» 3 i
SIAM J. COMPUT. © 1984 Saciety for Industrial and Applied Mathematics
Vol. 13, No. 1, February 1984 0097-5397/84/1301-0006 $01.25/0 |

‘ . )
FORMAL SYSTEMS FOR TUPLE AND EQUALITY i

GENERATING DEPENDENCIES* .

C. BEERI* AND M. Y. VARDI%

Abstract. We develop several formal systems for tuple and equality generating dependencies. There
are three kinds of systems, based upon substitution, tuple elimination and transitivity. We specialize our
systems to several subclasses: total dependencies, template dependencies and binary dependencies. We
also show that finding a formal system for embedded multivalued dependencies is equivalent to solving
the implication problem for that class.
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1. Introduction. One of the important issues in the design of relational database
schemes is the specification of the constraints that the data must satisfy to model
correctly the part of the world under consideration. { .
Of particular interest are the constraints called data dependencies. The first
dependencies to be studied were the functional dependencies [Codd], which were
followed by the multivalued dependencies [Del], [Fagl], [Zan]. Later, several types
of dependencies were investigated in the literature. Recently, several researchers have .
independently proposed a new type of dependencies, tuple and equality generating
dependencies, which generalizes all previously studied types [BV2], [Fag2], [YP].
Intuitively, the meaning of such a dependency is that if some tuples, satisfying certain
equalities, exist in the database, then some other tuples must also exist in the database, .
or some values in the given tuples must be equal. We assume that the database is
many-sorted, i.e., different attributes have different underlying domains.
The implication problem for dependencies is to decide whether a given dependency
is logically implied by a given set of dependencies. This problem is recursively y
unsolvable in general [BV2], [CLM], and is solvable but computationally intractable
if all tuple generating dependencies are total [BV2], [BV4], [CLM]. A proof procedure
for implication of dependencies, called “chase”, was studied in [BV3] generalizing
[ABU], [MMS] (similar procedures were studied in [Pa}, [su1}, [YPD. :
The chase enables us to semi-decide implication. In contrast, a formal system for
dependencies enables us to derive new dependencies from the given ones. The interest
in formal systems has many aspects. First, a formal system provides us with tools to
operate on dependencies, e.g., for equivalence preserving transformations [Ma).
Secondly, a formal system may lead us to discover efficient decision procedures to
the implication problem. For example, the formal system for functional dependencies
of [Arm] has led to a linear time decision procedure for this class [BB], and the formal
system for deriving multivalued dependencies from functional and join dependencies
has led to a quadratic time decision procedure for this case {Va2]. Finally, a formal
system helps us to gain insight into the dependencies. This insight can lead to useful
application, e.g., synthesis of database schemes from functional dependencies [Be].
Formal systems for dependencies have attracted a lot of attention in the last few years,
see for example [Arm), [BFH], [BV1], [PJ], [Sc], [SU1], [SU2], [val]l, [YP].
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It has been demonstrated that dependencies are actually equivalent to sentences
in first-order logic [Nic], and in fact the chase is a variant of a well-known theorem-
proving procedure: refutation by resolution and paramodulation [BV3]. Thus, it might
be argued, there is no need to develop formal systems for dependencies, since any
formal system for first-order logic will do. However, dependencies are just a fragment
of first-order logic, a fragment that seems to be suitable to expressing integrity
constraints of databases, and we would like to have a formal system which would
enable us to infer only dependencies and not general first-order sentences, unlike a
formal system for first-order logic. Finding formal system for fragments of first-order
logicis an active research area in mathematical logic, e.g., a formal system for equations
[Bir] and a formal system for equational implications [Sel].

The basic operations in our formalism are replacing a relation by its image under
some mapping and replacing the image by the source relation. The first operation is
called instantiation in traditional theorem-proving terminology [CL]. While these
operations allow succinct description of complex derivations, they can be replaced by
the much simpler operations of duplicating a tuple (the equivalent of an atomic
formula) and renaming variables. We do not pursue this point of view in this paper,
but the interested reader can easily translate all our formal systems into that equivalent
formalism. '

In a formal proof we have facts and rules. The facts represents specific knowledge
relevant to a particular case. The rules express general knowledge about a particular
subject area and are used as production rules to generate new fact from old ones.
The task of the system is to prove a goal fact from the given ones. Basically, there
are two kinds of systems. In forward systems, the rules operates on the given fact
until a termination condition involving the goal fact is achieved. This is also called a
bottom-up search. In backward systems, the rules operate on the goal fact until a
termination condition involving the given facts is achieved. This is also called top-down
search. As an example consider refutation of Horn sets [HW]. Positive unit refutation
is an example of a forward system, and input refutation is an example of a backward
system. In this paper we have three systems. One of them is a forward system, and
the other two are backward systems. We consider one of the backward systems to be
highly unnatural for reasons to be discussed later.

Though our main interest is in the full class of tuple and equality generating
dependencies, several subclasses are also of interest, e.g., total tuple generating
dependencies, template dependencies and embedded multivalued dependencies. We
address the problem of specializing our formal systems to such subclasses. That is,
when the given dependencies and the goal dependency are all of some subclass, we
want all dependencies in the derivation to be of that subclass. Not all subclasses of
interest are known to have such a specialized formal system.

It is known that equality can be eliminated from first-order logic by adding the
equality axioms: reflexivity, symmetry, transitivity, and substitutivity. This can also
be applied to one-sorted dependencies [BV2]. Since the identity relation is not
many-sorted, e.g., it is reflexive, we can not eliminate equality from our dependencies
which are many-sorted. Nevertheless, in [BV3] it is shown that the role of equality
can be “minimized” in deciding implication. Hence, our approach is to develop first
formal system for tuple generating dependencies, and then, using a theorem of [BV3],
to extend these systems to equality generating dependencies.

The outline of the paper is as follows, In § 2 we define the relational model,
tableaux and dependencies, and we describe the chase procedure to test implication
of dependencies. In §3 we develop formal systems for total tuple and equality
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generating dependencies, viewing a total tuple generating dependency as a tableau
operator. In § 4 we generalize these systems to tuple generating dependencies. In § 5
we address the problem of specializing our systems to several subclasses, and we show
that finding a formal system for embedded multivalued dependencies is equivalent to
solving the implication problem for this subclass. We also show how to “decompose”’
a total tuple generating dependency to a set of “weaker” dependencies. We conclude
with several remarks in § 6.

2. Basic definitions.

2.1. Attributes, tuples and relations. Atributes are symbols taken from a given
finite set U called the universe. All sets of attributes are subset of the universe. We
use the letters A, B, C, -+ to denote attributes and X, Y, - - to denote sets of
attributes. We do not distinguish between the attribute A and the set {A}. The union
of X and Y is denoted by XY, and the complement of X in the universe is denoted
by X.

With each attribute A is associated an infinite set called its domain, denoted
DOM (A). The domains of distinct attributes are assumed to be disjoint. The domain
of a set of attributes X is DOM (X)=Uascx DOM (A). An X-value is a mapping
w:X ->DOM (X), such that w(A)e DOM (A) for all A e X. An X-relation is a non-
empty set (not necessarily finite) of X -values. If X = U then we may omit it for
simplicity. A tuple is a U -value. We use a, b, ¢, * * * to denote elements of the domains,
s, t,u, - - - to denote tuples, and I, J, - - - to denote relations.

For a tuple w and a set Y < U we denote the restriction of w to Y by w[Y],
We do not distinguish between w[A], which is an A-value, and w(A), which is an
element of DOM (A). Let I be an X -relation, and let Y < X, Then the projection of
I on Y, denoted I[Y), is a Y-relation I[Y]={w[Y]: w e I}. The set of all attribute
values in an X -relation I is VAL (I') = Ua<x I[A]. For an X -value w, VAL (w) stands
for VAL ({w}).

2.2. Tableaux. A valuation is a partial mapping 4#:DOM (U)-» DOM (U) such
that if h(a) is defined then h(a)e DOM (A) for all Ae U and a e DOM (A). The
valuation & can be extended to tuples and relations as follows. Let w be a tuple; then
h(w)is h e w (i.e., h composed with w). Let I be a relation; then A(I)={h(w): w e I}.
We say that « is a valuation on a tuple w (a relation I) if « is defined exactly on
VAL (w) (VAL (I). Let a be a valuation on a relation I, and let J be a relation. An
extension of h to J is a valuation on I UJ that agrees with 4 on VAL (I).

A tableau [ASU] is a pair T = (w, I'), where w is a tuple and I is a finite relation,
such that VAL (w)< VAL (I). T defines an operation on relation as follows:

T(J)={h(w): h is a valuation s.t. ()= J};

i.e., T(J) is the set of images of w under all valuations that map every tuple of I to
some tuple of J. Observe that J < T(J).

Example 1. Let U={A,B}, DOM(A)={a0,al,--:}, and DOM(B)=
{b0, b1, - -}. Let I be the relation {w1, w2, w3}

A B
wl: a0 b1
w2: al b1 .

w3: al b0
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Let w be the tuple

A B
Ta0_ 50

Now T ={w, I} is a tableau. Let J be the relation:

A B
a0 b0
al b0
al b1
a2 bl
a2 b3

T(J) is the relation:
A B
a0 b0
al b0
al b1
a2 b1
a2 b3
a0 b1
al b3
a2 b0

Clearly, the values in a tableau serve as formal variables, and therefore can be
consistently renamed.

LemMa 2.1 [ASU]. Let (w, I) be a tableau, and let h be a one-to-one valuation
on I. Then, for every relation J, we have {w, I){J) = (h(w), R(INJ).

Let w be any tuple, and consider the tableau (w, {w}). Clearly (w,{wh)=1I for
any relation I; i.e. (w, {w}) defines the identity operation. We will denote this tableau
as 1.

We now show that the set of tableau operations is actually a monoid by demon-
strating that it is closed under composition.” Let I be a relation and let u and v be
tuples; then I(u/v) is the result of substituting v for u in I. Formally, we define a
one-to-one valuation & on I U{u} as follows: h(u[A])=v[A]for all Ae U, and h is
the identity on all other values. Now we define I(u/v) as h(I). If {u, I) is a tableau
and VAL (v)NVAL (I)= &, then by Lemma 2.1 for any relation K, (u, IK) =
(v, I(u/v))(K). Let I be a finite nonempty relation, I ={ws, - -, W, }. I can be viewed
as a mapping from tableaux to relations as follows. Let (u, J ) be a tableau. We first
form m distinct copies of (u, J): {u1,J1), - * =, {4im Jm), by renaming of values so that
no value from {u;}UJ; occurs either in I or in {u;}UJj, if i#j. Now I(u,J) is
U= Ji(ui/ wi).

LEMMA 2.2. For any relation K :

(1) If h is a valuation such that h(I(u, J)) S K, then h(D) = {u, J)K).

(2) If h is a valuation on I such that h(I)c {u, JYK), then there is an extension
h' of hto I(u, J) such that h'(I(u,J)) =K.

Proof.

(1) Assume that A(I(u,J))< K. Then h(J;(ui/wi)) € K, for 1=i{ =m.Thus, h(w;)e
(wi, Ji s/ wNK) = (u, (K. Le., h(I) = (u, JHK).

2 This result was independently shown in [FMUY] by a different technique.
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(2) Assume that A is a valuation on I such that A(I') < (u, J)(K). Thus, there are
valuations hy, - - -, h,, such that a;(w;) = h(w;) and h(J;(u;/w;)) < K. But {u;, J;) and
(u;, J;) share no value if i #, so there is a valuation A’ on I(u,J) which agrees with
h; on J;(u;/w;). It follows that k' is an extension of A and h'(I(u,J))<K. O

LEMMA 2.3. Let (w,I) and (u,J) be tableaux. Then, for every relation K,
w, I) (u, INK)) ={w, I'(u, ))(K).

Proof. Let t €{w, I(u, J))(K). That is, there is a valuation 4 on I(u, J) such that
h(I(u,J))cK and h(w)=t. By Lemma 2.2, h(I) = {(u, JXK), so t € {w, I)({(u, J}K)).

Let t€(w, I)((u, J)K)). That is, there is a valuation # on I such that h(I)<
(u,J)K) and h(w)=t. By Lemma 2.2 there is an extension h' of h to I(u,J ) such
that ' (I (u, J)) < K, so te{w,J(u, I¥K). 0O

We denote (w, I'(u, J)) by {w, I)o{u, J).

Example 1 (continued). To construct T+ T = T we first form three distinct copies
of T:

A B A B A B
ui: a2 b2 u: a4 b4 us: ab b6

a2 b3 a4 b5 a6 b7 .
Ji: a3 b3 J2:  a$S bS Js: a7 b7

a3 b2 as b4 al b6

Now we form J;(u;/ w;):
J1(ui/wy) Ja(uz/w>) J3(ua/ws)

A B A B A B
a0 b3 al bS5 al b7
a3 b3 a5 bSs al b7
a3l bl a5 bl al b0
Now we get that T2 = (w, J), where J is:

A B

a0 b3

a3 b3

a3 b1

al bS5

a5 bS .

aS b1

al b7

al b7

a7l b0

Let Ty, T, be tableaux. We say that T is covered by T, denoted Ty =T,, if
T (I)< To(I), for every relation I.

LemMMA 2.4. [ASU] Let (u,I) and (v,J) be tableaux. The following conditions
are equivalent:

(1) (u, I)=(v,J).

2) ue(v,JXI).

(3) There is a valuation h on J such that h(J) < I and h(v) = u.

Proof.

(1) = (2). Assume that (u, I)=(v,J). Then (u, I(I)<(v,J)I). But clearly u e
(u, IX{I), 50 u €{v, J)I).
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(2) = (3). Assume that u (v, J)I). By definition there is a valuation h on J
such that A(J)< I and h(v) =u.

(3)=> (1). Assume that h(J) ! and h(v)=u. Let te{u, I)K). Le., there is a
valuation g on I such that g(I)c K and g(u)=t. But then geh is a valuation on J
such that geh(J)< K and goh(v)=g(u)=t,s0 te(v,J}K). O

Put otherwise, {u, I}= (v, J) iff there are a valuation h on J and a relation I’,
such that u = A(v) and I = h(J)UI'. Thus, covering of tableaux can be easily axiomat-
ized, answering a question posed by [ASU]. Searching for the appropriate valuation
h can be quite difficult, since testing covering of tableaux is NP-complete [ASU], [BV4].

Example 1 (continued). To show that T =T?2, we compute T =T(TI))
and get:

A B

a0 bl
al b1
al b0
a0 b0

NowweT*(I),so T= T2. However T(J) is:

A B
a0 b3
a3 b3
a3 bl
al b5
aS bSs
a5 b1
al b7
al b7
al b0
a0 bl
al b1
al b0

Now we have that weT({J), so T= T2. We leave it to the reader to check that the
powers of T form a strictly increasing (with respect to containment) sequence of
tableaux.

2.3. Dependencies. For any given application only a subset of all possible rela-
tions is of interest. This subset is defined by constraints which are to be satisfied in
the relations of interest. A class of constraints that was extensively studied is the class
of dependencies.

A tuple generating dependency (tgd) says that if some tuples, satisfying certain
equalities exist in the relation, then some other tuples (possibly with some unknown
values), must also exist in the relation. Formally, a tgd is a pair of finite relations
(I', I. 1t is satisfied by a relation J if for every valuation h on I such that h(I)cJ
there is an extension A’ of k to I' so that h'(I') = J.

Multivalued dependencies (mvd) [Fagl), [Zan] are tgd’s of a special form. An
mvd is a tgd ({w}, I), where |I|=2 and VAL (w)c VAL (I). It is usually written
X - Y, where X ={A: |I[[A]|=1} and Y ={A: w[A]=u[A]} for some tuple uel.
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An mvd is an example of a total tuple generating dependency (ttgd). A tgd (I',I) is
total if VAL (I')< VAL (I). In this case we can assume a simpler form for the tgd.

LEMMA 2.5. {BV3] Let (I',I)beatigd, I' ={w1, " - -, wnm}, and let J be a relation ;
then J satisfies (I', I') if and only if it satisfies {w;}, I) forall 1=i=m.

Thus, we can assume without loss of generality that every ttgd is of the form
{w}, I}, and, since J satisfies the ttgd ({w}, I} iff (w, INJ)=J, we will not distinguish
between ({w}, I} and (w, I'), and treat it both as a tableau operation and a ttgd. The
exact meaning will be clear from the context.

A class of dependencies that lies between the class of ttgd’s and the class of mvd s
is the class of join dependencies. We will not deal with join dependencies in this paper.
Formal systems for join dependencies are studied in [BV1], [Sc], [Val].

An equality generating dependency (egd) says that, if some tuples satisfying certain
equalities exist in the relation, then some values in these tuples must be equal. Formally,
an egd is a pair {(ai, a2), I'), where a; and a, are A-values for some attribute A, and
I is a finite relation such that a;, a;€I[A]. We also call such an egd an A-egd. A
relation J satisfies {(ai, az), I) if for every valuation h such that A(I)cJ we have
h(ai) = h(a,). Note that if a, = a, then {(ay, a,), I) is satisfied by every relation.

Functional dependencies (fd) [Codd] are egd’s of a special form. An fd is an egd
{(a1, a2), I), where |I|=2 and {a;, a;}=I[A). It is usually written X »A, where

={B:|I[B]=1}.

Example 2. Let U={A,B,C,D}, DOM(A)={a0,al,:- -}, DOM(B)=
{60, b1, -} etc. Let I and J be the relations

A B C D A B C D
I. a0 b0 c1 dO J: a0 b0 b0 dO .
a0 b1 c0 d1 al b0 0 d1

Let u and v be the tuples:

A B C D

u: a0 b0 ¢0 dO
v: al b0 ¢0 dO

Let d; be the ttgd (u, I). d, is equivalent to the mvd A->> ABD. Let d; be the egd
{(a0, al),J). d, is equivalent to the fd BC » A. {{u, v}, I) is a tgd.

A dependency is trivial if it is satisfied by every relation.

LEMMA 2.6. [BV3]

(1) The egd {(a1, a2), I) is trivial if and only if a; = a,.

(2) The ttgd {w, I} is trivial if and only if w e I.

(3) The tgd (I',I) is trivial if and only if there is a valuation h on I UI' which is
the identity on I such that h(I'Yc I.

2.4. Implication of dependencies. For a set of dependencies D we denote by
SAT (D) the set of relations that satisfy all dependencies in D. D implies a dependency
d, denoted D =d, if SAT (D)< SAT (d). That is, if d is satisfied for every relation
which satisfies all dependencies in D. The implication problem is to decide for a given
set of dependencies D and a dependency d whether D i=d. In general the implication
problem is recursively unsolvable [BV2], [CLM]. If, however, D consists of egd’s and
ttgd’s then the problem is solvable. A proof procedure® for the implication problem—

3 We distinguish between a decision procedure which always halts, and a proof procedure which may
run forever if the answer to the decision problem is negative.
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the chase—was developed in [BV3] generalizing [ABU], [MMS]. (Similar procedures
were studied by [Pa], [SU1], [YP].) In the case that D consists of egd’s and ttgd’s this
procedure is a decision procedure.

In the sequel we use D to denote finite sets of dependencies, and we use d and
e to denote single dependencies.

Intuitively, to test whether D implies (I', I) (or {(a, a2), I)), we “chase” I by D
into SAT (D) and then check if I' is in I (or if a, and a, are identical in I). Consider
first the case that all dependencies are ttgd’s. A chase of I by D is a sequence of
relations Io, I1, - - - such that I =I, and I, is obtained from I; by an application of
a chase rule. To each ttgd in D there corresponds a TT -rule:

TT-rule (for a ttgd {w, J) in D): I;., is {w, I)I)).

Example 2 (continued). Consider the ttgd (u, I). The effect of the TT -rule for
this ttgd on a relation J is as follows: if ¢; and ¢, are tuples in J such that tlAl=1[A],
then add to J the tuple ¢ defined by {[ABD]=1[ABD]and t{[C]=1[C].

We assume that for all j =0, I;.; #I;. Thus, the chase is a strictly increasing
sequence, and we have: ) ,

LEmMA 2.7. [BV3] All chases of I by D are finite and have the same last relation,
which is in SAT (D). QO

This unique last relation is denoted chasep (I). It can be used to decide implication.

THEOREM 2.1. [BV3] Let D be a set of tgd’s, and let {w,I) be a ttgd. Then
D={(w, I if and only if w e chasep(I). 0O

Example 1 (continued). Let D be {{w,J)}, and let d be (w,I). To show that
D =d, we compute chasep (I). Io is just I. Iy is {w, J)lo): '

A B
a0 b1
al »1
al b0
a0 b0

The reader can verify that (w, J)(I1) = I, so chasep (I') = I, and, since w € I, D =d. 0

Let us now admit also nontotal tgd’s. Trying to generalize our TT-rule to tgd’s
we encounter difficulties, because the new tuples, whose existence in the relation is
implied by the existence of some other tuples, are only partly known. The solution
is to replace each unknown value by a new distinct value. Let (I’, I) be a tgd and h
a valuation on I. A distinct extension h' of h to I' is an extension k' of h to I', where,
for all 2 € VAL (I')— VAL (I), k'(a) is a new distinct value. (Since there is an infinite
supply of values, we can always choose this new value so as to avoid all possible name
clashes.) Our generalized chase rule is now:

T-rule (for some (J', J) in D): let h be a valuation on J such that A(J) < I;
but for no extensions g of 4 to J' we have that g(J')<I;, and let fbea
distinct extension of & to J'. I;,, is [FUf(J').

Unlike the TT -rules, the T-rules are nondeterministic, since they depend on the
choice of A. Since this rule introduces new values, the chase may be infinite.

Example 2 (continued). Consider the tgd ({v}, I). The effect of the T-rule for
this tgd on a relation J is as follows: for some tuples ¢, and £, in J such that t[A]=t[A]
but there is no tuple ¢ in J with t{{BD]=t, and t{[C]=1t,, add such a tuple ¢ to J, with
t[A] being some new value.
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THEOREM 2.2 [BV3]. Let D be a set of tgd’s, and let (I',I) be a tgd. Then
D=, I) if and only if there are a chase of [ by D: Iy, I, * +, an element I, of this
chase, and a valuation h that is the identity on I such that h(I'Y < I,. O

Let us now admit also egd’s. It seems that we need another chase rule for egd’s,
and indeed in [BV3] such a rule is used. However, it is also shown there how the use
of this rule can be avoided.

Let e be an A-egd ((as, a2), I). Let wy be a tuple such that wi[A]=a,, and for
all BeA, we have wi[B]¢I[B]. Let w, be a tuple such that wy[A]=a, and
wa[A]=wi[A]. Weassociate with e twottgd’s. e, is (w1, T U{w2}), and esis(wa, T U{w}).
Intuitively, e, states that, given I, wherever a, appears a, also appears. More precisely,
if a relation contains A (), then for each tuple in it which contains & (a.) there exists
a tuple identical to it except that A(a;) is replaced by h(a,). Similarly, e, states that
wherever a, appears, a, also appears. Let D* be the result of replacing each egd e in
D by e; and e,. The idea is that instead of saying that two values are equal, we say
that they “look the same from within the relation”.

Example 2 (continued). Let e be {(a0, al),J). e stands for the fd BC » A. wy,
and w; are the tuples:

A B C D

wi: a0 bl ¢l d2
wa: al bl ¢l d2

€y is (Wl,J U{Wz}), and eér is <W2,.’ U{W1}>.

THeoREM 2.3 [BV3].

(1) eEeyand eke;.

(2) Letd be a tgd, D =d if and only if D*\=d.

(3) Let e be an A-egd ((a1, az),I). Then D=e if and only if there is a chase of I
by D*. I, I, -+, an element I, of this chase, an A-egd {(a3, as),J) in D, and a
valuation h on J such that h(J) = I,,, h(as) = a1, and h(as) = a,.

(4) Let e be a nontrivial egd. Then D=e if and only if D*=e,, and there is a
nontrivial A-egd in D.

We will rely upon Theorems 2.1, 2.2, and 2.3 in developing formal systems for
dependencies.

3. Formal systems for ttgd’s and egd’s. A formalsystem for a family of dependen-
cies consists of axioms and inference rules. The axioms are schemas of trivial dependen-
cies, €.g., the reflexivity axiom for fd’s [Arm] and mvd’s [BFH]. The inference rules
specify whether a dependency is inferable from some premises, e.g., the transitivity
rule for fd’s [Arm] and mvd’s [BFH]. If the number of premises in the rule is bounded
then the rule is said to be bounded. Let ¥ be a class of dependencies, and let F be
a formal system. A derivation of a dependency d from a set of dependencies D by F
in ¥ is a sequence of dependencies from ¥: do, d1, - * * , da, With d, = d, each of which
is either an instance of an axiom of F, a member of D, or is inferrable from earlier
d;’s by one of the inference rules of F. We say that d is derivable from D by F in ¥,
denoted D gyd, if there is a derivation of d from D by F in V. If F and V¥ are
understood from the context, then we simply write D-d. F is sound for ¥ if for
every D c ¥, d € ¥ we have that D -gyd implies D =d, and is complete for V¥ if for
every D c¥, d e ¥ we have that Dt=d implies D l-gyd. To show that F is sound
suffice it to show that for every d; in a derivation of d from D in F, D E=d,. That is,
if d; is an instance of an axiom then it is trivial, i.e., the axioms are sound, and if d;
is inferable from d;, - -, d;, then{d,,- - -, d; }=d, i.e., the inference rules are sound.
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There are two ways of looking at inference rules. An inference rule can be defined
as a recursive predicate saying whether a dependency is inferable from the premises,
or it can be defined as a recursive function giving the inferred dependency in answer
to the given premises. In the remaining parts of this section we exhibit several formal
systems for the family of ttgd’s and egd’s, usually viewing inference rules as predicates.
In § 4 we exhibit formal systems for the family of tgd’s and egd’s, usually viewing
inference rules as functions.

3.1. Tableau composition. Our first formal system consists of one axiom and two
inference rules. Its completeness is based upon the following lemma.

LEMMA 3.1. Let D be a set of tigd’s, and let T be a ttgd. Then D =T if and only
if there is a sequence Ty, -, Tp, 1 =0, of tableaux from D such that T,o- - o T1ZT.
(For n =0 the composition is defined as 1)

Proof. D={w,I) iff (by Theorem 2.1) wechasep(l) iff there is a sequence
Ty, -+, Tw n =0, of tableaux from D such that w e chasep ()= T (- - - (TWI)) - - ) =
T,o- - -oTy(I)iff (by Lemma 2.4) Ty, - oTiz(w,I). O

We present now the system TT:

TTDO (triviality): H(w, {w}).

TTD1 (covering): {u, I)t(v, 1) if (v, J) = (u,I).

TTD?2 (composition): {u, I), (v, J)(u, I Yolv,J).

TTDO is analogous to the J-axiom of [BV1], [Val], TTD1 is analogous to their
covering rule, and TTD2 is analogous to their projection-substitution rule.

TueoreM 3.1. The system TT is sound and complete for ttgd’s.

Proof.

Soundness. (w, {w}) is a trivial ttgd by Lemma 2.6.

Suppose that {(v,J)=(u,I) and KeSAT ((u,I)). Then K c(v,J)K)<s
(u, IY(K)=K. So K € SAT ({v,J)), and TTD1 is sound.

Suppose now that K € SAT ((u, I ), (v, 7)). Then

K < (u, D)oo, INK) = {u, Do, IIK)) = (u, K) =K.

So K € SAT ({u, I)o{v, J)), and TTD2 is sound.

Completeness. Suppose that D E=(w,I). By Lemma 3.1, there is a sequence
T,, - - -, Ta n =0, of tableaux from D such that T}, - -oT,; =(w, I). By n —1 applica-
tions of TTD2 (or one application of TTDO) we get DWT,o---oTh, and applying
TTD1 we get DH(w,I). O

3.2. Tableau simplification. Rule TTD2 enables us to derive a “big” ttgd from
«smaller” ones. In this section we introduce a rule which enables us to derive from
given ttgd’s a ttgd of reduced size.

We now present the system TT>, which has one axiom and one inference rule:

TTDO (triviality): H{w, {w}UI).

TTD3 (simplification): {u, I), (v, (u, DJ W (v, J).

Rule TTDO is a stronger version of TTDO. By Lemma 2.6, it characterizes all
trivial ttgd’s. Rule TTD3 has no analogue in the formal systems for join dependencies
in [BV1], [Sc], [Vall.

THEOREM 3.2. The system TT; is sound and complete for ttgd’s.

Proof.

Soundness. (w, {w}UI) is a trivial ttgd by Lemma 2.6. To prove that rule TTD3
is sound we have to show that D =(v,J), if D ={(u, I), (v, (u, I Y}J))}. We compute a
chase of J by D. Jo'is J, Jy is (4, I)Jo)= (u, IMJ), and J is (v, (u, DUNUH) =
(v, (u, I )u, I)T)). Thus, vel, S chasep(I), and D ={v,J).
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Completeness. Suppose that D =(w, I). By Theorem 2.1, there is a sequence
Ty,- -+, T, n=0, of tableaux from D such that we T,(: - - () - - ). By TTDO',
D+ (w, T,(- - - (T1(I) - - )}, and n applications of TTD3 give D(w, I). O

3.3. Tablean transitivity. Our third system TT; consists of rule TTDOQ' from the
previous section and rule TTD4, which is reminiscent of the transitivity rule for fd’s
and mvd’s but unlike them is not a bounded rule. Rule TTD4 is analogous to rule
JD5 for join dependencies of [BV1], [Val].

TTD4 (transitivity). (w, I), (us,J), * « + , {tm, J){u, J), if there is a valuation A
such that

h)<{us, *+,un}and h(w)=u.
The condition in the rule can be reformulated as u € (w, I){{uy, - - -, Um}).

To prove completeness we use the following observation.

LEMMA 3.2, Let D be a set of ttgd’s, and let I be a finite relation. Then chasep(l) =
{w: DE=(w, I)}. A

Proof. By Theorem 2.1, w echasep(I) iff DE=(w,I). 0O

THEOREM 3.3. The system TT; is sound and complete for ngd’s.

Proof.

Soundness. To prove that TTD4 is sound we have to show that D =(u, J), if
D ={w,I),(us,J),***,(tmJ)}, and there is a valuation % such that h) e
{u1, -, um} and h(w)=u. We compute a chase of J by D. Jo is J, J; is (ui, J)(Ji-1),
for 1=ism, and Joms1 is (w,I)J,n). Clearly, {u, ", um}SJm 50 u €Jm+1 S
chasep(J), and D =(u, J).

Completeness. By Lemma 3.2, suffice it to show that for every u € chasep(J )s
Dt(u,J). Let Jo, - -, J, be a chase of J by D. We show by induction on i that for
every ueJ, we have DH(u,J). Jo is J, so if ueJ, then D +(u,J) by rule TTDO'.
Suppose now that the assumption holds for J,={uy,  * -, um}. Let u €Ji1s. That is,
there is a ttgd (w, I)e D, and a valuation 4 such that A(I)<J, and h(w)=u. By the
induction hypothesis, D F(us, J), for 1=k =m, so D+ (u, J) by rule TTD4. O

3.4. ttgd’s and egd’s. Using Theorem 2.3 we can easily extend the formal system
for ttgd’s of the preceding sections to deal with egd’s as well.

We first present rules that deal only with egd’s.

EDQO (triviality). —((a, a), I}, if a € VAL (I).

With an eye to Lemma 2.4 we define covering for egd’s. An egd (a1, a3), I}
covers an egd ((as, as), J), denoted ((as, as), J) = ((a1, a,), I), if there is a valuation %
such that h(I) < J, h(a,) =as, and h(a,) = a..

ED1 (covering): (a1, a2), I)((as, a4), J), if {(as, as), J) = (a1, az), I).

LEMMA 3.3. Rules EDO and ED1 are sound.

Proof. The soundness of EDO follows from Lemma 2.6, and that of ED1 from
Theorem 2.3. O

The next rule enables us to infer ttgd’s from egd’s. Recall that with each egd e
we associate two ttgd’s e; and e,.

ETTDO (translation): ¢ e, e —e,.

LEMMA 3.4. Let F be any sound and complete formal system for ttigd’s, and let
F' be FU{ETTDO}. If D is a set of ttgd’s and egd’s, then D —p(w, I) if and only if
D=(w,I).

Proof.

Only if. We have to show that rule ETTDO is sound, but this follows immediately
from Theorem 2.3.
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If. Suppose that D=(w,I). By Theorem 2.3, D*=(w, I), so by assumption,
D*(w, I). But D ~D* by rule ETTDO. The claim follows. O

All the formal systems in the sequel include EDO and ETTDO. Thus, in view of
Lemmas 2.6 and 3.4, in order to prove completeness it suffices to consider implication
of non-trivial egd’s, and we can also use the fact that D etTDo D * Without mentioning
it explicitly.

We present now three inference rules analogous to TTD2, TTD3, and TTD4
respectively.

ETTD1 (composition). {(a1, az2), I}, (u, J){(a1, a2), [ (u, J)).

ETTD?2 (simplification). (u, I), {(a1, az2), {u, DU )){(a1, a2), J).

ETTD?3 (transitivity). ((as, as), I), (U1, J), * * * 5 (ttms J)={(a1, @2), J), if there is a
valuation A such that A(I) < {uy, ' * *, Um}, h(as) =ay, and h(as) = az.

Let ETT; be the system TT; U{EDO, ED1, ETTDO, ETTD1}, let ETT be the
system TT,U{EDO, ED1, ETTDO, ETTD2}, and let ETT; be the system TT5U
{EDO, ETTDO, ETTD3}.

THEOREM 3.4. The system ETT; is sound and complete for ttgd’s and egd’s.

Proof.

Soundness. We have to show that rule ETTD1 is sound. Let K¢
SAT ({((a1, a2), I), (v,J)), and suppose that h(I(v,J))< K. By Lemma 2.2, h(l)c
(v, JK) =K. It follows that h(a;) = h(az) and K € SAT ((a4, a2), I (v, J)).

Completeness. Suppose that D ={(a1, az), I'). By Theorem 2.3, there is a sequence
T., -+, T, n=0, of tableaux from D*, an egd ((as, a4), J) from D, and a valuation
h onJ such that A(J) S To(-+ « (W) * + ), h(as) =a,, and h(as) = az. Let T,o- - - T}
be (4, K). By rule TTD2 or TTDO, D (i, K), so by ETTD2, D {(as, as), J (4, K)).
But, by Lemma 2.2, there is an extension &’ of & to J(u, K) such that A'(J(u, K)) L.
It follows that

((ala a2)9 I) = <(a39 a4)s J(u, K»’

and by rule ED1, D+{(a;, az), I). O

The proofs of Theorems 3.5 and 3.6 are analogous to the proof of Theorem 3.4,
and are left to the reader.

THEOREM 3.5. The system ETT, is sound and complete for ttgd’s and egd’s.

THEOREM 3.6. The system ETT; is sound and complete for ttgd’s and egd’s.

Up to now we have referred only to clauses (1), (2) and (3) in Theorem 2.3. By
referring to clause (4) in that theorem we get rule ETTD4, which is more flexible
than ETTD1, ETTD2, and ETTD3 in the sense that it can be combined with any
sound and complete system for ttgd’s to give a sound and complete system for ttgd’s
and egd’s.

ETTID4: d, e e, if d and e are A-egd’s, and d is nontrivial.

THEOREM 3.7. Let F be a sound and complete system for ttgd’s, and let F'
be FU{EDO, ETTDO, ETTD4}. Then F' is a sound and complete system for tigd’s
and egd’s.

Proof.

Soundness. We have to show that rule ETTDS is sound, but this is immediate
from Theorem 2.3,

Completeness. Suppose that D =e, where e is a nontrivial A-egd. By Theorem
2.3, D*k=e4, and there is a nontrivial A-egd d in D. By assumption D*|-e;, so by
rules ETTDO and ETTD4, D+e. O
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3.5. Discussion. We refer now to the forward/backward classification of our
formal systems. In deriving (w, I') from D, w is the goal fact, and the tuples of I are
the given facts. The dependencies in D are the production rules. The system TT; is
clearly a forward system. Starting with the tuples of I, one generates additional tuples
(facts) until the goal tuple is generated. Actually, this is a direct simulation of the
chase. In contrast, the system 77, is a backward system where the rules operate on
a collection of goal tuples X, Initially, K is just {w}. The operation of a ttgd (u, J)
from D on the set of goal tuples is to replace a tuple v €K by J(u/v). The process
terminates when there is a valuation h which is the identity on w such that h(K)<I.

The system 7T, is another type of backward system. It starts with guessing an
initial collection of facts that includes also the goal fact. This collection is justchasep (I).
The operation of a ttgd (i, J) from D on this collection of guessed facts is to eliminate
facts that are implied by other facts, i.e., replacing (u, J)(K) by K. The termination
condition is that all the remaining facts are given ones, viz., members of I, It is the
initial guess of all facts that makes this system highly unnatural. While in the other
systems one starts from the problem (w or I') and then has to guide the production,
there seems no natural way of guessing chasep () “straight from the blue”’.

These observations extend to the systems ETT,, ETT,, and ETTs.

Let us refer now to the length and size of the derivations in our formal systems.
(By the size of a derivation we mean the number of symbols in the derivation.) If
D =(w, I), then for all chases of I byD: I, I,--- I, = chasep () we have w e I,,. In
[BV3] we show that both r and the size of the I;’s can be exponential in the size of
I. Thus, it is clear that the derivations that were constructed in the various complete-
ness proofs can be of length and size exponential in the size of D and I, since they
all simulate the chase, directly or indirectly. Can we construct smaller or shorter
derivations?

The answer is probably negative. In [Va3] it is shown that, given a derivation in
any of the above systems, one can translate it into a derivation in any of the other
systems with at most a polynomial increase in the length and size of the derivation.
Furthermore, given a derivation in the system TT; whose length is polynomial in the
size of D and I, one can construct another derivation whose size is polynomial in the
size of D and I. Now, for a sequence dy, * - -, d,,, one can check in space that is
polynomial in the size of the input, whether it is a derivation of d from D by any of
the aforementioned formal systems. If we could bound the length of the derivations
by a polynomial in the size of D and 1, it would follow that the set {(D, d ):Dkd}is
in PSPACE. This is quite unlikely, since it is shown in [CLM] that this set is logspace
complete in EXPTIME.

4. Formal systems for tgd’s and egd’s. The completeness proof for the systems
in the previous section used the fact that chasep (I) = T,,(- - - (T, (I)- - -). Allowing tgd’s
in D, that is no longer true. Nevertheless, we will be able to generalize our systems
to deal with tgd’s, using the essential ideas underlying them.

Let (I, I') be a tgd. It can be viewed as an implicational constraint where I serves
as the antecedent and I’ serves as the consequent, saying roughly, that if I can be
“‘embedded” in a relation J then so can be I' 4 We partition the set of valuesin T U T’
into two sets. The set of existential values in (I',I)is EX (I', I) = VAL (I'Y-VAL (1),
and the set of universal values is the set VAL (I). (The source for this terminology
is the way dependencies are written as first-order sentences. See [Fag2], [Va3]) It is

* Indeed, tgd’s and egd’s are called embedded implicational dependencies in [Fag2].
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clear that existential and universal values play completely different roles in the “‘mean-
ing” of (I',I). If h is a valuation on I then to extend it to I’ we have to define it on
EX (', I).

4.1. Substitution. Studying rule TTD2, we observe that the basic operation there
is that of replacing, when given (w, I') and (u, J),a tuple v in I by J (u/v), because the
existence of J(u/v) entails the existence of v. We generalize that to tgd’s.

We present now the system T7:

TDO (triviality). —(I', I'), if there is a valuation k which is the identity on I such
that h(I') < I

TD1 (collapsing). {I', I)(h(I"), h(I)), if h is a valuation such that hlex 1) is a
one-to-one mapping into EX (A (I"), h(I)).

TD2 (augmentation). (', )", TUJ),if EX(I',])NVAL (J) = &.

TD3 (projection). {I' UJ, I)=(I', I).

TD4 (substitution). (', TUJ", ', =T, 1UT), if VALUI)NVAL{J )<

VAL (J) and EX{I', JTUJ)YNVAL (J)= .

Rule TD3 has no analogous rule for ttgd’s. Rule TDO generalizes rule TTDO,
rules TD1 and TD2 generalize rule TTD1, and rule TD4 generalizes rule TTD2.

THEOREM 4.1. The system T is sound and complete for tgd’s.

Proof.

Soundness. TDO is sound by Lemma 2.6.

Let JeSAT ({I',I)), let h be a valuation such that k|gx ;) is a one-to-one
mapping into EX (h(I'), A(I)), and let g be a valuation on A (I) such that g(h(I)) = J.
Since J satisfies (I', I'), there is an extension f of geh to I' such that f(I')cJ. We
define an extension g’ of g to h(I') as follows. Let a e EX (h(I'), h(I)). Then there is
a unique value a' e EX (I', I') such that a = h(a’). We let g'(a) =f(a'). Now g'(h(I")) =
f(I'y<J, so TD1 is sound.

Let K € SAT ((I', I')), and suppose that EX (I', )N VAL (J)= . If h is a valu-
ation on I UJ such that (I UJ)< K, then there is an extension &' of k|; to I' such
that 2'(I'y< K. Clearly, k' is also an extension of & to I', so TD2 is sound.

Let K e SAT ((I' UJ, I)), and let & be a valuation on I such that 4#(I) < K. There
is an extension g of & to I' UJ such that h(I' UJ) < K. Clearly, g is also an extension
of h to I' such that g(I') = K, so TD3 is sound.

Let KeSAT ', I1UJ),{J',J)), where VAL{I)NVAL{')c=VAL({) and
EX{I',TUJYNVAL (J)= . Let h be a valuation on I UJ such that A(JUJ)< K.
Now EX(J',/)NVAL({I)=@, and by TD2, K eSAT (J',JUI), so there is an
extension g of & to J' such that g(J') = K, and therefore g(I UJ')= K. g is undefined
on EX(I',TUJ"), because EX(I', ITUJ)YNVAL I UJUJ") = . Since K satisfies
{I', I UJT), there is an extension f of g to I’ such that f(I')< K. f is also an extension
of h, so TD4 is sound.

Completeness. Suppose that DF=(I',I). Then there are a chase of I by
D: Iy I, -, an element I, of this chase, and a valuation & which is the identity on
I such that h(I')c I,. We can assume without loss of generality that EX(I',I)N
VAL (I,) = &. We construct, by backward induction on k from n to 0, a relation J,
such that D', Ji.), S €I, and EX (I', ) NVAL (I,) = .

Basis (k=n). Let J,=h{'). By TDO, D-{' k'), h(I)<I, and
EX{',h(INYNVAL (I,)=J.

Induction. Suppose that DH(I',Jii1)y, Jer1SIes1, and EX I, Jes1)N
VAL (I +1) = &. There are some (K’, K) in D and a valuation g on K UK such that
glex x'.x) is @ one-to-one mapping into EX (g(K), g(K"), k1 =L Ug(K"), g(K) & I,
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and EX (g(K"), g(K))N VAL (Iy) = &. Ji+1 can be viewed as J'UJ", where J'c I,
and J"=g(K'). By TD1 and TD3, (K', K)-({J", g(K)). Now
VAL (J)YNVAL (J")c VAL (I, )N VAL (g(K") €« VAL (g(K)),

and
EX(I', Ji+1) NVAL @(K) S EX (I', Jt 1) N VAL (Ix41) = &,

so by TD4, D —(I', J,.}, where J, =J'Ug(K). Clearly, J, < I,. Also
EX(I',J.) s EX (', J+1) UEX (g(K"), g(K)),

and since EX (g(K"), g(K))N VAL ({;) = J, we have EX (I', i, )N VAL (I.)= OJ.
In particular, we have D(I', Jo), JocI, and EX (I', Jo)N VAL (I)= &, so by
D2, D', 1), O

4.2, Tuple elimination. Studying rule TTD3, we observe that the basic operation
is that of eliminating, when given (w, I') and (u, J), a tuple v from I, if the tuples of
J(u/v) are in I, because the existence of the tuples of J(u/v) implies the existence
of v. We generalize this to tgd’s.

We now present the system T5:

TDO (triviality)

TD1 (collapsing)

TD2 (augmentation)

TDS (tuple elimination). {I', TUJ), (J, D', I).

Rule TDS is implied by rule TD4. For the simplicity of the system we pay with
less natural derivations.

THEOREM 4.2. The system T is sound and complete for tgd’s.

Proof.

Soundness. The rules are implied by the rules of the system T, so they are sound.

Completeness. Suppose that D=(I',I). Then there are a chase of I by
D: Iy 14, -, an element I, of this chase, and a valuation & which is the identity on
I such that h(I')cI,. We can assume without loss of generality that EX (I',I)N
VAL (I,) = . We leave it to the reader to show, by backward induction on k& from
n to 0, that D —{I', I,.;). In particular, it follows that D—{I', I). QO

4.3. Transitivity. Studying rule TTD4 we see that it is basically a transitivity
rule. The essential idea is that if the existence of a set of tuples J implies the existence
of a set of tuples J', and the existence of J’ implies the existence of a tuple w, then
the existence of J implies the existence of w. We generalize this to tgd’s. It turns out
that in contrast to TTD4 the generalized transitivity rule is a bounded rule.

We present now the system T':

TDO' (triviality). —(I, I').

TD1 (collapsing)

TD2 (augmentation)

TD3 (projection)

TD6 (weakening). (h(I'), I)—(I', I), if h is the identity on I.

TD7 (transitivity). (J, I'), (I', DH-I'UL D), if EX(J, I"YNVAL (I) = &.

THEOREM 4.3. The system T is sound and complete for tgd’s.

Proof.

Soundness. Left to the reader.

Completeness. Suppose that D=(I',I). Then there are a chase of I by
D:ly, Iy, -+, an element I, of this chase, and a valuation that is the identity on I
such that A (I') < I,,. We leave it to the reader to show, by induction on k, that D - (I, I').
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In particular, it follows that D (I, I). Since h(I')<I, and h is the identity on I,
DH{I',IYby TD3 and TD6. O

4.4. tgd’s and egd’s. The extension of the systems T}, T», and T to egd’s is very
similar to the extension of TT;, TT5, and TT; in § 3.4.

The rules for egd’s need essentially no change. We change however the covering
rule for the sake of uniformity.

EDO (triviality). —((a, a), I'), if a € VAL (I).

ED2 (collapsing). {(a1, a2), I)—{(h(a.1), h(az)), h(I)), for any valuation .

ED3 (augmentation). {(ai, a1), I){(a, az), I UJ).

LEMMA 4.1. Rules ED2 and ED3 are sound.

Proof. Both rules follow from rule ED1. 0

The translation rule needs no change.

ETDO. (translation). e e, e -e5.

LEMMA 4.2. Let F be any sound and complete formal system for tgd’s, and let F'
be F U{ETDO}. If D is a set of tgd’s and egd’s then D \-r.(I', I} if and onlyif DE=(I', I).

Proof. Identical to the proof of Lemma 3.4.

The mixed (tgd-egd) analogues of rules TD4, TD5 and TD6 turn out to be minor
variants of the transitivity rule,

ETD1 (transitivity). (a1, a2), I), (I, J){(a1, a2), J), if a1, az€ VAL (J).

THEOREM 4.4. Let F be any sound and complete formal system for tgd’s, and let
F' be FU{EDO, ED2, ED3, ETDO, ETD1}. Then F' is a sound and complete system
for tgd’s and egd’s.

Proof.

Soundness. We have to show that rule ETD1 is sound. Let Ke
SAT ({(a., a2), I),{I,J)), and let & be a valuation on J such that h(J)<= K. There is
an extension g of h to I such that g(I)c K, so g(a,) =g(az). But a;,a,€ VAL (J),
s0 h(a)=g(a1)=g(az)=h(az).

Completeness. Suppose that D =((ay, a2), I), a; # a,. By Theorem 2.3 there are
a chase of I by D*, an element I, of this chase, an egd ((as, a4), J) from D, and a
valuation h such that h(J)< I, h(as)=a, and h(as) = a;. Now D*=(I,, I), so by
assumption D*(I,, I). By ED2 and ED3, ((as, a4), J){(a1, a2), I,.), so by ETD0
and ETD1, D+{(ay, az), I). O '

By using clause (4) in Theorem 2.3 we can generalize Theorem 3.7 to tgd’s.

ETD2: d, e1t~e, if d and e are A-egd’s, and d is nontrivial.

THEOREM 4.5. Let F be a sound and complete formal system for tgd’s, and let F
be F U{EDO, ETDO, ETD2}. Then F' is a sound and complete system for tgd’s and
egd’s.

Proof. Identical to the proof of Theorem 3.7. 0O

4.S. Discussion. While the systems TT;, TT>, and TT, all look completely
different each from the other, the systems T, T, and T are very similar. Indeed,
since T is the simplest system of the three, one may ask why we have bothered to
study also T; and Ts. The reason is that derivations by T, are highly unnatural
backward derivations as discussed in § 3.5. In contrast, T;/T; are forward/backward
systems which yield natural derivations that correspond to known theorem-proving
procedures as is shown in [Va3].

Since the implication problem for tgd’s is unsolvable [BV2], [CLM], there can
be no recursive bound on the size of derivations of tgd’s. Furthermore, it can be
shown that a recursive bound on the length of the derivations would lead to a recursive
bound on the size of the derivations. Thus, there can be no such bound. Nevertheless,
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the size of derivations is a reasonable measure to compare between formal systems.
We now show that our formal systems can each simulate the other with only a linear
increase in the size of derivations. That is, there is a constant ¢, such that if there is
a derivation of size s of d from D by T}, for some 1=<i =3, then for every 1s5j=<3,
there is a derivation of d from D whose size is at most cs. Thus, we can consider all
our formal systems as equally “powerful”’.

T, simulates T,. We have to simulate rule TDS, but TDS is just a special case
of TD4.

T, simulates T5. We have to simulate rules TDO, TD3, TD6 and TD7.

TDO' is just a special case of TDO. Suppose now that T"UT, D v=pps I, I).
We have

Frpo{l', TUI'UJT), and
L ITUUD(I'UT, D ps(I, I).
Suppose that (h(I'), I)-pe(I', I). Le., h is the identity on 1. We have
FroolI', R(I"YUI), and
I', kUL, (h(I"), I rps I, I).
Suppose now that (J, I'), (I, I} 17 (I'UJ, I).1e.,EX(J,I''"NVAL (I)= (. We have
Froo{l’ UL, I'UT U,

(, IV o2 {J, I' UT) (because EX INNVAL (D =@),
T'ULrrurugy, g, I'UDbrps{(I'UJ, I'UI), and
q'unrun,ar, Dirps{(I'UJT, I).

T; simulates T;. We have to simulate rules TDO and TD4.
Suppose now that Frpo(I’, I'). That is, there is a valuation 4 which is the identity
on I such that h(I') < I. We have

I-_TDO' <I9 I)!
I, I)rp3{h ("), I, and
(h('), Iy pedI', I,

Suppose that (I',IUJ"), (J', D)lrpa(I', IUJ), ie, VAL (I)NVAL e
VAL (J) and EX (I', IUJ)N VAL (J) = &J. We have

Froo(TUZL TUT),
', Db1p2{J', TUT) (because EX (J', J)N VAL =),
TULITUD T TUN o {UT U, TUT),
I TUT Y (I, TUTUTY (because EX (I', IUJ)NVAL (J) = ),
AUTUT, TUD) L, TUT UL Yoy (T UTUT'UT, TUTY, and
TUIUI'UI, TUT) rps (I, TUT).

The reader can verify that there is such a constant ¢ as claimed above, Moreover,

our systems can each simulate the other with only a linear increase in the length of
derivations.
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5. Formal systems for subclasses. An embedded multivalued dependency (emvd)
[Fagl]is a tgd ({w}, {w1, w2}) such that, for all A € U, if wi[A]=w,[A] then w[A]=
wilA]l. It is usually written X - Y|Z, where X ={A:w,[A]l=w,[A]}, Y=
{A: w[Al=wi[A]}, and Z ={A: w[A]=w,[A]}. If VAL (w) = VAL ({w1, w2}) then it
is an mvd (defined in § 2.3).

Emvd’s have attracted a great deal of interest. It is not known whether the
implication problem for this subclass is solvable or not. While many inference rules
for emvd’s are known ((BV1], [Sc], [TKY1], [TKY2]), no sound and complete formal
system for them is known.’ Thus, attention has shifted to finding minimal classes of
dependencies that include the class of emvd’s as a proper subclass and for which a
sound and complete system can be found. Two such classes are the classes of template
and binary dependencies which are studied in the following section.

5.1. Template and binary dependencies. A remplate dependency (td) [SU1]is a
tgd of the form ({w}, I). The class of td’s contain the class of emvd’s and it also
contains the class of embedded join dependencies of [MMS] and the class of projected
join dependencies of [YP]. The implication problem for td’s is known to be unsolvable
[GL], [Vad]. (In fact, it is shown in these papers that even for projected join dependen-
cies the problem is unsolvable). We show now that both systems T and T are sound
and complete for td’s.

THEOREM 5.1. The systems T and T, are sound and complete for td’s.

Proof. The systems are obviously sound for td’s. To show completeness suppose
that D =(I", I'), where I' ={w}. Studying the derivation by T constructed in the proof
of Theorem 4.1, we see that every dependency in the derivation is either of the form
(I',Ji) or (K',K) from D. In any case it is a td. Studying the derivation by T,
constructed in the proof of Theorem 4.2, we see that every dependency in the derivation
is either of the form (I, I,) or (K', K) from D. In any case itisatd. O

Sadri and Ullman [SU1] have independently developed a formal system for td’s,
which turns out to be the system T, restricted to td’s.

A binary dependency (bd) is a tgd (I', I}, where |I| =2. The class of bd’s contains
the class of emvd’s, and it also contains the class of subset dependencies of [SW]. It
is not known whether the implication problem for this class is solvable or not. None
of our systems is complete for bd’s, but we can combine rules TD2 and TD7 and get
a sound and complete system for bd’s.

Let T4 be the system {TD0’, TD1, TD3, TD6, TD7'}, where TD7' is:

TD7  (transitivity). (), 'UJT, H-T'UJS'UL D, if EX{,J)N
VAL(IUIY=(. >

THEOREM 5.2. The system T, is sound and complete for tgd’s and for bd’s.

Proof. Left to the reader. 0

5.2. Embedded multivalued dependencies. The class of emvd’s lies in the inter-
section of the class of td’s and the class of bd’s.’ There is however a very important
distinction between td’s and bd’s on one hand and emvd’s on the other. For any fixed
universe U there are infinitely many nonequivalent bd’s or td’s, but only a finite
number of nonisomorphic emvd’s. ({I’, I') is isomorphic to (J', J) if there is a one-to-one
valuation A such that A(I')=J' and h(I)=J.) Thus, for a fixed universe U there is a
finite number of instances of the implication problem and a finite number of possible

5 In contrast, for mvd's the implication problem is solvable ([Beer]), and a sound and complete formal
system does exist ((BFH]).

© This intersection is exaptly the class of subset dependencies of [SW].
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1 derivations, so the implication problem is solvable and there is a sound and complete
( - formal system. (That does not mean that we can effectively find the implication testing
| algorithm and the formal system for any given U). What we would like to have are
! uniform algorithm and system, i.e., an algorithm and a system which are “good” for
any U. If one considers only bounded inference rules in the style of [Arm}, [BFH]
then it is known that there is no uniform sound and complete system for emvd’s [PP],
[SW]. Nevertheless, it is still possible that we can find a sound and complete system
using unbounded rules like rule TTD4 or rule JD5 of [BV1], {Val]. The following
theorem says that finding a uniform implication testing algorithm is equivalent to
finding a uniform sound and complete formal system.

THEOREM 5.3. The implication problem for emvd’s is solvable if and only if there
D is a sound and complete formal system for emvd’s.

‘ Proof.

Only if. Suppose that the implication problem for emvd’s is solvable, and consider

the formal system consisting of one inference rule:

dy, -, di-d, if{dy, -, de}Ed.

Clearly, this formal system is sound and complete for emvd’s.
I If. Suppose that F is a sound and complete formal system for emvd’s. Let D and
¥ i .y d over a universe U be given. To decide whether D =d we list every possible sequence
‘ of emvd’s dy, - - -, d, and check whether it is a derivation of d from D by F. Inasmuch
as there is a finite number of nonisomorphic emvd’s over U, this process must terminate.
Hence, the implication problem for emvd’s is solvable. 0

Remark. The same argument holds for the subsets dependencies of [SW], for
the embedded join dependencies of [MMS], and for projected join dependencies of
. [YP]. Since the implication problem for projected join dependencies is unsolvable
[GL], [Vad], this class can not have a sound and complete formal system. There is,
‘ however, a subtle point here. The syntax used here is such that there is no need to
L specify the universe U explicitly, because it is evident from the syntax. Projected join
* dependencies, embedded join dependencies, subset dependencies, and embedded
multivalued dependencies were all introduced originally in a different syntax, in which
the universe is not evident (see for example the syntax described in the beginning of
§ 5). When we study formal systems for such a syntax, it is crucial to know how the
formal system handles that lack of explicitness, because that may affect whether a
class of dependencies has or does not have a sound and complete formal system. We
refer the reader to {Vad4] for a more thorough discussion of this point.

5.3. Decomposition of ttgd’s. An embedded join dependency (ejd) [MMS] is a
td ({w}, I') such that for every A € U and two distinct tuples ¥ and v in I, if u[A}=v[A]
then w[A]=u[A]. If |I| =2 then it is an emvd, if VAL (w) < VAL (I), then it is a join
dependency (jd) [ABU], [Riss], and if VAL (w)< VAL (I) and [I|=2 then it is an
mvd. In [BV1], [MM], [Val] it is shown that every jd is equivalent to a set consisting
of one ejd and several mvd’s. That is, a jd can be ‘‘decomposed” into weaker
dependencies. In this section we provide a decomposition theorem for ttgd’s, which
implies the above result as a special case.

Let (w, I') be a ttgd. The decomposition is based upon a distinction between two
kinds of values in I': the values which are repeated in I and those that are nonrepeated
inl. Let uel and A e U. u[A] is repeated in I if there is another tuple v € I such
that u{A]=v[A].
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Let REP (I) be the set
{A: for some u €I, u[A] is repeated in I}.

For any tuple u and a set X = U, let ux be a tuple such that ux[X]=u[X] and u[A]
is a new distinct value for all A € X. Suppose that I ={w,, - - *, w,,}. With each tuple
w; we associate two sets Y;={A: w[A]=w,[A]} and Xi=Y,—REP(I), and a ttgd
(ui, I'), where I' = I U {wrep i}, w:i[X;1= wi[X:], and w;[X;]= wrep [ Xi). X1, * + *, Xim
is a partition of REP (I).

Example 3. Let U = ABCDEF, and let (w, I') be the ttgd (w, {wy, w2, wa}):

A B C D E F
w: a0 b0 0 dO €0 fO

wi: a0 bl ¢1 d0O el f1
wa: al b0 ¢l dl e0 f2
wy: al b1 c0 d2 e2 fO

Now we have REP (I)=ABC, Y,=AD, X;=D, Y,=BE, X,=E, Y;=CF, and
X3 =F. WREP (I} is the tuple

A B C D E F

a0 b0 ¢c0 d3 e3 f3

u1, Uz, and u; are the tuples

A B C D E F
ur: a0 b0 c0 d0 e3 f3
uz: a0 b0 c0 d3 e0 f3
us: a0 b0 c0 d3 e3 f0

THEOREM 5.4. Let (w,I) be a tgd, I={wy, -+, wn}, and let D=
{<{WRBP(I)}’ I): <uh I’)) ) (um’ II)}- Then <W’ I)'=D and D |=<W’ I)'

Proof. We show that (w, I)-D and D (w, I').

(w,)F-D: (w,I){wrepm)}, I) by TD6. Define a valuation # on I such
that h(w)=w and h(w;)=wgreey, for j#i Now h(w)=wu, so by TDI1,
<Wa I)I_(ub {W, WREP(I)})! and by TD4! (W, I)"'("l’ II)-

D (w,I): We define a sequence of tuples vo, * * *, v, as follows. vg is Wrep (1),
vl Xi 1] = wisa[Xia1], and v1[X00 1] = 0/[X51]. Observe that v, =w. We show by
induction on i that D —(I U{v,}, I).

Basis (i=0). Since vo=wgrgpu), and by TDO, (I, I), we have that
{wrer (v}, I U{ve}, I) by TD7.

Induction. Suppose that DI U{v;},I). Let A be a valuation such that
h(wrepn[Uj=1 X;]) = wlUj-1 X;]and A is the identity elsewhere. Then A (wgrep 1)) = v
and A(uiv1)=vir1. By TD1, (ueq, IV (i1, 1 U{v}), and by TD7 and TD3,
T Ui}, ), (Wi, TU{o) (T U v}, I).

It follows that D +(I U{w}, I), and by TD3, D —(w,I). 0O

Note that the dependencies in D are “weaker” than (w,I) because they are
implied by (w, I'), but do not, in general, imply (w, I).

We show now how Theorem 5.5 implies the above mentioned decomposition of
jd's. An ejd {w}{ws, -+, wn}) is also written as *[R,, - - - , Rm], where R;=
{A: W[A]= wi[A]}' Thus, if <ws I) is the jd *[Yli ttty Ym]r then ({WREP(I)}’ I) is the
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ejd Y, NREP (),--+,Y,.NREP (I)]. That the ttgd (u, I') is equivalent to an mvd
is less trivial. »

LemMMA 5.1, (up I')= Y; NREP () >>Y; and Y; N REP ) > Y= {u, I,

PfOOf. Consider the ttgd (u,—, {W,‘, wREP(I)})- We have {A W,-[A]= WREp(I)[A]}=
Y.NREP (I) and {A:ufA]= wi[Al} =Y, so this ttgd is the mvd Y; N REP ) v,
We show now that (u,-, I')I—(ui, {W,', WREP(I)}) and (u,~, {W,', WREP(I)»'_(u,', I').

(ui, {w,, Wrer D (u;, I'Y by TD2. To show the opposite direction, let 4 be a
valuation such that h(w;)=w; and h(w;)= WREp (), for j #i. (Such A can be defined
because (w, 1) is a jd.) Now h(u;)= i and A(I')={w, WReP()}, SO by TD1,
(ui’ I (u;, {w, WREP (1)}).

6. Concluding remarks, Our model is rather restricted since it assumes that the
database consists of one relation,” and that different attributes have disjoint underlying
domains, the so-called “many-sorted” case. While these assumptions offer theoretical
advantages [BBG], [Fag2], they are dubious from a practical point of view. It happens
that our formal systems of § 4 can be very easily extended to the general case of many
relations and nondisjoint domajng by simply adjoining a relation name to each tuple.
In view of this we think that claims to the naturalness of the universal many-sorted
case that are based on its having a sound and complete formal system are not very
convincing,

Another dubious assumption is that a relation can have an infinite set of tuples.
Since a database is inherently finite, there is a strong justification to define a relation

finite implication. In contrast, if all tgd’s in D are total then Di=(d if D Frd [BV2]
[CLM]. Thus, our formal systems for ttgd’s and egd’s in § 3 are systems for finite
implications as well as for implication.

In § 5.3 we have observed that if the implication problem for a class of dependen-
cies is solvable then this class has a sound and complete formal system. Even in this
case there is still an interest in finding an “elegant” formal system, one which has a
small number of simple axioms and (preferably bounded) inference rules, A typical
example is the propositional calculus, which is a formal system for the resursive set
of tautologies of propositional logic. Likewise, the implication problem for jd’s is
solvable, but we would like to have an elegant formal system for that class or for a
minimal class of ttgd’s containing it. Another case of interest is that of implication of
mvd’s by ttgd’s and egd’s, which is probably the most general case for which an
efficient implication testing algorithm does exist [BV3]. These cases will be dealt with
in future papers.

Finally, since our dependencies are equivalent to first-order sentences, it is
interesting to know what is the relationship between our formal systems and the
known formal systems for first-order logic. It turns out that there is indeed a very
strong connection between our systems and the system of resolution and paramodula-
tion [CL}. This connection will be described in a future paper,

7 This assumption is usually called “the universal relation assumption”,
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