__DbATA

The Universal-Relation
Data Model for Logical
Independence

This relational model
keeps access-path
independence by
removing the need for
logical navigation
among relations. One
benefit is a simple yet
powerful query-language
interface.

80

Moshe Y. Vardi, IBM Almaden Research Center

ecause early database-management

systems required that application

programmers and end users alike
specify access paths, Codd introduced the
relational model to free the programmer and
user from what he called the “navigation
pmblem."I He also wanted to eliminate the
need. for program modification to accommo-
date changes in the database structure (that
is, to eliminate access-path dependence in
programs).

But after a few years of experience with
relational database-management systems, it
became clear that — although it was a signif-
icant step forward — the relational model by
jtself failed to achieve complete freedom from
user-supplied navigation and from access-
path dependence. The relational model was
successful in removing the need for physical
navigation as no access paths need be speci-
fied in a relation’s storage structure.
Nevertheless, the relational model has not
yet provided independence from logical
navigation, since access paths among the
relations must still be specified.

For example, consider a database that has
relations ED(Employee, Department) and

0740-7459/88/0300/0080/301.00 ©1988 IEEE

ACCESS

DM(Department, Manager). If you
interested in the relationship between
employees and managers through de
ments, you must specify the natural j Jom
the ED and DM relations, projected o
EM. This join is an access-path specifica-
tion, without which the answer to the qui
cannot be computed. Thus, a user mus
know what relations are in the database
how they can be joined. Furthermore, :
application programs that include the joil
are data-dependent. If the database w
for example, reorganized to have a si
relation EDM, these programs would havi
to be modified accordingly. Of course, t!n;
problem may be overcome by defining a
view on EM, but that approach may leadtq
an unwanted proliferation of views.
The universal-relation model tries té

achieve complete access-path independence
by letting you ask (in an appropriate lan-
guage) “‘tell me about employees and their
managers,”’ expecting the system to figure
out the intended access path for itself. Of
course, you cannot expect the system always
to select automatically the intended relauox; :
ship between employees and managery:

#

IEEE Softw

because the user might have something other
than the simplest connection (in this case, the
one through departments) in mind — the
user instead might be looking for the man-
ager of the manager of the employee, or, for
some obscure reasons, the managers of ali
departments that come alphabetically later
than the department of the employee. In a
universal-relation system, you must settle for
eliminating the need for logical navigation
along certain paths — those selected by the
designer — while ietting the user navigate
explicitly in more convoluted ways. .
- The universal-relation model is not meant
to replace the relational model; rather, it is
" meant to supplement it. There are several
applications where a universal-relation inter-
face to an existing database-management
system is essential. The most obvious exam-
ple is natural-language interfaces — indeed,
#ishardtosee howa natural-language inter-
face could reliably use anything else, since
it is unreasonable to make the user talk in
terms of the database’s logical structure.
After all, you cannot expect a customer who
#interrogating a point-of-sale application in
idepartment store to know anything about
‘e underlying database system.

} Unlike the relational model, the universal-
tation model was not introduced as a sin-
e, clearly defined model — it emerged and
wolved during the 1970s through the
mdependent work of several researchers and
sstill in development. While several exper-
mental implementations have been built, I
Dow of no commercial database-manage-
nent system that supports it.

-This article just introduces the universal-
glation model. It sketches the fundamental
Jeas behind the model and describes a few
xamples. Other work offers deeper
reatment >

‘undamental
issumptions

Consider the assumptions that are fre-
uently made when talking about
fiversal-relation systems. These assump-

‘arch 19

tions must be satisfied by an application
for the universal-relation model to be ade-
quate for that application. All data models
have such underlying assumptions,
although they are very rarely made
explicit.

Universal-relation scheme. Perhaps the
most basic assumption is that there is a
universal-relation scheme, a set of attrib-
utes about which queries may be posed.
Further, attributes in this set are assumed
to play only one role, and puns are not
allowed. Thus, an attribute like Name can-

The underlying
assumption, called

not stand for names of employees, cus-
tomers, suppliers, and managers in the
same universal-relation scheme. This
requirement forces the database designer
to embed access paths in attribute names.
You often hear claims that many attributes
must then receive unintuitive names, but
there is no evidence that this is true for
typical databases — although occasional
renaming is, of course, necessary.

Relationship uniqueness. Another basic
assumption is that for all attribute sets X
(for example, {Employee, Manager}),
there s a unique relationship on this set X
that the user has in mind. That does not
mean there can be only one relationship on
X but that one relationship is the most
basic one, so you can assume that this rela-
tionship is what the user intends unless it

is explicitly specified otherwise. In the
earlier example of employees, depart-
ments, and managers, you would expect
the most basic relationship between
managers and employees to be that of
‘“‘manages,’”’ while the relationship
‘““manages the manager of*’ you would feel
intuitively is less basic.

This underlying assumption is called
relationship uniqueness. It strengthens the
universal-relation scheme assumption
because not only are attributes expected to
play unique roles, but combinations of
attributes likewise have a unique meaning.
This basic relationship on a set X of attrib-
utes is called a connection on X and is
denoted [X]. (The connection on X has
also been called the window on X.) Tech-
nically, [X] is a function from database
states db to relations [X](db). Given a
database db, [X](db) is a relation on X that
represents the basic relationship on X for
that database.

Connections and query processing. The
preoccupation of universal-relation sys-
tems with uniqueness of relationships is
caused by a seldom-acknowledged
assumption that underlies all universal-
relation systems: Query processing con-
sists of two steps. The steps are:

* Binding. Construct the connection
[X)(db) for the set X of attributes in the
query.

¢ Evaluation. Whatever operations
must be applied to answer the query are
then applied to [X](db).

The binding and evaluation phases are
independent. Different connection func-
tions {X] can be used to produce different
relations over X without changing the way
evaluation works on the resulting relation.
(The answer may, of course, be changed.)

For example, the queries

retrieve (EMP)
where MGR = "Jones"

and

81

P

4

den of defining all connections.

objects.

References

147157.

172-185.

Universal-relation system sampler

Other systems that implement the universal-relation model include:

« Unix's “q" command, which has what is perhaps the simplest computational
approach. This command supports the universai-relation model through arel file,
which is essentially a list of joins that can be taken if a query requires it; the first
join on the list that covers all the needed attributes is taken. The rel file is set up
by the database designer, which means that the designer must carry the extra bur-

 Pique, the PITS Query language, a universai-relation interface for the Pie in
the Sky database system developed at the State University of New York at Stony
Brook and the Oregon Graduate Center.' It is based on the concepts of associa-
tions and objects, which are closely retated to System/U’s objects and maximal

« Aurical, the Universal-Relation Implementation via Codasyl, a universal-
relation system at the University of lllinois at Urbana~Champaign.’ it is imple-
mented in Fortran using an interface to an existing Codasyl database systemon
a Prime computer. It is based on the weak universal-relation approach.

« DURST, the Datenbank mit Universalrelation-Scnittstelle, a universal-relation
system at the University of Dortmund in West Germany.® Its approach is similar
to FIDUs but does not include a physical implementation of the universal relation.

1. D. Maier, D. Rozenshtein, and D.S. Warren, “Window Functions,” in Advances in Comput-
ing Research, Vol. 3: The Theory of Databases, P. Kanellakis and F.P. Preparata, eds., JAl
Press, Greenwich, Conn., 1986, pp. 213-246.

2. S.M. Kuck and Y. Sagiv, “A Universal-Relation Database System implemented via the Net-
work Model,” Proc. First Symp. Princ. Database Systems, ACM, New York, 1982, pp.

3. J. Biskup and H.H. Bruggeman, “Univarsal Relations Views: A Pragmatic Approach,” Proc.
Ninth Int'l Conf. Very Large Databases, William Kaufmann, Los Altos, Calif., 1983, pp.

retrieve (MGR)
where EMP = "Smith"

are each answered by forming from the
database some relation r over (Emp, Mgr)
in the binding phase. For the evaluation
phase in the first case, you select from r
those tuples where Mgr equals ‘‘Jones’
and then project onto Emp. In the second
case, you select for Emp equal to ‘‘Smith”’
and then project onto Mgr.

Defining connections

The crux of a universal-relation system
is its connection function. This function is
the bridge between the database as a col-
lection of relations and the database as a
semantic whole. There are two basic
approaches to defining the connection
function.

In the first approach, data is treated as
if it were all in a single relation over all the
attributes. This relation, called the univer-
sal relation, is in effect the user view, and
[X1(db) is taken to be the projection of this
relation onto X. In the above example, the
universal relation is a relation over the
attributes { Emp, Dpt, Mgr}, and the con-
nection on Emp and Mgr is computed by
projecting the universal relation onto these
attributes.

The second approach deals with how

82

[X1(db) is to be computed, without explicit
reference to the universal relation. In the
above example, the connection on Emp
and Mgr is computed by joining the rela-
tion ED with the relation DM and project-
ing the result on {Emp, Mgr}.

The relationship between the two
approaches is important because the first
approach defines the connection semanti-
cally whiie the second appivach, which
defines the connection computationally,
provides the algorithm needed to compute
it.

Semantic definitions. Historically, the
first approach was expressed first as the
pure universal-relation assumption, which
restricted the model to cases where a
unique relation « exists over the set Uof
all attributes such that u satisfies the
integrity constraints of the application and
to cases where, in every relation scheme R
in the database scheme, the current rela-
tion for R is the projection of wonto R. In
this case, u is the user view and [X)(d)) is
the projection of u onto X.

This approach lets you view the data-
base as a physical representation of a sin-
gle universal relation, and it helps you deal
with the integrity constraints on the data-
base. Clearly, for this approach to work,
you must ensure that the universal relation

is unique and that you have an effectivg}
way of computing it. Nevertheless, eveg]
with these issues solved, the pure unive

relation approach is not applicable to o
sufficiently broad set of applicationg
because it is too constraining. For examy
ple, in the example database of employeegd
departments, and managers, you
store information about the manager of§
new department that does not yet have ang
employee assigned to it. e

A modified version of the pug

universal-relation approach, which b
become known as the weak universaf§
relation approach, has overcome the ¢
ficulties of the pure universal-relatio
approach while retaining its advantagesd
While the weak universal relation ag
proach is theoretically very appealing, §
leaves open the question of how to ¢fi§
ciently compute the connection functios

ALl Jreey

Computational definitions. The othg
approach to the universal-relation mode:
is that the user may query about any

attributes X, and the system will perfo b

13

i

some computation on the database reig38 : |

tions to compute the connection on Xi (
Almost all systems that support el
universal-relation model take thigg
approach, although they vary in thealgo-3§ d
rithm they use for the computation. e
major issue in database theory is how well 3% d:
the various computational definitioe
(algorithms) approximate the sema Dtic
definitions. 3

Universal-relation

systems

Two universal-relation database
managemant systems are good exampe
of the model: System/U,’ developed &
Stanford University, and FIDL,® dﬂ"]
oped at International Computers Lu.®
Britain. The examples here are ad '
from articles about the two systems-
Other implementations are outlined inth
box above. :

e
System/U. System,/U is implements$#f 2
C on Unix. The system’s data modd St feur
based on the concepts of attnovy it
objects, and maximal objects. AR bo:
Objects are minimal sets of attrit i 1

IEEE Soft

28

XyE _sgcgesrarna

ki,

*

that have collective meaning; each object
isassumed to be contained in onerelation
scheme. For example, in terms of the
entxty-relauonshap data model, an attri-
bute or attributes that form a key for-an
entxty set will be found in one object for
gch of the properties of that entity set; the
object includes only the key and the prop-
érty. Relationships are represented by
gbjects consisting of the keys for the
nelated entity sets.

¢ Maximal objects are maximal sets of
objects that let the system navigate. The
following example illustrates the notions
of objects and maximal objects.

3 The database here describes the opera-
Upns of banks. The attributes are Bank,
Acct (account), Bal (balance of account),
Boan Amt (amount of loan), Cust (cus-
tomer), and Addr (customer’s address).
Customers are related to branches by being
the owner of an account or the holder of
xloan. Both accounts and loans can be
ihared by several customers, but each
apcount is at a single branch. The database

stheme is shown in Figure 1. The objects .

5t-Addr, Cust-Loan, Loan-Bank, and
Amt.
In System/U, navigation follows depen-
cies between the attributes. In this
ple, Bank and Bal are functionally
dent on Acct. Every account is
ted to a unique branch and has funds
it Similarly, Bank and Amt are func-
dependent on Loan. Finally, Addr
ionally dependent on Cust. These
encies give rise to two maximal
jects, shown in Figure 2. There is no
'inc relationship between, for example,
m and Acct because these attributes do
Ot occur in the same maximal objects.
iObjects and maximal objects are crucial
3 the definition of connection in Sys-
m/U. For example, in the banking exam-
ke, we could ask
retrieve (BANK)
where CUST = "Jones"
ystem/U will first figure out what the
devant attributes to the query are; in this
1se, they are Bank and Cust. It will then
gure out in what maximal objects these
tribute appear; in this case, they appear
tboth ma ximal objects. Finally, the sys-
m will take the join of the objects in each

E:cct-nal, Acct-Cust, Acct-Bank,

arch 1988

relevant maximal object, project onto the
relevant attributes, and take the union of
the results to be the connection that the
query is applied to. In this case, the effect
will be to find all banks at which Jones has
an account or a loan.

System/U has a data-definition facility
that accepts as input declaration of attri-
butes, relations, functional dependencies,
and objects. It computes the maximal
objects from this facility. After entering
the declarations, the user asks the system
to list all maximal objects. Figure 3a shows

the input for the banking example; Figure’

3b shows the system’s response.

System/U’s query language is essen-
tially Quel, with the following important
difference: There is no need for tuple var-
iables because they all range over a virtual
universal relation. Thus, an occurrence of
attribute A is deemed to stand for 5.4,
where bis the blank tuple variable, a tuple
variable that never appears explicitly. Of
course the user can also use explicit tuple
variables.

l-'lDL.. FIDL, the Flexible Interrogation

Acct

Bank Cust = Addr

\mla-,,/

Amt

Figure 1. Banking example.

. Bil
Acct
/
Cust = Addr
\ Loan /
. Amt

Figure 2. Maximal objects in the
banking example.

char [20] bank;
char [25] customer;
char [50] address;

relation racct =

account- > bank;
account- > balance;
loan- > bank;
loan->amount;

(a) customer-> address;

symbol: 1

integer loan account;
float amount balance;

relation rcust = customer, address;)
relation rloan = customer, bank, loan, amount;
customer, bank, account, balance;
object ocust in rcust =
object oloancust in rloan = customer, loan;
object oloanbank in rloan = bank, loan;
object oloanamt in rloan = loan, amount;
object oacctcust in racct = customer, account;
object oacctbank in racct = account, bank;
object oacctbal in racct = account, balance;

symbol: 2 type: maximal object

objects: oloanbank oloanamt ocust oloancust
type: maximal object

{b) objects: oacctbank oacctbal ocust oacctcust

customer, address;

Figure 3. (a) Input declarations for the banking example; (b) system response

to the input.

83

D

reantadaddianzl 2

St & Wl dé § kel b Coadd SEFNT

Table 1.
Jobs example specification.

Relations

Represents

S{Sup-No:Town]
P[Part-No:PD,QOH]
JlJob-No:JD]

PJ{Part-No, Job-No:QC]
PS{Part-No, Sup-No:Price]

“Suppliers and the supplier’s town
Parts, part description, and quantity on hand
Jobs with the job description
Parts used by jobs and quantity committed
Catalog of suppliers with price

PJS[Part-No, Job-No, Sup-No:Qty] Parts used on jobs and from which suppliers

and Declaration Language, is a universal-
relation system at International Com-
puters Ltd. in Britain. In most universal-
relation systems, the universal relation is
a virtual relation, but FIDL is basedon a
physical implementation of the universal
relation. The universal relation, called
JNF (for Joint Normal Form), is stored on
specialized hardware called CAFS, the
Content-Addressable File Store. This store
is designed to scan rapidly through a file
and retrieve selected records and send
them to the mainframe.

The system’s data model is based on the
concept of an implication network, which
is a graphical description of the dependen-
cies between the relations of the database.
To obtain information that represents the
actual database state, relations can be
joined directly only with those lying on the
same directed path in the implication
network.

The jobs application shows which jobs
(J) use which parts (P) and who supplies
them (S). Table 1 shows the application’s
specification; Figure 4 shows the implica-
tion network for the jobs example. The
result of taking the join of the relations PS
and PJ shows which suppliers could pro-
vide parts for certain jobs, rather than the
suppliers that actually do. This shows why
joins between relations that are not on the
same path should not be taken.

The implication network is specified by
the database designer in a data-definition
language. This specification is used by
Flin, the Flexible Language Interpreter, to
create a universal relation by performing

_w»s H
PS

s) P
g

J

Figure 4. Implication network for the
jobs example.

(a)

P[Part#:Part-Des} S[Supplier#: Name]
1 NUT 304 SMITH INC. :
2 BOLT 362 WESTLEY & MORTON
3 SCREW 424 CRYOGENICS CO.
PS{Part# Supplier#:Price]
1 304 6
1 362 7
2 304 18 P
3 362 10
PS /

(b)

Figure 5. (a) Database for parts and supplies; (b) its implication network.: '_

all possible joins of the application’s rela-
tions. The relations are joined through
common attributes along the arcs of the
implication network. The tuples that are
lost because of an absence of common
values in shared attributes are restored by
joining them to dummy tuples with null
values in the unspecified attributes. The
result is then appended to the universal
relation, which is put on CAFS in a com-
pressed form.

Consider the database for parts and sup-
pliers shown in Figure 5a, whose implica-
tion network is shown in Figure 5b. The
universal relation is the union of the join
P+S»PS, a relation describing the parts

that are not linked to suppliers, and ar
tion describing the suppliers not linked 7
parts (shown in Table 2). E
FIDL lets the user query the databas
and modify it by inserting or deleti
information. The user’s commands
translated by Flin to CAFS commands. A
sample query is 3

+—LIST ALL ORDERS FOR WHICH
PART IS SCREW OR BOLT

Figure 6 shows the creation of a new re
tion that relates salesmen to custom
Figure 7 shows the deletion of a rels
tionship. '

Table 2.

Universal relation for the jobs example.
Header Attributes
P S PS Part # Part-Des Supplier # Name
1 1 1 1 NUT 304 SMITH INC. 6 4
0 1 1 1 NUT 362 WESTLEY & MORTON 7 ¥
1 0 1 2 BOLT 304 SMITH INC. 18 &
1 0 1 3 SCREW 362 WESTLEY & MORTON 10
0 1 0 — — 424 CRYOGENICS CO. -

g_ T he universal-relation model gives
users a more succinct language for
expressing queries, frees them
‘from concern with the database’s logical
structure, and protects them from the
errors that creep into queries when com-
plicated access paths must be specified.
¢ To be fair, these advantages do not
come for free. The desire that certain log-
gical navigation be done automatically by
§the system may place some subtle con-
ystraints on the data structure and may
¥make unusual access paths harder to
3specify. Nevertheless, I believe that it is
worth building universal-relation inter-
‘faccs to existing database-management
ems because such an interface is essen-
!;yal“to several applications, such as natural-
' language interfaces.
- The universal-relation model stands
today where the relational model stood a
e ago. Itis clearly defined, has robust
eoretical foundations, and has several
experimental implementations. Perhaps
vo years from now it will be as commer-
ially successful as the relational model is

y. Y

nowledgments

: Figures 1-3 are copyright 1984 by ACM and
hre reproduced from the September 1984 issue
f ACM Transactions on Database Systems.
res 4-7 and Tables 1-2 are copyright 1982
)y ACM and are reproduced from the June 1982
of ACM Transactions on Database Sys-
. All materials are reproduced with per-

n.

rences

1. E.F. Codd, *‘A Relational Model for Large
;. Shared Data Banks,”* Comm. ACM, June
.' 1970, pp. 377-387.

2. D. Maier, The Theory of Relational Data-

, Computer Science Press, Rockville,
Md., 1983.

5
F D. Maier, J.D. Ullman, and M.Y. Vardi,
¥

““On the Foundations of the Universal-
Relation Model,’” ACM Trans. Database
Systems, Sept. 1984, pp. 283-308.

I,‘ J.D. Ullman, Principles of Database Sys-
tems, Computer Science Press, Rockville,
Md., 1983 .

-5 H. Korth et al., *“‘System/U: A Database
System Based on the Universal-Relation
Assumption,’” ACM Trans. Database Sys-
tems, Sept . 1984, pp. 331-347.

6. T.R. Addis, ‘‘A Relation-Based Language
Interpreter for a Content-Addressable File
Store,”” ACM Trans. Database Systems,
July 1982, pp. 125-163.

March 1988

The user types in the reqi

The root relation is deduced .
CUSTOMER «+

SALESMAN -

= "654321"
NONE FOUND

of its own, none are requested

OK. 1| CREATED

ODB5S MAKE CUSTOMER SALESMAN
The system responds by specifying the file accessed
THE ASSUMED RELATION IS CUS+SAL (CUSTOMER SALESMAN)

The essential key attributes are requested

CHECKING CUSsSAL WHERE CUSTOMER = "123456" SALESMAN

The tuple to be inserted does not exist and since it contams no attributes

CHECKING SAL WHERE SALESMAN = "654321 *. OK.
The salesman is already recorded ’

CHECKING CUS WHERE CUSTOMER - "123456". OK.
The customer is already recorded aoe

The complete JNF record, tagged and comammg all implied informa-
tion, is added to the ODB5 CAFS f ile

Figure 6. Example cre,atlon of a FIDL relation. Comments are italicized; user

entries are in reverse video.

BAR)
The EQP relation is deduced

ORDAM}ITEM

OK. 2 DELETED

The affected relations are given

2 FOUND. DO YOU WISH TO CONTINUE. ~ [§
The number of JNF records found to be deleted is given and, as a fur-
ther precaution, some affirmative reply is required

e deleted must be given as a

precaution; the assumed Ilmu is1
ODBS DELETE ALL FOR EQUIP EQUALS " 123450" OR EQUIP
EQUALS "123457" OR EQUIP EQUALS "123465"
THE ASSUMED RELATION IS EQP (EQUIP : PMARK MACHINE

THE DEPENDENT RELATIONS ARE CUS+EQP SYStEQP

[l OK

The appropriate tags are removed in the JNF records

Figure 7. Exampie deletion of a FIDL relation. Comments are italicized; user

entries are in reverse video.

Moshe Y. Vardi is a research staff member at
the IBM Almaden Research Center, where he is
researching system fundamentals. His research
inzerests include database theory, protocol spec-
ification and verification, and knowledge the-
ory in distributed systems and artificial
intelligence. Before joining IBM in 1985, he was

a research associate at Stanford University.
Vardi received a PhD in computer science
from Hebrew University in Jerusalem. He is a
member of ACM.
Address questions about this article to Vardi
at IBM Almaden Research Center, MS
K53/802, 650 Harry Rd., San Jose, CA 95120.

85

