
Panel: Logic in the Computer Science Curriculum�

Kim B. Bruce

Williams College

Williamstown, MA 01267

email: kim@cs.williams.edu

Phokion G. Kolaitis

University of California

Santa Cruz, CA 95064

email: kolaitis@cse.ucsc.edu

Daniel M. Leivant

Indiana University

Bloomington, IN 47405

email: leivant@cs.indiana.edu

Moshe Y. Vardi (Moderator)

Rice University

Houston, TX 77005-1892,

email: vardi@cs.rice.edu

Logic has been called “the calculus of computer sci-

ence” [1]. The argument is that logic plays a fundamental

role in computer science, similar to that played by cal-

culus in the physical sciences and traditional engineering

disciplines. Unlike calculus, however, the central place

of logic in the computer science curriculum is far from

universally accepted. For example, the ACM/IEEE Com-

puting Curricula 1991 lists logic only as one of many math-

ematics requirements. Yet logic plays an important role

in areas of Computer Science as disparate as architecture

(logic gates), software engineering (specification and ver-

ification), programming languages (semantics, logic pro-

gramming), database (relational algebra and SQL), artifi-

cial intelligence (automatic theorem proving), algorithms

(complexity and expressiveness), and theory of computa-

tion (general notions of computability). Some might even

argue that much of computer science can be seen as a gen-

eralization or outgrowth of logic. On the other hand, there

are those who claim that logic is just an academic exercise,

of no practical import.

The focus of this panel the role of logic in the computer

science curriculum. The panelists addressed the following

questions:

1. What is the content of logic in CS? Is it the standard

package of propositional logic and first-order logic or

should we include modal logic, temporal logic, and

the like?

2. Should Logic in CS be taught differently from Logic

in Math? In what way? Are the Association for Sym-

�This panel resulted from several discussions that took place during

the 1995-6 DIMACS Special Year on Logic and Algorithms. DIMACS

is an NSF-funded Science and Technology Center for Discrete Math-

ematics and Theoretical Computer Science and one of the New Jersey

Commission on Science and Technology’s Advanced Technology Cen-

ters. See http://dimacs.rutgers.edu.

bolic Logic (ASL) Guidelines for Teaching Logic,

published in Volume 1 of the Bulletin of the ASL,

1995, relevant to computer science?

3. Where does logic belong in the CS curriculum:

lower-division courses? upper division courses?

graduate courses? all of the above? Should logic

be a required or an optional part of the curriculum?

4. How does logic fit with the rest of the CS curriculum?

What courses should it require? What courses should

require it?

Kim Bruce

It is interesting to note how the requirements for logic-

related material have changed in the successive Computer

Science curriculum standards. Neither Curriculum ’68

or Curriculum ’78 placed much emphasis on logic aside

from an introduction to propositional (and perhaps pred-

icate) logic in a discrete structures course. Curricula ’91

and the liberal arts CS curriculum recommendations, how-

ever, increased the amount of attention to logic related ar-

eas (including material traditionally placed in a theory of

computation course).

I like to think of logic as a (relatively) simple formal

language that can be used to introduce computer scientists

to interesting issues in programming languages and algo-

rithms. How should these issues be packaged? Hopefully

some of it will come in a Discrete Mathematics course

taught in a student’s first year of college. However, I

find that mathematics departments often shy away from

the level of theory and proof that we find necessary. On

the other hand, CS curricula are already too filled with

material, with more banging on the door to get into the un-

dergraduate curriculum. As a result, I believe that most of

1



these topics need to be integrated into existing courses. In

CS we have for too long ghettoized theory into a separate

course which has little impact on the rest of the curriculum.

These ideas should be introduced in intro, data structures,

and computer organization courses, with further polishing

and depth introduced in algorithms, theory, programming

languages, and other courses (e.g., database, compilers,

etc.) During the presentation I will propose concrete logic-

related topics to be inserted in these courses.

Phokion G. Kolaitis

In an ideal world where resources are plentiful there should

be an upper division undergraduate course on logic in com-

puter science. In reality, however, most CS departments

can not afford to have such a course in their undergraduate

curriculum. What is to be done, then? There are plenty

of opportunities to cover a fair amount of logic in several

undergraduate courses (both lower division and upper di-

vision ones) and tie this material to concrete applications.

Here are three such courses:

� Introduction to CS: In a general introductionto CS for

non-majors or pre-majors, one can cover the basics

of propositional logic and relate it to gates, circuit

design, etc.

� Discrete Mathematics: A thorough treatment of

propositional logic should be presented in this course.

� Database Systems: This course provides an excellent

opportunity to present the basics of first-order logic

in the guise of relational calculus and show how SQL

is essentially a first-order language.

Daniel M. Leivant

Computer Science is the first science intimately linked

to logic. The incorporation of logic into the computer

science curriculum should therefore be conceived inde-

pendently of traditional pedagogical approaches (notably

that of mathematical logic).

Logic has been a branch of philosophy for millenia,

and became a branch of mathematics in the 19th century,

with impressive foundational results but relatively small

impact on mathematical practice. In contrast, central no-

tions of computer science are part and parcel of logic:

abstraction and encapsulation, syntactic entities as objects

of discourse, precise syntactic rules and operations, and

the dichotomy of syntax and semantics. Indeed, computer

science should be viewed as a branch of applied logic, and

computer scientists are, for the most part unknowingly,

applied logicians.

Consequently, logic should be presented to computer

scientists as the conceptual underpinning of computer sci-

ence itself. Using traditional mathematical logic courses,

supplemented with minor computer-science related af-

terthoughts, misses the mark and merely alienates those

students who have no particular interest in mathematical

logic as such.

Logic should be present in the CS curriculum at several

levels:

1. Certain undergraduate courses should have a well

conceived logic component.

2. An elective undergraduate course of logic in com-

puter science (LICS) should be available.

3. A required or strongly recommended introductory

graduate course in LICS should be available.

4. Clearly conceived logic components should be

present in certain graduate level courses, and these

should already assume familiarity with the logic fun-

damentals (programming language theory, seman-

tics, AI, databases)

Moshe Y. Vardi

I believe that logic should be an integral part of the com-

puter curriculum. The formalisms of propositional and

first-order logic should be taught early in the curriculum

(perhaps as part of discrete math) and be relied on in more

advanced courses, e.g., hardware courses should rely on

propositional logics,databases courses should rely on first-

order logic, and the like. At the upper division level, an

advanced course in logic, covering the basic concepts of

propositional and first-order logic (truth, validity, prov-

ability, etc.) should be offered as an elective.

Logic in computer science should be taught, how-

ever, from the computer science perspective. Thus,

there needs to be a strong emphasis on algorithmic

aspects. For example, unique readability should be

taught also as a parsing issue, propositional satisfiabil-

ity should be connected to NP-completeness, provabil-

ity should be viewed as polynomial-time checkability,

and undecidability should be emphasized over incom-

pleteness. For lectures notes that describe how logic

in computer science is taught at Rice university, see

http://www.cs.rice.edu/�vardi/comp409.

References

[1] MANNA, Z. AND WALDINGER, R. The Logical Basis

for Computer Programming. Addison-Wesley, 1985.

2


