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THE IMPLICATION PROBLEM FOR FUNCTIONAL AND INCLUSION
DEPENDENCIES IS UNDECIDABLE*

ASHOK K. CHANDRAT anp MOSHE Y. VARDI:

Abstract. The implication problem for a class of dependencies is the following: given a finite set of
dependencies, determine if they logically imply another dependency. We show that the implication problem
is undecidable for the class of functional and inclusion dependencies. This holds true even if the inclusion
dependencies are restricted to be binary. It may be noted that the implication problem is known to be
decidable for functional and unary inclusion dependencies and also for inclusion dependencies without
functional dependencies.
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1. Introduction. Functional and inclusion dependencies are the most fundamental
database integrity constraints, and they are used in essentially all data models. Their
interaction has recently investigated in several papers [CFP], [FV], [JK].

In order to utilize dependencies in the database design process one needs to be
able to test for logical implication, i.e., does a set of dependencies logically imply
another dependency [Be]. The implication problem is one of the prominent issues in
dependency theory.

It is known that, when only functional dependencies are given or when only
inclusion dependencies are given, the implication problem is decidable [BB], [CFP].
In this note we show that when functional and inclusion dependencies are considered
simultaneously the problem becomes undecidable. (This result was also obtained
independently by Mitchel [M2].) We also show that implication for functional and
inclusion dependencies is reducible to implication for functional and binary inclusion
dependencies, and we study the consequences of the undecidability result on the issue
of obtaining an effective axiomatization for implication.

2. Definitions. A relation scheme U is a finite sequence C,, - - -, C, of attributes,
which, intuitively, serve as column headings. A tuple t over U is a sequence (¢, * *, ¢,)
of the same length as U. A relation R over U is a set (not necessarily finite) of tuples
over U. U is called the scheme of R. If C;, - - -, C; is a sequence of members of U, then

t[Ci‘s T Cik]=<cfp ST T Cik>9
and

~R{Cila T, Cik:l: {t[cip T Cik]: te R}

A functional dependency [Co] (abbr. fd) is a statement A, -+, Ax=> B,," -, B,
where k, [ =0 and the A’s and B’s are attributes. A relation R whose scheme includes
Ay, -+, A, By, -, B, satisfies this fd if, for all tuples s, te R, if s[A,, -, A=
t{A,, -, A ] then s[By, -+, Bl=¢{B,, -, Bl
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An inclusion dependency [Fa] (abbr. ind) is a statement A,, - - -, Are By, -+, B,
where the A’s and B’s are attributes. A relation R whose scheme includes A A

By, -+, By satisfies this ind if R[A,, - -, AJ<R[B, -, B.].

A relation R satisfies a set D of dependencies if it satisfies all dependencies in
D. A set D is said to imply a dependency d, denoted Did, if d is satisfied by all
relations that satisfy D. D is said to Jinitely imply d, denoted DEd, if d is satisfied
by all finite relations that satisfy D. Clearly, if D=d then also DEd. But it is shown
in [CFP] that the converse is not always the case. From a practical point of view, finite
implication is the more interesting notion.

The implication problem for fd’s and ind’s is to decide, given a finite set D of fd’s
and ind’s and an fd or an ind d, whether Di=d. The finite implication problem is to
decide whether Di,d. In the following section we show that both problems are
undecidable.

3. The main result. The problem that we use for our undecidability proof is the
word problem for (finite) monoids. Recall thata monoid is an algebra with an associative
binary operation - and a unit element 1. Let X be an alphabet. 3* is the free monoid
generated by Z. Now let E = {q, =B;: 1 =i=n} be a finite set of equalities, and let e
be an additional equality « = B, where o, 8, a;, B; € 3*. We say that E (finitely) implies
e, denoted E=e (EFye), if for every (finite) monoid M and homomorphism h:3* » M,
if hla))=h(B,) for 1si= n, then also h(a)=h(B). The word problem for (finite)
monoids is to decide, given E and e, whether El=e (E=,¢). The word problem for
monoids was shown to be undecidable in [Po] and the word problem for finite monoids
was shown to be undecidable in [Gu]. These results also follow from a recursive
inseparability result of [GL]. Two sets @ and ¥ are recursively inseparable if there is
no recursive set [T such that ® < [T but ¥ and IT are disjoint. If ® and ¥ are recursively
inseparable then clearly they are both not recursive.

THEOREM 1. [GL] The set {(E, e): E=e} is recursively inseparable from the set
{(E, e): E¥ e}, where E ranges over finite sets of equalities and e ranges over equalities.

THEOREM 2. The set {(D,d):D=d} is recursively inseparable from the set
{(D, d): D¥,d}, where D ranges over finite sets of fd’s and ind’'s and d ranges over ind’s.

Proof. We reduce the word problem for (finite) monoids to (finite) implication
of ind’s.

Let X be our alphabet. Let E = {a;=B;:1=i=n} be a set of equalities, and let e
be another equality o = 8. We call every prefix of o, B, a;, or 8, for 1si= n, a prefix
(note that the null string A is a prefix, and so is a, etc.). We use a relation R whose
relation scheme has the following attributes:

(1) v, for each prefix v:

(2) X, Y, and Z;

(3) Ya, for each aeX:

(4) Za, for each ac 3.

Intuitively, the y’s represent the corresponding elements of the monoid, X and Y
represent arbitrary elements with Z as their product, and the Ya and Za represent
multiplying by a from the right.

The set D consists of the following dependencies:

() A, X, Y>Z and A, Y~ Ya, for each ae 3.

(2) L, A2 Y

(3) A, v, yac A, Y, Ya, for each ac X and pair of prefixes v, ya.

(4) A, Z, Zac A, Y, Ya, for each ac 3.

(5) A, X, Ya, Zac A, X, Y, Z, foreach ae 3.

'
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6) A, YA, YcuA X, Y, Z

(7 A, ;€ A, Bs

The above dependencies ensure that the attributes behave according to the intended
meaning. Note that D does not guarantee uniqueness of the elements that correspond
to the prefixes. We could have added the fd & A, but we did not want to use fd’s
with empty left-hand side, and we are willing to pay for it with some complication in
the reduction.

Finally, the dependency d is a < .

Cramm. Di=d (resp. DE=;d) iff EFe (resp. E Ere).

Proof of claim.

Only-if part. We show that Eb e (resp. E¥,e) entails D#d (resp. D¥,d).
Suppose that E% e. Then there is a homomorphism h on 2* such that h(e;)=h(B;)
but h(a)# h(B). For a pair x, y of elements in 2* we define a tuple f., by:

te,[¥1=h(y), for each prefix v,

b, [X1=h(x),

b, [ Y1=h(y),

t.,[ Ya]= h(ya), for each a€Z,

t.,[Z]= h(xy), and

t.,[Za]= h(xya), for each a e,

Let now R={t,,: x, y€X*}. We leave it to the reader to show that R satisfies D but
not d. If E¥ e, then in addition we can assume that {h(x): x€ Z*} is finite, so R is
also finite.

If part. Assume that E=e, and let R be a relation satisfying D. Let s € R. We have
to show that s[a]e R[B]. We now define a homomorphism h of T* into the domain
of the relation R, such that h(A)=s[A]. For an element y € =* we define the element
h(y) and show that (h()A), h(y))€ R[A, Y] inductively as follows:

(1) h(A) is s[A]. Note that (h(A), h(A))e R[A, Y] by the ind A, ACA, Y.

(2) Suppose that we have defined h(y) and showed that (h(A), h(¥))e R[A, Y],
and let a € 2. Define h(ya) to be the unique element [ Ya] for the tuple t such that
f[A, Y1=(h(A), h(y)) (uniqueness is ensured by the fd A, Y- Ya). (h(A), h(ya))e
R[A, Y]bytheind A, X, Ya, Zac A, X, Y, Z

Next we show that for all x, ye2*, we have that (h(A), h(x), h(y), h(xy) e
R[A, X, Y, Z]. This is shown by induction on y. We have already shown that
(h(X), h(x))e R[A, Y], so by the ind A, Y, A, YcaA, X, Y, Z we have
(h(X), h(x), h(A), h(x)ye R[A, X, Y, Z]. Assume now that (h(A), h(x), h(y), h(xy)) €
R[A, X, Y, Z]. Let t€ R be such that {[A, X, Y, Z1=(h(X), h(x), h(y), h(xy)). Then by
definition [ Ya]=h(ya). Also by the ind A, Z, Zac A, Y, Ya we have that t[Za]=
h(xya). By the ind A, X, Ya, Zac A, X, Y, Z we have that

(h(r), h(x), h(ya), h(xya))€ R[A, X, Y, Z].
We now define a binary operation - on the set {h(x): x€ 3*}. Let x, y€ Z*. The above
argument shows that there is a tuple ¢ in R such that A, X, YI=(h(A), h(x), h(y ).
We define h(x) - h(y) as t[Z], which is unique by the fd A, X, Y > Z. Furthermore, we
have shown that [Z] is just h(xy), so it follows that h is a homomorphism on X*.

Now, using the fd’s A, Y > Ya and the ind’s A, 7, ya S A, Y, Ya, it is easy to show
by induction that R satisfies A - ¥ and that s[y]= h(y), for every prefix v. In particular,
s[a;]=h(e,) and s[B;]1=h(B:). By the ind A, a; = A, B;, there is a tuple ¢ € R such that
(A, B:1=(h(A), h(a;)). Since R satisfies A = B; it must be the case that h(a;) = h(8)).

Since Ele, we have that h(a)=h(B), and since s[a]=h(a) and s[B]1=h(B), it
follows that s[a]e R[B]. For the finite case, if R is a finite relation, then {h(x): x € Z%}
is finite, and the rest of the argument is the same. O
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COROLLARY. The sers {(D,d): D=d} and (D, d): D¥.d}, where D ranges over
finite sets of fd’s and ind’s and d ranges over ind’s are not recursive.

The proof above showed that testing whether a set of fd’s and ind’s implies or
finitely implies an ind is undecidable. How about testing (finite) implication of fd’s?
The next theorem shows that this is also undecidable.

THEOREM 3. The set {(D,d): D=d} is recursively inseparable Jrom the ser
{(D,d): D #,d}, where D ranges over finite sets of fd’s and ind’s and d ranges over fd’s,

Proof. We reduce the word problem for (finite) monoids to (finite) implication
of fd’s. Given 2, E and e we construct the set D of fd’s and ind’s as in the proof of
Theorem 2 with the addition of the attributes @', B', and Y, and the dependencies
Y=Y, aacy, Y',and 8,8’ Y, Y. The dependency d is a'-> B,

CrLamm. De=d (resp. D=,d) iff E=e (resp. El=,e).

Proof of Claim.

If part. Assume Ex e, and let R be a relation satisfying D. Let s, fe R such that
sla’l=1[a’]. We have to show that s[B']= /[8']. The If Part in the proof of Theorem
2 shows that s[B] = s[laland t[a]= 1[B]. Because of the ind’s @,a'cY, Y and B, 8'c
Y, Y’ there are tuples s,, s, € R such that sla, a'l=5[Y, Y], and s[B, B']= sS[Y, Y
It follows that s[a’]=s[B'], because ofthefd Y- v, Similarly, ffa']= i[B']. Therefore,
sBT=1p].

Only-if part, Suppose that Eb e. Then there are a monoid M and a homomorphism
h:2* > M such that h(a;) = h(B;) but h(a)# h(B). For each element ye M, let y’ be
a new distinct element. We construct R for A as in the proof of Theorem 2 with the
additional clauses:

tola]=(h(a)),

to.[B7=(h(B)), and

1, Y= (h(y)).

Clearly, R satisfies D

Let M be an isomorphic disjoint copy of M, and A the corresponding homomorph-
ism from I*, Again, for each element yeM, let ¥’ be a new distinct element, such that
for all xe M and ye A7I, we have that x'=y' iff x=h(a) and y=h(a). Let R be
constructed from # in a manner analogous to the construction of R from h. We leave
it to the reader to verify that RU R satisfies D but not 4. Also, if El e, then we can
assume that RUR is finite. N}

CoroOLLARY. The sers {(D,d): D=d} and (D, d): D¥ . d}, where D ranges over
finite sets of £d’s and ind’s and d ranges over fd’s, are not recursipe.

4. Reduction to binary inclusion dependencies. An ind A, AcB,--- , By is
said to be m-ary if k=m, The reduction in the previous section uses 4-ary ind’s. It
follows that the (finite) implication problem is undecidable even when restricted to
4-ary ind’s. On the other hand, in [KCV] it is shown that both the implication and the

and ind’s is reducible to (finite) implication of fd’s and binary ind’s. ;

THEOREM 4. There is an algorithm thar, given a set D of fd’s and ind’s and an fd
(resp. ind) 4, produces a finite set D’ of fd’s and binary ind’s and an fd (resp. a unary
ind) d', such thar D= d if and only if D'=d’ and Di=,d if and only if D’ =rd.

Proof. Let all the ind’s in DU{d} be m-ary. Furthermore, we can assume without
loss of generality that the left-hand side and right-hand side of these ind’s contain
exactly m attributes (we can always duplicate attributes to achieve that). We denote i
asequence A,,--- A4 _ of attributes by A. We view a Sequence as a list of elements.

Bt
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When we enclose the sequence in parentheses, e.g., (A), we refer to it as an element
in the domain of sequences.

We first construct a set F of fd’s and ind’s. We introduce new attributes
X+, X, X, and putin F the fd’s X > X and X > X. Foreveryind Ac Bin DUd,
we introduce new attributes (A) and (B) and put in F the binary ind’s A, (A)< X,
X and B, (B)C:X X, for ISi=m. Let 7 be the ind A< B. We define 7’ as the unary
ind (A)< (B). If 7 is an fd then we let ' = ~ Now we define D'=FU{7": re D}.

Cramm . Forall e DU {d} we have FU{r'}=r.

Proof of claim. The claim is trivially true for fd’s. Let = be the ind A< B. Let R
be a relation that satisfies FU 7', and let € R. We have to show that there is a tuple
s€ R such that s[B]=1 Al Smce R satisfies 7/, there is a tuple s€ R such that
s[(B)]=t[(A)] Since R satisfies F there are tuples t, 5;€ R such that [ X, X]=
A, (A)] and s[X, X]=s[B, (B)]. But, since s[(B)]=1[(A)], and R satisfies F, it
follows that t[A;]= s[ B;]. This is true for | =i= m, which proves the claim.

Craim 2. For all re DU d we have FU {r}E=7".

Proof of claim. The claim is trivially true for fd’s. Let = be the ind A< B. Let R
be a relation that satisfies F U {7}, and let 1€ R. We have to show that there is a tuple
s € R such that s[(B)]=t[(A)]. Since R satisfies F there are tuples ¢, - -, t,,€ R such
that [A, (A)]=1[X, X]. Furthermore, [ X ]=1[A], for 1si=m, so t,[X, X]=
t[A, (A)]. Since R satisfies 7, there is a tuple s € R such that s[B]= t[A] Again, since
R satisfies F, we can show that there is a tuple s, € R such that 5,[ X, X]1=s[B, (B)].
It follows that [ X]=s[X], so t[(A)]=s[(B)]. This proves the claim.

We can now prove the theorem.

Only-if part. Assume D=d, and let R be a relation satisfying D’. By Claim 1, we
have that R satisfies D, so by assumption R satisfies d. Since R satisfies F and d, it
satisfies d’ by Claim 2.

If part. Assume D# d, and let R be a relation satisfying D but not 4. We construct
a relation R’ satisfying D’ but not d’. Let U be the sequence of attributes that are
used in dependencies in DU{d}. Let U™ be a sequence consisting of all sequences
of length m of attributes from U. We use “,” to denote concatenation of sequences.
R, is a relation on U, U™ defined as:

| {r: t({Ule R, {[(A)]= (1[A]) for Ac U™}.
R, is a relation on X, X defined as
{t:te R|[A, (A)]forsome Aec U™}.
Finally, R’ is a relation on U, U™, X, X defined as
{t::({U, U™le R, and [ X, X]€ R,}.

We leave it to the reader to show that R’ satisfies F. Since RTU]= R[U], it follows
that R’ also satisfies D. By Claim 2 it follows that R’ satisfies D’. Suppose now that
R'satisfies d'. Then Claim | entails that R’ satisfies d, and consequently that R satisfies
d, contrary to the assumption. Thus R’ does not satisfy d’.

Both parts of the proof work also for the finite case once we observe that the
construction of R’ from R preserves finiteness. -

CororLARry. The implication and the finite implication problems for fd’s and binary
ind’s are undecidable.

5. Axiomatization. Parallel to the pursuit for algorithms to test implication is the
pursuit for axiomatization of implication. That is, while it might be impossible to
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recursively check whether DEd, it might be possible to recursively check whether a
given proof that D=d is correct. An immediate consequence of the existence of an
axiomatization for a problem is the partial decidability of the problem; one has Jjust
to generate methodically all possible proofs and check for their correctness.
Consider now finite implication for fd’s and ind’s. It is not hard to see that the
set {(D, d): D, d} is recursively enumerable; just enumerate al] finite relations and
check whether they satisfy D but not 4. We have shown, however, that this set is not
recursive. It follows that the set {(D, d): DE,d} is not even recursively enumerable.
Consequently, there can be no axiomatization for finite implication of fd’s and ind’s
(an axiomatization for finite implication of fd’s and unary ind’s is described in [KCV]).

first-order sentence. It follows that the set {(D,d): D=d)} is recursively enumerable,
and this raises the question whether implication of fd’s and ind’s can be axiomatized.

Casanova et al, [CFP] gave a partial negative answer to this question. They have
shown that there is no k-ary axiomatization for implication of fd’s and ind’s, i.e., there
is no axiomatization where the number of premises in the inference is bounded by
some number k. (In contrast, fd’s alone and ind’s alone are known to have binary
axiomatizations [Ar],[CFP].) In proving this result Casanova et al. assumed that axioms
and inference rules do not introduce new attributes, That is, i

The question remained open whether there is an attribute-bounded (but non-k-
axiomatization for implication of fd’s and ind’s. (For an example of a non-k-ary
axiomatization see [BV], [KCV].) Our undecidability results entail that the answer to
this question is negative. Suppose to the contrary that there is such an axiomatization.
Given a finite set of fd’s and ind’s D, and an fd or an ind d, there are only finitely
many possible proofs for the implication Di=d that uses only attributes that occur in
D ord. By checking all these proofs, we can determine whether indeed D=d-contradic-

tion.
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