
A Revisionist History
of

Algorithmic Game Theory

Moshe Y. Vardi

Rice University



Theoretical Computer Science:
Vols. A and B

van Leeuwen, 1990: Handbook of Theoretical
Computer Science

• Volume A: algorithms and complexity

• Volume B: formal models and semantics (“logic”)

E.W. Dijkstra, EWD Note 611: “On the fact that the
Atlantic Ocean has two sides”

• North-American TCS (FOCS&STOC): Volume A.

• European TCS (ICALP): Volumes A&B

A Key Theme in FOCS/STOC: Algorithmic Game
Theory – algorithm design for strategic environments

1



Birth of AGT: The ”Official” Version

NEW YORK, May 16, 2012 – ACM’s
Special Interest Group on Algorithms and
Computation Theory (SIGACT) together with
the European Association for Theoretical
Computer Science (EATCS) will recognize
three groups of researchers for their contributions
to understanding how selfish behavior by
users and service providers impacts the
behavior of the Internet and other complex
computational systems. The papers were
presented by Elias Koutsoupias and Christos
Papadimitriou, Tim Roughgarden and Eva
Tardos, and Noam Nisan and Amir Ronen.
They will receive the 2012 Gödel Prize,
sponsored jointly by SIGACT and EATCS for
outstanding papers in theoretical computer
science at the International Colloquium on
Automata, Languages and Programming
(ICALP), July 9–13, in Warwick, UK.

2



Three seminal papers

• Koutsoupias&Papadimitriou, STACS 1999: Worst-
case Equilibira – introduced the “price of
anarchy” concept, a measure of the extent
to which competition approximates cooperation,
quantifying how much utility is lost due to selfish
behaviors on the Internet, which operates without
a system designer or monitor striving to achieve
the “social optimum.”

• Roughgarden & Tardos, FOCS 2000: How Bad is
Selfish Routing? – studied the power and depth
of the “price of anarchy” concept as it applies
to routing traffic in large-scale communications
networks to optimize the performance of a
congested network.

• Nisan & Ronen, STOC’99: Algorithmic Mechanism
Design: studied classical mechanism design
from an algorithmic and complexity-theoretic
perspectives.

3



Worst-Case Rquilibria – Price of
Anarchy

Question : What is the worst-case ratio between
cooperative (centralized) and non-cooperative (distributed)
outcomes in games?

Koutsoupias&Papadimitriou – for a simple routing
game: n tasks over m links

• Upper Bound: O(
√
m logm)

• Lower Bound: Ω(logm/ log logm)

Roughgarden & Tardos – a more complex routing
game:

• Tight Bound: 4
3

4



Algorithmic Mechanism Design

Background – Game Theory

• Equilibria Analysis: analogous to algorithm
analysis

• Mechanism Design: analogous to algorithm
design

– Design games with desirable equilibria – e.g.,
second-price sealed-bid auction

Nisan & Ronen – n-distributed task-allocation game

• Upper Bound: n-approximation mechanism

• Lower Bound: No c-approximation mechanism
for c < 2.

5



Computing Equilibria

Daskalakis&Goldberg&Papadimitriou, STOC’06: The
complexity of computing a Nash equilibrium –

• Nash’s existence proof is nonconstructive (using
Brouwer’s Fixed-Point Theorem)

• Theorem : Finding a Nash equilibrium in three-
players games is PPAD-complete.

• Result extended later to two-players games.

PPAD – polynomial-parity arguments on directed
graphs

• Generally believed not to be in PTIME for succint
graphs.

6



Algorithmic Game Theory, 2007

7



A Revisionist Thesis

Thesis :

• AGT was initiated by logicians in 1957!

• AGT was revitalized by Vol. B TCS in 1989!

• AGT has been active in Volume B TCS since
then!

Point :

• First: Give credit where credit is due!

• More Significantly: Tear down the wall between
Vol. A and Vol. B!

8



Gale-Stewart Games

Gale-Stewart Game : an infinite-round, full-
information, turn-based, two-player game

• Finite Action Set – A, Winning Set – W ⊆ Aω

• Players 0 and 1 alternate choosing actions in A –
play is in Aω

• Player 0 wins if play is in W

Basic Concepts :

• Strategy: f : A∗ → A

• Determinacy: Either Player 0 or Player 1 has a
winning strategy.

Question : When is a Gale-Stewart game determined?

• Determinacy holds easily for finite-round games
(Zermelo).

Known Results

• Gale&Stewart, 1953: Determinacy for open and
closed winning sets

• Martin, 1975: Determinacy for Borel winning sets

• Beyond Borel: depends on set-theoretic axioms

9



Monadic Second-Order Logic

View an infinite word w = a0, a1, . . . over alphabet A
as a mathematical structure:

• Domain: 0, 1, 2, . . .

• Dyadic predicate: <

• Monadic predicates: {Pa : a ∈ A}
Monadic Second-Order Logic (MSO) :

• Monadic atomic formulas: Pa(x) (a ∈ A)

• Dyadic atomic formulas: x < y

• Set quantifiers: ∃P,∀P
Example : (∀y)((∃x)((y < x)) ∧ Pa(x)) – infinitely
many occurrences of a.

10



MSO Games

Church’s Problem, 1957 :

• Input: MSO formula ϕ

• W = models(ϕ) - game is determined!

• Analysis: Who wins the game?

• Synthesis: Construct a winning strategy for
winning player

Solution [Büchi&Landweber, 1969]:

• Analysis problem is decidable – nonelementary
• Winning player has a finite-memory strategy.
• Finite-memory strategy can be constructed

algorithmically.

Rabin, 1972: Simpler solution via tree automata.

Claim : This is the birth of AGT!

• An algorithmic approach to a game-theoretical
question.

• Algorithm design in a strategic setting.
• Automated algorithm design!

But : Nonelementary lower bound [Stockmeyer,
1974].

11



Finite-Memory Strategies

Transducers [EF Moore, 1956] – T = (Σ,∆, S, s0, ρ, δ)

• Σ - finite input alphabet

• ∆ - finite output alphabet

• S: finite state set

• s0 ∈ S: start state

• δ : S × Σ → S - transition function

• δ : S → ∆ - output function

Extending – ρ : Σ∗ → S, δ : Σ∗ → ∆.

• ρ(ǫ) = s0

• ρ(wa) = ρ(ρ(w), a)

• δ(w) = δ(ρ(w))

12



LTL Games: Rebirth of AGT

Complexity-Theoretic Motivation : Can we get
around the nonelementary bound?

Answer : Use LTL (Linear Temporal Logic) rather
than MSO.

• No explicit quantifiers

• Temporal connectives: next, eventually, always,
until, release

• Expressively equivalent to first-order logic; weaker
than MSO.

[Pnueli&Rosner, 1989]: Analysis and synthesis of
LTL games is 2EXPTIME-complete.

13



Linear Temporal Logic

Linear Temporal logic (LTL): logic of temporal
sequences (Pnueli, 1977)

Main feature: time is implicit

• next ϕ: ϕ holds in the next state.

• eventually ϕ: ϕ holds eventually

• always ϕ: ϕ holds from now on

• ϕ until ψ: ϕ holds until ψ holds.

• π,w |= next ϕ if w • -•
ϕ

- • -• -•. . .

• π,w |= ϕ until ψ if w •
ϕ

-•
ϕ

- •
ϕ

-•
ψ

-•. . .

14



Examples

Psalm 34:14: “Depart from evil and do good”

• always not (CS1 and CS2): mutual exclusion
(safety)

• always (Request implies eventually Grant):
liveness

• always (Request implies (Request until Grant)):
liveness

15



What Good is Model Checking?

Model Checking :

• Given: Program P , Specification ϕ

• Task: Check that P |= ϕ

Success :

• Algorithmic methods: temporal specifications
and finite-state programs.

• Also: Certain classes of infinite-state programs

• Tools: SMV, SPIN, SLAM, etc.

• Impact on industrial design practices is increasing.

Problems :

• Designing P is hard and expensive.

• Redesigning P when P 6|= ϕ is hard and
expensive.

16



Automated Design of Programs

Basic Idea :

• Start from spec ϕ, design P such that P |= ϕ.

Advantage:

– No verification
– No re-design

• Derive P from ϕ algorithmically.

Advantage:

– No design

In essence : Declarative programming taken to
the limit.

17



Program Synthesis

The Basic Idea : Mechanical translation
of human-understandable task specifications
to a program that is known to meet the
specifications.

Deductive Approach [Green, 1969, Waldinger and
Lee, 1969, Manna and Waldinger, 1980]

• Prove realizability of function,
e.g., (∀x)(∃y)(Pre(x) → Post(x, y))

• Extract program from realizability proof.

Classical vs. Temporal Synthesis :

• Classical: Synthesize transformational programs

• Temporal: Synthesize programs for ongoing
computations (protocols, operating systems,
controllers, etc.)

18



Synthesis of Ongoing Programs

Specs: Temporal logic formulas

Early 1980s : Satisfiability approach
(Wolper, 1981, Clarke+Emerson, 1981)
• Given: ϕ
• Satisfiability: Construct M |= ϕ
• Synthesis: Extract P from M .

Example : always (odd→ next ¬odd)∧
always (¬odd→ next odd)

odd -
� odd

�
�

�
�

�
�

�
�

19



Reactive Systems

Reactivity : Ongoing interaction with environment
(Harel+Pnueli, 1985), e.g., hardware, operating
systems, communication protocols, etc.

Example : Printer specification –
Ji - job i submitted, Pi - job i printed.

• Safety: two jobs are not printed together
always ¬(P1 ∧ P2)

• Liveness: every job is eventually printed
always

∧2
j=1(Ji → eventually Pi)

20



Satisfiability and Synthesis

Specification Satisfiable? Yes!

Model M : A single state where J1, J2, P1, and P2

are all false.

Extract program from M? No!

Why? Because M handles only one input
sequence.

• J1, J2: input variables, controlled by environment

• P1, P2: output variables, controlled by system

Desired : a system that is receptive to all input
sequences.

Conclusion : Satisfiability is inadequate for synthesis
of reactive systems.

21



Realizability

I: input variables, O: output variables

Game:

• System: choose from 2O, Env: choose from 2I

Infinite Play :
i0, i1, i2, . . .
00, 01, 02, . . .

Infinite Behavior : i0 ∪ o0, i1 ∪ o1, i2 ∪ o2, . . .

Win : behavior |= spec

Specifications : LTL formula on I ∪O

Realizability : [Abadi+Lamport+Wolper, 1989
Dill, 1989, Pnueli+Rosner, 1989]
Existence of winning strategy for system.

Synthesis [Pnueli+Rosner, 1989]:
Extraction of winning strategy for system.

Question : LTL is subsumed by MSO, so what
did Pnueli and Rosner do?
Answer : better algorithms!

22



Post-1972 Developments

Pnueli, 1977 : Use LTL rather than MSO as spec
language

V.+Wolper, 1983 : Exponential translation from LTL
to Büchi automata

Safra, 1989 : Exponential determinization of Büchi
automata

Pnueli+Rosner, 1989 : 2EXPTIME realizability
algorithm wrt LTL spec

Rosner, 1990 : Realizability is 2EXPTIME-complete.

Post 1990 : Emergence of Parity Games

23



Distributed Games

[Pnueli&Rosner, 1990]: Can we synthesize
distributed protocols?

• Reduce to multi-player games

• Model communications via a directed graph

• Critical factor: complete vs. incomplete informaton
games

Result : Complexity goes from 2EXPTIME to
nonelementary to undecidable.

• Finkbeiner&Schewe, 2005: characterization of
decidability

Related Work : multiple-player games with incomplete
information [Peterson&Reif, 1979]

24



Büchi Automata

Büchi Automaton : A = (Σ, S, S0, ρ, F )
• Alphabet: Σ
• States: S
• Initial states: S0 ⊆ S
• Transition function: ρ : S × Σ → 2S

• Accepting states: F ⊆ S

Input word : a0, a1, . . .

Run : s0, s1, . . .

• s0 ∈ S0

• si+1 ∈ ρ(si, ai) for i ≥ 0

Acceptance : F visited infinitely often

- •
6

� �
0

1-
�

0
•��

��
6

� �
1

– infinitely many 1’s

Fact : Büchi automata define the class ω-Reg of ω-
regular languages.

25



Logic vs. Automata

Paradigm : Compile high-level logical specifications
into low-level finite-state language

Compilation Theorem : [Büchi, 1960] Given
an MSO formula ϕ, one can construct a Büchi
automaton Aϕ such that a trace σ satisfies ϕ if
and only if σ is accepted by Aϕ.

Complexity : nonelementary [Stockmeyer, 1974]

Exponential-Compilation Theorem [V. &
Wolper,1983–1986]: Given an LTL formula ϕ of
size n, one can construct a Büchi automaton
Aϕ of size 2O(n) such that a trace σ satisfies ϕ
if and only if σ is accepted by Aϕ.

Ongoing Research : practically effective compilation

26



Determinization

• Key Insight: Fundamental mismatch between
automaton nondeterminism and strategic behavior
– determinization required!

• Obstacle: Büchi automata are not closed under
determinization.

Deterministic Parity Automaton :
A = (Σ, S, S0, ρ, F )
• Alphabet: Σ
• States: S
• Initial states: S0 ⊆ S
• Transition function: ρ : S × Σ → S
• Accepting Condition: π :→ {0, . . . , k − 1} –
priority function

Acceptance : minimal priority visited infinitely often
is even.

Determinization Theorem [Safra,1988]: Given an
n-state Büchi automaton A, we can construct an
equivalent deterministic parity automaton Ad with
nO(n) states and n priorities.

Ongoing Research : determinization constructions

27



Parity Games

Key Ideas in LTL Games : from logic to automata,
from automata to graph games

Crux : Many synthesis and model-checking problems
are reducible to parity games.

Parity Games G = (V0, V1, E, π)

• V = V0 ∪ V1, E ⊆ V 2 – total relation

• Priorities: π : V → {0, . . . , k − 1}
• Play 0 moves pebble from V0, Play 1 moves
pebble from V0.

• Pebbles move along edges in E

• Play: Sequence in V ω

• Winning: Player i wins if minimum priority visited
infinitely often has parity i.

Determinacy : game is determined!

• Analysis: Who wins from a given node v of a
parity game G?

• Synthesis: construct winning strategy for winning
player.

28



Parity Games – Known Result

Emerson&Jutla, 1991: Winner has a memoryless
(i.e., history-free) strategy.

Parameters : n nodes, m edges, k priorities

Complexity :

• Jurdzinski, 1998: in UP∩co-UP

• Schewe, 2007: O(mn
k
3)

• Jurdzinski&Paterson&Zwick, 2008: randomized
algorithm in O(n

√
n)

• Friedmann&Hansen&Zwick, 2011: Subexponential
lower bound for a particular LP algorithm for PGs

Major Open Question : Are parity games solvable
in PTIME?

29



Mean-Payoff Games

[Ehrenfeucht&Mycielski, 1979]: Mean-Payoff Games
– G = (V0, V1, E, π)

• Payoff of a play: LimAvg of sum of priorities

• Player 0 maximizes, Player 1 minimizes

Optimization Problem : Compute the maximal
value that Player 0 can guarantee at a given node.

Known :

• Jurdzinski, 1998: decision problem in UP∩co-UP

• Björklund&Sandberg&Vorobyov, 2003: randomized
subexponential algorithm

A Bridge : Parity games are reducible to mean-
payoff games, which are reducible to simple
stochastic games [Jurdzinski, 1998, Zwick&Paterson,
1996]

30



Graph Games

Observation : Analysis of graph games is a vibrant
research direction of Volume B TCS!

• Major Theme: Probabilistic Behavior

Example – Markov Decision Processes : Games
against Natute

• Player 1 is stochastic: probabilities on edges

Two Versions :

• Qualitative Analysis: analyze for win with
probability 1 or > 0

• Quantitative Analysis: compute win probability for
optimal strategy

Results :

V., 1985 : qualitative analysis in PTIME.

Courcoubetis&Yannakakis, 1989 : quantitative analysis
in PTIME.

31



Incomplete Information

Incomplete Information : One or both players have
imperfect (but correct) sensors

Example : Parity Games with incomplete information

• Analysis and synthesis are EXPTIME-complete:
follows from [Reif, 1984].

Combining Probability with Incomplete Information :
Stochastic Games with Incomplete Information
(following [Shapley, 1953])

Results for Stochastic Games :

• Complete Information: NP∩co-NP
(Chatterjee&Jurdziski&Henzinger, 2004)

• One Player with Incomplete Information: undecidable
qualitative analysis [Baier&Bertrand&Größer, 2008]

• One Player with Incomplete Information: undecidable
quantitative analysis, even for finite-memory
strategies (follows from Paz, 1971); even
approximate quantitative analysis is undecidable
(Madani&Hanks&Condon, 2003)

• One Player with Incomplete Information: EXPTIME-
complete qualitative analysis for finite-memory
strategies (Chatterjee&Doyen&Nain&V., 2014)

32



Synthesis from Components

Basic Intuition : [Lustig+V., 2009]

• In practice, systems are typically not built
from scratch; rather, they are constructed from
existing components.
– Hardware: IP cores, design libraries
– Software: standard libraries, web APIs
– Example: mapping application on smartphone

– location services, Google maps API,
graphics library

• Can we automate “construction from components”?

Setup :

• Library L = {C1, . . . , Ck} of component types.
• LTL specification: ϕ

Problem : Construct a finite system S that satisfies
ϕ by composing components that are instances of
the component types in L.

Question : What are components? How do you
compose them?

33



Components: Transducers with Exits

q0

0
start

q1

1

q2

0

q3

1

a

b

b

a

b

a

34



Control-Flow Composition, I

Motivation : Software-module composition – exactly
one component interacts with environment at one
time; on reaching an exit state, goto start state of
another component.

A library of two components types:
L = {M1,M2}

35



Control-Flow Composition II

Pick three component instances from L:

36



Control-Flow Composition III

Connect each exit to some start state – resulting
composition is a transducer and is receptive.

37



Control-Flow Synthesis

Setup :

• Components: transducers with exit states, e.g.,
software module

• Controlflow composition: upon arrival at an exit
state, goto start state of another component –
composer chooses target of branch.

• No a priori bound on number of component
instances!

Theorem : [Lustig+V.,2009]
Controlflow synthesis from components is 2EXPTIME-
complete.

Crux :

• Consider general (possible infinite) composition
trees, that is, unfoldings of compositions

• Use tree automata to check that all possible
computations wrt composition satisfy ϕ

• Reduce to parity games
• Show that if general composition exists then finite

composition exists.

38



Volume B AGT

Summary :

• Rich nearly-60-years-old theory

• Deep connections between logic, automata, and
games

• Fundamental motivation from SW/HW engineering

• Key: focus on algorithms and complexity

39



Mr. Gorbachev, Tear Down That Wall!

Vol. A and Vol. B AGT : Different but equal!

Vol. A → Vol. B :

• Complexity-theoretic approach to parity games
– Parity Games Hypothesis (PGH): PG/∈PTIME‘
– Consequences of PGH?

• Computing equilibria (e.g., “Rational Synthesis”,
by Fisman&Kupferman&Lustig, 2010)

• Price of anarchy in quantitative synthesis,
approximations, etc.

Vol. B → Vol. A :

• Extend from equilibria analysis to dynamic
analysis (e.g, “Network-Formation Games with
Regular Objectives” by Avni&Kupferman&Tamir,
2014).

• Automation of mechanism design (unpublished
by Chaudhuri&Fang&V.)

40


