of σ-states and a (σ#i)-
state t such that sn ≈i t, we can construct a→-sequence T of (σ#i)-states ending with
t such that S is ≈i-concordant with T . There is no problem then extending T to an
acceptable sequence. Moreover, we can extend S and T independently to acceptable
sequences; all that matters is that the finite prefixes of these sequences—namely, S
and T—are ≈i-concordant. With no learning, on the other hand, it is the infinite
suffixes that must be ≈i-concordant. Given a →-sequence S = (s0, . . .) of σ-states
and a (σ#i)-state t such that s0 ≈i t, using Lemma 5.11, we can find a →-sequence
T starting with t that is ≈i-concordant with S. This suggests that it is possible to
find the appropriate sequences for the construction of runs satisfying the no learning
condition. Unfortunately, it does not follow from the acceptability of S that T is also
acceptable. This makes it necessary to work with a smaller set of sequences than the
set of all acceptable sequences, and to build up the sequences S and T simultaneously.
To ensure that the appropriate obligations are satisfied at all points in the set of runs
constructed, we need to work not just with single states, but with trees of states.

A k-tree for ψ (with k ≤ d) is a set S of σ-states for ψ with |σ| ≤ k with a unique
ε-state such that if s ∈ S is a σ-state then

• if t is a (σ#i)-state such that s ≈i t and |σ#i| ≤ k, then t ∈ S,
• if σ = τ#i, then there is a τ -state t in S such that s ≈i t.

We extend the → relation to k-trees as follows. If S1 and S2 are k-trees for ψ, then
S1 →f S2 if f is a function associating with each σ-state s ∈ S1 a finite sequence of
σ-states in S1 ∪ S2 such that

• if f(s) = (s0, . . . , sk), then
21

– s = s0,
– s0 → · · · → sk,
– s0, . . . , sk−1 ∈ S1 and sk ∈ S2;

• if s ≈i s′, then f(s) and f(s′) are ≈i-concordant;
• for at least one s ∈ S1, the sequence f(s) has length at least 2.

Given two sequences of σ-states α = (s0, . . . , sk) and β = (t0, . . .), where α is
finite, the fusion of α and β, denoted α·β is defined only if sk = t0; in this case, it is the
sequence (s0, sk−1, t0, . . .). Given an infinite sequence S = S0 →f0 S1 →f1 S2 →f2 . . .
of k-trees, we say a sequence α of σ-states is compatible with S if there exists some h,
and σ-states sh, sh+1, . . . with sj ∈ Sj for j ≥ h, such that α = fh(sh)·fh+1(sh+1)·. . ..
(Implicit in this notation is the assumption that this fusion product is defined, so that
the last state in fj(sj) is the same as the first state in fj+1(sj+1), for j ≥ h.) S is
acceptable if every →-sequence compatible with S is infinite and acceptable. Our
goal is to construct an acceptable sequence of d-trees; we then use this to define the
enriched+ system.

Note that by Lemma 4.3, the formula ϕs essentially describes the subtree below
s of any k-tree containing s. Given a k-tree S and a σ-state s in S, we inductively
define a formula treeS,s that describes all of S from the point of view of s. If s is an
ε-state, then treeS,s = ϕs. Otherwise, if s is a (τ#i)-state, where τ 6= τ#i, then

treeS,s = ϕs ∧
∧

{τ−states t: s≈it}

LitreeS,t.

If S and T are k-trees, s ∈ S, and t ∈ T , then we write (S, s) →+ (T, t) if there
exists a sequence of k-trees S0, . . . , Sl and functions f0, . . . , fl−1 such that S0 →f0

· · · →fl−1 Sl, S0 = S, Sl = T , fj(s) = (s) for j ≤ l − 2, and fl−1(s) = (s, t).
Lemma 5.12. Suppose that the axiomatization includes KT4, S is a k-tree, and

s is a σ-state in S, where |σ| = k.
(a) If t is a σ-state and treeS,s∧©(ϕt∧ξ) is consistent, then there exists a k-tree

T such that t ∈ T , (S, s) →+ (T, t), and treeT,t ∧ ξ is consistent.
(b) treeS,s ⇒ ©

∨
{(T,t): (S,s)→+(T,t)} treeT,t is provable.

(c) If treeS,s ∧ ϕU ϕ′ is consistent, then for some l ≥ 0 there is a sequence
S0, . . . , Sl of k-trees and states s0, . . . , sl such that (i) sj ∈ Sj, (ii) (S, s) =
(S0, s0), (iii) (Sj , sj) →+ (Sj+1, sj+1) for j = 0, . . . , l − 1, (iv) treeSj ,sj

∧ ϕ
is consistent for j = 0, . . . , l − 1, and (v) treeSl,sl

∧ ϕ′ is consistent.
Proof. We proceed by induction on k. The case that k = 0 is immediate using

standard arguments, since then treeS,s is just ϕs.
So suppose k > 0 and σ = τ#i, with σ 6= τ . We first prove part (a) in the

case that ξ is of the form Kiξ
′, then part (b), then prove the general case of (a), and

then prove (c). First consider (a) in the case that ξ is of the form Kiξ
′. Note that

treeS,s ∧ ©(ϕt ∧ Kiξ
′) implies treeS,s ∧ KiΦs,i U Ki(ξ′ ∧ Φt,i). From the definition

of k-tree, it follows that there is a τ -state s′ in S such that s ≈i s′. Let S′ be the
(k − 1)-tree consisting of all σ′-states in S with |σ′| ≤ k − 1. From KT4, it follows
that

treeS′,s′ ∧KiΦs,i U Ki(ξ′ ∧ Φt,i)

is consistent. Applying part (c) of the inductive hypothesis, we get a sequence
S0, . . . , Sl of (k − 1)-trees and states s0, . . . , sl such that (i) sj ∈ Sj , (ii) (S′, s′) =
(S0, s0), (iii) (Sj , sj) →+ (Sj+1, sj+1) for j = 0, . . . , l − 1, (iv) treeSj ,sj ∧ KiΦs,i is

22

consistent for j = 0, . . . , l − 1, and (v) treeSl,sl
∧ Ki(ξ′ ∧ Φt,i) is consistent. It fol-

lows by definition that there is a sequence T0, . . . , Tm of (k − 1)-trees and functions
f0, . . . , fm−1 such that T0 →f0→ · · · →fm−1 Tm, T0 = S0, and Tm = Sl. Moreover,
there are elements t0, . . . , tm such that t0 = s′, tm = sl, if j < m, then tj = sj′ for some
j′ ≤ j, and if tj = tj+1, then fj(tj) = (tj), while if tj 6= tj+1, then fj(tj) = (tj , tj+1),
for j = 0, . . . ,m− 1.

Let T ′j be the unique k-tree extending Tj , for j = 0, . . . ,m. Since ϕtj ∧ KiΦs,i
is consistent for j < m, we have that tj ≈i s, and so s ∈ T ′j for j < m. Similarly,
we have that t ∈ T ′m. We now show how to construct f ′j , for j < m. For each state
u′ ∈ T ′j − Tj , there must exist a state u ∈ Tj and an agent j′ such that u ≈j′ u′.
(There may be more than one such state u, of course. In this case, in the construction
below, we can pick u arbitrarily.) It easily follows from Lemma 5.11 that there exists
a sequence αu′ starting with u′ that is ≈j′ -concordant with fj(u). Moreover, we can
take αtj = (s) for j < m− 1, and take αtm−1 = (s, t). We define f ′j so that it agrees
with fj on Tj , and for each u′ ∈ T ′j − Tj , we have f ′j(u

′) = αu′ .
Notice that T ′0 = S. If m > 0, it follows immediately from the definition that

(S, s) →+ (Tm, t) and that treeTm,t ∧Kiξ
′ is consistent. If m = 0, it is easy to check

that we must have t ∈ S, for we have s′ ≈i t. Since we also have s′ ≈i s, it follows that
s ≈i t. Define f so that f(u) = (u) for u 6= s and f(s) = (s, t). Then (S, s) →f (S, t).
Since s→ t, we have (S, s) →+ (S, t). This completes the proof of part (a).

To prove part (b), suppose not. Then treeS,s ∧©
∧
{(T,t): (S,s)→+(T,t)} ¬treeT,t is

consistent. Straightforward temporal reasoning shows that there must be some u such
that

treeS,s ∧©(ϕu ∧
∧

{(T,t): (S,s)→+(T,t)}

¬treeT,t)(5.3)

is consistent. Now ¬treeT,t is equivalent to ¬ϕt∨
∨
{τ−states t′: t′≈it}Ki¬treeT,t′ . Thus,

it follows that the consistency of (5.3) implies that for each tree T such that (S, s) →+

(T, u), there is a τ -state tT ≈i u such that

treeS,s ∧©(ϕu ∧Ki(
∧

{T : (S,s)→+(T,u)}

¬treeT,tT))(5.4)

is consistent. By part (a), there exists a k-tree T ′ and t′ ∈ T ′ such that (S, s) →+

(T ′, t′) and treeT ′,t′ ∧ ϕu ∧ Ki(
∧
{T : (S,s)→+(T,u)} ¬treeT,tT) is consistent. But this

means that t′ = u. Thus, we have a contradiction, since treeT ′,u ∧ Ki¬treeT ′,tT ′ is
inconsistent.

The general case of (a) follows easily from (b). Part (c) also follows from part
(b), using arguments much like those of Lemma 4.7; we omit details here.

Lemma 5.13. Suppose that the axiomatization includes KT4 and ψ is consistent.
Then there is an acceptable sequence of d-trees such that ψ is true at the root of the
first tree.

Proof. The key part of the proof is to show that given a finite sequence S0 →f0

. . .→fl−1 Sl of d-trees and a σ-state s in Sl such that s ‖− ©ϕ (resp., s ‖− ϕ1 U ϕ2),
we can extend the sequence of trees in such a way as to satisfy this obligation. This
follows easily from Lemmas 5.11 and 5.12. In more detail, suppose s ‖− ϕ1 U ϕ2. Let
S′ consist of all τ -states in Sl, with |τ | ≤ k = |σ|. By Lemma 5.12, we can find a
sequence of k-trees starting with S′ that satisfies this obligation. Using Lemma 5.11,
we can extend this to a sequence of d-trees starting with Sl that satisfies the obligation.

23

The argument in the case that sk ‖− ©ϕ is similar. We can then take care of the
obligations one by one, and construct an acceptable sequence, in the obvious way.

Since ψ is consistent, there must be some tree S with root s0 such that s0 ‖− ψ.
We just extend S as above to complete the proof.

Once we have an acceptable sequence S of d-trees as in Lemma 5.13, we can easily
construct the enriched+ system much as we did in the case of perfect recall. Given a
→-sequence s0 → s1 → . . . the nl-run r derived from it is defined so that re(n) = sn
and ri(n) = Oi(sn)#Oi(sn+1)# . . ., for each agent i and n ≥ 0. Thus, while for
perfect recall we take ri(n) to consist of the agent’s current information up to time
n, for no learning we take ri(n) to consist of the current information from time n
on. The construction stresses the duality between perfect recall and no learning. Let
Rnl consist of all the nl -runs derived from →-sequences that are compatible with S.
Again, the function Σ is given by Σ(r, n) = sn for each n ≥ 0.

Lemma 5.14. Suppose the axiomatization includes KT4. Then (Rnl ,Σ) is an
enriched+ system.

Proof. Again, Conditions 1 and 2 in the definition of enriched+ system follow
immediately from the construction. For Condition 3′, suppose that (r, n) is a point
in the system, Σ(r, n) is a σ-state, and s is a (σ#i)-state with s ≈i Σ(r, n). Suppose
S = S0 →f0 S1 →f1 S2 →f2 By definition, the nl -run r is derived from some
sequence (s0, s1, s2, . . .) of σ-states compatible with S. Suppose Σ(r, n) is in the
interval of this sequence from Sk. Then s must also be in Sk. Let (t0, t1, . . .) be the
(unique) sequence compatible with S that starts at s in Sk. Let r′ be the run derived
from this sequence. Then, by definition, we have Σ(r′, 0) = s and (r, n) ∼i (r′, 0).

Take Inl to be the system obtained from (Rnl ,Σ). By construction, this system
is in Cnl . Now take any ε-state s such that s ‖− ψ, and let r be a run derived from
a sequence compatible with S starting with s. It follows that (I, r, 0) |= ψ. Thus, ψ
is satisfiable in Cnl

m . This completes the proof of Theorem 3.7.

5.5. Dealing with Cnl,pr
m and Cnl,pr ,uis

1 (Theorem 3.8). We now want to
show that S5Um + KT3 + KT4 is sound and complete for KLm with respect to Cnl,pr

m .
Soundness is immediate from Lemmas 5.4 and 5.10.

For completeness, we construct an enriched+ system much as in the proof of
Theorem 3.7, using k-trees. By Lemma 5.13, there is an acceptable sequence S
of d-trees such that ψ is true at the root of the first tree. Given a →-sequence
(s0, s1,), the nl-pr-run r derived from it is defined so that re(n) = sn and ri(n) =
(Oi(s0)#Oi(s1)# . . .#Oi(sn), Oi(sn)#Oi(sn+1)# . . .), for each agent i and n ≥ 0.
Thus, the agents’ local states enforce both perfect recall (by keeping track of all the
information up to time n) and no learning (by keeping track of the current infor-
mation from time n on). Let Rnl,pr consist of all nl -pr -runs that are derived from
→-sequences that have a suffix that is compatible with S. Note that now we consider
→-sequences whose suffixes are compatible with S. The reason we have allowed the
greater generality of suffixes will become clear shortly. Since S is acceptable, it is
easy to see that every such →-sequence must be infinite and acceptable. Again, the
function Σ is given by Σ(r, n) = sn for each n ≥ 0.

Lemma 5.15. Suppose the axiomatization includes KT3 and KT4. Then (Rnl,pr ,Σ)
is an enriched+ system.

Proof. As usual, Conditions 1 and 2 in the definition of enriched+ system follow
immediately from the construction. For Condition 3′, suppose that (r, n) is a point in
the system, Σ(r, n) is a σ-state, and s is a (σ#i)-state. Suppose S = S0 →f0 S1 →f1

S2 →f2 By definition, the nl–pr -run r is derived from a →-sequence (s0, s1, . . .)
24

that has a suffix (sN , sN+1, . . .) that is compatible with S, and Σ(r, n) = sn. There
are now two cases to consider. If n ≥ N , then there exists some k such that sn is in
Sk. Then s must also be in Sk. Let (u0, u1, . . .) be the unique sequence compatible
with S that starts with s in Sk. By Lemma 5.5, there exist a sequence v0 → · · · → vh
of σ#i-states such that vh = s and (v0, . . . , vh) is ≈i-compatible with (s0, . . . , sn).
Consider the →-sequence formed from the fusion of (v0, . . . , vh) and (u0, u1, . . .). By
construction, the nl–pr -run r′ derived from this →-sequence is in Rnl,pr , Σ(r′, h) = s,
and (r, n) ∼i (r′, h).

Now suppose n < N . By Lemma 5.5, there exist (σ#i)-states v0 → · · · → vh
such that vh = s and (v0, . . . , vh) is ≈i-concordant with (s0, ..., sn). Moreover, by
Lemma 5.11, this sequence can be extended to a sequence (v0,vk) that is ≈i-
concordant with (s0, ..., sN). Since sN ∈ SM for some M , we must have vk ∈ SM .
Let (u0, u1, . . .) be the unique sequence compatible with S that starts at vk in SM .
Consider the →-sequence formed from the fusion of (v0, . . . , vk) and (u0, u1, . . .). By
construction, the nl–pr -run r′ derived from this →-sequence is in Rnl,pr , Σ(r′, h) = s,
and (r, n) ∼i (r′, h).

Again, we complete the proof by taking Inl,pr to be the system obtained from
(Rnl,pr ,Σ). By construction, this system is in Cnl,pr and satisfies ψ. This shows that
S5Um + KT3 + KT4 is a sound and complete axiomatization for the language KLm
with respect to Cnl,pr

m .
The fact that it is also a sound and complete axiomatization for the language

KL1 with respect to Cnl,pr ,uis
1 follows immediately from the following lemma.

Lemma 5.16. The formula ψ ∈ KL1 is satisfiable with respect to Cnl,pr
1 (resp.,

Cnl,pr ,sync
1) iff it is satisfiable with respect to Cnl,pr ,uis

1 (resp., Cnl,pr ,sync,uis
1).

Proof. Clearly if ψ is satisfiable with respect to Cnl,pr ,uis
1 (resp., Cnl,pr ,sync,uis

1)
it is satisfiable with respect to Cnl,pr

1 (resp., Cnl,pr ,sync
1). For the converse, suppose

that (I, r∗, n∗) |= ψ, where I = (R, π) ∈ Cnl,pr
1 . For each run r ∈ R, define the

run r+ just as in Lemma 5.3, to be the result of adding a new initial state to r.
Let R′ = {r+ : (r, 0) ∼1 (r∗, 0)}. Define π′ as on R′ as in Lemma 5.3, so that
π′(r+, 0)(p) = false for all primitive propositions p, and π′(r+, n+ 1) = π(r, n). Let
I ′ = (R′, π′). Clearly I ′ ∈ Cnl,pr ,uis

1 , and if I is synchronous, then so is I ′. We claim
that (I ′, r+, n + 1) |= ϕ iff (I, r, n) |= ϕ for all formulas ϕ ∈ KL1 and all r+ ∈ R′.
We prove this by induction on the structure of ϕ. The only nontrivial case is if ϕ is
of the form K1ϕ

′. But this case is immediate from the observation that if r+ ∈ R′,
r′ ∈ R, and (r, n) ∼1 (r′, n′), then since I is a system of perfect recall, we must have
(r, 0) ∼1 (r′, 0), and hence (r′)+ ∈ R′. We leave details of the proof of the claim to
the reader. From the claim, it follows that ψ is satisfiable in Cnl,pr ,uis

1 , and that if ψ
is satisfiable in Cnl,pr ,sync

1 , then it is also satisfiable in Cnl,pr ,sync,uis
1 .

5.6. Dealing with Cnl,sync
m (Theorem 3.9). We now want to show that S5Um+

KT5 is sound and complete for KLm with respect to Cnl,sync
m . Soundness follows from

the following lemma.
Lemma 5.17. All instances of KT5 are valid in Cnl,sync

m .
Proof. Suppose I ∈ Cnl,sync

m and (I, r, n) |= ©Kiϕ. We want to show that
(I, r, n) |= Ki©ϕ. Thus, suppose that (r′, n′) ∼i (r, n). We must show that (I, r′, n′) |=
©ϕ. By synchrony, we must have n′ = n. Moreover, by no learning and synchrony,
we have that (r, n + 1) ∼i (r′, n + 1). Since (I, r, n + 1) |= Kiϕ, it follows that
(I, r′, n+ 1) |= ϕ, and hence that (I, r′, n) |=©ϕ, as desired.

For completeness, we construct an enriched+ system much as in the proof of
25

Theorem 3.7, using k-trees, with an appropriate strengthening of the → relation.
We start by proving the following analogue of Lemma 5.11.
Lemma 5.18. Suppose that the axiomatization includes KT5. If s is a σ-state, t

is a (σ#i)-state, s ≈i t, and s→ s′, then there exists a (σ#i)-state t′ such that t→ t′

and s′ ≈i t′.
Proof. Since ϕs ∧©ϕs′ is consistent, it follows from Lemma 4.3(b) that ϕs0 ∧

©KiΦ+
s′,i is consistent. Moreover, by Lemma 4.3(c), we have that ϕs ‖− Liϕt. Thus,

ϕs∧Liϕt∧©KiΦ+
s′,i is consistent. Using KT5, it follows that ϕs∧Liϕt∧Ki©Φ+

s′,i is
consistent. It follows that ϕt ∧©Φ+

s′,i is consistent. Hence, there is some (σ#i)-state
t′ such that s′ ≈i t′ and ϕt ∧©ϕt′ is consistent. Thus, we have s′ ≈i t′ and t→ t′.

If S and T are k-trees, s ∈ S, and t ∈ T , we define (S, s) →sync,+ (T, t) if S →f T
for some f such that f(s) = (s, t) and f(s′) has length 2 for all s′ ∈ S. We now get
the following simplification of Lemma 5.12.

Lemma 5.19. Suppose that the axiomatization includes KT5, S is a k-tree, and
s is a σ-state in S, where |σ| = k.

(a) If treeS,s∧©(ϕt∧ξ) is consistent, then there exists a k-tree T and t ∈ T such
that (S, s) →sync,+ (T, t) and treeT,t ∧ ξ is consistent.

(b) treeS,s ⇒ ©
∨
{(T,t): (S,s)→sync,+(T,t)} treeT,t is provable.

(c) If treeS,s ∧ ϕU ϕ′ is consistent, then there is a sequence S0, . . . , Sl of k-
trees and states s0, . . . , sl such that (i) sj ∈ Sj, (ii) (S, s) = (S0, s0), (iii)
(Sj , sj) →sync,+ (Sj+1, sj+1) for j = 0, . . . , l − 1, (iv) treeSj ,sj

∧ ϕ is consis-
tent for j = 0, . . . , l − 1, and (v) treeSl,sl

∧ ϕ′ is consistent.
Proof. The proof is like that of Lemma 5.12, using Lemma 5.18 instead of

Lemma 5.11. We leave details to the reader.
We can then define a sync-acceptable sequence of trees by replacing →+ by

→sync,+ in the definition of acceptable sequence of trees. Using Lemma 5.19, we
can show that if the axiom system contains KT5, then we can construct an infinite
sync-acceptable sequence S = S0 →sync,+ S1 →sync,+ S2 →sync,+ . . . of d-trees.
As in Section 5.1, we use an object x not equal to any state. Given a →-sequence
sN → sN+1 → . . . starting at sN ∈ SN the nl–sync-run r derived from it is defined
so that re(n) = sn for n ≥ N , else re(n) = x, and for each agent i, if n ≥ N then
ri(n) = (n,Oi(sn)Oi(sn+1) . . .), else ri(n) = (n, xN−nOi(sn)Oi(sn+1) . . .). Thus, the
local state of the agent enforces synchrony (by encoding the time) and enforces no
learning. Let Rnl,sync consist of all nl–sync-runs derived from →-sequences compati-
ble with S, and define Σ by taking Σ(r, n) = sn for n ≥ N and Σ(r, n) undefined for
n < N .

Lemma 5.20. Suppose the axiomatization includes KT5. Then (Rnl,sync ,Σ) is
an enriched+ system.

Proof. The proof is essentially the same as that of Lemma 5.14. We leave details
to the reader.

We complete the proof of Theorem 3.9 just as we did all the previous proofs.

5.7. Dealing with Cnl,pr ,sync
m (Theorem 3.10). We now want to show that

S5Um+KT2+KT5 is sound and complete for KLm with respect to Cnl,pr ,sync
m . Sound-

ness follows from Lemmas 5.7 and 5.17.
For completeness, we construct an enriched+ system by combining the ideas of

the proofs of Theorems 3.8 and 3.9. Using Lemma 5.19, we can show that if the axiom
system contains KT5, then we can construct an infinite sync-acceptable sequence S
of d-trees. Given a →-sequence s0 → s1 → . . ., the nl–pr–sync-run r derived from
it is defined so that re(n) = sn and ri(n) = (Oi(s1) . . . Oi(sn), Oi(sn)Oi(sn+1) . . .).

26

Thus, the local state of the agent enforces both perfect recall and no learning. It also
enforces synchrony, since the agent can determine n from the length of the first of the
two sequences in its local state. Let Rnl,pr ,sync consist of all nl–pr–sync-runs derived
from →-sequences with suffixes that are compatible with S; again, we define Σ by
taking Σ(r, n) = sn.

Using ideas similar to those in earlier proofs, we can now prove the following
result.

Lemma 5.21. Suppose the axiomatization includes KT2 and KT5. Then (Rnl,pr ,sync ,Σ)
is an enriched+ system. We complete the proof of Theorem 3.10 just as we did the
earlier proofs.

5.8. Dealing with Cnl,sync,uis
m and Cnl,pr ,sync,uis

m (Theorem 3.11). Finally, we
want to show that S5Um + KT2 + KT5 + {Kiϕ ⇔ K1ϕ} is sound and complete for
KLm with respect to Cnl,sync,uis

m and Cnl,pr ,sync,uis
m . Soundness follows easily using the

following result, which is Proposition 3.9 in [8] (restated using our notation).
Proposition 5.22.

(a) Cnl,sync,uis
m = Cnl,pr ,sync,uis

m .
(b) Any formula ϕ in KLm is equivalent in Cnl,sync,uis

m to the formula ϕ′ that
results by replacing all occurrences of Ki, i ≥ 2, by K1.

It follows from part (a) of Proposition 5.22 that the same axioms characterize
Cnl,sync,uis
m and Cnl,pr ,sync,uis

m . Now using Theorems 5.7 and 5.17, the soundness of
KT2 and KT5 follows. The soundness of Kiϕ ≡ K1ϕ follows from part (b).

For completeness, using the axiom Kiϕ ≡ K1ϕ, it suffices to show the complete-
ness of S5U1 + KT2 + KT5 with respect to Cnl,pr ,sync,uis

1 . By Theorem 3.10, this
axiomatization is complete with respect to Cnl,pr ,sync

1 . The result now follows using
Lemma 5.16.

6. Remarks on No Learning. We noted in Section 2 that the definition of no
learning adopted in this paper differs from that used in [5, 8]. We now comment on
the reason for this change and the relationship between these alternative definitions
of no learning.

First, recall from part (d) of Lemma 2.2 that that agent i has perfect recall in
system R if and only if

(∗) for all points (r, n) ∼i (r′, n′) in R, if k ≤ n, then there exists k′ ≤ n′ such
that (r, k) ∼i (r′, k′).

Intuitively, no learning is the dual of perfect recall, so it seems reasonable to define
no learning by replacing references to the past in a definition of perfect recall by
references to the future. This was done in [5, 8], where the definition given for no
learning was the following future time variant of condition (∗), which we call no
learning′, to distinguish it from our current definition: Agent i does not learn′ in
system R if and only if

(∗∗) for all points (r, n) ∼i (r′, n′) in R, if k ≥ n then there exists k′ ≥ n′ such
that (r, k) ∼i (r′, k′).

The following lemma states a number of relations holding between condition (∗∗) and
the other properties we have considered in this paper.

Lemma 6.1.

(a) If agent i does not learn in system R then agent i does not learn′ in system
R.

(b) If system R is synchronous or if agent i has perfect recall in R, then agent i
does not learn in R iff agent i does not learn′ in R.

27

Proof. We first show (a). Suppose that agent i does not learn in R. Assume
that (r, n) ∼i (r′, n′) and let k ≥ n. Since i does not learn, the future local state
sequences at (r, n) and (r′, n′) are equal. It follows that there exists k′ ≥ n′ such that
(r, k) ∼i (r′, k′). Thus, agent i does not learn′.

For (b), it follows from part (a) that it suffices to show the implication from
no learning′ to no learning. We consider the cases of synchrony and perfect recall
independently. In each case, we show that if (r, n) ∼i (r′, n′) then there exists k ≥ n′

such that the sequences ((r, n), (r, n + 1)) and ((r′, n′) . . . (r′, k)) are ∼i-concordant.
It then follows by Lemma 2.3 that agent i does not learn.

Assume first that R is a synchronous system, and that (r, n) ∼i (r′, n′). By
synchrony, we must have n = n′. By no learning′, there exists k ≥ n such that (r, n+
1) ∼i (r′, k). By synchrony, k must equal n+1. It is immediate that ((r, n), (r, n+1))
and ((r′, n′), (r′, n′ + 1)) are ∼i-concordant.

Next, assume that agent i has perfect recall in R, and that (r, n) ∼i (r′, n′). By
no learning′, there exists k ≥ n′ such that (r, n + 1) ∼i (r′, k). By perfect recall,
agent i’s local state sequences (r, n+1) and (r′, k) are identical, as are the local state
sequences at (r, n) and (r′, n′). It follows that the sequences ((r, n), (r, n + 1)) and
((r′, n′), . . . , (r′, k)) are ∼i-concordant.

Thus, in the context of either synchrony or perfect recall, no learning and no
learning′ are equivalent. However, in systems without synchrony or perfect recall, no
learning′ is strictly weaker than no learning, as the following example shows. Consider
the system R = {r1, r2} for a single agent, where the runs are defined by

r1(n) =

 (se, a) if n = 0
(se, b) if n > 0 is odd
(se, c) if n > 0 is even,

where se is some state of the environment, and a, b, c are local states of agent 1, and
similarly

r2(n) =

 (se, a) if n = 0
(se, c) if n > 0 is odd
(se, b) if n > 0 is even.

This system clearly satisfies uis and condition (∗∗), so we have no learning′ (for both
agents). However, agent 1’s future local state sequences from the points (r1, 0) ∼1

(r2, 0) are not ∼1-concordant, so we do not have no learning. Thus, no learning and
no learning′ are distinct in general.

This raises the question of which of variant to take as the definition of no learning
for the cases Cnl and Cuis,nl . The origin of this notion in the literature lies in Ladner
and Reif’s paper [11], where it is motivated as arising in the context of blindfold
games. Their logic LLP assumes perfect recall, so is not decisive on the distinction.
However, it seems that the behavior in the above example is somewhat unnatural
for this application, and the definition we have adopted in this paper better fits the
intuition of a player in a blindfold game following a fixed linear strategy, but with
some uncertainty about timing. It is such examples that in fact led us to use the
current definition of no learning.

It is worth noting that the example above also shows that the axiom KT4 is not
sound with respect to the class of systems satisfying (∗∗). Define the interpretation
π of the propositions p and q on runs r ∈ R by π(r, n)(p) = true iff r1(n) = a
and π(r, n)(q) = true iff r1(n) = b. Let I = (R, π). It is then readily seen that

28

(I, r1, 0) |= K1pU K1q but not (I, r1, 0) |= K1(K1pU K1q). Hence KT4 fails in this
system. (This example is a future time version of an example used in [14] to show
that the axiom KT1 is incomplete for systems with perfect recall.) We have not
investigated the issue of axiomatization using no learning′ rather than no learning in
the two cases where there is a difference—Cnlm and Cnl,uis1 . We conjecture that, while
there will be a relatively clean complete axiomatization in these cases, it will not be
as elegant as the one proposed here. That is, the axiom that captures no learning will
be somewhat more complicated than KT4. This conjecture is in line with our feeling
that no learning is the “right” definition, not no learning′.

We remark that the complexity results of [5, 8, 7] are proved in the context of no
learning′, but it is relatively straightforward to show that the same results hold if we
use the definition of no learning instead.

7. Discussion. While we have looked in this paper at the effect on axiomati-
zation of some combinations of classes of systems and language (48 in all!), there
are certainly other cases of interest. One issue we have already mentioned is that
of branching time versus linear time. Basing the temporal fragment of the language
on branching time yields another 48 logics, whose complexity is studied in [5]. We
would conjecture that the obvious translations of the axioms we have presented here
deal with branching time, with similar proofs of completeness, but this remains to be
verified.

It is worth remarking that our results are very sensitive to the language studied.
As we have seen, the language considered in this paper is too coarse to reflect some
properties of systems. In the absence of the other properties, synchrony and unique
initial states do not require additional axioms. This may no longer be true for richer
languages. For example, if we allow past-time operators [13], we need not only the
additional axioms capturing the properties of these, but also new axioms describing
the interaction of knowledge and time. Suppose that we add an operator 	 such
that (I, r, n) |= 	ϕ if n ≥ 1 and (I, r, n − 1) |= ϕ. Notice that ¬ 	 true expresses
the property “the time is 0” and 	¬ 	 true expresses the property “the time is
1”. Similarly, we can inductively define formulas that express the property “the
time is m” for each m ≥ 0. If time=m is an abbreviation for this formula, then
time = m ⇒ Ki(time = m) is valid in Csync , for each time m.

On the other hand, by adding past time operators we can simplify the axiom for
perfect recall. Introducing the operator S for “since”, we may show that the formula

(Kiϕ)S(Kiψ) ⇒ Ki((Kiϕ)S(Kiψ))

is valid in Cpr . This axiom very neatly expresses the meaning of perfect recall, and a
comparison with KT4 shows clearly the sense in which perfect recall is a dual of no
learning. Techniques similar to those developed in this paper may be used to prove
that this axiom, together with the usual axioms for past time [13] and for knowledge,
yields a complete axiomatization for Cpr .

Besides changes to the language, there are also additional properties of systems
worth considering. One case of interest is the class of asynchronous message passing
systems of [1]. That extra axioms are required in such systems is known ([1] Exercise
8.8), but the question of complete axiomatization is still open.

REFERENCES

29

[1] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi, Reasoning about Knowledge, MIT
Press, Cambridge, Mass., 1995.

[2] R. Fagin, J. Y. Halpern, and M. Y. Vardi, A model-theoretic analysis of knowledge, Journal
of the ACM, 91 (1991), pp. 382–428. A preliminary version appeared in Proc. 25th IEEE
Symposium on Foundations of Computer Science, 1984.

[3] D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi, On the temporal analysis of fairness, in
Proc. 7th ACM Symp. on Principles of Programming Languages, 1980, pp. 163–173.

[4] J. Y. Halpern and Y. Moses, A guide to completeness and complexity for modal logics of
knowledge and belief, Artificial Intelligence, 54 (1992), pp. 319–379.

[5] J. Y. Halpern and M. Y. Vardi, The complexity of reasoning about knowledge and time, in
Proc. 18th ACM Symp. on Theory of Computing, 1986, pp. 304–315.

[6] , The complexity of reasoning about knowledge and time in asynchronous systems, in
Proc. 20th ACM Symp. on Theory of Computing, 1988, pp. 53–65.

[7] , The complexity of reasoning about knowledge and time: synchronous systems, Research
Report RJ 6097, IBM, 1988.

[8] , The complexity of reasoning about knowledge and time, I: lower bounds, Journal of
Computer and System Sciences, 38 (1989), pp. 195–237.

[9] J. Hintikka, Knowledge and Belief, Cornell University Press, Ithaca, N.Y., 1962.
[10] D. Kozen and R. Parikh, An elementary proof of the completeness of PDL, Theoretical

Computer Science, 14 (1981), pp. 113–118.
[11] R. E. Ladner and J. H. Reif, The logic of distributed protocols (preliminary report), in

Theoretical Aspects of Reasoning about Knowledge: Proc. 1986 Conference, 1986, pp. 207–
222.

[12] D. Lehmann, Knowledge, common knowledge, and related puzzles, in Proc. 3rd ACM Symp. on
Principles of Distributed Computing, 1984, pp. 62–67.

[13] O. Lichtenstein, A. Pnueli, and L. Zuck, The glory of the past, in Proc. Workshop on Logics
of Programs, R. Parikh, ed., Lecture Notes in Computer Science, Volume 193, Springer-
Verlag, Berlin/New York, 1985, pp. 196–218.

[14] R. von der Meyden, Axioms for knowledge and time in distributed systems with perfect recall,
in Proc. 9th IEEE Symp. on Logic in Computer Science, 1994, pp. 448–457.

[15] R. Parikh and R. Ramanujam, Distributed processing and the logic of knowledge, in
Proc. Workshop on Logics of Programs, R. Parikh, ed., 1985, pp. 256–268.

[16] A. Pnueli, Linear and branching structures in the semantics and logics of reactive systems, in
Proc. 12th International Colloquium on Automata, Languages and Programming, Lecture
Notes in Computer Science 194, Springer-Verlag, Berlin/New York, 1985, pp. 15–32.

[17] M. Sato, A study of Kripke-style methods for some modal logics by Gentzen’s sequential
method, Publications Research Institute for Mathematical Sciences, Kyoto University, 13
(1977), pp. 381–468.

[18] E. Spaan, Nexttime is not necessary, in Theoretical Aspects of Reasoning about Knowledge:
Proc. Third Conference, 1990, pp. 241–256.

30

